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a b s t r a c t

Context: Business Process Execution Language (BPEL) is a widely recognized executable service compo-
sition language, which is significantly different from typical programming languages in both syntax
and semantics, and especially shorter in program scale. How to effectively locate faults in BPEL programs
is an open and challenging problem.
Objective: In this paper, we propose a fault localization framework for BPEL programs.
Method: Based on BPEL program characteristics, we propose two fault localization guidelines to locate
the integration and interaction faults in BPEL programs. Our framework formulates the BPEL fault local-
ization problem using the popular fault localization problem settings, and synthesizes BPEL-specific fault
localization techniques by reuse of existing fault localization formulas. We use two realistic BPEL pro-
grams and three existing fault localization formulas to evaluate the feasibility and effectiveness of the
proposed fault localization framework and guidelines.
Result: Experiment results show that faults can be located with the fewest code examining efforts. That
is, the fault-relevant basic block is assigned the highest suspiciousness score by our fault localization
method. The experiment results also show that with the use of the proposed fault localization guidelines,
the code examining efforts to locate faults are extraordinarily reduced.
Conclusion: We conclude that the proposed framework is feasible in synthesizing effective fault localiza-
tion techniques, and our fault localization guidelines are very effective to enhance existing fault localiza-
tion techniques in locating faults in BPEL programs.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Service Oriented Architecture (SOA) has been increasingly
adopted to develop various distributed systems [26,30]. In the con-
text of SOA, Web services are basic units which provide their func-
tionalities by exposing a set of interfaces, and are coordinated in
some way to execute complex business processes. The Business
Process Execution Language (BPEL) [23] is a process-oriented exe-
cutable service composition language, which can be used to con-
struct loosely coupled systems by orchestrating a bundle of Web
services. Service composition corresponds to the integration of
modules in the context of traditional software development para-
digms. In the meanwhile, such service composition exhibits some
specific syntactic and semantic features. In detail, service composi-
tions retain control structures such as sequences, branches and

loops and at the same time introduce new elements that do not ex-
ist in typical programming languages such as C, C++ or Java. For
example, partner links, flows, and handlers for compensations are
elements, which are seldom touched in the traditional programs
and need special attentions. Service compositions are represented
as XML files. It means that the dynamic behaviors of a program are
embedded in the XML-based specification, which lacks the effec-
tive fault localization techniques [4,29]. Web services under com-
position can be implemented in any programming languages and
can be from different application domains. These features make
BPEL programs significantly different from traditional module inte-
grations, and testing such programs meets new challenges [7,30].
In particular, how can we effectively debug BPEL programs after
detecting a fault? Answering this question calls for new fault local-
ization framework and techniques.

Debugging is a complex and time-consuming activity, and in re-
cent years various fault localization techniques have been pro-
posed to improve the performance of debugging activities [17].
Their effectiveness has been validated through empirical studies
on typical programs, such as C or Java programs. However, when
these techniques are employed to debug BPEL programs, are they
still effective and efficient? On the other hand, previous studies
have the observation that larger programs have more information
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and faults in larger programs generally require fewer efforts to be
located. For example, the seven extensively used Siemens pro-
grams (print_tokens, print_tokens2, replace, schedule, schedule2,
tcas, and tot_info [10]) have on average 344 lines of code, while
the three Unix programs (flex, grep, and gzip [10]) always have
greater than 4000 lines of code. A corresponding observation is
that faults in the Siemens programs can be located with an on aver-
age 46% code examining effort by Tarantula [17], which means to
locate faults in a faulty program, Tarantula needs to examine 46%
statements in these Siemens programs. At the same time, on aver-
age 25% code examining efforts are needed to locate a fault in the
Unix programs. Similar results and analysis can be found in previ-
ous studies [10,17,20,22,27,35,39]. Since BPEL programs are often
smaller in scale compared with C or Java programs, can the existing
fault localization techniques effectively locate faults in BPEL pro-
grams? Up to now, there is, at least to our best knowledge, not
any answers to this question.

Another key issue of debugging BPEL programs is to understand
typical faults possibly made by BPEL designers. Fortunately, Estero-
Botaro et al. [12] defined a set of mutation operators for BPEL with
respect to its specific features. These mutation operators represent
typical faults made by BPEL designers [13]. Boubeta-Puig et al. [6]
further compared mutation operators for BPEL with those for the
other programming languages to check whether there is any muta-
tion operator missing for BPEL, and to illustrate the differences and
similarities between BPEL and the other languages. In our previous
work [31], we developed a scenario-oriented testing approach for
BPEL programs, and employed the mutation operators proposed
in [12] to validate the effectiveness of our approach. As a result,
test suites generated using our approach can be used to detect
most of seeded faults in BPEL programs.

In our previous work [32], we have investigated how to effec-
tively locate faults in BPEL programs to address the challenges
and open questions for debugging BPEL programs. We proposed
two fault localization guidelines and synthesized an existing tech-
nique, Tarantula, to locate faults in BPEL programs. A preliminary
evaluation showed that our approach is feasible and effective.

In this paper, we further address the challenges of locating
faults in BPEL programs and intend to answer the open questions
through the experiments. First, we propose a BPEL fault localiza-
tion framework, which formalizes the BPEL fault localization prob-
lem using the popular fault localization problem settings. The
framework is able to synthesize most existing fault localization
techniques. Second, we conducted an empirical study to evaluate
the effectiveness of the synthesized techniques for BPEL programs.
Two real-life BPEL programs are used as the subjects and mutation
operators are employed to simulate typical faults. The experiments
validated the feasibility of the framework and evaluated the effec-
tiveness of the synthesized techniques. Consequently, the synthe-
sized techniques can successfully locate more than 50% the
seeded faults. Third, the BPEL fault localization guidelines are pro-
posed to locate faults, which are based on the resulting ranked list
of program elements generated by the synthesized techniques. In
this context, we are interested to know the impact of the fault
localization guidelines. Experiment results show that the BPEL
fault localization guidelines have positive impacts on improving
the effectiveness of the synthesized fault localization techniques.

The contributions of this paper are threefold. (i) We first pro-
pose a fault localization framework for BPEL programs, which en-
ables the synthesis of existing fault localization techniques. (ii)
We empirically validate the feasibility of our framework, and
experimental results show that the synthesized techniques are
effective in locating faults in BPEL programs. (iii) We empirically
evaluate the impact of the proposed fault localization guidelines
on the effectiveness of the synthesized fault localization
techniques.

The rest of the paper is organized as follows. Section 2 intro-
duces the underlying concepts of BPEL, fault localization, and
mutation analysis. Section 3 proposes a formal fault localization
framework and guidelines for BPEL programs. Section 4 describes
an empirical study which is used to validate the feasibility of the
proposed framework and evaluate the effectiveness of the three
synthesized fault localization techniques. Section 5 concludes the
paper and proposes the future work.

2. Related work

In this section, we introduce the basic concepts and elements of
BPEL programs, general fault localization approaches, BPEL-specific
fault location issues, and the BPEL mutation mechanism related to
this work.

2.1. Business Process Execution Language (BPEL)

BPEL [23] is an executable service composition language which
executes complex business processes by orchestrating Web ser-
vices. Like typical programming languages, BPEL has standard con-
trol structures, such as sequence, switch, and while. However, BPEL
programs are significantly different from the traditional programs
in the following aspects [32].

First, BPEL provides an explicit integration mechanism (archi-
tectural glues) to compose multiple Web services into a large-scale
system, while such integration in traditional programs is implicit.
Second, Web services composed by a BPEL program may be imple-
mented in different programming languages and deployed in a re-
mote service container, while modules in a traditional program are
usually implemented in the same programming language and in-
stalled in the same computer. Third, BPEL programs are repre-
sented as XML files, and they demonstrate a big difference in
syntax when compared with the traditional programs. Finally,
BPEL provides concurrency among activities via flow activities
and synchronization via link tags within flows, which is not com-
mon in the traditional programs.

BPEL programming model is illustrated in Fig. 1. Usually, a BPEL
program consists of four sections, namely

� Partner Link Statements, which describe the relationship among
a BPEL process and invoked Web services.
� Variable Declaration Statements, which define input and output

messages.
� Handler Statements, which declare the handlers when an excep-

tion or specific event occurs, and
� Interaction Statements, which describe how external Web Ser-

vices are coordinated to execute a business process. Activities
are the basic interaction units of a BPEL process, and are further

Web Service 
(Java) 

Web Service 
(C#) 

Web Service 
(C++) 

Partner Link 
Statements 

Variable Declaration 
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Handler 
Statements

BPEL Program

Interaction Statements 

Fig. 1. The BPEL programming model.
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divided into basic activities and structural activities. Basic activ-
ities execute an atomic execution step. Structural activities are
composites of basic activities and/or structural activities,
including sequence, switch, while, flow, pick, and so on.

2.2. Fault localization

Spectra-based fault localization is a big family of fault localiza-
tion techniques. A representative one is Tarantula, which counts
the executions of program elements in different executions, and
uses the ratio of a program element being exercised in a failed exe-
cution and the one in a passed execution to calculate the suspi-
ciousness of the program element [17]. Such techniques are
empirically evaluated to be effective in previous studies
[1,16,20,28]. Naish et al. [22] listed 33 different such techniques.
In this paper, we discuss the synthesization of some of these tech-
niques for the fault localization of BPEL programs.

Another trend is to install predicates in programs, and capture
and/or sample their execution behaviors to efficiently identify
fault-relevant program elements. CBI [19] ranked the predicates
according to the probability that the program under study will fail
when those predicates are observed to be true. Arumuga Nainar
et al. [3] used compound Boolean predicates to locate faults. Zhang
et al. [37] investigated the impact of short-circuit rules in the eval-
uation of Boolean expressions, and propose DES [37] to address it
accordingly. HOLMES [8] uses execution paths as fault predicators.
Zhang et al. [36] proposed CP to capture the propagation of in-
fected program states via edges of a control flow graph. They lo-
cated suspicious edges and mapped the suspiciousness of edge to
that of basic blocks. Santelices et al. [28] investigated the integra-
tion of different methods in locating faults. Zhang et al. [38] pro-
posed a non-parametric predicate-based statistical fault-
localization framework, one of which contribution is to set up a fair
comparison between statement-level techniques and predicate-
based techniques. In this paper, we focus on the fault location of
BPEL programs. Since a BPEL program is typically much shorter
than a C or Java program, we investigate all the statements, rather
than working on predicates.

Different from the above general approaches, some efforts have
been devoted to the fault localization of concurrent programs [21].
The sources of concurrency faults are mainly from data race, atom-
icity violations and order violations, and some methods have been
proposed to detect data races through static and dynamic analysis
techniques [14]. More recent work has tried to identify and detect
dynamic interleaving patters that could result in an atomicity vio-
lation or order violation [15,25]. The concurrency is one of major
features of BPEL, which is supported in the following ways: (i)
The flow activity allows defining a set of activities, which are exe-
cuted in parallel. (ii) The receive and pick activities receive message
from an extern partner, and may result in the concurrency when
there are more than one activity whose createInstance attribute is
set to ‘‘yes’’. (iii) The forEach activity iterates over a set of child
activities, and may result in the concurrency when its parallel attri-
bute is set to ‘‘yes’’. At the same time, BPEL provides a mechanism
to protect the concurrent access to the global data. This can be
done by specifying the isolated attribute of the scope to ‘‘yes’’.
The existing fault localization techniques for concurrent programs
provide an aid to locate concurrency faults of BPEL programs.

Finally, BPEL is an XML-based language, which combines the
concepts or terms from several domains, such as Service Oriented
Architecture (SOA), Business Process Management (BPM) and data
representation. BPEL is simple in syntax, and some tools (such as
Eclipse [11]) are available to provide an aid to check the syntax of
BPEL programs. On the other hand, BPEL is complex in semantics,
and it is difficult to write error-free BPEL programs. One has to
check the behaviors specified by the BPEL program. Unfortunately,

little work was reported on debugging XML-based programs,
although XML are widely used in most areas of software develop-
ment. Bae and Baily [4] investigated the debugging issue of XSLT
transformations. Song and Tilevich [29] proposed a metadata
invariant-based method to locate faults in programs with XML-
based metadata. To our knowledge, there is not yet one approach
devoted to debugging XML-based programs.

2.3. Mutation analysis and BPEL mutation operators

Mutation analysis [2,9] is widely used to assess the adequacy of
a test suite and the effectiveness of testing techniques. It applies
some mutation operators to seed various faults into the program
under test, in order to generate a set of variants, namely mutants.
If a test case causes a mutant to show a behavior different from the
program under test, the mutant is said to be ‘‘killed’’. An equivalent
mutant refers to one whose behaviors are always the same as those
of program under test. In this paper, we use mutation analysis
technique to generate mimicking faults for measuring the effec-
tiveness of fault localization techniques.

Recently, people investigate the possible faults related to BPEL
programs in terms of mutation operators. Estero-Botaro et al.
[12] defined 26 mutation operators for BPEL 2.0. These mutation
operators are classified into four classes, namely (1) Identifier
Mutation Operators, (2) Expression Mutation Operators, (3) Activ-
ity Mutation Operators, and (4) Exception and Event Mutation
Operators. Boubeta-Puig et al. [6] further compared these mutation
operators with the existing mutation operators for the most popu-
lar traditional languages, such as C, Fortran, Ada, C++, C#, ASP.NET,
Java, SQL and XSLT [6], and discovered that only 13 (50%) of the 26
operators for WS-BPEL 2.0 are available in the traditional lan-
guages. This suggests that WS-BPEL 2.0 has many specific types
of mistakes when it is used. In this paper, we will employ these
mutation operators to simulate possible faults in BPEL programs.

3. The BPEL fault localization framework

In this section, we first discuss the major concerns of debugging
BPEL programs. Then, we provide a formal basis for the interac-
tions of BPEL programs. Next, we propose a fault localization
framework for BPEL programs and guidelines for improving its
effectiveness. Finally, we use an example to demonstrate the pro-
posed framework and guidelines.

3.1. Debugging concerns of BPEL programs

Debugging is a challenging and inevitable task during software
development. Debugging starts after testers detect a fault. To de-
bug a program, one first needs to know the possible location that
the fault may happen to, and then attempt to revise the relevant
codes. In this context, locating the suspicious statements is crucial.

Since BPEL programs are significantly different from traditional
programs in both syntax and semantics, how to effectively locate a
fault in BPEL programs is still open. Based on the BPEL program-
ming model in Section 2, we present two of the most important
concerns when debugging BPEL programs.

3.1.1. Integration level debugging
As mentioned before, BPEL is a kind of architectural glues which

is used to build an executable process by assembling Web services.
In the traditional programs, modules (such as functions and clas-
ses) are integrated by implicit function invoking, and hence mod-
ules are closely coupled. As a result, modules and module
integrations are often written in the same programming language.
However, BPEL programs only focus on the integration of Web
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services, and do not at all touch the implementation of Web ser-
vices. This means that service integrations and service implemen-
tations are completely separated. In this context, we only focus on
faults at the service integration level when debugging BPEL
programs.

3.1.2. Interaction debugging
Among four sections of BPEL program as illustrated in Fig. 1,

only interaction statements represent the execution steps of a
business process and direct interactions with services under com-
position. These statements are crucial to the correctness of BPEL
programs, while statements in other sections are not executable.
One should give the highest priority to the interaction section
when she debugs a BPEL program. In this context, we focus on
how to effectively locate faults related to the interactions.

When a BPEL program is executed, the Web services under
composition will be invoked. In this sense, debugging BPEL pro-
grams covers the fault localization at the integration level (namely
BPEL code) and at the component level (source code of service
implementation). As we discussed, the faults associated with the
two levels are significantly different from each other. In this study,
we focus on the fault localization at the integration level, and as-
sume that the Web services are correctly implemented. Definitely,
some faults may happen to Web services. How to ascertain faults
in a specific module or in the integration level is a new challenging
and open issue, which is beyond the scope of this paper and hence
left for future work.

3.2. Preliminaries

BPEL programs are represented as a set of hierarchical state-
ment blocks. A statement block corresponds to a set of elements en-
closed by the matched XML tags, and describes the interaction
through specifying the activity type, operation name, input vari-
ables, output variables, partner link, port type, target link names
and source link names. Fig. 2 illustrates an example of the invoke
statement block.

To simplify the fault localization of BPEL programs, statement
blocks are further classified into atomic statement block and non-
atomic statement block. The former refers to an atomic execution
step, including assign,invoke,receive,reply,throw,wait and empty.
The latter is composites of atomic statement blocks and/or non-
atomic statement blocks, including sequence,switch,while,flow an-
dpick. To make the discussion easy, we abstract those statement
blocks with similar semantics as the same type. In this context,
non-atomic statement blocks can be classified into the following
four types, namely

� Sequential statement blocks, which refer to those ones whose
child statement blocks are executed in a sequential order, such
as sequence activity.
� Optional statement blocks, which refer to those ones among

whose child statement blocks, only one can be executed, such
as switch, if/else/elseif, and pick activity.

� Parallel statement blocks, which refer to those ones whose child
statement blocks are executed simultaneously, such as flow
activity, and
� Loop statement blocks, which refer to those ones whose child

statement blocks are executed all the time until some condi-
tions are satisfied, such as while, untilWhile and forEach activity.

We next formalize the interactions of BPEL programs.

Definition 1. A BPEL program P is defined as an atomic, sequential,
optional, parallel, loop, or their composites:

P ::¼ ðatomicjsequentialjoptionaljparalleljloopÞþ ð1Þ

Definition 2. An atomic statement block atomic is defined as a
segment of continuous logic statements:

atomic ::¼ fstatementi:::jjði 6 jÞ^
:9n:ððn < iÞ ^ ðstatementn � statementiÞ
^ðtypeðstatementnÞ 2 EnumtypeSetÞÞ^
:9m:ððj < mÞ ^ ðstatementj � statementmÞ
^ðtypeðstatementmÞ 2 EnumtypeSetÞÞ^
ð8k:ði 6 k 6 jÞ ^ ðtypeðstatementkÞ R EnumtypeSetÞÞg

ð2Þ

where statementi is the ith logical statement in P, statementi..j is a
continuous statement segment form logical statement i to j, state-
mentx � statementy refers to that statementy can be executed if and
only if statementx is immediately executed. EnumtypeSet is a set of
types {sequential, optional, parallel, loop}.

Definition 3. A sequential block sequential is a composite of atomic
and no-atomic statement blocks:

sequential ::¼ fblock1 � � �blockmjðm P 1Þ^
8iðð16 i6m�1Þ ^ blocki 2 fatomic;optional;parallel; loopg^
ðblocki � blockiþ1ÞÞ

ð4Þ

where blocki � blocki+1 refers to that blocki+1 is immediately exe-
cuted if and only if blocki is executed.

Definition 4. An optional block optional selects only one block for
execution under some condition u.

optional ::¼ ðu?Þ � blocki:::jj9kðði 6 k 6 jÞ^
ðu! blockkÞ^
blockk 2 fatomic; sequential; optional; loopg

ð5Þ

where u is a formula whose value is evaluated to be False or True,
u ? blockk refers to that blockk is executed only if u is evaluated to
be True.

Definition 5. A parallel block parallel is a set of blocks that are
executed simultaneously:

parallel ::¼ fblock1:::mjm P 1 ^ 8i; jð1 6 i; j 6 mÞ
^ði–jÞððblockijjblockjÞ^
blocki 2 fatomic; sequential; optional; loopg^
blockj 2 fatomic; sequential; optional; loopgÞg

ð6Þ

where blocki||blockj refers to that blocki and blockj may be executed
simultaneously.

Definition 6. A loop block loop repeats the execution of a block
blocki until some condition u is satisfied:

loop ::¼ ððu?ÞblockiÞþj
blocki 2 fatomic; optional;parallel; loopg

ð7Þ

<invoke inputVariable="request" name="invokeapprover" 
operation="approve" outputVariable="approvalInfo" 
partnerLink="approver" 
portType="apns:loanApprovalPT"> 
<target linkName="receive-to-approval"/> 
<target linkName="assess-to-approval"/> 
<source linkName="approval-to-reply"/> 

</invoke> 

Fig. 2. An illustration of BPEL statement blocks.
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where u is a formula whose value is evaluated to be False or True.
With such a formal basis, we further propose the fault localiza-

tion guidelines and the fault localization algorithm for BPEL pro-
grams, which is to be discussed later.

3.3. Fault localization guidelines

According to the fault types and semantic specialties, the fol-
lowing guidelines are helpful to accurately locate faults. We for-
malize these guidelines based on the statement blocks, and then
provide their explanations.

[Guideline I]

8bððb 2 PÞ ^ ðbisakindof loop _ b is a kind of optionalÞ
^ 8cððc 2 PÞ ^ ðc–bÞ ^ ðsuspiciousnessðbÞ
P suspiciousnessðcÞÞÞ ! b:u ð8Þ

where P is a BPEL program, b.u refers to the condition of block b.
The above guideline suggests that for statement blocks in an op-

tional or loop statement block have the highest suspiciousness, one
should debug faults at the condition part.

Usually, fault localization techniques can locate faults accu-
rately in the traditional programs. This may not true because state-
ment blocks in BPEL programs are composed in a hierarchical way,
and when a fault occurs at the higher level statement blocks, it may
propagate downstream to the lower level statement blocks. This is
why we should check the condition part of optional or loop state-
ment block provided that its branch statement blocks have the
highest suspiciousness.

[Guideline II]

8bððb 2 PÞ ^ ðb is a kind of sequentialÞ^
8cððc 2 PÞ ^ ðc–bÞ^
ðsuspiciousnessðbÞP suspiciousnessðcÞÞÞ !
dððd 2 bÞ ^ not9eððe 2 bÞ ^ ðe–dÞ ^ ðe � dÞÞ

ð9Þ

where e � d refers to that d is immediately executed if and only if e
is executed.

The above guideline suggests that if a sequential statement block
has the highest suspiciousness, one should debug faults from the first
block inside the sequential statement block in a forward way. This is
rather natural to suspect the starting statement block in a sequential
statement block when a fault happens to the sequential block.

3.4. BPEL fault localization framework

Based on the BPEL programming model and debugging concerns
discussed above, we propose a statement block-oriented fault
localization framework for BPEL programs as illustrated in Fig. 3.

Next, we propose a fault localization procedure with the frame-
work as follows. Given a BPEL program bp = hs1,s2, . . . ,sni, where
s1, . . . ,sn denote a set of statement blocks. Let ts = ht1, t2, . . . , tmi be
a set of test cases, our aim is to find the most suspicious statement
block that causes the observed failures. The fault location process
with our fault localization framework consists of the following four
phases.

� [Phase 1]: When a failure f is reported during the execution of a
BPEL program bp, we first manage to restore the test suite ts
that reveals f.
� [Phase 2]: For each test case t in ts, we run bp to capture the

coverage status cs of each statement blocks with respect to
the execution of t, which is accordingly identified as a ‘‘pass’’
or ‘‘fail’’.

� [Phase 3]: We use cs as input of an existing fault localization
formula r to calculate the suspiciousness scores for each state-
ment block. The most suspicious statement block is termed as
mssb.
� [Phase 4]: According to the type of mssb, the possible position

set pps is recommended by following the fault localization
guidelines introduced in Section 3.3.

In the framework, we do not limit the use of different fault
localization formulas. However, the effectiveness of our fault local-
ization framework is related to the choice of fault localization for-
mulas. To differentiate the use of various fault localization
formulas, we deem an instantiating of the framework based on a
given formula as a synthesized fault localization technique.

Suppose a fault localization formula r is used in our framework,
the fault localization process of the synthesized fault localization
technique is described using the algorithm in Fig. 4. The algorithm
accepts as input a set of blocks P and a test suite TS, and outputs a
possible position set pps. Note that the input should also include
testing information such as block coverage by each test case and
success or failure of P with respect to each test case. To make it
simple, such testing information is not represented explicitly. The
algorithm first initiates pps to empty, then calculates the number
of failed test cases failed (blocki), and the number of passed test
cases failed (blocki), respectively (Step 2). Next, it calculates the to-
tal number of failed test cases totalfailed and the total number of
passed test cases totolpassed (Step 3). With the above information
available, it calculates the suspiciousness suspiciousness(blocki)
using the fault localization formula r (Step 4). Then, it orders the
suspiciousness scores for all blocks in P and selects a set of blocks
mssb whose suspiciousness scores is the largest (Step 5). Here, get-
MaxSuspiciousBlock(P) returns a set of blocki who have the largest
suspiciousness scores. Note that the algorithm is able to select a
specific ratio of the first largest suspiciousness scores as required.
Next, the fault location guidelines are used to recommend the pos-
sible position set (Step 6). In detail, for each block blocki in mssb, if
the type of blocki is optional or loop, add the position of its condition
part to pps; if the type of blocki is sequential, add the position of the
first atomic block to pps. Finally, the algorithm returns pps.

The proposed framework is very generic and can incorporate a
variety of fault localization techniques (algorithms) that have been
already developed for typical programs. When these techniques
were developed, testing history information is usually expected
to be available, such as what test cases are used and what state-
ments are covered. When these fault localization strategies are em-
ployed to debug BPEL programs, they must be adapted to the
context of statement blocks.

Regarding the localization of concurrency faults in BPEL pro-
grams, we need to solely focus on the treatment of data race

BPEL Program 
(Statement Blocks) 

Test Suite 

Statement Block 
Coverage 

Fault Localization 
Strategies  

Detected  
Faults

Suspicious Statement 
Blocks 

Fig. 3. An illustration of the statement block-oriented fault localization framework
for debugging BPEL programs.
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and order violation, while atomicity violation is often left for a
transaction middleware [33]. As to the data race, it only happens
to global data access without synchronization. As to the order
violation, it is usually manifested as some conflicting interleaving
patterns as summarized in [25]. To locate such faults, we need
to further develop techniques to identify and detect the conflict-
ing patters. We do not focus on concurrency fault localization in
this paper, though the framework can include it. The reasons in-
clude that (i) a BPEL program can be much shorter than a C or
Java program, the chance of a BPEL program containing multiple
faults is low; (ii) the chance of concurrency faults is very low,
which has been observed by the experiments to be reported la-
ter. That is, the relevant mutation operators designed for concur-
rency faults (such as ASF, ACI and AFP proposed in [12]) have a
limited applicability, and most of mimicked mutants are equiva-
lent ones.

3.5. Example

In this section, we use an example to demonstrate the proposed
framework and guidelines. BPEL program for SupplyChain [5] and
the Tarantula [17] technique are used for demonstration, and their
detailed descriptions can be found in Section 4.

Firstly, this BPEL program involves two Web services and con-
sists of 11 statement blocks. Fig. 5 illustrates its flowchart labeled
with the statement block identifiers. Considering statement block
4 which is shown as follows:

<condition>$input.name = ‘coca’ and $input.amount
&lt; $warehouseAmessage.WarehouseAResponse

</condition>

Assume a fault happens to this statement block, where the
statement ‘‘$input.name = ‘coca’’’ is incorrectly written as ‘‘$input.-
name ! = ‘coca’’’.

Secondly, we have recorded the testing information summa-
rized in Table 1 before debugging the fault. Note that the ‘‘state-
ment block ID’’ column represents a list of 11 statement blocks,
the 2nd to 9th column represents the coverage of the statement
block with respect to the specific test case (a ‘‘d’’ denotes covered;
otherwise not covered), and the bottom row represents the test re-
sult of each test case (‘‘F’’ denotesfailed; ‘‘T’’ denotes passed). In this
context, a test suite of eight test cases was used, and each test case
is composed of thename and amount of goods. For example, the
first test case ‘‘coca#0’’ means that the name of goods is ‘‘coca’’
and the amount is zero. These test cases generated using the sce-
nario-oriented approach proposed in [31] can guarantee the
branch coverage of BPEL programs.

Thirdly, with the testing information, one can calculate the sus-
piciousness score of each statement block using the Tarantula for-
mula (refer to detailed discussions in Section 4.3.1). Considering
block statement 4, both the failed and total failed is 4, and both
passed and total passed is 4, so its suspiciousness score can be cal-
culated as follows:

suspiciousnessð4Þ ¼ 4=4
4=4þ 4=4

¼ 1
2
¼ 0:5

Similarly, we can calculate the suspiciousness scores of all other
statement blocks, which are summarized in the ‘‘suspiciousness’’ col-
umn in Table 1. From the suspiciousness ranking result of all state-
ment (shown in the ‘‘rank’’ column), we observe that statement

Fig. 4. The sketch of a fault location algorithm.

Fig. 5. The BPEL flowchart of the SupplyChain process.
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blocks 9 and 10 have the highest suspiciousness. So, they are ex-
pected as the most suspicious statement blocks (MSSB).

Fourthly, we apply the fault localization guidelines to recom-
mend the fault’s possible position set (PPS). For this case, state-
ment blocks 9 and 10 are inside an optional statement, therefore
the condition part (namely statement block 4) should be suspected
according to Guideline I. The resulting PPS is {4,9,10}, and the fault
is successfully located.

4. Experimental evaluation

In this section, we report an empirical study, which is used to
validate the feasibility of the proposed framework and evaluate
the effectiveness of the synthesized fault localization techniques
when they are used for BPEL programs. First, we state the research
questions. Second, we describe two subject programs and three
subject fault localization techniques that will be examined in this
study. Third, we discuss how the experiments are designed and re-
port results according to the research questions. Finally, we discuss
observations and threats to the validity of our study.

4.1. Research questions

In this study, we attempt to answer the following questions
about the proposed framework and guidelines on locating faults
in BPEL programs.

� RQ1: Is the proposed framework able to locate faults in BPEL
programs, and how about the effectiveness of existing fault
localization techniques when they are synthesized in the
framework?

We proposed a formal fault location framework for BPEL pro-
grams. The framework and guidelines are illustrated by a sample
BPEL program and the Tarantula technique. In this study, we would
further examine the feasibility of the framework and the effective-
ness of the synthesized fault localization techniques. We selected
two real-life BPEL programs as subject programs, and employed
mutation operators to simulate possible faults of BPEL programs.
The effectiveness is measured in terms of fault localization success
rate.

� RQ2: How about the impact of the proposed guidelines on the
effectiveness of the synthesized fault localization techniques?

In the proposed framework, the guidelines are proposed to rec-
ommend the possible fault locations, which are based on the
resulting ranked list generated by the synthesized fault localization
techniques. It is interesting to know the impact of the fault

localization guidelines. We answer this question by comparing
the effectiveness of the synthesized fault localization techniques
with and without following the guidelines.

4.2. Subject programs

BPEL programs for SupplyChain and SmartShelf are chosen as
subject programs, and they demonstrate most of major features
of BPEL.

(1) SupplyChain

SupplyChain [5] is widely used to demonstrate common features
of BPEL. The process receives an order, which is represented by an
input message consisting of name and amount of goods. The pro-
cess returns an output message to indicate whether the warehouse
can accept the order. The process first calls a Warehouse web ser-
vice to get the name and amount of goods available in warehouse.
If the required goods (indicated by the name of the input message)
are available and the required amount (indicated by the amount of
the input message) is smaller than the amount of goods available
in warehouse, the process calls a Shipper web service to transport
goods, and assign the output message with ‘‘yes’’; Otherwise, the
output message is assigned with ‘‘The warehouse cannot receive
the order’’.

(2) SmartShelf

SmartShelf [24] is complex, and it demonstrates some other fea-
tures of BPEL. For instance, it contains the concurrency behavior.
BPEL program for SmartShelf involves 14 Web services’ interactions
and consists of 48 statement blocks. Its flowchart is illustrated in
Fig. 6. It receives an input message called commodity, which is
composed of name, amount and status. The process returns an out-
put message which is composed of quantity, location and status. The
whole process is enabled after receiving an input message. It then
checks with available shelf items and decides whether the amount,
location and status of the available items meet the expected
requirements. If the amount of the available goods on shelf is lar-
ger than the amount of commodity, the quantity of message is
‘‘Quantity is enough’’; Otherwise, it transfers the goods from the
warehouse. If the amount of the available goods in the warehouse
is larger than the amount of commodity, the quantity of message is
‘‘Quantity is enough’’; otherwise, the quantity of message is ‘‘Ware-
house quantity is not enough’’. If the name of commodity is not the
same as the name of the available goods on shelf, it re-arranges the
goods and returns ‘‘Rearrange is done’’ as the location of message;
otherwise it returns ‘‘Location is OK’’. If the status of commodity is
larger than the available status of shelf, it sends status to the

Table 1
An illustration of Suspiciousness Calculation and ranking using the Tarantula formula.

Statement block ID coca#0 coca#12 milk#0 milk#12 coca#1000 coca#1200 milk#1000 milk#1200 Suspiciousness Rank

1 d d d d d d d d 0.5 3
2 d d d d d d d d 0.5 3
3 d d d d d d d d 0.5 3
4 d d d d d d d d 0.5 3
5 d d d d d d 0.33 8
6 d d d d d d 0.33 8
7 d d d d d d 0.33 8
8 d d d d d d 0.33 8
9 d d 1.0 1

10 d d 1.0 1
11 d d d d d d d d 0.5 3
Test result F F F F T T T T N/A N/A
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warehouse and returns ‘‘Status is fine now’’ as status of message;
otherwise, it returns ‘‘Status is ok’’. The above comparisons are
done in parallel.

4.3. Subject techniques

In this section, we first introduce three representative fault
localization techniques (namely Tarantula [18], set-union [27]
and code coverage [34]), and then discuss their synthesization with
the proposed fault localization framework for BPEL programs. We
choose Tarantula as a subject technique since it is one of the most
representative spectrum-based fault localization techniques. We
choose Set-union for comparison because it has the simplest form.
We include the third one in the experiment because it is previously
evaluated to be very effective [34].

4.3.1. Tarantula
The intuition behind the Tarantula technique is that the entities

in a program covered by ‘‘failed’’ test cases are more likely to be
faulty than those that are covered by ‘‘passed’’ test cases. Following
this intuition, the suspiciousness score of an entity e can be calcu-
lated using the following equation.

suspiciousnessðeÞ ¼
failedðeÞ

totalfailed
passedðeÞ

totalpassedþ
failedðeÞ

totalfailed

ð10Þ

where passed(e) is the number of ‘‘passed’’ test cases that executed
the entity e at least once; failed(e) is the number of ‘‘failed’’ test

cases that executed the entity e at least once; totalpassed and total-
failed are the sum of ‘‘passed’’ test cases and ‘‘failed’’ test cases,
respectively. If any of these denominators equals 0, we assign 0 to
the fraction. Using the suspiciousness score, we can compute each
entity’s likelihood of being faulty whose values range from 0 to 1.
For an entity e, if its suspiciousness score is evaluated to be 0, the
entity is the least suspicious; if its suspiciousness score is evaluated
to be 1, the entity is the most suspicious. As a result, the technique
recommends the entities that have the highest suspiciousness
scores to check when debugging faults.

4.3.2. Set-union
The set-union technique recommends the suspicious state-

ments by means of the set computation technique. The technique
first constructs a set of statements that are executed by one
‘‘failed’’ test case. It then removes the union of all statements exe-
cuted by all ‘‘passed’’ test cases from the set, finally the remaining
statements are recommended as the suspicious statements. The
construction of suspicious statements is defined by the following
equation.

Einitial ¼ Ef �
[
p2P

Ep ð11Þ

where p is one ‘‘passed’’ test case, P is a set of ‘‘passed’’ test cases in
the test suite, Ep is a set of statements executed by the ‘‘passed’’ test
case p, and Ef is a set of statements executed by the ‘‘failed’’ test case
f.

Fig. 6. The BPEL flowchart of the SmartShelf Process.
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4.3.3. Code coverage
The intuition behind this technique is that the statements exe-

cuted by more ‘‘failed’’ test cases are more likely to be faulty; if the
statements are executed by ‘‘passed’’ test cases, their likelihood of
being faulty should be reduced, and the impact of the successive
‘‘passed’’ test cases should be gradually weakened. The intuition
can be described as three heuristics. The comprehensive heuristic
for calculating the likelihood of the jth statement being faulty is de-
scribed as follows.

XN

i¼1

Ci;j � ri � f
XN

i¼1

Ci;j � ð1� riÞ
 !

ð12Þ

Here, if the ith test case executes the jth statement,Ci,j = 1;
Otherwise,Ci,j = 0. If the ith test case detects faults, ri = 1; otherwise,
ri = 0. N is the number of test cases in the test suite. f(k) is defined as
follows.

f ðkÞ ¼
k; k ¼ 0;1;2
2þ ðk� 2Þ � 0:1; 3 6 k 6 10
2:8þ ðk� 10Þ � a; k P 11

8><
>: ð13Þ

where a is a small number.

4.3.4. Synthesization with the proposed framework
Although all these techniques were developed for typical pro-

grams (such as C, C++, or Java programs), which are usually com-
posed of statements, they can be employed to locate faults in
BPEL programs. This is because all testing information required
by these techniques is available in our fault localization framework
as illustrated in Fig. 3. Such required testing information includes
‘‘passed’’ test cases, ‘‘failed’’ test cases, and the coverage informa-
tion about which entities are executed by ‘‘failed’’ or ‘‘passed’’ test
cases. However, some adaptations are necessary when they are
used to locate faults in BPEL programs. First, the calculation of sus-
piciousness must be with respect to a statement block rather than
a single statement. This is because the proposed framework for
BPEL programs is based on statement blocks. Second, the recom-
mendation of the fault’s possible position should follow the pro-
posed guidelines. We have examined the synthesization of
Tarantula, when it was used to illustrate the framework to locate
faults in BPEL programs (in Section 3.4). The synthesizations of

set-union and code coverage are similar except that different formu-
las are used.

4.4. Experiment design

4.4.1. Mutant generation
To compare the effectiveness of the three synthesized tech-

niques when they are used to locate faults in BPEL programs, we
first seed some faults into two subject BPEL programs. Among
the 26 mutation operators proposed in [12], only four of them
are applicable to the original subject programs, and hence selected
to generate the mimicking faults. In order to cover as many as pos-
sible fault types, we have changed the implementation of the sub-
ject programs (thereinafter called variants) to derive extra
mutants, and these extra mutants except equivalent ones are also
included for evaluation (shown at the bottom of evaluation re-
sults). In addition, all these faults have been manually seeded into
BPEL programs because up to now there is not yet an automatic
and practical mutation system for this task.

Table 2 provides a summary of the resulting mutants for Supply-
Chain. The left three columns describe the identifier, the type of
mutation operator, and the mutation operation of a mutant,
respectively. In this case, ten types of mutation operators are cov-
ered, namely ERR, which refers to ‘‘replacing a relational operator
by another of the same type’’, ELL, which refers to ‘‘replacing a log-
ical operator by one of the same type’’, ASF, which refers to ‘‘replac-
ing a sequence by a flow activity’’, AIE, which refers to ‘‘removing
an else if element or an else element of an activity’’, EAA, which re-
fers to ‘‘replacing an arithmetic operator by another of the same
type’’, EUU, which refers to ‘‘removing the unary minus operator
from an expression’’, ECN, which refers to ‘‘replacing the numeric
constant by one of the same type’’, ISV, which refers to ‘‘replacing
a variable identifier by another of the same type’’, EMD, which re-
fers to ‘‘replacing a duration expression by 0 or half of the initial
value’’, and XTF, which refers to ‘‘replacing the faultname attribute
in the reply activity’’. For the original BPEL program of the Supply-
Chain, four types of mutation operators are applicable, and accord-
ingly mutants 1 to 13 are generated. For the BPEL program
variants, ten mutants (namely mutants 10 to 100) are generated.
Among them, mutants 70 to 100 are equivalent ones and hence

Table 2
Description of the resulting Mutants for SupplyChain.

No. Type Description

1 ERR replace ‘‘=’’ in ‘‘$input.name = ‘coca’’’ with ‘‘!=’’
2 ERR replace ‘‘=’’ in ‘‘$input.name = ‘coca’’’ with ‘‘&lt;’’
3 ERR replace ‘‘=’’ in ‘‘$input.name = ‘coca’’’ with ‘‘&lt;=’’
4 ERR replace ‘‘=’’ in ‘‘$input.name = ‘coca’’’ with ‘‘&gt;’’
5 ERR replace ‘‘=’’ in ‘‘$input.name = ‘coca’’’ with ‘‘&gt;=’’
6 ERR replace ‘‘&lt;’’ in ‘‘$input.amount &lt; $warehouseAmessage.WarehouseAResponse’’ with ‘‘&lt;=’’
7 ERR replace ‘‘&lt;’’ in ‘‘$input.amount &lt; $warehouseAmessage.WarehouseAResponse’’ with ‘‘&gt;’’
8 ERR replace ‘‘&lt;’’ in ‘‘$input.amount &lt; $warehouseAmessage.WarehouseAResponse’’ with ‘‘&gt;=’’
9 ERR replace ‘‘&lt;’’ in ‘‘$input.amount &lt; $warehouseAmessage.WarehouseAResponse’’ with ‘‘=’’

10 ERR replace ‘‘&lt;’’ in ‘‘$input.amount &lt; $warehouseAmessage.WarehouseAResponse’’ with ‘‘!=’’
11 ELL replace ‘‘and’’ in ‘‘$input.name = ‘coca’ and $input.amount &lt; $warehouseAmessage.WarehouseAResponse’’ with ‘‘or’’
12 ASF replace a sequence with a flow activity
13 AIE remove ‘‘else’’ element in ‘‘warehouse’’ activity

10 EAA replace ‘‘$input.amount + 500’’ with ‘‘$input.amount⁄500’’
20 EAA replace ‘‘$input.amount + 500’’ with ‘‘$input.amount div 500’’
30 EAA replace ‘‘$input.amount + 500’’ with ‘‘$input.amount mod 500’’
40 EUU remove the unary minus operator in ‘‘-$warehouseAmessage.WarehouseAResponse’’
50 ECN replace ‘‘$input.amount + 500.00’’ with ‘‘$input.amount + 50.000’’
60 ECN replace ‘‘$input.amount + 500.00’’ with ‘‘$input.amount + 5000.0’’
70 ISV replace ‘‘input’’ with the same type ‘‘order’’
80 EMD repalce a duration expression with 0
90 EMD replace a duration expression with half

100 XTF replace ‘‘ faultName = ’’missingReply’’’’ with ‘‘faultName = ’’ missingRequest’’
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are excluded for evaluation. Note that for each mutant, only one
fault is seeded.

Table 3 shows the resulting mutants for SmartShelf. For the ori-
ginal BPEL program of SmartShelf, only two typical mutation oper-
ators are applicable, namely ERR, which refers to ‘‘replacing a
relational operator by another of the same type’’ and AIE, which re-
fers to ‘‘removing an else if element or an else element of an activ-
ity’’. To cover concurrency faults, we applied another two mutation
operators to the BPEL program variants, namely AFP which refers to
‘‘changing the value of the parallel attribute in the forEach activity
from ‘no’ to ‘yes’’’ and AIS which refers to ‘‘changing the value of
the isolated attribute of a scope from ‘yes’ to ‘no’’’. Accordingly,
two mutants (namely mutant 10 and mutant 20) are generated.
However, these two mutants are equivalent ones and hence ex-
cluded for evaluation.

4.4.2. Test case generation
To apply the above synthesized fault localization techniques,

test suites (including ‘‘passed’’ test cases and ‘‘failed’’ test cases)
are required. For this task, the scenario-oriented testing approach
proposed in our previous work [31] is employed. We first generate
a set of test scenarios for the two BPEL programs with respect to a
given coverage criteria. Each test scenario corresponds to a se-
quence of statement blocks. For a specific test scenario, we derive
20 test cases which can be used as input to drive the execution of
the test scenario. As a result, we derive a test suite of 40 test cases
for the SupplyChain. For the SmartShelf, we generate 10 test cases
for each test scenario and finally derive a test suite of 120 test
cases.

4.4.3. Data collection
During the tests, we need to know which statement blocks are

executed. This can be done by writing IDs of covered statement
blocks into a log file, and analyzing these block IDs after the tests.
In our experiments, we developed scripts to track and analyze the
execution of BPEL programs with respect to each test case. For each
test case, we record its actual output of a mutant and compare it
with the expected one, which corresponds to the output of the ori-
ginal BPEL program for the same test case. If the actual output is
the same as the expected one, this test case is said to be a ‘‘passed’’
test case; otherwise, it is said to be a ‘‘failed’’ test case.

4.4.4. Effectiveness metrics
With the above test history information, we now can employ

three synthesized techniques to locate faults detected at the test-
ing stage. Since a BPEL program is often smaller in scale compared
with a conventional C or Java program, we tend to use a more strict
effectiveness metrics, rather than the popular expense [17,35]. The
effectiveness of a synthesized fault localization technique s is eval-
uated as follows.

‘‘The techniques is effective in locating a fault f if the generated
pps contains f; otherwise, it is ineffective.’’

That is, for each fault (mutant), we figure out the most suspi-
cious statement blocks. If the actual fault (namely mutation) oc-
curs to these statement blocks, the fault localization is
successful; otherwise, it failed. Finally, we use the average fault
localization success to measure the effectiveness of the fault local-
ization techniques.

4.5. Results analysis

4.5.1. Effectiveness of the Synthesized Techniques
In this section, we report the effectiveness of three synthesized

techniques when they are used to locate faults in SupplyChain and
SmartShelf BPEL programs.

(1) Tarantula

When the Tarantula technique is used to locate faults in Supply-
Chain and SmartShelf BPEL programs, its evaluation results are
summarized in Tables 4 and 5, respectively. Note that No refers
to mutants described in Table 5 and 5, NE refers to ‘‘Number of test
cases whose output is the same as the Expected output’’, NNE refers
to ‘‘Number of test cases whose output is Not same as Expected
output’’, MSSB refers to ‘‘Most Suspicious Statement Block’’, PPS re-
fers to ‘‘fault’s Possible Position Set’’, and LF refers to ‘‘whether Lo-
cate the Fault’’ (‘‘Y’’ means success, while ‘‘N’’ means failure).

From Tables 4 and 5, we observe that

� When the Tarantula technique is used to locate faults in the ori-
ginal SupplyChain BPEL program, it can successfully locate 7 of
13 faults. The correctness percentage of fault localization is

Table 3
Description of the resulting Mutants for smartshelf.

No. Type Description

1 ERR replace ‘‘&lt;’’ in ‘‘$quantity.CheckQuantity &lt; $commodity.amount’’ with ‘‘&gt;’’
2 ERR replace ‘‘&lt;’’ in ‘‘$quantity.CheckQuantity &lt; $commodity.amount’’ with ‘‘&lt;=’’
3 ERR replace ‘‘&lt;’’ in ‘‘$quantity.CheckQuantity &lt; $commodity.amount’’ with ‘‘&gt;=’’
4 ERR replace ‘‘&lt;’’ in ‘‘$quantity.CheckQuantity &lt; $commodity.amount’’ with ‘‘=’’
5 ERR replace ‘‘$lt;’’ in ‘‘$quantity.CheckQuantity &lt; $commodity.amount’’ with ‘‘!=’’
6 ERR replace ‘‘&lt;’’ in ‘‘$warehouse.supply &gt; $commodity.amount’’ with ‘‘&gt;’’
7 ERR replace ‘‘&lt;’’ in ‘‘$warehouse.supply &gt; $commodity.amount’’ with ‘‘&lt;=’’
8 ERR replace ‘‘&lt;’’ in ‘‘$warehouse.supply &gt; $commodity.amount’’ with ‘‘&gt;=’’
9 ERR replace ‘‘&lt;’’ in ‘‘$warehouse.supply &gt; $commodity.amount’’ with ‘‘=’’

10 ERR replace ‘‘&lt;’’ in ‘‘$warehouse.supply &gt; $commodity.amount’’ with ‘‘!=’’
11 ERR replace ‘‘!=’’ in ‘‘$location.CheckLocation ! = $categorynameinformation.categoryName’’ with ‘‘=’’
12 ERR replace ‘‘&lt;’’ in ‘‘$status.CheckStatus &lt; $statusinformation.status’’ with ‘‘&gt;’’
13 ERR replace ‘‘&lt;’’ in ‘‘$status.CheckStatus &lt; $statusinformation.status’’ with ‘‘&lt;=’’
14 ERR replace ‘‘&lt;’’ in ‘‘$status.CheckStatus &lt; $statusinformation.status’’ with ‘‘&gt;=’’
15 ERR replace ‘‘&lt;’’ in ‘‘$status.CheckStatus &lt; $statusinformation.status’’ with ‘‘=’’
16 ERR replace ‘‘&lt;’’ in ‘‘$status.CheckStatus &lt; $statusinformation.status’’ with ‘‘!=’’
17 AIE remove ‘‘else’’ element of ‘‘IF3’’ activity
18 AIE remove ‘‘else’’ element of ‘‘IF’’ activity
19 AIE remove ‘‘else’’ element of ‘‘IF1’’ activity
20 AIE remove ‘‘else’’ element of ‘‘IF4’’ activity

10 AFP replace ‘‘forEach parallel = ‘‘no’’’’ with ‘‘forEach parallel = ‘‘yes’’’’
20 AIS replace ‘‘scope isolated = ‘‘yes’’’’ with ‘‘scope isolated = ‘‘no’’’’
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53.8%. For SupplyChain BPEL program variants, it can success-
fully locate 5 of 6 faults. The correctness percentage of fault
localization is 83.33%. For the SmartShelf, it can successfully
locate 10 of 20 faults. The correctness percentage of fault local-
ization is 50%.
� When the Tarantula technique is used forSupplyChain, its effec-

tiveness is evidently higher than that for SmartShelf.
� There is not an evident clue showing the effectiveness restric-

tion of the Tarantula technique with respect to some types of
faults. For instance, as for the AIE faults, it failed to locate all
the faults in both SmartShelf and SupplyChain BPEL programs.
As for the ERR faults, it located some of them in both SmartShelf
and SupplyChain BPEL programs.
(2) Set-union

When the set-union technique is used to locate faults in Supply-
Chain and SmartShelf BPEL programs, its effectiveness depends on
the selection of Ef. In our experiments, its effectiveness is evaluated
to 0% in the worst case for both two subject programs. Its best eval-
uation results are summarized in Tables 6 and 7, respectively.

From Tables 6 and 7, we observe that

� When the set-union technique is used to locate faults in the ori-
ginal SupplyChainBPEL program, it can successfully locate at
most 7 of 13 faults. The correctness percentage of fault localiza-
tion is 53.8%. For SupplyChainBPEL program variants, it can suc-
cessfully locate 5 from 6 faults. The correctness percentage of
fault localization is 83.33%.
� When the set-union technique is used to locate faults in the

SmartShelfBPEL program, it can successfully locate at most 8
of 20 faults. The correctness percentage of fault localization is
40%.
� For SupplyChain, the best effectiveness of the set-union tech-

nique is the same to the one of the Tarantula technique. For
SmartShelf, the best effectiveness of the set-union technique is
evidently worse than that of the Tarantula technique. More
interestingly, in the case of SupplyChain the faults that cannot
be successfully located by the set-union technique subsume
the ones that cannot be successfully located by the Tarantula
technique, while this is not true with the case of SmartShelf.
(3) Code coverage

Table 4
Evaluation results of of Tarantula technique for SupplyChain.

NO NE NNE MSSB PPS LF

1 20 20 9–10 {4, 9, 10} Y
2 30 10 1–8, 11 {1, 2, 11} N
3 30 10 1–8, 11 {1, 2, 11} N
4 30 10 1–8, 11 {1, 2, 11} N
5 30 10 1–8, 11 {1, 2, 11} N
6 39 1 9–10 {4, 9, 10} Y
7 21 19 9–10 {4, 9, 10} Y
8 20 20 9–10 {4, 9, 10} Y
9 29 11 9–10 {4, 9, 10} Y

10 31 9 9–10 {4, 9, 10} Y
11 20 20 9–10 {4, 9, 10} Y
12 30 10 1–12 {1–12} N
13 10 30 1–12 {1–12} N

10 37 3 5–8 {4, 5} Y
20 24 16 9–10 {4, 9} Y
30 24 16 9–10 {4, 9} Y
40 21 19 9–10 {4, 9} Y
50 36 4 9–10 {4, 9} Y
60 36 4 1–8, 11 {1, 2} N

Table 5
Evaluation results of Tarantula technique for SmartShelf.

NO NE NNE MSSB PPS LF

1 4 116 13–15, 21–25 {12, 13} Y
2 116 4 21–24 {16, 21} N
3 0 120 1–48 {1, 12} N
4 36 84 13–15, 21–25 {12, 13} Y
5 84 36 21–24 {16, 21} N
6 44 76 17–20 {16, 17} Y
7 116 4 17–20 {16, 17} Y
8 40 80 13–25 {12, 13} N
9 76 44 17–20 {16, 17} Y

10 84 36 17–20 {16, 17} Y
11 0 120 1–48 {1, 2} N
12 6 114 40–45 {39, 40} Y
13 114 6 40–45 {39, 40} Y
14 0 120 1–48 {1, 2} N
15 54 66 40–45 {39, 40} Y
16 66 54 40–45 {39, 40} Y
17 80 40 1–48 {1, 2} N
18 80 40 1–48 {1, 2} N
19 60 60 1–48 {1, 2} N
20 60 60 1–48 {1, 2} N

Table 6
Evaluation results of the set-union technique for SupplyChain.

NO NE NNE MSSB PPS LF

1 20 20 9–10 {4, 9, 10} Y
2 30 10 £ {£} N
3 30 10 £ {£} N
4 30 10 £ {£} N
5 30 10 £ {£} N
6 39 1 9–10 {4, 9, 10} Y
7 21 19 9–10 {4, 9, 10} Y
8 20 20 9–10 {4, 9, 10} Y
9 29 11 9–10 {4, 9, 10} Y

10 31 9 9–10 {4, 9, 10} Y
11 20 20 9–10 {4, 9, 10} Y
12 30 10 £ {£} N
13 10 30 £ {£} N

10 37 3 5–8 {4, 5} Y
20 24 16 9–10 {4, 9} Y
30 24 16 9–10 {4, 9} Y
40 21 19 9–10 {4, 9} Y
50 36 4 9–10 {4, 9} Y
60 36 4 £ {£} N

Table 7
Evaluation results of set-union technique for SmartShelf.

NO NE NNE MSSB PPS LF

1 4 116 13–15, 21–25 {12, 13} Y
2 116 4 £ {£} N
3 0 120 £ {£} N
4 36 84 13–15, 21–25 {12, 13} Y
5 84 36 13–15, 21–25 {12, 13} Y
6 44 76 17–20 {16, 17} Y
7 116 4 17–20 {16, 17} Y
8 40 80 13–20 {12, 13} N
9 76 44 17–20 {16, 17} Y

10 84 36 £ {£} N
11 0 120 £ {£} N
12 6 114 40–45 {39, 40} Y
13 114 6 £ {£} N
14 0 120 £ {£} N
15 54 66 40–45 {39, 40} Y
16 66 54 £ {£} N
17 80 40 £ {£} N
18 80 40 £ {£} N
19 60 60 £ {£} N
20 60 60 £ {£} N
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When the code coverage technique is used to locate faults in
SupplyChain and SmartShelf BPEL programs, its evaluation results
are summarized in Tables 8 and 9, respectively. The parameter a
here is set to 0.001, as suggested in [27].

From Tables 8 and 9, we observe that

� When the code coverage technique is used to locate faults in the
original SupplyChain BPEL program, it can successfully locate 5
of 13 faults. The correctness percentage of fault localization is
38.5%. For SupplyChain BPEL program variants, it can success-
fully locate 4 of 6 faults. The correctness percentage of fault
localization is 66.67%.
� When the code coverage technique is used to locate faults in the

SmartShelf BPEL program, it can successfully locate 8 of 20
faults. The correctness percentage of fault localization is 40%.

The parameter a in the code coverage technique may have an
impact on the effectiveness of the technique. To investigate such
an impact, we further evaluate the effectiveness of the code cover-
age technique with the changing values of the parameter a. Tables

10 and 11 summarize the evaluation results of the code coverage
technique for SupplyChain and SmartShelf, respectively.

From Tables 10 and 11, we observe that

� For the original SupplyChain BPEL program, the effectiveness of
the code coverage technique keeps stable, and the correctness
percentage of fault localization is always 38.5%. While for Sup-
plyChain BPEL program variants, the correctness percentage of
fault localization is from 66.67% to 83.33%. For SmartShelf, the
correctness percentage of fault localization is always 40%.
� The parameter a does not affect the effectiveness of the code

coverage technique when it was used for the two original BPEL
programs, while a does affect its effectiveness when it was used
for SupplyChain BPEL program variants.

4.5.2. Impact of the fault localization guidelines
In order to know the impact of the fault localization guidelines

on the effectiveness of the synthesized techniques, we further
compare their effectiveness when they are used with and without
following the fault localization guidelines. The comparisons are
summarized in Table 12.

From Table 12, we observe that

� The fault localization guidelines significantly affect the effec-
tiveness of the synthesized techniques. When the guidelines
are not followed, all the synthesized techniques cannot success-
fully locate faults in two subject programs (namely their effec-
tiveness is 0%). However, their effectiveness increases
significantly when the fault localization guidelines are followed.
These results confirm the value of the guidelines we proposed
with respect to specific features of BPEL programs.

One may be curious about why the effectiveness of the synthe-
sized fault localization techniques is 0%. Recall mutant generation
in Section 4.4.1, among mutation operators proposed in [12], only
four ones are applicable to original SupplyChain subject program,
and two ones are applicable to SmartShelf subject program. By
looking into the BPEL programs, we discover that all simulated
faults are seeded into the condition parts. This means that if the
fault localization guidelines are not followed, those statement

Table 8
Evaluation results of the code coverage technique For SupplyChain.

NO NE NNE MSSB PPS LF

1 20 20 1–4, 11 {1, 2, 11} N
2 30 10 1–8, 11 {1, 2, 11} N
3 30 10 1–8, 11 {1, 2, 11} N
4 30 10 1–8, 11 {1, 2, 11} N
5 30 10 1–8, 11 {1, 2, 11} N
6 39 1 9–10 {4, 9, 10} Y
7 21 19 1–4, 11 {1, 2, 11} N
8 20 20 1–4, 11 {1, 2, 11} N
9 29 11 1–4, 11 {1, 2, 11} N

10 31 9 9–10 {4, 9, 10} Y
11 20 20 9–10 {4, 9, 10} Y
12 30 10 9–10 {4, 9, 10} Y
13 10 30 5–8 {4, 5} Y

10 37 3 5–8 {4, 5} Y
20 24 16 9–10 {4, 9} Y
30 24 16 9–10 {4, 9} Y
40 21 19 1–4, 11 {1, 2} N
50 36 4 9–10 {4, 9} Y
60 36 4 1–8, 11 {1, 2} N

Table 9
Evaluation results of the code coverage technique for SmartShelf.

NO NE NNE MSSB PPS LF

1 4 116 1–12, 28–30, 37–39 {1, 28, 37} N
2 116 4 21–24 {16, 21} N
3 0 120 1–12, 28–30, 37–39 {1, 28, 37} N
4 36 84 1–12, 28–30, 37–39 {1, 28, 37} N
5 84 36 21–24 {16, 21} N
6 44 76 13–16 {12, 13} N
7 116 4 21–24 {16, 21} Y
8 40 80 13–16 {12, 13} N
9 76 44 13–16 {12, 13} N

10 84 36 17–20 {16, 17} Y
11 0 120 1–12, 28–30, 37–39 {1, 28, 37} N
12 6 114 1–12, 28–30, 37–40 {1, 28, 37} N
13 114 6 40–45 {39, 40} Y
14 0 120 1–12, 28–30, 37–40 {1, 28, 37} N
15 54 66 1–12, 28–30, 37–41 {1, 28, 37} N
16 66 54 40–45 {39, 40} Y
17 80 40 21–24 {16, 21} Y
18 80 40 26–27 {12, 26} Y
19 60 60 35–36 {30, 35} Y
20 60 60 46–47 {39, 46} Y

Table 10
A summary of the effectiveness of the code coverage technique for SupplyChain.

Parameter Number of
total faults

Number of
located faults

Number of un-
located faults

Correctness
percentage (%)

a = 0.1 13 5 8 38.5
a = 0.05 13 5 8 38.5
a = 0.01 13 5 8 38.5
a = 0.005 13 5 8 38.5
a = 0.001 13 5 8 38.5
a = 0.1 6 5 1 83.33
a = 0.05 6 5 1 83.33
a = 0.01 6 4 2 66.67
a = 0.005 6 4 2 66.67
a = 0.001 6 4 2 66.67

Table 11
A Summary of the effectiveness of The Code Coverage Technique for SmartShelf.

Parameter Number of
total faults

Number of
located faults

Number of un-
located faults

Correctness
percentage (%)

a = 0.1 20 8 12 40
a = 0.05 20 8 12 40
a = 0.01 20 8 12 40
a = 0.005 20 8 12 40
a = 0.001 20 8 12 40
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blocks inside a loop or optional block are recommended as the most
suspicious statement blocks. This results in the incorrectness.

4.6. Summary and observations

Through this empirical study, we have validated the feasibility
of the proposed fault localization framework for BPEL programs.
We also evaluated the effectiveness of three synthesized fault
localization techniques. From the evaluation, we have the follow-
ing observations:

� Among three synthesized fault localization techniques, the
Tarantula technique has the best effectiveness and can locate
the largest number of seeded faults for both subject programs.
However, this technique may be inapplicable in some situation
where the test suite only contains either all ‘‘passed’’ test cases
or all ‘‘failed’’ test cases. If this happens, the technique cannot
differentiate the suspicious statement blocks.
� Compared with the Tarantula technique, the effectiveness of the

set-union technique is lower. This technique also subjects to
several disadvantages. First, it is hard to be automated and
requires more manual decisions. Second, the effectiveness of
this technique is heavily influenced by the selection of ‘‘failed’’
test cases, which is crucial to the construction of suspicious
statement blocks. Third, it is possibly inapplicable, that is, it
may result in an empty set of suspicious statement blocks if
‘‘passed’’ test cases in the test suite drive all execution paths
of the selected ‘‘failed’’ test case.
� Compared with the Tarantula technique, the effectiveness of the

code coverage technique is also lower. This observation is very
interesting because the code coverage technique has a very
good effectiveness when it is employed to typical programs
(such C or Java) [34]. The reason behind this observation can
be explained as follows. On one hand, faults in BPEL programs
are different from that in typical programs in that the control
logic in the former (i.e. dealing with the simple and high-level
business logics) seems simpler than the one in the latter (i.e.
dealing with the very complex and low-level calculation logic).
In this context, the ratio of ‘‘failed’’ test cases against ‘‘passed’’
test cases is not a very tiny number (such as 0.001). On the
other hand, the code coverage technique may have a good effec-
tiveness when the ratio of ‘‘failed’’ test cases against ‘‘passed’’
test cases is very tiny (such as 0.001). This observation further
indicates that the code coverage technique is more suitable
for locating those faults that are hard to detect. Compared with
the set-union technique, the code coverage technique is easier
to be automated.

Besides the above observations, we also observed that when the
mutation technique is used for BPEL programs, the chance of de-
rived mutants being equivalent ones is larger than that for the tra-
ditional programs (such as C or Java). This hereby restricted the

number of non-equivalent mutants for evaluation when the muta-
tion technique was used to simulate mimicking faults in our
experiments.

4.7. Threats to validity

In our empirical study, the feasibility of the proposed fault
localization framework has been validated through two subject
programs and three representative fault localization techniques.
However, the validity of effectiveness observed from the controlled
experiments may suffer several threats.

� Internal threats: In our study, the faults of BPEL programs were
mimicked by means of mutation operators. Although mutation
analysis has been widely used to evaluate the effectiveness of
various fault localization techniques, the mimicked faults are
possibly different from the real-life faults. Furthermore, the
occurrences of different types of real-life faults are varying,
while faults mimicked by means of mutation operators were
randomly generated. Such difference may result in a deviation
of the effectiveness result of the synthesized fault localization
techniques when they are employed in practice.
� External threats: In our study, although we attempted to include

more types of mutation operators, only 12 mutation operator
types were applicable to subject programs or their variants,
and 39 mutants were generated for experiments. The limited
number of mutants and applicable mutation operators may
threat the observations on the effectiveness of the synthesized
fault localization techniques.
� Conclusion threats: The effectiveness of the synthesized fault

localization techniques would be more convincing if more sub-
ject programs were used for evaluation. Unfortunately, it is dif-
ficult to include a large number of BPEL programs for the
experimental evaluation. Although some literature does men-
tion open source code BPEL programs, we downloaded them
and found that they are not useful because no actual business
logic is really implemented in these BPEL programs. The limited
number of subject programs may threat the effectiveness
observed in this study.

To address the threats discussed above, the key is to conduct
the effectiveness evaluation based on a benchmark of BPEL pro-
grams and associated faults, which can manifest most features
and faults of practical BPEL programs. Currently, such a benchmark
is absent, which calls for further efforts of the BPEL research com-
munity. On the other hand, the threats above do not prevent the
proposed framework from adoption in any scenarios where BPEL
is used. Furthermore, there is not a limitation on the size of BPEL
programs when the synthesized fault location techniques are used.

5. Conclusions and future work

We have proposed an effective fault localization framework to
address the challenges of debugging BPEL programs. Unlike the tra-
ditional framework where the basic localization unit is single exe-
cutable statements, the proposed framework is based on statement
blocks. Such a framework is devoted to BPEL programs which dem-
onstrate features of both typical programming languages and
architectural gluing languages. This framework is capable of syn-
thesizing typical fault localization techniques that are not devel-
oped for BPEL programs, such as the Tarantula techniques, the
set-union technique, and the code coverage technique.

We have also conducted an empirical study which is used to
validate the feasibility of the proposed framework and evaluate
the effectiveness of these synthesized fault localization techniques

Table 12
Comparison of effectiveness of three synthesized techniques with and without
following the fault localization guidelines.

Techniques Subject
programs

Effectiveness

Without
guidelines (%)

With
guidelines (%)

Tarantula SupplyChain 0 53.8
SmartShelf 0 50

Set-union SupplyChain 0 53.8
SmartShelf 0 40

Code coverage
(a = 0.001)

SupplyChain 0 38.5
SmartShelf 0 40
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when they are used for BPEL programs. We employed mutation
operators to simulate mimicking faults of two realistic BPEL pro-
grams. The results of our empirical study demonstrate the feasibil-
ity of the proposed framework, and also show that among the three
fault-localization techniques, the Tarantula technique has the best
effectiveness and can locate the largest number of seeded faults in
BPEL programs. This observation further indicates that the Taran-
tula technique should be the best choice that can be used to locate
faults of BPEL programs although it was not originally developed
for BPEL programs.

In our future work, we plan to develop more efficient fault local-
ization techniques based on the observations reported in this work,
and implement an automatic mutation system for BPEL. We also
want to involve more BPEL subject programs and types of faults
by means of mutation operators to evaluate the effectiveness of
more fault localization techniques.
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