
FLAVS: A Fault Localization Add-in for Visual Studio

Nan Wang
School of Computer Science and Engineering

Beihang University
Beijing, China

wangnangg@gmail.com

Zheng Zheng
State Key Laboratory of Computer Science

Institute of Software, Chinese Academy of Sciences
Beijing, China

Zhengz2011@gmail.com

Zhenyu Zhang*
State Key Laboratory of Computer Science

Institute of Software, Chinese Academy of Sciences
Beijing, China

zhangzy@ios.ac.cn

Cheng Chen
School of Computer Science and Engineering

Beihang University
Beijing, China

651044554@qq.com

Abstract—Dynamic fault localization is a representative
concept and product proposed by academia to alleviate
software engineering pains, but it is rarely heard adopted or
used in realistic development. Realizing the difficulties in
transferring the approaches of dynamic fault localization to
practical tools, this paper gives our work FLAVS, whose add-
in implementation organically and seamlessly integrates the
approach of dynamic fault localization with software IDEs.
The tool is useful for developers using Microsoft Visual Studio
platform to debug and test programs with complex bugs.
Besides, it is also valuable for researchers to design new fault
localization methods and draw performance comparison
among different method candidates.

Keywords- fault localization; Microsoft Visual Studio add-in;
fault localization tools

I. INTRODUCTION
Software applications appear in every corner of our daily

lives. However, software application is still far from bug-free
and the resultant software failures are continuously affecting
the quality of software in use. Program debugging is the
process of locating faults in faulty programs, repairing the
faults located, and re-testing the repaired programs [13]. It is
often a lengthy and manual procedure in practice, and there
always exist attempts to look for automatic mechanisms to
facilitate this task. Automatic program fault localization
refers to the mechanism to locate faults in programs. Typical
techniques include Tarantula [7], CBI [8], SOBER [10],
Delta Debugging [15], Predicate Switching [16], CP [18],
and so on (e.g., [3][16]). *

Among the many approaches to automatically locate
faults in faulty programs, coverage-based fault localization
techniques (CBFL) form a big family. The basic intuition
behind is that the exercising of fault-relevant program units
is correlated with the occurrence of program failures. CBFL
techniques estimate the suspiciousness of program units by
contrasting their coverage information collected in successful
executions and those collected in failed executions, and

* Corresponding author: Zhenyu Zhang (mail: zhangzy@ios.ac.cn).

narrow down the fault search region by focusing on the units
having great differences. The program debugging difficulties
can be alleviated if programmers follow the fault localization
suggestions to check the program for faults.

The spreading and applying of coverage-based fault
localization techniques in industrial activities have at least
four obstacles. First, to drive such a technique, oracle and
dynamic program spectra are two necessary conditions,
which are not directly available in most realistic cases.
Second, to support locating complex bugs like Mandelbugs
[4], workload designing, environmental factor monitoring
and system long-term running are necessary, which are not
implemented in almost all existent fault localization tools.
Third, after locating a fault and fixing it, there is a need to
rerun all the test cases to ensure the quality of fixing. Such a
step is mostly finished by error-prone human work. Fourth,
the fault localization techniques are developing rapidly for
decades of years. Any attempt to stick to an ideal algorithm
cannot be pervasively effective.

To automate the fault localization process, we developed
an add-in for the most popular development platform
Microsoft Visual studio. Once the program under test is
complied, FLAVS instruments the source code in advance.
When the program under test executes, FLAVS records
arguments, parameters, and standard inputs for replaying.
During the program’s execution, FLAVS continuously logs
the execution information including statement coverage, call
stack traces, environmental factors (For example, memory
consuming, CPU usage, and thread numbers) and so on.
After a program run finishes, the developer is asked to mark
the status of the program run, i.e., successful or failed.
FLAVS then employs a fault localization module to
incrementally update the suspiciousness of each program
statement being related to fault, lists out the executed
statements in the FLAVS window, and highlights the most
suspicious ones in appropriate colors. FLAVS also allows
developer to jump to the right position in the source code
window when clicking on a suspicious statement in the
FLAVS window. After locating and fixing a fault, FLAVS

provides a short cut to automatically rerun all the previously
recorded test cases to conduct regression testing.

The main features of FLAVS are as follows. (1) It
provides program fault localization assistance by visualizing
suspicious program units. (2) It supports workload designing
and system long-term execution. (3) It can monitor
environmental factors. (4) It automates the regression testing
process in a record and replay manner. (5) It allows new
algorithm designing. (6) It is integrated into a widely used
IDE, i.e. Visual Studio.

This paper presents the second release of our tool. The
rest of the paper is organized as follows. Section II gives
related work. Its functionalities and implementation are
presented in Section III. Section IV demonstrates two typical
usage scenarios. Section V concludes the paper and presents
the future work.

II. RELATED WORK
Previous CBFL studies propose different models to

assess the similarities between program coverage for
different executions, to determine the suspicious program
units. Typically, such a similarity coefficient calculates a
suspiciousness score of a program unit using four
parameters, namely, the number of passed executions that
exercise the program unit (aep), the number of failed
executions that exercise it (aef), the number of passed
executions that do not exercise it (anp), and the number of
failed executions that do not exercise it (anf). For example,
the classical CBFL technique Tarantula [7] uses the formula

!!"
!!"!!!"

!!"
!!"!!!"

!
!!"

!!"!!!"

 to estimate the suspiciousness of a program

unit.

CBFL techniques assess the suspiciousness of program
units and generate a ranked list of all suspicious units to help
locating faults. Possible program units include statements,
functions, paths, data-dependency pairs and so on. Harrold et
al. [4] evaluated nine kinds of program units, among which,
the execution trace is the most widely used one. Recently, a
trend is to focus on the coefficient itself to simplify the fault
localization problem [12] [16]. For example, Naish et al. [12]
listed many CBFL techniques and compared them using the
same program settings. In our tool, we implemented all of
them and provided an algorithm designing mechanism for
FLAVS to produce new fault localization modules by users.
Compared to these works, our work focus on the efforts of
converting the approaches of dynamic fault localization into
a practical tool embedded in a popular IDE.

There exist a few toolsets or prototypes for fault
localization, such as Crisp[2], Zoltar [6], Falcon [13],
χDebug [17], DESiD [18], and also some fault localization
tools mainly concerning special applications, such as
FaultySheet Detective [1]. Our tool is different from them
basically in that FLAVS integrates fault localization with a
popular development platform, enabling its easy deployment
in the code development phase. FLAVS also provides

regression testing supports, and can be used in developing
new fault localization algorithms.

To the best of our knowledge, there are only a few add-in
fault localization tools [5] [8]. They were all implemented in
Eclipse IDE. Comparing with these works, another important
feature of FLAVS is its consideration of Complex bugs like
Mandelbugs [20]. Much of the efforts in software fault
localization have been taken on locating and removing
software bugs known as Bohrbugs as opposed to more-
difficult-to-reproduce Mandelbugs. Comparing with
Mandelbugs, Bohrbugs are bugs in software that are easy to
reproduce and debug; they do not change behavior as the
system state changes. Mandelbug activation, on the other
hand, depends not only on the input of the program but also
on different environmental factors, such as the state of
operating system resources, concurrency with other
processes, hardware and software interactions, and other
factors. To facilitate the debugging of Mandelbugs, the
functions, such as workload designing, environmental factor
monitoring and long-term running are provided in our tools.

III. FLAVS OVERVIEW

A. Flowcharts and Functions

Microsoft Visual
studio starts FLAVS starts

Compile a project

Changed since
last time?

N Instrumentation

Y

Compile the
instrumented version

Record spectrum and
mark test status

Update and visualize
suspicious statements

Bug fix

Regression testing

No failure
revealed?

N

All found
faults fixed.

Y

Step 2

Step 4

Step 5

Step 6

Design new
formula

Submit to server

Step 7

Step 8

Design workload

Run test cases

Record environmental
factors

Step 1

Step 3

Fig.1 Flowchart of FLAVS

In this section, we will present the main functions of
FLAVS. Fig. 1 shows the flowchart of FLAVS, which
include the relations among the functions. The illustration of
the functions can be found in Section IV for detail.

Function 1: Fault localization assistance

[Step 1] Workload Design

Workload is the amount of test cases that a test has to do.
In this step, the set of test cases executed, the times of
executing each test case, and the running intervals among
test cases can be designed by users.

[Step 2] Code instrumentation

To collect dynamic spectrum information from program
execution, instrumentation is needed. FLAVS provides an
automatic instrumentation mechanism. It is triggered before
the compiling of the program.

[Step 3] Environmental factor gathering

To handle complex bugs like Mandelbugs, FLAVS
monitors the environmental factors of the running project.
The factors include memory consuming, CPU usage, thread
numbers and so on.

[Step 4] Spectrum and mark test status recording

FLAVS provides a unified entry to set arguments, and
parameters to start debugging. It can record the coverage
information automatically. Once the program exits, it can
automatically or manually mark the test status (successful or
failed).

[Step 5] Fault location calculation and visualization

From the automatically collected spectrum, FLAVS
calculates the suspiciousness of each statement, predicate or
function. The suspicious units are shown and highlighted in
the FLAVS window and users can jump to the right position
in the source code window by clicking on them.

Function 2: Regression testing

[Step 6] Rerun all the captured test cases

When a fault is located and fixed, FLAVS provides a
short cut to rerun all the previous recorded test cases to
check the quality of fixing. The execution results of rerun are
shown in a list. The suspicious units in the FLAVS window
are updated afterwards.

Function 3: Designing new algorithm

[Step 7] Design a new technique

The users can design their own techniques from scratch
or from a template of existing techniques. Since the entire
fault localization infrastructure has already been setup by our
tool, the users only need to implement a core formula. Using

the provided interface, the users can compose any innovative
formulas, and verify their effectiveness.

[Step 8] Submit to the server

A stable version of any user-designed new formula can
be submitted to servers. A user access mechanism is
scheduled in the future work.

B. FLAVS Implementation
FLAVS is a Visual Studio add-in coded in C#. Microsoft

Visual Studio is one of the most popular IDEs, which can be
used to develop projects in Visual C++, Visual Basic, C#,
and other languages. It provides add-in APIs and makes the
retrieval of program testing and debugging information
available.

Figure 2 shows the framework of the add-in and its
interactions with Visual Studio. The add-in communicates
with the Visual Studio unit testing engine to capture the test
cases and binaries, and returns test results to Visual Studio.
To facilitate the communication, a test adapter is developed.
Besides, the add-in interacts with an instrument tool
provided by Visual Studio to generate the instrumented
binaries of the test object. After obtaining the test cases and
instrumented binaries, the test runner is triggered. As a result,
the test results and the coverage information are generated.
Afterwards, FLAVS makes use of the specified fault
localization technique to calculate the suspiciousness of each
program unit and shows the resulting rank list in the code
rank window. A user then refers to the visualized fault
localization result to find the fault.

In FLAVS, a fault localization formula file is coded in
XML and provided at the server side. A XML parser is
invoked by FLAVS to update formulas. Test cases are
recorded as inputs and expected outputs. The former consists
of command line arguments and standard input contents. In
the future work, program inputs in the form of keyboard and
mouse events will be supported. The latter is supposed to be

Test Explorer

Test Adapter

Test Runner

Fault localizer

Code rank
window

Instrument tool

Visual Studio

Test cases/Binaries Test results

Test cases/Binaries Test results
Binaries Instrumented

binaries

Test results/Coverage
information

Code rank list

FIFA

Fig. 2. Framework of the VS Add-in

specified by the programmer in plain text format. It will be
compared with the standard output to serve as oracles.
FLAVS communicates with Visual Studio Debugging
routines to capture the signal of program exit, so that when
no expected output is given, the programmer will be asked to
manually mark the test status, i.e., either successful or failed,
when program exits.

New algorithm can be designed by using specific
template, where six parameters, P, F, aef, aep, anf, and anp are
manipulated (any operator can be used to connect them) to
form a meaningful formula. The notation of the parameters
can be found in [16]. A parser is invoked to justify the
syntactic correctness of the algorithm.

IV. EXAMPLES
In this section, two examples will be used to illustrate the

usage of FLAVS. One is a widely used open-source program,
Math.NET Numerics, and the other is a program with an
injected dead-lock bug.

A. Example 1: Math.NET Numerics
Once launching Microsoft Visual Studio, the add-in of

FLAVS is loaded automatically. The user can at any time
enable the code rank window of the add-in from the menu.
Center of Fig. 3 is the code review window, which shows
the program Math.NET Numerics. The program aims to
provide methods and algorithms for numerical computations
in science, engineering and everyday use. It is programmed

with C#, consisting of more than 500 files and 120
thousands of executable statements. The program can be
downloaded from [11].

Though fault localizations and regression testing are
conducted in background, a user can show the test window
and code rank window at any time. The program outputs are
retrieved and compared with the expected outputs. For some
of them the observed outputs are consistent with the
expected outputs, FLAVS determines that they are
successful runs and marks “Yes” in the corresponding cells.
Otherwise, a failed run is found and FLAVS marks “No” for
it. Note that when no expected output is given, the result is
left to the programmer to manually decide, or left as
“Unknown” by default.

After identifying test results and obtaining the coverage
information, FLAVS starts a fault localization process to
calculate the suspiciousness for each statement. The fault
localizing results are automatically updated and showed in
the code rank window (See Fig. 4). The basic blocks are
ranked in descending order. In this case, the user checks
each of the highly suspicious statements, and finds out that
the 4th highest suspicious one, which is the 372nd statement,
is the root cause of the observed failures. The fault is
actually a logic error, specifically “&&” is written to “||” by
mistake. The user can jump to the faulty position by
clicking the item in the rank list. After fixing the fault and
compiling the program, the tester can perform a regression
test. Note that, in this example we use all the test cases
downloaded from [11].

B. Example 2: A program injected with a Dead Lock bug

Fig. 4. Code rank window of FLAVS

Fig. 3. GUI of FLAVS

	

In this example, the program implemented a concurrent
list data structure (as shown in Fig. 5), which has a dead-lock
bug. Thus, once under intensive writing operations, the
program can get locked.

The developer first design several workloads for the
program under test (as shown in Fig.6), and display all
workloads in the test explore. After running tests, the
developer can select and then view each test’s
environmental factors monitored by FLAVS (as shown in
Fig.7). The developer notices that after about 8 seconds
running, the processor time dropped to zero and did not
increase again. It indicates a failure.

After marking the failure in FLAVS, the fault
localization is activated. The FLAVS window showed the
executed statements as well as their calculated
suspiciousness degrees (as shown in Fig.8). The programmer
checked the statements one by one and observed that the
10th statement is faulty. The programmer clicked on the
statement in the FLAVS window and jumped to the source
code page. The dead-lock bug is found.

If the developer attempts to design new fault localization
technique, he can open the interface as shown in Fig.9 and
design the formula according to the instructions. As
discussed before, the formula was composed using six
predefined variables [12].

V. CONCLUSION AND FUTURE WORK
Debugging is always a time-consuming and tedious task,

while no automatic fault localization work is widely adopted
in practice. Based on comments and feedbacks in promoting
dynamic fault localization in our experiences, we propose

	

	

Fig.5 A program with a dead-lock bug

Fig.6 Workload design interface

Fig. 7 Environmental factor monitoring interface

Fig. 8 Code rank of a program with deadlock bug

FLAVS, which is to transfer the approaches of dynamic fault
localization to practical tools. FLAVS seamlessly integrates
the dynamic fault localization with a popular IDE -
Microsoft Visual Studio. It in background conducts
instrumentation, gathers coverage information, collects
environmental factors and calculates suspicious degrees for
basic blocks. The designed test cases are fed to a test
explorer without any interruption to user activities. The tool
is useful for developers working with Microsoft Visual
Studio, and is also helpful for software testing researchers in
debugging complex bugs like Mandelbugs.

Our future work mainly includes two aspects. First, our
tool currently only supports statement-, branch-, and
function-level program units for suspiciousness assessing
and ranking. In future work, we will extend the
instrumentation framework of our tool so that the users can
use path profile and data-flow profile to perform fault
localization. Second, currently, only C# projects are
supported. We will extend our tool for the user using other
program languages, such as C++, Basic and etc. Third, we
will extend the tool for other popular developing
environment, such as Borland C++, JBuilder, and Delphi.

ACKNOWLEDGMENT
The work is supported by Beijing Higher Education

Young Elite Teacher Project (No. YETP1072).

REFERENCES
[1] R. Abreu, J. Cunha, J. P. Fermande, P. Martins, A. Perez, and J.

Saraiva, “FaultySheet Detective: When Smells Meet Fault
Localization,” ICSME 2014, pp. 625-628.

[2] O. C. Chesley, X. Ren, B. G. Ryder, and F. Tip. “Crisp - a fault
localizatoin tool for Java programs,” ICSE 2007, pp.775-779.

[3] K. A. George, A. Podgurski, and M. J. Harrold. “Mitigrating the
confounding effects of program dependences for effective fault
localizatoin,” ESEC 2011/FSE-19, pp. 146-156.

[4] M. Grottke, K. Trivedi, “Fighting Bugs: Remove, Retry, Replicate,
and Rejuvenate,” IEEE Comput., vol. 40, no. 2, pp. 107-109, 2007.

[5] D. Hao, L. Zhang, L. Zhang, J. Sun, and H. Mei, “VIDA: Visual
interactive debugging”, ICSE 2009, pp. 583-586.

[6] T. Janssen, R. Abreu, and A. J. C. van Gemund, Zoltar: A Toolset for
Automatic Fault Localization, ASE 2009, pp.662-664.

[7] J. A. Jones and M. J. Harrold. “Empirical evaluation of the Tarantula
automatic fault-localization technique,” ASE 2005, pp.273-282.

[8] M. Jose, and R. Majumdar, “Bug-Assist: assisting fault localization in
ANSI-C programs, Computer Aided Verification,” vol. 6806, pp.
504-509, 2011.

[9] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. “Bug isolation via
remote program sampling,” PLDI 2003, pp. 141-154.

[10] C. Liu, L. Fei, X. Yan, S. P. Midkiff, and J. Han. “Statistical
debugging: a hypothesis testing-based approach,”. IEEE Transactions
On Software Engineering, vol. 32, no. 10, pp. 831-848, 2006.

[11] Math.NET Numerics, http://numerics.mathdotnet.com. Last accessed
on June 30th, 2014.

[12] L. Naish, H. J. Lee, and K. Ramamohanarao, “A model for spectra-
based software diagnosis,” ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 20, no. 3, 11, 2011.

[13] S. Park, R. W. Vuduc, and M.J. Harrold, Falcon: fault localization in
concurrent programs, ICSE 2010, pp. 245-254.

[14] I. Vessey. “Expertise in debugging computer programs: an analysis of
the content of verbal protocols,” IEEE Transactions on Systems, Man
and Cybernetics, vol. 16, no. 5, pp. 621-637, 2007.

[15] W. Eric Wong, Y. Qi, L. Zhao, K. Y. Cai. “Effective Fault
Localization using Code Coverage,” COMPASAC 2007, pp. 449-
456 .

[16] X. Xie, T. Y. Chen, F. C. Kuo, and B. Xu, “A theoretical analysis of
the risk evaluation formulas for spectrum-based fault localization,”
ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 22, no. 4, 31, 2014.

[17] X. Zhang, N. Gupta, and R. Gupta. “Locating faults through
automated predicate switching,” ICSE 2006, pp. 271-281.

[18] Z. Zhang, W. K. Chan, T. H. Tse, B. Jiang, and X. Wang. “Capturing
propagation of infected program states,” ESEC 2009/FSE-17, pp.43-
52.

Fig.9 New fault localization technique design interface

