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Abstract—In software debugging, statistical fault localization 

techniques contrast dynamic spectra of program elements to 

estimate the location of faults in faulty programs. Coincidental 

correctness may have a negative impact on these techniques 

because faults can also be triggered in an observed non-failed run 

and thus disturbs the assessment of fault locations. However, 

eliminating the confounding relies on the accuracy of recognizing 

them. This paper makes use of the presence of coincidental 

correctness as an effective interface to the success of fault 

localization. We calculate the distribution overlapping of 

dynamic spectrum in failed runs and in non-failed runs to find 

out the fault-leading predicates, and further reduce the region by 

referencing the inter-class distances of the spectra to suppress the 

less suspicious candidates. Empirical results show that our 

technique can outperform representative existing predicate-

based fault localization techniques. 

Keywords—fault localization; coincidental correctness; class 

distribution 

I.  INTRODUCTION 

Modern software and software systems are becoming more 
and more complicated, and both academia and industry require 
effective mechanisms to guarantee the quality of software. 
Most failed program runs are caused by faults existing in a 
program. Generally speaking, to fix a program fault, a 
developer needs to locate it first. Statistical fault localization 
(SFL in short) refers to the automatic process to locate 
suspicious program elements. 

A SFL technique captures dynamic spectrum for each 
program element from the failed runs and the non-failed runs 
respectively, and contrasts them to estimate the suspiciousness 
of a program element being related to faults. Liblit et al. [10] 
proposed a scalable SFL technique CBI, which installs Boolean 
expressions (coined predicates) for specific program elements, 
and locates fault-relevant predicates to reduce the complexity 
of conventional SFL techniques that investigate every 
statement. To distinguish the two technique families, we refer 
to them as predicate-based SFL techniques and statement-level 
SFL techniques, respectively. 

Although SFL techniques are reported successful, their 
effectiveness to locate faults is unavoidably influenced by the 
characteristics of input data. Coincidental correctness refers to 
the phenomenon that no failure is detected, even though the 

fault has been exercised [18]. The portion of non-failed runs 
that coincidentally manifest no abnormal behavior may have a 
negative impact on the accuracy of SFL techniques, because 
their execution profiles are closer to those of the failed runs 
(both with the fault triggered).  

Previous studies have realized and validated the prevalence 
of coincidental correctness as well as its confounding to SFL 
techniques, and put efforts to address it. The direct idea is to 
recognize the coincidental correctness runs and remove them 
from inputs [6][12]. However, the feasibility and effectiveness 
are based on the accurate recognition of the coincidental 
correctness runs. The latest controlled experiment gave a 
pessimistic report that the false negative related to the 
recognition of coincidental correctness runs is above 50% for 
one out of three experiment subjects [13]. Can we allow the 
existence of coincidental correctness and locate a fault with the 
presence of it? The problem is both challenging and interesting. 

In this paper, we analyze the behavior of dynamic spectra 
for different program predicates, with the presence of 
coincidental correctness, and propose a technique to find out 
the most fault-relevant predicates. First of all, we capture the 
dynamic spectra of program predicates in the failed runs and in 
the non-failed runs, respectively. After that, we calculate the 
overlapping of the spectrum distribution in the failed runs and 
that in the non-failed runs to find out the predicates, whose 
exercising lead to the triggering of a fault. Next, we reduce the 
region by calculating the inter-class distances for the spectra in 
the two communities (failed and non-failed) to suppress 
uninterested less suspicious predicates. We sort the predicates 
by referencing their calculated suspiciousness, and output a 
ranked list of suspicious predicates. Experiments show that our 
technique outperforms some representative existing predicate-
based SFL techniques. 

This paper makes the following contributions. (i) We 
propose a technique that properly estimates fault locations with 
the presence of coincidental correctness. It is expected to be 
more accurate since there is no longer a need to recognize the 
coincidentally correct runs. (ii) We use an empirical evaluation 
to show that our technique outperforms representative existing 
peer techniques on the common data sets. 

The rest of this paper is organized as follows. Section II and 
III motivates and elaborates on our technique, respectively. 
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Section IV and V give an empirical evaluation and a literature 
review, respectively. Section VI concludes the paper. 

II. MOTIVATION 

A. The Sample Program 

Fig. 1 shows a piece of code to find the maximum value 
among three inputs. A fault is seeded in the statement L5, 
which may cause the program to generate an incorrect output. 

We use simple integers as inputs to start the program and 
permute them to create six test cases, namely T1, T2, T3, T4, 

T5, and T6. We notice that although all of T3, T4, T5, and T6 

have exercised the faulty statement, only T5 and T6 generate 
unexpected outputs. We thus mark the program execution over 
T5 and T6 as failed runs and the other executions as non-failed 
runs, respectively. To ease the following discussion, we use the 
term coincidental runs, to name the program executions over 
T3 and T4, where the fault is triggered but no faulty state is 
propagated to be finally observable. To differentiate from them, 
we use the term successful runs, to name the program runs over 
T1 and T2. 

Previous studies such as CBI construct predicates at three 
kinds of program statements (i.e., branch statements, return 
statements, and scalar-pairs). Following previous work [10], 
we install seven predicates in the program, and they are noted 
as P1, P2, P3, P4, P5, P6, and P7 in Fig.1. We also record their 
dynamic spectrum in a program run in the form of x : y, where 
x and y stands for the number of times a predicate is evaluated 
to be true and the number of times that predicate is evaluated to 
be false, respectively. Let us take the first row to illustrate. In 
the program run of T1, predicate “P1: x==a” is evaluated 
false once and never evaluated true. We thus record the 
dynamic spectra of predicate P1 as “0:1” in that run. 

B. Inspiring Our Work 

Since the program contains no loop and is sequentially 
executed, we label three categories of predicates

1
, namely 

                                                           
1 Note that a predicate may have more than one label. 

neutral predicates, fault-leading predicates and fault-led 
predicates, according to their execution sequence in the failed 
runs. A rough judging is made according to the heuristics that 
(1) the exercising of a neutral predicate does not correlate with 
the exercising status of the fault, (2) the exercising of the fault-
leading predicates may deterministically lead to trigger the 
fault or skip the fault, and (3) triggering the fault may 
deterministically lead to exercise the fault-led predicates or 
skip them. With such a criterion, the seven predicates are 
partitioned into three groups, in which P1 is a neutral predicate, 

P2, P3 and P4 are fault-leading predicates, and P5, P6, and P7 

are fault-led predicates. Note that predicate P4, the most fault-
relevant predicate, is also a fault-leading predicate with such 
classification. In Fig. 1, the observations are as below. 

1) On a Neutral Predicate 

For a neutral predicate, its dynamic spectra in every runs 
resemble each other. This can be understood as that neutral 
predicates often have less relationship with the fault so that 
their behaviors make less difference in every runs no matter it 
is a failed run or a non-failed run. Let us take predicate P1 in 

the program run T4 to illustrate. Predicate “P1: x==a” lies on 
the first statement and always evaluates false, its spectra in all 
runs are equal.  

2) On a Fault-leading Predicate 

For a fault-leading predicate, its dynamic spectra in the 
coincidental runs (the non-failed runs with coincidental 
correctness happening) are identical to those in the failed runs, 
but different from those in the successful runs (the non-failed 
runs without coincidental correctness happening). We use the 
symbols “≠” and “≈” in Fig. 1 to mark them for a better view. 
This can be understood as follows. The execution paths leading 
to a fault often concentrate into small clusters, as reported in 
[4]. Therefore, a fault-leading predicate may manifest similar 
dynamic spectra in the coincidental runs and the failed runs. 
Let us take predicate P2 and the program run T4 to illustrate. 

Predicate “P2: a>b” evaluates false, which skips the 

statement L3 to triggers the fault on the statement L5. This is 
the only legitimate path that leads to the fault, and the dynamic 

Program: Dynamic spectra of predicates Observations 

 

int max(int a, int b, int c) {   

T1: 

(2,1,3) 

T2: 

(2,1,2) 

T3: 

(1,1,3) 

T4: 

(1,2,3) 

T5: 

(2,3,1) 

T6: 

(1,2,0) 

 

L1:   int x = a; P1: x==a 0:1 0:1 0:1 0:1 0:1 0:1 Neutral predicates: Similar spectra in all runs. 

L2:   if (a > b) P2: a>b 1:0 
    

0:1 Fault-leading predicates: 
 

Spectra in {T3,T4} resemble those in {T5,T6}, 

because both of them lead to trigger the fault; 

spectra in {T3,T4} vary from those in {T1,T2}, 

because the latter lead to trigger no fault. 

1:0 ≠ 0:1 0:1 ≈ 0:1 

L3:     x = a; P3: x==a 0:1 0:1 ≠ 0:0 0:0 ≈ 0:0 0:0 

L4:   else        

L5:     x = a; // x = b; P4: x==a 0:0 0:0 ≠ 0:1 0:1 ≈ 0:1 0:1 

L6:  
       

       

Fault-led predicates: 
 

Spectra in {T3,T4} vary from those in {T5,T6}, 

because the latter reveal failures; 

spectra in {T3,T4} resemble those in {T1,T2}, 

because both of them reveal no failure.  

L7:   if (x > c) P5: x>c 0:1 0:1 ≈ 0:1 0:1 ≠ 1:0 1:0 

L8:     return x; P6: x==0 0:0 0:0 ≈ 0:0 0:0 ≠ 0:1 0:1 

L9:   else        

L10: return c; P7: c==0 0:1 0:1 ≈ 0:1 0:1 ≠ 0:0 0:0 
    

 }  successful coincidental a failed  

a. coincidental runs: they are also non-failed runs, but with coincidental correctness happening  

Fig. 1.  Motivating example (predicates may behave differently according to their relative position to fault) 
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spectra for P2 in T4 are identical to those in T5 and T6, while 

is different from those in T1 and T2.  

3) On a Fault-led Predicate 

For a fault-led predicate, its dynamic spectra in the 
coincidental runs are identical to those in the successful runs, 
but different from those in the failed runs. This can be 
understood as follows. Even if the fault is exercised, the faulty 
state may be coincidentally not propagated and the led program 
executions still behave as normal. As a result, no difference can 
be observed in the dynamic spectra from the successful runs 
and those form the coincidental runs, for a fault-led predicate. 
Let us take predicate P5 and the program run T4 to illustrate. 

During the program run over T4, even with the faulty value of 

x, predicate “P5: x>c” gives a correct answer (i.e., it 
evaluates false). The fault is thus glossed over, which leads the 
rest program excerpt (from L7 to the end) to execute as normal. 

As a result, the dynamic spectra for P5 in T4 are identical to 

those in T1 and T2, while different from those in T5 and T6.  

Such observations inspire us to utilize the spectrum 
distribution in different program runs to distinguish the fault-
leading predicates from the others.  

We find that the overlapping of spectrum distribution in 
failed runs with that in non-failed runs can be an effective 
means to differentiate a fault-leading predicate from the others. 
For the fault-leading predicate P2, its dynamic spectra in T5 

and T6 are also observed in T3 and T4 (though not in T1 and 

T2), and we record an overlapping of 100% for it. The same 

phenomenon is observed with the predicates P3 and P4. For the 

fault-led predicate P5, its dynamic spectra in T5 and T6 are not 

observed in T1, T2, T3, and T4, and we record an overlapping 
of 0% for it. The same phenomenon is observed with the 
predicates P6 and P7. Thus, by comparing the extent of 
overlapping, we can rule out the fault-led predicates. 

We have demonstrated that the overlapping of spectra in 
failed runs with that in non-failed runs can be helpful in 
indicating fault-leading predicates. However, to work out a 
successful fault localization technique, there are still challenges. 
First, a predicate can be evaluated more than once because of 
the presence of loops. What is the proper form for a dynamic 
spectrum? Second, we notice that the opposite overlapping 
(spectra in non-failed runs with that in failed runs) can be also 
a good indicator. How to scientifically assess the extent of the 
overlapping is a key problem. Third, the neutral predicates 
have high overlapping (e.g., 100% for P1 in the example) and 
they mix up with the fault-leading predicates. It is necessary to 
suppress their confounding in the result. How does our model 
work in such cases? We will elaborate on our model in the next 
section. 

III. OUR MODEL 

A. Problem Settings 

Let P be a faulty program with m predicates, which are 
referred to as           . Program runs             is 
partitioned into two sets, N and F, where                
is the set of u non-failed runs and                is the set 

of v failed runs. For example, in Fig. 1,                , 
and          . 

In each program run, a predicate may be exercised or not, 
and the evaluation result can be passed or fail. We use the term 

  (     ) and the term   (     ) to record the number of times 

a predicate pj is evaluated true and the number of times it is 
evaluated false in the program run ri, respectively. 

Our aim is to estimate the suspicious predicates, which are 
most relevant to the faults causing the observed failed runs in 
F. 

B. Preliminaries 

Before elaborating on our model, we first introduce some 
preliminaries. Following previous study [11], we use          

to express the evaluation bias of a predicate pj in a program run 
ri. Here, an evaluation bias is the probability of a predicate 
being evaluated true in a program run. It is calculated as 

         
  (     )

  (     )   (     )
2 . We also use          and 

         to express the evaluation bias of a predicate pj in a 

failed run and a non-failed run, respectively. 

Further, the vector   
  [                            ] 

is used to denote the vector of evaluation bias for each 

predicate in the i-th failed run   . Similarly,   
  is used to 

denote the vector of evaluation bias in the i-th non-failed run   .  

The overlapping of spectrum distribution in failed runs with 
that in non-failed runs actually considers the similarity between 
the two kinds of runs, according to the variables of evaluation 
bias which exist in both of them. In this paper, Bhattacharyya 
coefficient [2] is introduced to the measurement of the 
overlapping.  It is a function to measure the amount of overlap 
between two statistical samples or populations. Let    be a 

variable of evaluation bias for predicate pj, and   ,    denote 
the failed runs and non-failed runs, respectively. Bhattacharyya 
coefficient can be formalized as 

  ( (     )  (     ))  ∑ √ (     )    (     )

     

 

where    is the domain of   ,  (     ) and  (     ) are the 

conditional probabilities of    in the set of failed runs and non-

failed runs respectively. The probability of    exists in both of 

the two kinds of runs is denoted as  (     )   (     ). The 

measure is proved to be the upper bound of Bayes error, which 
directly related to the overlapping of two models [16]. In this 

paper, we use    
    and   

    to approximate  (     ) 

and  (     )  respectively, where   
 is the count of the 

appearance of    in the set of failed runs, and   
  is the count of 

the appearance of    in the set of non-failed runs. Take the 

predicate    in Fig. 1 as an example, there exists only one 
variable     , so the conditional probabilities are          

and          are 1, and   (                 )   . 

                                                           
2 Note that when the predicate is never evaluated, there is no clue to 

determine its evaluation bias value, and we follow previous work [11] 

to unbiasedly set it to 0.5. 
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C. Our Technique 

Our fault localization technique consists of four steps.  

1) S1: Collecting Dynamic Spectra 

In this step, the subject program is instrumented to log 
execution traces of predicates at runtime. We collect dynamic 
spectra for all predicates in every program runs, and predicates 
are inserted for three kinds of statements, that is, branch 
statements, scalar-pair statements, and return statements. We 
use the evaluation bias to capture the dynamic spectrum.  

2) S2: Calculating the Overlapping of Spectrum Distributions 

For neutral predicates and fault-leading predicates, since 
their spectra in coincidental runs and their spectra in failed runs 
resemble each other to a great extent, we adopt to estimate the 
distribution overlapping to differentiate them from the fault-led 
predicates. Bhattacharyya distance [2] is used to calculate the 
overlapping of spectrum distribution in failed runs with that in 
non-failed runs (note that we cannot figure out the coincidental 
runs from the non-failed runs).  

Given a predicate pj, the problem is to determine the 
overlapping of its spectrum distribution in failed runs F and 
that in non-failed runs N. The overlapping Oj of the spectrum 
distribution in failed runs with that in non-failed runs can be 
expressed in terms of the Bhattacharyya distance: 

      [  ( (     )  (     ))], 

where BC( • ) is the Bhattacharyya coefficient. If 

  ( (     )  (     ))   , we set    to be   .  

After this step, we may reorder all the predicates by 
referencing their overlapping value in the descending order. 
The top ranked predicates is supposed to contain more fault-
leading predicates. However, we also predict that after such a 
step, the neutral predicates may still mix up with the fault-
leading predicates in the results. 

3) S3: Calculating the Inter- and Intra-class Distances 

We notice that the neutral predicates still mix up with the 
fault-leading predicates. Let us focus on the inter-class distance 
[7] to figure out a solution. In the motivating example, we have 
demonstrated that for fault-leading and fault-led predicates, 
their spectra in successful runs and in failed runs are different 
from each other to a great extent. We thus adopt to estimate the 
inter-class distance to differentiate them from the neutral 
predicates. 

The inter-class distance Bj for a predicate pj is calculated as: 

    |  
    

 | 

where   
  and   

  are the mean value of the evaluation bias for 

pj in the failed and the non-failed program runs, respectively. 

Here,   
  and   

  are calculated as follow. 

  
   

 

 
∑[        ]

 

   

         
   

 

 
∑[        ]

 

   

 

The inter-class distance Bj captures the distance between 
the evaluation bias of predicate pj in the set of failed runs and 

the evaluation bias of it in the set of non-failed runs. As in the 
motivation, we have explained that the inter-class distance for a 
neutral predicate is less than that of a fault-leading predicate. 
Thus we can use Bj to differentiate a neutral predicate from a 
fault-leading predicate. 

However, we also realize that spectrum distributions for 
two predicates may have unequal widths. Directly comparing 
their inter-class distance may not be scientific. For example, 
the predicate installed for the branch statement of a long loop 
may have very small evaluation bias value

3
. The inter-class 

distance calculated for it can be much smaller than the average. 
To fairly compare the inter-class distance of two predicates, we 
further reference their intra-class distance to normalize them 
before comparison. 

The intra-class distance Dj for a predicate    is calculated as, 

   

√∑ [( (     )    
 )

 
] 

   

 
 

√∑ [( (     )    
 )

 
] 

   

 

 
 

It can be similarly explained as Bj. Note that it is the mean of 
the intra-class distance of Pj for the failed runs and that for the 
non-failed runs. 

We normalize the inter-class distance Bj using the intra-
class distance Dj for each predicate, so that their distance can 
be fairly compared to each other. The normalized inter-class 
distance Aj for    is as follows. 

   
  

  

 

When    is zero and Bj is not zero, we set Aj to be   . When 

   is zero and Bj is also zero, we set Aj to be zero.  

This step decreases the ranks of the neutral predicates 
without affecting the relative order of the fault-leading 
predicates  and the fault-led predicates. 

4) S4: Generating a Ranked List of Suspicious Predicates 

In previous step, we use the normalized inter-class distance 
Aj to differentiate a neutral predicates from a fault-leading 
predicates. By integrating the two steps, we have the 
suspiciousness formula Sj as follows, 

    (     ) . 

Since the use of Oj can rule out the fault-led predicates, and 
the use of Aj can suppress neutral predicates, we thus identify 
fault-leading predicates. At the same time, since the normalized 
inter-class distance for a fault-leading predicate is supposed to 
be comparable to that of a fault-led predicate, the relative order 
of fault-leading predicates and fault-led predicates is still 
reserved by the adjustment of “   ”. The base number 2 is to 

assure that     .  

Finally, we reorder the predicates in the descending order 
of their suspiciousness scores Sj, and generate a ranked list of 
predicates. 

                                                           
3 E.g., predicate “i<9” in “for(i=0; i<9; i++)” always has an 

evaluation bias of 0.1. 
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IV. EMPIRICAL EVALUATION 

In this section we conduct experiments to test the 
effectiveness of our method. We describe the experiment setup, 
including the subject programs, peer techniques, and the 
effectiveness metrics for fault localization. The results and 
analysis of our experiments are presented subsequently. Finally, 
we discuss the threats to validity of our experiment. 

A. Experiment Design 

1) Subject programs 

 To evaluate our technique, we use the Siemens suite [5], a 
realistic program space, and two UNIX programs flex and grep 
as experiment subjects (see TABLE I). We excluded the 
versions come with no failed run or having a failure rate greater 
than 20%  [21]. 171 faulty versions are used in our experiments.  

2) Peer techniques 

To adequately evaluate our method, we compare it with the 
predicate-based techniques CBI [10], SOBER [11], Wilcoxon 
[20], and Mann-Whitney [20]. We choose the former two 
because they are representative. We choose the latter two 
because they show promising results in a last report [20]. 

We do not select any popular statement-level techniques for 
comparison due to three considerations. (i) It is not fair to 

directly compare the effectiveness of a predicate-based 
technique with that of a statement-level technique.  (ii) We 
want to focus on predicate-based techniques to consistently 
evaluate our method. (iii) The Wilcoxon and Mann-Whitney 
techniques have been empirically shown comparable to the 
state-of-the-art statement-level techniques [20]. 

3) Effectiveness metrics 

P-score [20] uses the appearance position of the most fault-
relevant predicate in the generated ranked list of predicates as 
the effectiveness of that fault-localization technique to locate a 
fault.  

The effectiveness for our technique is consistently coined 
as “J-B” in the rest part of this section. The other techniques 
are referred to by their names. 

B. Results 

Fig. 2 depicts the overall effectiveness of each technique. 

The x-axis of Fig. 2 shows the predicate examination efforts 

(the percentage of predicates examined). The y-axis of Fig. 2 

shows the percentage of faults located (P-score) within the 

given predicate examination efforts. The curve of J-B, which 

stands for our technique, is shown in bold, and curves for 

other techniques are shown with different colors and markers. 

 Fig. 2 shows that, for the 171 faulty versions in all the 

programs, our technique always locates more faults than the 

other techniques, when using any predicate examination effort 

of 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% as a 

check point. For example, when a developer examines at most 

10% of the predicates, CBI and SOBER can catch faults in 

21.64% and 12.28% of the faulty versions, respectively, while 

Wilcoxon and Mann-Whitney capture faults in 32.75% and 

18.71% faulty versions, respectively. With the same predicate 

examination efforts, our method can locate faults in 47.95% 

faulty versions. The advantages of our technique are 

observable. In summary, Fig. 2 shows that our technique has 

an overall advantage to the other techniques in locating faults 

in the subject programs. 

C. Threats to Validity 

In our technique, Bhattacharyya distance and inter-class 
distance [7] are used to evaluate the spectrum distribution 
overlapping and the inter-class distance, respectively. Since 
both the overlapping and the inter-class distance are evaluated 
using symmetric metrics, other popular distance measurements 
can be also adopted. They may result in different experiment 
observations and conclusions. On the other hand, effectiveness 
metric may cause threats to the construct validity of the results.  

External validity of the experiment can be threatened by the 
use of other subject programs. The experimental observation 
may be consolidated by using more subjects in evaluation. 

Threats to the validity of the experiment also relate to the 
impact factors of the experiment conclusions. In our technique, 
we employ two different measurements in two steps. We 
predict that by using each of them independently we cannot 
achieve the desired results. Though the experiment also gives 
positive answers, whether one of them has a dominant effect is 
unknown. Orthogonal experiments to validate the net effect of 
each step may give more insights on our technique. 

TABLE I. STATISTICS OF SUBJECT PROGRAMS IN USED 

Programs 
# of selected 

versions 

# of 

LOC 

# of 

predicates 

# of 

runs 

print_tokens 4 472 51 4130 

print_tokens2 10 399 116 4115 

schedule 9 292 24 2650 

schedule2 9 301 55 2710 

replace 30 512 63 5542 

tot_info 19 440 47 1052 

tcas 30 141 10 1608 

space 28 6218 914 13585 

flex 20 15297 895 567 

grep 12 15633 1284 809 

 

Fig. 2.  Overall effectiveness comparison 
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V. RELATED WORK 

Tarantula [9] is one of the most famous fault localization 
techniques. It uses the proportions of failed or passed 
executions that exercising a statement to calculate the 
suspiciousness of that statement. Naish et al. [14] gave a 
summary for such techniques. 

Compared to such statement-level techniques, CBI [10] 
uses predicates as fault indicators to locate faults, which gains 
both low complexity and high extensibility. Zhang et al. [22] 
empirically validated that the short-circuiting rule to evaluate a 
Boolean expression has significantly effects on the predicate-
based techniques, and proposed DES [22] accordingly. Zhang 
et al. [20] proposed a non-parametric predicate-based statistical 
fault-localization framework. Arumuga Nainar et al. [1] further 
used compound Boolean predicates to locate faults. HOLMES 
[3] uses execution path as a fault predicator. Our technique can 
be also applied by using paths as predicates. In the future work, 
we will make further investigation. Other related work includes 
CP [20] and [15], which uses execution spectra of control flow 
edges to locate faults. 

Coincidental correctness is a well-known impact factor of 
statistical fault localization. It causes program runs, which 
trigger the fault, to be marked as non-failed runs. Test suite 
reduction is a solution [8][15] to address coincidental 
correctness or improve test suite quality [19], but its feasibility 
relies on the accuracy of recognizing coincidental cases [13]. 
This paper proposes a methodology to address coincidental 
correctness, which does not rely on the accuracy of recognizing 
them. In this paper, Bhattacharyya coefficient is used to 
measure the similarity of the predicate spectra between failed 
runs and non-failed runs, to rule out the fault-led predicates. 
The inter- and intra-class distances are often used in pattern 
recognition to measure the class difference [16][17]. In this 
work, we use them to pick out the neutral predicates which mix 
up with the fault-leading predicates. The fundamental 
difference of this work with the mentioned previous studies is 
that it utilizes the presence of coincidental correctness as an 
effective interface to successful fault localization, rather than to 
eliminate it from inputs and propose a yet another 
suspiciousness metrics. 

VI. CONCLUSION 

Oracle used in real-life can be seldom perfect, and the use 
of imperfect oracles in fault localization causes the prevalent 
coincidental correctness in practice. A popular approach is to 
get rid of them, since their presence make the input data of 
statistical fault localization techniques unreliable. However, its 
feasibility relies on the accuracy of recognizing them. 

In this paper, we propose to utilize the presence of 
coincidental correctness to locate faults. We analyze the 
confounding of coincidental correctness to fault localization, 
propose to measure the spectrum distribution overlapping to 
rule out fault-led predicates, and further suppress neutral 
predicates by assessing the inter-class distribution of spectrum 
in the failed runs and the non-failed runs. A preliminary 
evaluation shows that our technique can more effectively locate 
the fault-leading predicates that are tightly related to faults, 
compared to the other representative techniques. 

Future work includes involving execution path as additional 
information to accurately identify fault-leading predicates, and 
validating the proposed idea using statement-level techniques. 
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