
Replay Debugging of Real-Time Vxworks Applications
†

Chunlei Ma, Xiang Long

School of Computer Science

and Engineering

Beihang Univeristy

Beijing, China

{machunlei, long}@buaa.edu.cn

Bo Jiang
‡

School of Computer Science and Engineering

Beihang Univeristy

State Key Laboratory of Computer Science

Institute of Software,

Chinese Academy of Sciences

Beijing, China

jiangbo@buaa.edu.cn

Zhenyu Zhang

State Key Laboratory of

Computer Science

Institute of Software,

Chinese Academy of Sciences

Beijing, China

zhangzy@ios.ac.cn

Abstract—Debugging multi-task real-time VxWorks

applications is tedious and time-consuming for developers. The

non-determinism within the application execution makes the

developers hard to reproduce a failure. 1 As a result, the

developers cannot perform cyclic debugging easily on these

real-time applications. Replay debugging techniques can help

developers to replay the failure scenario with determinism. In

this paper, we propose an approach to replaying real-time

VxWorks applications. We make use of dynamic binary

instrumentation to record data flow non-determinism.

Furthermore, we instrument the VxWorks kernel to record

control flow non-determinism. Finally, the recorded

information together with a modified VxWorks kernel is used

by our replayer to support effective replaying. Our evaluation

results show that our approach can effectively replay real-time

multi-task VxWorks applications with low overhead.

Keywords-execution replay, real-time, vxworks, debugging

I. INTRODUCTION

Program debugging is a tedious and time-consuming

work. It greatly reduces the development productivity of the

developers. How to design automatic or semi-automatic

debugging tools to help the developers improve their

debugging effectiveness has been the focus the software

engineering research for many years.

The most frequently used debugging approach by

developers is the cyclic debugging. In cyclic debugging, the

developers execute a faulty program with the same input

repeatedly to analyze same failure scenario in detail. In each

repeated execution cycle, the developer will set break points,

analyze the state of program variables and gradually narrow

down the code to inspect. Finally, the developer will locate

the fault in the program after this repeated debugging cycle.

The delta-debugging approach [5] in essence automates this

cyclic debugging strategy with software tools.

† This research is supported in part by the National Natural Science

Foundation of China (project no. 61202077), the Basic Research Funding

of Central Universities, the National Key Basic Research Program of China
(project no 2014CB340702), the National Natural Science Foundation of

China (project no 61379045), and the National Science and Technology

Major Project of China (grant no. 2012ZX01039-004).

‡ Correspondence author

The cyclic debugging approach assumes repeated

execution with the same input will trigger the same fault and

lead to the same failure. However, this assumption may not

always hold, which is caused by the non-determinism faced

by the program under execution. There are many sources of

non-determinism faced by a program in addition to input:

the non-deterministic API calls, the data received from

network, the thread scheduling choices made by the

operating system, and interleaved access of shared memory

access from different threads. Thus, to enable effective

cyclic debugging of these non-deterministic programs,

replaying the failed execution deterministically is necessary.

In this work, we focus on the replay debugging of

real-time applications on VxWorks [23] real-time operating

system, which is the most popular real-time operating

system in the avionics industry. Compared with replaying

traditional applications, the replay debugging of VxWorks

application has several challenges.

First, the replay of real-time VxWorks applications

requires ensuring the same timing of non-deterministic

events while the replay of traditional applications mainly

focuses on ensuring the same order of non-deterministic

events. The real-time feature of VxWorks is mainly

supported by its interrupt handling mechanism. For a

real-time operating system like Vxworks, an interrupt can

happen any time during program execution and must be

handled in real-time to support safety-critical tasks. As

discussed by Lamport [10], a correct reproduction of the

temporal behavior of an execution implies a correct

reproduction of the ordering of events in the execution.

However, the reverse is not true. Thus, to replay real-time

VxWorks real-time applications, it is important to record

and replay of the precise timing of the non-deterministic

events.

Second, the real-time VxWorks applications are usually

safety-critical applications. Thus, for a practical

replay-debugging tool, the overhead of non-deterministic

events logging (or recorder modules) must small to

minimize the impact of probe effect.

2015 IEEE 39th Annual International Computers, Software & Applications Conference

0730-3157/15 $31.00 © 2015 IEEE

DOI 10.1109/COMPSAC.2015.270

568

In previous work, Patel [14] have proposed a solution to

replaying the real-time VxWorks applications, but it only

supports the applications written by Ada language.

Our solution to replaying real-time VxWorks

applications contains the recording phase and the replaying

phase. In the recording phase, we systematically log the

nondeterministic data flow inputs, synchronous events and

interrupt events. In the replaying phases, we modify the

VxWorks operating system source code to guide the

re-execution of applications using the recorded

non-deterministic choices. Our evaluation on some

VxWorks applications demonstrates the feasibility of our

approach.

The main contribution of our work is as follows: (1) We

proposed a new approach for replay debugging of real-time

VxWorks applications. (2) We have performed a systematic

experiment on real-time Vxworks applications to evaluate

the effectiveness of our approach.

The following sections of the paper are organized as

follows. In section II, we discuss some background

knowledge on replay debugging. Then we present our replay

debugging approach in section III, followed by our

empirical study in section IV. Finally, section V presents

related work and section VI concludes the paper.

II. BACKGROUND ON VXWORKS APPLICATIONS

The VxWorks operating system is designed for
executing hard real-time applications by ensuring
determinism. VxWorks real-time applications (processes)
provide the means for executing applications in user mode.
Each process has its own address space, which contains the
executable program, the program’s data, stacks for each task,
the heap, and other resources. Many VxWorks processes
may be present in memory at once, and each process may
contain more than one task (equivalent as a thread in other
operating systems).

The VxWorks process realized the real-time
requirements in various ways. First, VxWorks process
(application) are not scheduled, the tasks are scheduled
throughout the system with preemptive, priority-based
algorithm. Second, a task can be preempted not only in user
mode but also in kernel mode. Thus, the strong
preemptibility of VxWorks kernel ensures the highest
priority task in the system that is ready to run will execute.
This also ensures the real-time interrupt events are handled
in a timely manner.

III. REPLAY DEBUGGING OF REAL-TIME VXWORKS

APPLICATIONS

In this section, we present our approach to replaying

real-time VxWorks applications.

A. The Overall Architecture

The overall framework of our replay system is shown in

Figure 1.

We divide the execution process of our replay system

into 2 steps: the recording phase (recorder) and the replaying

phase (replayer).

In general, the non-deterministic information faced by an

application execution includes 3 types: the data flow

information, synchronous events and asynchronous events.

The data flow consists of the data read from external devices

and data received from other tasks. Synchronous events

caused by synchronous API operations, such as semTake,

semGive, msgQSend. The asynchronous events mainly

consist of interrupt events.

In the recording phase, we need to record the data flow

information and control flow information. To record the data

flow information, we use the Valgrind tool to instrument

application binary. To record the control flow information,

we manually instrument the VxWork source code to record

the task switch information, interrupt events, and API call

events. We also make use of the WindView [24] tool to

facilitate information collection.

Then, we use the upload task to send logs recorded back

to the host. On the host machine, we parse the log file to

filter out the unnecessary information, such as those

information generated by the other applications and system

tasks.

Figure 1. The overall framework of replay system

In the replay phase, we aim at replaying the application

execution with those recorded information. We use a replay

version of Vxworks kernel where we have revised the

VxWorks source code to disable the real-time timer and

replace the task scheduler with our customized one. To

control the program execution, we bypass the system calls,

take control of task scheduling, and disable real-time

interrupt. We also make use of the WTX (Wind River Tool

eXchange protocol) interfaces within the Tornado IDE to

add/delete breakpoints, resume task execution, and to

read/write some global variables, etc.

We will detail our design of the recorder and replayer in

the sections below.

569

B. The Recorder

1) Recording Data Flow infornmation

To record data flow information within the application,

we use the Valgrind [22] tool to perform binary

instrumentation. When the task reads some data from

external devices or communicates with other tasks through

network, we log the data. If the data read from external

device can be large in size (e.g., from a file or database), we

will NOT log the data received. Instead, we just ensure the

tasks read the same data by carefully preparing the data

sources. Note we do NOT record the data written to external

devices or sent to other tasks since they will not affect

program execution state. In this way, we can reduce

data-flow instrumentation overhead significantly.

2) Recording Synchronous Events

The Synchronization events of interest to replay

debugging mainly consists of the system calls that can cause

task reschedule, such as semTake, semGive, msgQSend,

msgQReceive and so on.

Next we will use the function semTake as an example to

describe our recording strategy. The modified version of

semTake() is described in Figure 2, where the code in the red

rectangle is the instrumentation code added by us.

Figure 2 The modified version of semTake

In the modified version of semTake, we add a few

recording statements. First, we call the getpc to get the

program counter, named pc, and we increase the

synchronous events number, named syncCounter, which is

added for each task. Then we call the Macro EVT_ARG_4

provided by VxWorks to log the information which contains

of the type of the event (e.g. EVENT_MYSEMTAKE), the id

of the event, the synchronous event counter, pc and the

current task id.

Meanwhile, we also need to record the task scheduling

information. So we modify the reschedule function, which

provides the VxWorks task scheduler implementation

(reschedule). The modified version is shown in Figure 3,

where the code in the red rectangle is our added

instrumentation code.

Whenever there is a task switch, we must record the

precise locatoin where one task releases the CPU. We invoke

the MACRO EVT_CTX_TASKCONTEXT defined by us to

record the information when task switching occurrs. We

record the type of the event (e.g.

EVENT_TASK_CONTEXT_OLD), information of the task to

swap out and the id of the task to swap in. The information

about the task to swap out contains the values of 32 general

registers and the checksum of task stack, which together

represent the context information to identify a program

execution point uniquely. We get the value of general

registers from the TCB (Task Control Block) of the task and

the stack checksum with function CHECKSUM. Vxworks

use the TCB address of the task as its identification.

Figure 3. The modified version of reschedule

A synchronous event may lead to a task switch when the

calling task is blocked. When a synchronous event happens

in a loop, the program counter is insufficient to pinpoint

which invocation of the synchronous event lead to a task

switch. Since our replayer will be responsible for task

scheduling in the replay phase, we must differentiate this. So

we use a synchronous event counter (syncCounter) for each

task to differentiate each invocations in a loop. The counter

will increment itself on each synchronized event invocation

and will reset upon task scheduling. In the replay phase, our

replayer will decide when to trigger a rescheduling based on

the counter.

3) Recording Interrupt Contexts

When executing a loop, if interrupt occurs, the recording

of program execution location calls for a special treatment.

As shown in Figure 4, an interrupt happens when executing a

loop, leading to a task switch. The program counter (PC)

value is 0x2458. Since this interrupt happens within the loop,

the same PC will be revisited several times during execution.

Therefore, the program counter is insufficient to identify the

precise program execution.

Figure 4. Interrupt occurs while in a loop

570

To solve this problem, the program counter needs to be

extended with a unique marker to differentiate between loop

iterations, subroutine calls and recursive calls. The content of

this marker should be able to uniquely define the state of the

program upon interrupt. Since the task registers and task

stack values change across loop iterations, we can use them

as the unique marker. Since the register values and stack

information is too large to record efficiently, we use their

MD5 hash as unique identification.

C. The Replayer

1) Replaying Data Flow infornmation

At the replay stage, we must ensure the data read from

the external device or received from other tasks will be as

same as the record phase. For large size of data from the files

or databases, we just carefully prepare the execution

environment to ensure the same data is consumed by the

application. For the other data inputs, the replayer uses the

Valgrind dynamic binary instrumentation tool to bypass the

corresponding execution and directly feed the recorded data

to the application.

2) Replaying Synchronous Events

Since the replayer is responsible for task scheduling in

replay phase, the replayer must first filters out the records of

synchronous events that do not trigger the task switch. Then

we add the breakpoint at the pc value corresponding to a

synchronous event logged in record phase with the VxWorks

debugger.

In replay phase, we must guarantee that only one task of

our replayed application is in ready or running state, the

others should be in suspended state.

When the synchronous operation is called, the breakpoint

will be hit and the current running task will suspend at the pc

value. Then we will check whether its synchronous event

counter is equal to that of the recorded one. If so, a task

switch must be performed. Then we will schedule another

task to run according to the order of task executions in

recorded phase. Otherwise, we will continue the suspended

task. Finally, when some tasks release the semaphore, and if

it is time for scheduling it based on the recorded information,

we will schedule it for running.

3) Replaying Interrupt Events

The interrupt is a kind of asynchronous event, and it can

happen in any position on the execution path of the

application as long as it is enabled. Remember we have

logged the pc and unique marker (the hash of the register

values and stack information) in the recoding phase. To

replay an interrupt, we first add breakpoint at the

corresponding program counter recorded when interrupt

happens. If the breakpoint is hit, it means that the current

running task may be interrupted by interrupts in recording

phase, which we will verify with the unique marker.

Specifically, we compare the register and stack hash of

current task with that of the recorded one. If they are not

equal, the current task should continue to run. If they are

equal, it means that the current task reaches the location

where the interrupt occurred in its record phase. Since that

interrupt causes the task switch in the recorded execution, we

delete the breakpoint set by program counter of current task

and then we schedule another task to run according to the

recorded order of task executions. If this new task has been

interrupted by interrupts during this time slice, a new

breakpoint should be added like similarly.

IV. EVALUATION

A. Evaluation Goal

In this section, we want to evaluate the effectiveness and

overhead of our proposed replay debugging approach. We

use 3 sample VxWorks application to perform the replay

debugging experiment.

B. Experiment Setup

In our experiment, we used the VxWorks 5.5 and

Tornado development environment. This environment is

provided by Wind River. It is running on Microsoft

Windows XP with the Intel Core I5-4430 and 1G memory.

We used the VxSim tool to simulate the Vxworks target

board.

We use 3 real-time multi-task VxWorks applicatoins for

evaluation as shown in Table 1. In each row, we list the ID,

the number of lines of source code, the number of tasks, and

a brief description of the application

Table 1. Subject Programs for Evaluation
Application

ID
LOC

No. of

Tasks
Description

A1 50 2
The implementation of producer and

consumer problem

A2 70 2 Calculating and printing primes

A3 150 3 Random number generation and sorting

The first application (A1) simulates the

producer-consumer problem, which contains frequent

semaphore operations. The second program (A2) spawns two

tasks to calculate the prime number, one is responsible for

calculating and printing primes from 1 to 20000 while the

other is responsible for the prime numbers from 20000 to

40000. The third program (A3) spawn three tasks, the first

one is responsible randomly generating 20000 integer

numbers from -1000 to 1000 and sending data to other tasks,

the second is responsible for sorting the 10000 integers

received from the first task and the last task works similar to

the second one.

To evaluate the effectiveness of our replay debugging

approach, we performed replay debugging on the 3 subject

applications with our approach and checked whether the

replay is successful.

571

To evaluate the overhead of our approach, we executed

the application with and without enabling our recording

mechanism and compared the results. Since the scheduling

time slice have an impact on the frequency of task schedule

(The shorter the slice, the more frequent the schedule), we

evaluate two settings of the task schedule slice: 10ms and

100ms. We made the setting through the interface.

C. Results and Analysis

We have successfully replayed all three subject programs

with our proposed approach, which demonstrate the

effectiveness of our technique.

Then we compare the performance of the application

before and after instrumentation on the 2 time slice settings.

The results are shown in Figure 5. We use “L” to

represent long time slice of system scheduling (i.e., 100ms)

and “S” to represent short time slice of system scheduling

(i.e., 10 ms). The x-axis represents the different combination

of application and time slice setting. The y-axis represents

the execution time in seconds. We can see that for both

settings, although the instrumentation incurred overhead for

each application, the overhead is relative small. A detailed

analysis show that the overhead of our instrumentation is

less than 5%. Furthermore, the comparison of corresponding

applications in the two different time slice setting (“L” and

“S”) are also small, which shows that our recording

overhead within the scheduler is also low, such that more

frequent task switches will not impact performance

significantly.

In summary, the evaluation results show that our

technique can effectively replay real-time VxWorks

applications with low overhead.

V. RELATED WORK

In this section, we review the closely related work on

deterministic replay debugging.

In recent years, Researchers have done a lot of research

on the deterministic replay and proposed some useful replay

solutions. They can be based on hardware support or

software or both.

Bacon [3] et al. first proposed a replay scheme that has

the hardware support, and they present a hardware/software

design that allows the order of memory references in a

parallel program to be logged efficiently.

LeBlanc and Mellor-Crummey [11] make a contribution

to software-only replay. Their method is denoted Instant

Replay and focuses on logging the sequence of accesses to

shared objects in parallel executions.

Some subsequent proposals have been extensions to the

work of LeBlanc and Mellor-Crummey. For instance,

Audenaert and Levrouw have proposed a method for

minimizing recordings [2] of shared object accesses. And

Chyassinde Kergommeaux and Fagot included support for

threads [5] in a procedural programming extension of the

Instant Replay method.

In addition, CLAP [9] is based on LLVM compiler and

symbolic-execute tool KLEE and is also a software-only

replay. CLAP uses LLVM to achieve source code

instrumentation, and records the program execution path

information in symbolic execution. CLAP could be divided

into three stages: record, inference, and replay. In record

phase, CLAP records the program execution path rather than

recording the data race and synchronous instrumentation. In

inference stage, CLAP uses a symbolic execution tool

KLEE. The records of the program execution path

information are mainly used for accelerating the inference,

and CLAP only needs to find one path of execution in

inference stage. In the process of symbolic execution, CLAP

collects the information about the program execution, such

as the shared read/write operations, the read/write operation

sequence of each thread, synchronous operations and path

conditions (as all bound symbolic branch selected set) and

the forth. When symbolic execution ends, CLAP will

translate all the information collected in symbolic execution

phase into a global equation, and the solution of the

equation represents the thread scheduling scheme. Then the

step comes into the constraint solving phase, and CLAP

enters the replay stage when finding a thread scheduling

scheme at the end of symbolic execution phase. CLAP does

not need to record shared memory dependencies and

program state, and reduces the overhead of the record stage.

Petel [14] et al describe a language-based framework for

tracing and replay of real-time concurrent programs in

Vxworks. Their framework consists of wrappers for

Vxworks synchronization constructs like semaphores,

message queues and threads. This framework supports two

modes of execution, namely, trace and replay. In the trace

mode, important synchronization events, with necessary

debugging information, are recorded into a trace file. In the

replay mode, a trace of synchronization events is read and

used to control the behavior of threads so that these events

are exercised in the same order as they were recorded. But

their framework only be used for the application written by

Ada language.

Figure 5 Comparison of Instrumentation Overhead

572

Sundmark [19] proposed a method to replay debugging

of embedded real-time system. He use the task stack and

context information to pinpoint the location of a program

execution point. However, it relies on manual

instrumentation on the application to record data-flow

information, which makes their approach hard to automate.

PinPlay [12][15] is a replay system that focus on the

application debugging. They are based on the dynamic

binary instrumentation of a captured program trace.

Unfortunately, PinPlay need the support of instruction count

while some commercial CPU does not support and the

overhead of logging is another problem to address.

ODR [1] and PRES [4] are two novel approaches that

facilitate replay debugging. But they are unable to

immediately replay an application, given the log data from

the logging phase. Instead, they intelligently explore the

space of possible program execution path until the original

output or bug is reproduced. However, they require the

mechanism of recording a subset of the cache traffic between

memory and the CPU's.

VI. CONCLUSION

Debugging multi-task real-time VxWorks applications is

hard. The non-deterministic events occurred during

application execution makes it hard to reproduce the failures.

As a result, the developers cannot perform cyclic debugging

on these real-time applications. Replay debugging techniques

can help developers to repeat the failure with determinism. In

this paper, we propose a solution of replaying real-time

VxWorks application. We use dynamic binary

instrumentation to record data flow information. And we

instrument the VxWorks kernel to record synchronization

events and interrupt events. The recorded information are

used by our replayer to support effective replay debugging.

Our evaluation results show that our approach can

successfully replay real-time VxWorks applications with low

overhead.

With the popularity of multi-core architecture, more and

more real-time VxWorks applications are infact multi-task

concurrent applications. Those concurrent tasks have

interleaved access to shared memory, which add another

source of non-determinism. In future work, we will improve

our approach to support effective replay debugging of

multi-core real-time VxWorks applications.

REFERENCES

[1] G. Altekar and I. Stoica. “ODR: Output-deterministic replay for
multicore debugging.” In proceedings of the 22nd Symposium on

Operating Systems Principles, pages 193 – 206, 2009.

[2] K. Audenaert and L. Levrouw. Reducing the space requirements of
instant replay. In Proceedings of the ACM/ONR Workshop on Parallel

and Distributed Debugging, pages 205 – 207. ACM, May 1993.

[3] D.F. Bacon, S. C. Goldstein. Hardware-assisted replay of
multiprocessor programs. ACM. 1991.

[4] S. Bhansali, W.-K. Chen, S. de Jong, A. Edwards, R. Murray, M.

Drinic, D. Mihocka, and J. Chau. “Framework for instruction-level
tracing and analysis of program executions.” In Proceedings of the 2nd

International Conference on Virtual Execution Environments, pages

154 – 163a,1,2,3, 2006.
[5] J. Chassin de Kergommeaux and A. Fagot. Execution Replay of

Parallel Procedural Programs. Journal of Systems Architecture,

46(10):835 – 849, 2000.
[6] H. Cleve and A. Zeller. Locating causes of program failures. In

Proceedings of the 27th international conference on Software

engineering (ICSE '05). ACM, New York, NY, USA, 342-351, 2005.
[7] G. Dunlap, S. King, S. Cinar, M. Basrai, and P. Chen. ReVirt:

Enabling intrusion analysis through virtual-machine logging and

replay. In:Proc. of the 5th USENIX Symp. on Operating System

Design and Implementation. New York: ACM Press, 2002. 211−224.

[8] J. Gait. A Probe Effect in Concurrent Programs. Software-Practice
and Experience, 16(3):225 – 233, March 1986.

[9] J. Huang, C. Zhang, J. Dolby. CLAP: recording local executions to

reproduce concurrency failures. PLDI. 2013: 141-152.

[10] L. Lamport. Time, clocks, and the ordering of events in a distributed

system. Communications of the ACM, 21(7):558-565, July-1987.

[11] T.J. LeBlanc and J.M. Mellor-Crummey. Debuggging Parallel
Programs with Instant Replay. IEEE ransactions on Computers,

36(4):471-482, April 1987.

[12] C. K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S.
Wallace, V. J. Reddi, and K. Hazelwood, Pin: building customized

program analysis toolswith dynamic instrumentation, In Proceedings

of the 2005 ACM SIGPLAN conference on Programming Language
Design andImplementation (PLDI ’05), 190 – 200, 2005.

[13] N. Nethercote and J. Seward. “Valgrind: a framework for heavyweight

dynamic binary instrumentation.” In Proceedings of the 2007 ACM
SIGPLAN conference on Programming language design and

implementation (PLDI '07). ACM, New York, NY, USA, 89-100.

2007.
[14] D. K. Patel. Tracing And Replay Of Real-time Concurrent Programs

In VxWorks. Computer Science & Engineering, 2007.

[15] H. Patil, C. Pereira, M. Stallcup, G. Lueck, and J. Cownie. PinPlay: a
framework for deterministic replay and reproducible analysis of

parallel programs. In Proceedings of the 8th annual IEEE/ACM

international symposium on Code generation and optimization (CGO
'10). ACM, New York, NY, USA, 2-11, 2010.

[16] S. Park, Y. Zhou, W. Xiong, Z. Yin, R. Kaushik, K. Lee, and S. Lu.

“PRES: Probabilistic replay with execution sketching on
multiprocessors.” In proceedings of the ACM SIGOPS 22nd

Symposium on Operating System Principles, pages 177 – 192, 2009.

[17] Y. Saito. “Jockey: A user-space library for record-replay debugging.”
In Proceedings of the Sixth International Symposium on Automated

Analysis-Driven Debugging, pages 69-76, 2005.

[18] S. Srinivasan, S. Kandula, C. Andrews, and Y. Zhou. “Flashback: A
lightweight extension for rollback and deterministic replay for

software debugging.” In Proceedings of the USENIX Annual
Technical Conference, 3, 2004.

[19] D. Sundmark. Replay Debugging of Embedded Real-Time Systems: A

State of the Art Report, MRTC Report, M älardalen Real-Time
Research Centre, Malardalen University, February 2004.

[20] H. Thane and H. Hansson. Using Deterministic Replay for Debugging

of Distributed Real-Time Systems. In Proceedings of the 12th
EUROMICRO Conference on Real-Time Systems, pages 265 – 272.

IEEE Computer Society, June 2000.

[21] M. Xu, R. Bodik, M.D. Hill. A “flight data recorder” for enabling
full-system multiprocessor deterministic replay. In Proceedings of the

30th International Symposium on Computer Architecture. New York:

ACM Press, 2003. 122−135.
[22] Valgrind. http://valgrind.org/.

[23] VxWorks. http://www.windriver.com/products/vxworks/

[24] VxWorks Programmer’s Guide 5.5.
http://www.vxdev.com/docs/vx55man/vxworks/guide/

[25] Wind View User Guide.

http://www.vxdev.com/docs/vx55man/windview/wvug/index.html

573

