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a b s t r a c t 

More and more virtual machine (VM) images are continuously created in datacenters. Duplicated data 

segments may exist in such VM images, and it leads to a waste of storage resource. As a result, VM 

image deduplication is a common daily activity in datacenters. Our previous work Crab is such a product 

and it is on duty regularly in our datacenter. 

The size of VM images is large and the amount of VM images is huge, and it is inefficient and imprac- 

tical to load massive VM image fingerprints into memory for a fast comparison to recognize duplicated 

segments. To address this issue, we in this paper propose a clustering-based acceleration method. It uses 

an improved k -means clustering to find images having high chances to contain duplicated segments. With 

such a candidate selection phase, only limited VM image candidate fingerprints are loaded into memory. 

We empirically evaluate the effectiveness, robustness, and complexity of the proposed system. Exper- 

imental results show that it significantly reduces the performance interference to hosting virtual machine 

with an acceptable increase in disk space usage, compared with existing deduplication methods. 

© 2016 Elsevier Inc. All rights reserved. 
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. Introduction 

Cloud computing is an on-demand and self-service computing

aradigm. A main enabling technology for cloud computing is vir-

ualization. Virtualization can provide several servers on a single

hysical host in forms of virtual machine (VM). For each virtual

achine, all its disk contents (including operating system, applica-

ion software, data, and so on) are encapsulated to form a whole

irtual machine image. This has brought obvious convenience to

M image backup and it is well known that data backup is of

reat significance to disaster recovery. As the prevalence of cloud

omputing, more and more data centers are adopting virtualiza-

ion technology as server management solution. A standard exam-

le is the famous IaaS provider Amazon that allows users to store

heir virtual machine images or image snapshots to Amazon Sim-

le Storage Service (S3) across regions periodically. However, it is

 solution of full backup and gives rise to the duplicate copies of

epeating data, which may cause serious storage wastes. 
✩ The conference version of the paper in Xu et al. (2014) is published in the IEEE 

8th Annual Computer Software and Applications Conference (COMPSAC 2014). 
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.1. VM image deduplication and the performance issue 

Deduplication techniques ( Fu et al., 2011; Bhagwat et al., 2009;

on et al., 2008; Zhang et al., 2013 ) are extensively employed with

he backup operation to remove duplications of VM data segments.

n practice, Content Addressable Storage (CAS) technologies ( Tolia

t al., 2003 ), such as Venti ( Quinlan and Dorward, 2002 ), is one

f the most common deduplication methods. CAS exposes a digest

enerated by a cryptographic hash function (such as Rivest or SHA-

 Eastlake and Jones ) from the data block. The digest, also referred

o as fingerprint, is treated as the address of the data block con-

ent. CAS system solely saves a single data block copy, but shares

he data block among different backup files by checking the digests

f data blocks. 

Typically, a deduplication process consists of three steps: data

hunking and fingerprinting ( Quinlan and Dorward, 2002; Policro-

iades and Pratt, 2004; Hunt et al., 1998; Muthitacharoen et al.,

001 ), index lookup ( Min et al., 2011; Lillibridge et al., 2009; Zhu

t al., 2008 ) and chunk store ( Mao et al., 2014 ). 

Index lookup is the key step of deduplication because it deter-

ines whether a chunk is duplicated. However, with the dramatic

rowth of stored data, the fingerprint index table becomes huge

nd cannot be stored in memory, causing index lookup a perfor-

ance bottleneck ( Min et al., 2011 ). According to our previous
 virtual machine image deduplication in the cloud environment, 
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Fig. 1. Image standard installation process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Templates copy to new virtual machine image. 
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experiences, about half of the deduplication time is wasted due to

the frequent swap of the fingerprint table between memory and

disk. 

In cloud environment, this issue can be more serious. The

severely inadequate performance is due to the nature of cloud

computing and VM images. Using the mechanism of VM encapsu-

lation, it is very easy to create, duplicate or backup a VM, accord-

ing to the scalability and reliability demand of cloud. As a result, a

new created or backup image is likely to be similar to an existing

image or a small set of common images than the other images in

the repository ( Jayaram et al., 2011 ). 

However, there is no way to easily know which VM images

might have duplications and how much duplications they might

have. Conventionally, in both centralized environment Jin et al.

(2009) and distributed environment Zhang et al. (2012) , all the VM

images fingerprints are loaded to the memory to perform the com-

parison before deduplication. That causes a serious performance

bottleneck. 

1.2. Our work in the paper 

In this paper, we revisit the problem of deduplication, analyze

various scenarios of virtual machine image generation, and propose

to employ a clustering method to select deduplication candidates

to accelerate the index lookup. We proposed an improved k -means

clustering method, emphasize the initial center selection issue, the

trigger timing issue and group merging issue in particular, and in-

troduce a local deduplication method to address the virtual ma-

chine image deduplication problem. The process of the clustering

based VM image deduplication system is as follows. First, we di-

vide all the images in backup repository into groups according to

their similarity. Thus, we assure that images within a group have

high similarities, which means that images in one group share

large number of identical data blocks. Correspondingly, the finger-

prints are divided into groups and each group of fingerprints is a

subset of the total fingerprints set. As a result, the fingerprint size

of each group is much smaller than the total fingerprint size and

such a group can be loaded into memory completely. The num-

ber of groups, as a parameter, is determined according to available

memory size and total size of block fingerprints. Second, when a

new image is requested, we first determine the group it belongs

to using a sampling method; and after that load the corresponding

fingerprint set into memory to conduct the duplication process. We

conduct experiments to validate the proposed clustering method,

and evaluate its performance. Empirical results show the proposed

clustering method promising. 

Our contributions in this paper are as follows: 

(1) A clustering-based virtual machine image classification

method is given to reduce the fingerprint search space and

improve the index lookup performance. This method use lo-

cal deduplication to replace global, so as to reduce the dedu-

plication operation time and performance interference. 
Please cite this article as: J. Xu et al., Clustering-based acceleration for

The Journal of Systems and Software (2016), http://dx.doi.org/10.1016/j.
(2) This is the first work that takes the image content layout

into consideration during image deduplication, which can

help to classify the images into small groups to reduce the

fingerprint search space. 

(3) We innovatively propose the method of periodical triggering

and small group merging to facilitate virtual machine image

deduplication. 

(4) We conduct experiment to evaluate the effectiveness, effi-

ciency, and robustness of the proposed method. The empiri-

cal results show our method promising. 

The paper is organized as follows. Section 2 introduces

he background of the work. Section 3 introduces our sys-

em architecture and elaborates on the fingerprint clustering ap-

roach and sampling method in virtual machine deduplication.

ection 4 presents the experimental results and gives the anal-

sis to the results. Sections 5 and 6 review related work and

ection 6 draw conclusions, respectively. 

. Background and motivation 

In this section, we revisit common scenarios to demonstrate the

eed and feasibility of virtual machine image deduplication. 

.1. VM image generation 

In cloud environment, there are always tens of thousands of

irtual machines per cluster which costs a large amount of stor-

ge ( Zhang et al., 2013 ). This virtual machine image sprawl Reimer

t al. (2008) can lead to a serious storage crisis. Usually, the virtual

achine image can be generated as follows: 

Standard installation . Fig. 1 illustrates the VM image standard

nstallation process. A cloud service provider or consumer would

uild some virtual machine images as standardized templates.

hese templates, such as Amazon Machine Images (AMIs), are

ome special types of pre-configured operating systems and vir-

ual application software. The templates are used to create a vir-

ual machine within the specific virtualization platform. 

Template replication . Fig. 2 illustrates the template replication

rocess. When a virtual machine needs to be created, a template

ould be copied to form a new virtual machine image. That could

o through the trouble of rebuilding the entire software stack. 

Specialized configuration . Fig. 3 illustrates the specialized config-

ration process. The newly generated image needs some special-

zed configuration to work properly. For example, assigning a new
 virtual machine image deduplication in the cloud environment, 
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Fig. 3. Virtual machine image customization. 
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P address or hostname, rewriting software configurations or in-

talling new applications can be necessary. 

.2. VM image deduplication 

As we can see that virtual machines usually inherit from some

ertain golden images (also called templates), so there would be a

arge amount of duplicated blocks among these virtual machines.

eanwhile, the frequent backing up operation and periodic virtual

achine snapshots also need huge storage. A snapshot is gener-

ted in driver level based on copy-on-write technology, so it can

e archived with low cost by sharing identical data segments with

he original image file. However, when we back up a snapshot, the

river level semantic of snapshot would be broken and a new file

ould be rebuilt, which will also produce a large amount of dupli-

ate blocks. 

Based on the above consideration, we need to deduplicate

he replicated blocks to relieve the great storage pressure on

he backup of virtual machine image. Different from the general

ackup data, the virtual machine images often have similar to a

mall subset characteristic ( Jayaram et al., 2011 ), which can be ex-

lained that the “similar” images would have high chance (even

ore than 90%) to share identical data blocks and the “dissimilar”

mages would have low chance (less than 1%) to share identical

ata blocks. Here, the mentioned “similarity” is related to those

mages with same operating system, applications, and dataset. 

.3. Clustering-based deduplication acceleration 

Deduplication can be very time-consuming with the increase

f stored data. For example, if the fingerprint repository is twice

r more the size of the available memory, the deduplication time

ould double. In fact, most time usage are ineffective. The extra

ime are mainly wasted in waiting for the disk I/O of the finger-

rint table. 

We think of preprocessing the stored VM image and their fin-

erprints to avoid the disk bottleneck problem during deduplica-

ion process. Since, the VM images have similar to a small subset

haracteristic, we can classify all the VM images into small groups
Fig. 4. Clustering-based de

Please cite this article as: J. Xu et al., Clustering-based acceleration for

The Journal of Systems and Software (2016), http://dx.doi.org/10.1016/j.
o make sure that each group’s fingerprint size would be no larger

han the available memory. It seems that such a simple method

ay work. However, there must be a small number of blocks that

re duplicated stored among different groups. Compared to the

uge storage gains of the deduplication, this light wasted storage

pace will be trivial. As a result, it cannot be directly done. 

In this paper, we in the so-called pre-deduplication phase, em-

loy a clustering method to serve the purpose. In such a way, we

an (1) reduce the search space of index lookup process, (2) avoid

he swap of fingerprint table between the memory and disk, (3)

educe the time consume with a slight storage space lost. In the

ext section, we will present our approaching. 

. Clustering-based deduplication acceleration 

In this section, we first introduce our on-duty system Crab ( Xu

t al., 2014 ), and based on it propose our clustering method used

or deduplication acceleration. 

.1. Preliminaries: the Crab system 

We have developed a deduplication backup System ( Crab for

hort) ( Xu et al., 2014 ). The Crab system works as illustrated in

ig. 4 . It first uses a cluster method (“F ” in the “Grouping ” step)

o classify all the images into small groups, and then employs a

ampling method (“S ” in the “Selecting ” step ) to select a proper

roup to perform the deduplication. 

We now revisit its deployment architecture and describe its

ackup strategy. 

As illustrated in Fig. 5 , we classify the devices into three types:

irtual machine host, image storage and backup storage. The vir-

ual machine host provides computing resources (CPU/GPU) and

emory resources to the virtual machine. The image storage can

e either a shared storage device supporting masses of virtual ma-

hine disk images from a different virtual machine host or a local

torage device only accessed by local virtual machines. The backup

torage, as its name suggests, is used to store the image backups.

ur work focuses on the image backup operation under the similar

ind of deployment architecture, because this architecture is very

opular in private cloud datacenter. Actually, it is similar to the

mazon cloud service architecture, where the virtual machine host

s like EC2, the image storage is like EBS, and the backup storage

s like S3. 

Deduplication operation often consumes a lot of resources in

oth host side and storage side. Taking into account the sequence

f two actions, backup and deduplication, there would be three

inds of strategies, deduplication before backup, deduplication
duplication diagram. 

 virtual machine image deduplication in the cloud environment, 
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Fig. 5. The Crab system deployment architecture. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Relationship among backup, fingerprint and chunks. 
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after backup, and deduplication during backup. In Crab, we per-

form the deduplication operation during backup. In this case, the

data transmission would be as small as possible ( Xu et al., 2014 ). 

In the Crab system, we treat a virtual machine host as the

backup client and the backup storage as the backup server. As il-

lustrated in Fig. 5 , we put chunking module and fingerprint gener-

ator on client side. The other components are put on server side.

Such design aims to reduce the network traffics, since it only needs

to transmit the changed chunks from image storage to backup stor-

age. 

3.2. Our clustering-based acceleration proposal 

Based on similarities among images, we employ a clustering

method to merge groups. Particularly, we adaptively determine the

period to trigger the clustering operation. The details of our pro-

posal are stated in this section. 

3.2.1. Similarity based clustering 

Similar images have a large chance to contain identical chunks.

To calculate the image similarity, we first review the relationship

among image backups, fingerprints, and disk storing chunks. Image

backup is a logical entity, which is composed by a metadata file,

and the corresponding chunks as illustrated in Fig. 6 . The metadata

file is formed by a set of sequential fingerprints. However, there

are large amount of inner duplicated blocks in an image, and the

backup metadata may also have a lot of identical fingerprints about

these duplicated blocks. Zero-filled block is one such kind of inner

duplicated blocks. The number of these valueless zero-filled blocks

can be even larger than the number of much more valued blocks. 

To calculate the similarity, we first eliminate the inner dupli-

cated blocks. We regard this process as inner deduplication. As the

metadata file contains all the indexes of the entire member blocks

of an image backup, the similarity of images equals to the similar-

ity of the corresponding metadata. As mentioned above, a meta-

data can be treated as a vector of fingerprints M = 〈 f 1 , f 2 , . . . , f n 〉 .
We use M 

′ = ( f 1 , f 2 , . . . , f m 

)(m � n ) to represent the trimmed fin-

gerprints set. We further name M 

′ the feature set of the corre-

sponding image, and the similarity between two images A and B
Please cite this article as: J. Xu et al., Clustering-based acceleration for

The Journal of Systems and Software (2016), http://dx.doi.org/10.1016/j.
s calculated using the following formula Xu et al. (2014) . 

im (A, B ) = 

2 × | M 

′ 
A ∩ M 

′ 
B | 

| M 

′ 
A 
| + | M 

′ 
B 
| 

We improve the k -means clustering algorithm according to the

pecific feature of the virtual machine image and use the improved

lgorithm to classify the image fingerprints. The image fingerprints

ata sets are one-dimensional data sets. It has simple structures

nd is easy to analyze. Meanwhile, k -means clustering is simple

nd common. We can ensure that an entire group of fingerprints

ndex, which is used in the index lookup process, can be put into

AM memory by adjusting the value of k . 

Since similar images often have the same operating system and

le system, we first divide the images into several groups. We get

he general information about the operating system and file system

rom the first sector, which called boot sector of the image file,
 virtual machine image deduplication in the cloud environment, 
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Table 1 

IIS structure and possible values. 

Items 

Operating 

system File system Disk partition 

Possible values Windows 4—DOS FAT16 

< 32M 

00: active 

partition 

Ubuntu 5—EXTEND 80: inactive 

partition 

CentOS 6—DOS FAT16 

> 32M 

Others: invalid 

partition 

SUSE 7—NTFS(OS/2) 

83—LINUX > 

64M 
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A

nd then for each group make a further classification through our

mproved k -means clustering algorithm. 

The improvement of our algorithm mainly represents in the se-

ection of the first k points, since the selection of the initial k

oints is very important to the classification result. Different from

he random selection strategy, we take into account the feature of

irtual machine image, such as disk partition, operating system, file

ystem and so on. We use a specific structure named Image In-

ormation Structure (IIS) to represent these features. Table 1 lists

ut the items and the possible values used in IIS. The operating

ystem criterion has the maximum weight, the other criteria in-

luding file system and disk partition also have effects. In the cen-

roid selection step, we group images into different set according

o the values of operating system, file system and disk partition.

nd then we select the newest image from the biggest set as the

entroid. 

.2.2. Grouping process and sampling strategy 

Different from all the previous work, we embed a pre-process

odule based on Crab in the deduplication system to accelerate

he index lookup progress ( Xu et al., 2014 ). In this module we clas-

ify the images into different groups to reduce the index lookup

pace from a large global space to a small local space. 

Totally in-memory index lookup is an important feature of the

pproach. The basic principle is to divide all images into groups

ccording to image similarity. Generally, images in the same group

ave high chances to contain identical chunks. With such consid-

rations, we first select a group for the new coming image backup,

nd then load the index table of that group into memory to per-

orm deduplication. When a new image backup is requested, we

et a fingerprint sample set from the image according to certain

ule, and calculate the sample hit rate in each group. The sampling

it rate is the statistical indicator of duplication rate between im-

ge and group. A high hit rate means high duplication and a low

it rate means low duplication. So the group with maximum hit

ate is chosen to carry out image deduplication. 

As for the storage progress, we form chunks into a block, which

s stored as a file upon the file system on the backup server. The

ngerprint index table maintains the map from the fingerprint to

he block, which contains the chunk and inner offset of the chunk

ithin the block. 

In our work, we use two strategies, simple random sampling and

ystematic sampling , to get the sample set Xu et al. (2014) . 

Simple random sampling (SRS): The image is firstly divided into

qual chunks of size 4KB. Then we randomly select n chunks and

alculate their corresponding fingerprints to form the sample set S .

Systematic sampling (SS): The image is firstly divided into equal

hunks of size 4KB. Then the chunks are divided into m groups. We

andomly select n / m chunks from each group and calculate their

ngerprints to form the sample set S . 
Please cite this article as: J. Xu et al., Clustering-based acceleration for

The Journal of Systems and Software (2016), http://dx.doi.org/10.1016/j.
A proper sample size n is estimated using the following formula

 Xu et al., 2014 ). 

 = 

2 xp − [�−1 (1 − ρ)] 2 pq + 

√ 

[[�−1 (1 − ρ)] 2 pq − 2 xp] 2 − 4 p 2 x 2 

2 p 2 r 

here p represents the sample hit rate to the most similarity

roup, ρ represents the probability of the event that there are at

east x samples hits in the similarity group and r represents the in-

er duplication rate. The parameters should be determined accord-

ng to the historical experience. For example, if we obverse that the

nner duplication rate is 30% and we estimate that the sample hit

ate in the most similar group is about 40%, while we claim that

he probability of at least 100 sample hits should be 99%. Then

e have ρ = 0 . 99 , p = 0 . 4 , x = 100 , r = 0 . 3. The derivation process

f this formula can be found in our previous work ( Xu et al., 2014 ).

However, a problem within this architecture is that the chunk-

ng module and fingerprint generator are CPU sensitive. Since the

irtual machine host provides computing resources for all the vir-

ual machines, there would be a resource competition between the

irtual machines and the backup operation. It would cause a per-

ormance interruption to the virtual machine, and we are aiming

o reduce it. 

.2.3. Other acceleration considerations 

The above algorithm can effectively separates the images into

everal groups, however the group size may vary greatly. Some

roups may have only a few images and the total feature set size

s also very small. That would result in a dramatically increase

f comparisons and the performance deteriorates in the sampling

hase. Thus, we need to merge the small groups to form a large

roup. There are two principals we follow in the merging process: 

Small group principal: All the merging groups must be small

roups. The definition of small group depend on the environment.

n our environment, we treat the groups whose total feature sizes

re less than M s /2 as small groups. Here, M s is the available mem-

ry size. 

Maximum memory principal: The memory requirement of the

ew merged group must be lower than the threshold. Otherwise,

he clustering process and merging would become an endless loop.

Clustering algorithm can be time-consuming and frequent im-

ge similarity computation also consumes lots of I/O resources.

ortunately, this work is completed in the pre-process module, and

ould not affect the deduplication backup process any longer. 

Frequently running the algorithm will waste large amounts of

esources, while seldom triggering the algorithm may cause the

lock index table to be out of memory. In our model, we set a

ight period to trigger the clustering algorithm. We suppose that

here are k groups of images and the available memory size is M s .

or each group i (0 < i < k ), we set a threshold M i , M i < M s . In

ractice, we evaluate the daily backup increment and find an aver-

ge value �M . Let S i represent the total feature set size of group i .

f S i + �M > M s , the algorithm will be triggered to divide group i

o several sub groups. Such mechanism also ensures that the time

omplexity of the clustering algorithm is in an acceptable range. 

. Evaluation 

In this section, we evaluate the effectiveness, robustness, and

omplexity of the whole system. We first test the sample hit rate

nd group similarity to verify the effectiveness of our method.

hen, we test the impact of sample size on sample error and sta-

ility of the clustering method to verify the robustness of our

ethod. After that, we give a full comparison with existing work.

t last, we discuss the threads to validity. 
 virtual machine image deduplication in the cloud environment, 
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4.1. Experiment setup 

The sample hit rate represents the hit rate from sample to

different groups, which indicates the effectiveness of sampling

method for finding the most similar group. Group similarity is dis-

played through the statistical indices (including mean value, vari-

ance, max value, min value, median) of similarities between the

centroid and other images within a group, which indicates the ef-

fectiveness of clustering method. To study the impact of sample

size on sample error, we iterate different sample size from 100 to

10 0 0, take 10 0 for each size, and illustrate the average error and

the maximum error. 

Multi-level selective deduplication (short for MSD in this work)

( Zhang et al., 2012 ) are used for VM snapshot deduplication in

Aliyun, the largest public cloud of China. MSD classifies images into

groups to reduce the memory requirement, but solely according

to the operating system factor, while we classify images accord-

ing to the image similarity. Similarity is affected by but not only

by the operating system. The similarity is more flexible and can

be used for more fine-grained classification of images. We com-

pare the deduplication performances of Venti, Crab and MSD. Venti

is the base work of deduplication and uses the full deduplication

technology, so we regarded it as the baseline. The deduplication

rate in our evaluation is evaluated by the ratio of the compressed

data size to the original data size. The deduplication time metric

is defined as the deduplication processing time. Since the cluster-

ing operation of Crab belongs to pre-processing stage which can be

done in a few seconds and there is no need to execute every time,

we do not include this in deduplication time. The RAM usage is

measured by recording the space overhead of index-lookup. 

We selected 584 different virtual machine images from Once-

Cloud ISCAS , a cloud platform builds by our institute. Each image

size is about 15GB to 20GB. There are 416 raw format images and

168 vhd format images. The total size of these images is 6.68TB.

We set the maximum available memory that can be used by in-

dex lookup process as 500MB. As we use 128bit MD5 value as the

fingerprint and 64bit address as the block index, a record of one

chunk need 192bit (24B) storage. If the chunk size is set to 4K, it

will need 40.2GB space to store the index of 6.68TB data. Even if

the duplicated block has been removed, the total fingerprint table

size would be much larger than the given memory size. Obviously,

the entire index lookup table cannot be loaded into the memory.

Due to the lack of access to source code of Venti and MSD, we

have in advance implemented both of them and performed dedu-

plication operations with it. 

In our experiments, five blade servers are used as physical host

machine. Each server has two Intel Xeon E5645 CPUs, 600GB disk

and 32GB RAM. The backup side is a storage cluster with a 10TB

storage space. All of these devices are connected via Gigabit LAN. 

4.2. Effectiveness 

Effectiveness of the system is evaluated in the hit rate of

the sampling method and the group similarity of the clustering

method. 

4.2.1. Hit rate of the sampling method 

For new coming images, we use a sampling method to select a

group used to perform the deduplication operation. In this experi-

ment, we test the sampling method with both the vhd format im-

age and raw format image. For each kind of image, we separately

take samples for ten times and calculate the hit rates for each in-

dividual group. At last, a comparison of the average sample hit rate

and the practical image duplication rate is given to indicate the ef-

fectiveness of the sampling method. For the vhd and raw format

image, we set parameters respectively as follows: 
Please cite this article as: J. Xu et al., Clustering-based acceleration for

The Journal of Systems and Software (2016), http://dx.doi.org/10.1016/j.
ρ = 0 . 99 , p = 0 . 4 , x = 100 , r = 0 . 4 and 

ρ = 0 . 99 , p = 0 . 4 , x = 100 , r = 0 . 112 

According to sample size formula in Section 3.1.3, the sample

ize should be 748 and 2672. 

Fig. 7 illustrates the average sample hit rate and the practi-

al image duplication rate in each group. There are two plots in

ig. 7 . The top plot represents the sample hit and practice dupli-

ation rate of vhd format image in different image group and the

ottom plot presents the sample hit rate and duplication rate of

aw format image in different image group. The x -axis means the

roup number and the x -coordinate x means the x th group. The

-coordinate means the hit rate value. There are three legends in

his figure. The black rectangle shows the SRS hit rate, the gray

ectangle shows the SS hit rate and the white rectangle shows the

ractice image duplication rate. Let us take the left-most group in

he top plot as an example. All the three values are almost zero. It

eans that the given image is not similar with group and it should

ot select this group to perform deduplication operation. However,

he given image has the highest hit rate (about 76%) within the

ourth group. That means we should select the fourth group to per-

orm the deduplication operation for the given image. 

Besides, from Fig. 7 we can conclude that for both SRS method

nd SS method, their results are very close to the practical dupli-

ation rate in the group. From the result of vhd format image hit

ate in Fig. 7 , we can infer that the image used in this experiment

hould belong to group 4. As for the raw format image, it should

elong to group 5. For each set of experiments, their results are

uch closed to one another. This fully demonstrates that the sam-

ling method is effective for the new image classification. 

From the above experiments, we have some interesting obser-

ations. First, we can see that there are still other high hit rate

roups besides the highest hit rate group. Taking the vhd format

mage as an example, group 4 has the highest sample hit rate

about 76%). Nevertheless, group 7 also has very high sample hit

ate (about 38%). This would result in duplicated blocks among

ifferent groups. That is the disadvantage of local deduplication

pproach. Second, it is generally considered that the systematic

ampling is better than the simple random sampling. However,

ur experiment result shows that both simple random sampling

nd systematic sampling work well in image classification and this

hould owe to our reasonable sample size approximation. 

.2.2. Group similarity of the clustering method 

Since the result of clustering algorithm is indeterministic, which

eans that the final results of deduplication depend on realistic

nvironments, its effectiveness has to be tested for the high avail-

bility goal. Based on the giving dataset and memory limitation,

he algorithm divides all virtual machine images into seven groups.

Let us review the statistics characteristic value of each group.

e calculate the similarities between the centroid image and other

mages within one group. For each group, we calculate their max-

mum similarity value, minimum similarity value, mean similarity

alue, and median similarity value. The maximum value and the

inimum value represent the maximum and minimum similari-

ies in one group; the standard deviation represents the similarity

tatistical dispersion; the mean value represents the degree of sim-

larity among all the images in that group; and the median value

ould help us to find is the distribution skewed. 

Fig. 8 shows ten experimental results and each plot represents

ne experiment result. The implication of Fig. 8 is similar to that of

ig. 7 . Take the first plot in Fig. 8 (1) as an example, the mean sim-

larity, max similarity, min similarity and median similarity value

re very high (about 93%) and close, while the standard deviation

alue is about zero. That means the images in this group have very

igh similarity. From Fig. 8 (1) we can see that the images in the

rst, the second, and the forth groups have high similarities, since
 virtual machine image deduplication in the cloud environment, 
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Fig. 7. Sample hit rate vs. practical duplication rate. 
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heir maximum values, minimum values and median values are

ery high and their standard deviation is low. However, although

he minimum value of the third group is very low (less than 5%),

nd its standard deviation is much higher than the other group,

e still believe the whole image similarity of that group is high.

hat is because that both the mean value and the median value

re very high. In the contrary, the images in the last three groups

ould have relatively lower similarities. Even so, most the image

imilarities are still larger than 10%. Some are even more than 20%.

The experiment discussed in this section shows that the clus-

ering method we used in our local deduplication approach is ac-

eptably effective. 

.3. Robustness 

Robustness of the system is evaluated in the influence of sam-

le size on the sampling method and the stability of the clustering

ethod. 

.3.1. Influence of sample size on the sampling method 

The influence of sample size is also studied in our work. We

terate different sample sizes from 100 to 10 0 0 with an interval

f 50. Further, we take 100 samples for each sample size tested

nd calculate its sample error. Then, we calculate an average and

aximum error. 

The results are shown in Fig. 9 . The x -axis represents the sam-

le size and the x-coordinate x represent that the sample size is x .
Please cite this article as: J. Xu et al., Clustering-based acceleration for
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he y -coordinate represents the sample error. There are four leg-

nds in this figure. The solid line with cross denotes the average

rror rate of SRS. The solid line with cycle denotes the average er-

or rate of SS. The dotted line with rectangle denotes the maxi-

um error rate of SRS. The dotted line with the star denotes the

aximum error rate of SS. From Fig. 9 , we can see that with the

ncrease of the sample size, both the average sample error and the

aximum sample error drop gradually. And at last, it levels off.

he computed result according to the sample size formula in Sec-

ion 3.1.3 is just in the stable stage. As we know that, the sample

ize is related to the sample accuracy. The bigger the sample size,

he more the accurate approximate in sampling is. Our work gives

 guiding opinion to choose the sample size. Sometimes, it may

ppear much larger in certain situation, especially when the image

as a very high similarity to one group and have very low simi-

arities to the others. We argue that all the debate would be wise

fter the event, because we do not know which group it belongs

o. 

.3.2. Stability of the clustering method 

Now let us review the content of the statistical characteristic

alue through examples. As we introduced in Section 4.2.2, there

re ten different experimental results in Fig. 8 . These experiments

re based on the same data set and the same algorithm, but the

esults are different. The different results between the ten experi-

ents can also validate our conjecture that the result of clustering

lgorithm is indeterminate. Nevertheless, we have the observation
 virtual machine image deduplication in the cloud environment, 
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Fig. 8. Each group’s statistical characteristic value in ten different experiments. 
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Fig. 9. Sample error with sample size. 
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hat the images within a group also have high similarity according

o the statistical characteristic value of each experiment. And the

nal deduplication rate introduced in Section 4.4.1 can also reflect

he same thing. 

The experiment discussed in this section shows that the clus-

ering method we used in our local deduplication approach is ac-

eptably robust. 

.4. Comparative evaluation 

In VM image deduplication process, deduplication rate and op-

ration time is the most two important factors, since the former

as an effect on the storage space and the latter involves backup

peration time window. In this section, both the two factors are

valuated. To evaluate the advantage of our approach, we first

eduplicate all the virtual machine images without any classifica-

ion, which is regarded as the global deduplication. Then we use

ur clustering algorithm to perform deduplication operation, which

eans to perform a local deduplication. In summary, complexity of

he system is evaluated in the storage usage of the deduplication

esult and the time using deduplication operation. 

.4.1. Deduplication rate 

Due to the indeterminacy of the clustering result, we run Crab

or ten times under the given data set and calculate average value

f the ten results. Then we compare the result with Venti and

SD. 

Figs. 10 and 11 show the deduplication rate of our experiment.

here are 5 bars in Fig. 10 . The “Original” bar denotes the total VM

mage size. The “Inner Dedup” bar denotes the data size after in-

er deduplication (L2 deduplication in MSD). The other three bars

enote the final data size after Crab, MSD and Venti deduplication.

As illustrated in Fig. 10 , we treat the original image size as

00%. When the inner deduplication operation completes, the data

et size becomes 24.2%. After that we separately use Crab, MSD,

enti to perform the inter deduplication. As the Venti approach is

otally deduplication, it could achieve 9.2% compression rate. Com-

ared with the Venti approach, our Crab deduplication approach

ased on clustering has marginal gap. And it could achieve 10.2%

ompression rate. Compare to the 90% compression ratio, the 1%

ifference is acceptable. In the next experiment, we will see that

he 1% wasted space is trade for multiple times time saving. Com-

ared with the MSD approach, the deduplication rate of the Crab

pproach has 0.1% improvements. 
Please cite this article as: J. Xu et al., Clustering-based acceleration for
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In Fig. 11 , the y -coordinate represents the compression rate.

egend “Crab x ” represents the x th experiment. From Fig. 11 , we

an see that the deduplication rates of each experiment are differ-

nt but very close. The lowest deduplication rate is about 89.4%,

nd the highest deduplication rate is about 89.9% and the aver-

ge deduplication rate is 89.74%. The difference between the Venti

eduplication rate and the lowest Crab deduplication rate is less

han 1.5%. 

.4.2. Deduplication cost 

Let us take a look at the deduplication time for the new coming

mages. After the 584 images have been deduplicated and stored,

e backup new images with different formats: the raw and vhd

ormat. For each kind of image we separately use the Crab, MSD

nd Venti approach to perform backup operation. We run the three

inds of approach under different memory limitation. Fig. 12 illus-

rates the experimental results. In Fig. 12 , the x -coordinate repre-

ent the available memory size, while the y -coordinate represents

he backup time. 

From both Fig. 12 (a) and (b), we can see that the backup time

f the Venti and MSD approach are reduced with the increase of

he available memory size. However, the backup time of the

rab approach would not change much with the increase of the

vailable memory size. That is because our Crab approach could

egroup the image fingerprints to fit the available memory size.

uring the duplicated block identification process, only one disk

ccess is needed to load the fingerprints. Thus, the Crab approach

ould achieve total memory index lookup and improve the backup

erformance. However, if the available memory is large enough

e.g., the available memory size is 1024MB in Fig. 12 (a)), the MSD

pproach could achieve almost the same performance as our Crab

pproach. Otherwise, compared to the MSD approach and the

enti approach, our Crab approach would save considerable disk

eeking time. 

From the above experiment, we have the observation that our

rab approach can dramatically reduce the virtual machine image

eduplication backup time in cost of slight additional storage space

sage when the available RAM size is relatively small. It is a typical

ituation in the cloud environment for the resource competition of

irtual machines. 

To further evaluate our method, we measured the maximum

emory requirement of the Venti, MSD and Crab approaches.

he memory threshold of the Crab approach is set to 512MB.

ig. 13 illustrates the maximum memory requirement of the
 virtual machine image deduplication in the cloud environment, 
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Fig. 10. Data size and deduplication rate. 

Fig. 11. Data compression rate comparison of ten tests. 

Fig. 12. Different format image deduplication time. 
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Fig. 13. Maximum memory requirements. 
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hree approaches. From the figure, we can see that the memory

equirements of Venti and MSD approaches become larger and

arger with the increase of the backup image numbers. While the

emory of the Crab approach is always under the threshold. 

.5. Threats to validity 

In this work, we experiment with raw and vhd format image.

owever, there are many other kinds of image formats, such as

mdk, qcow and so on. In this sector, we will analyze the charac-

eristic of each image format to clear the threats to validity of the

bservation in our experiment. 

Raw format images are fixed-sized files, with one block for

ach block in the native host file systems. Initially, unused blocks

re zero-filled. VHD format image is dynamic hard disk image.

he file is at any as large as of the data actually written, together

ith the header and the footer. VMDK is a file format developed

y VMware for its virtual appliance products, but is now an open

ormat. It may have either fixed size or dynamic size. Here, qcow

s a file format for disk image files used by QEMU. One of the

ain characteristics of qcow disk images is that files of this format

row when data are added. Different file formats may result in

ifferent experiment observations. 

On the other hand, we can see that all these kind of images can

e classified into two catalogs: flat mode and sparse mode ( Tang,

011 ). In flat mode, all sectors of the hard disk are stored in one

at file according to logical block addressing order. In sparse mode,

 large hard drive can be created with only used space stored in

he file. There may exist other modes and the observation in re-

ated tests can be different. 

In this paper, we verify our work with raw and vhd formats.

hese two kinds image format are separately represented using flat

ode and sparse mode. According to the above experiments, our

ethod can work with both of these two different kinds of for-

ats. It is because that we treated the virtual machine image as a

hole file and do not care its inner content layout, we believe that

ur work would also work with other formats of images. 

. Related work 

.1. The state of the art of deduplication 

Deduplication technology is accepted as a specialized technol-

gy to eliminate duplicate copies of repeating data for a set of files
Please cite this article as: J. Xu et al., Clustering-based acceleration for

The Journal of Systems and Software (2016), http://dx.doi.org/10.1016/j.
 Cox et al., 2002; Hunt et al., 1998; Bolosky et al., 20 0 0 ). It can

e used in various storage types and application scenarios which

ave different purpose and requirements. However, the dedupli-

ation system must be designed according to the specific require-

ents. 

Chen et al. (2011) design a deduplication system within SSDs

o increase the useful space and lifespan. Their challenges include

imited resources (both computing and memory) and high data ac-

ess performance. Clements et al. (2009) proposed a decentralized

eduplication system DEDE that designed for SAN clustered file

ystems. The system is used for runtime virtual machine storage

nd aims not only shared storage for VM disks but also enable

ive migration, load balancing, and failover of VMs across hosts.

g et al. (2011) proposed live deduplication file systems for virtual

achine images which focus on the performance in importing

nd retrieving. Koller and Rangaswami (2010) use deduplication

echnology to improve the I/O performance by eliminating I/O

perations and reducing the mechanical delays during I/O opera-

ions. Mao et al. (2014) use SSD-Assisted Read scheme to improve

he read performance of deduplication-based storage system.

here also exist many other studies ( Zhang et al., 2010; Riteau

t al., 2011; Bose et al., 2011; Owens and Wang, 2011 ) that use

eduplication technology to speed up virtual machine migration. 

Paulo and Pereira (2014) survey the existing block level dedu-

lication work and classify the deduplication systems according to

ix criteria: granularity, locality, timing, indexing, technique, and

cope. 

.2. Deduplication acceleration 

There are many work (including this work) focus on the acceler-

tion of deduplication. Zhu et al. (2008) use bloom filter algorithm

 Bloom, 1970 ) to fast the duplicated chunk identification. They ar-

ued that their method could support one billion base segments

n 1GB of memory. However, its false positive is about 2.17% to

.40%. As we know that, in virtual machine image backup envi-

onment, a single chunk mistake will cause a serious data loss and

ven a damage of several images. So their work are not suitable for

he VM image deduplication. In our work, we use MD5 to do the

ash computing. The single collision rate of MD5 is 2 −128 . When

he numbers of blocks is 2 15 (4KB per block, about 4ZB data), the

ollision rate is 10 −9 ( Hollingsworth and Miller, 1997 ). The lower

ingle collision rate can ensure the data availability. 
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Other work usually take advantage of data similarity and local-

ity. Lillibridge et al. (2009) break up an incoming stream into rel-

atively large segments and deduplicate each segment against only

a few of the most similar previous segments with the sampling

method. This could reduce the disk seek times and gives a per-

formance improvement in index lookup. However, the ratio of the

sampling space to the fingerprints size is fixed, since it depends

on the ratio of the chunks size to segments size. That means the

total sampling space will grow larger and larger with the growth

of storage data. Finally, it will run out of memory. Nevertheless,

our work could resolve this problem once and for all, because the

principle our clustering could ensure the size of fingerprints in

single group is always less than the available memory. Besides, our

method works in the preprocessing stage, so it does not need seg-

ment comparison during the deduplication stage which can lift the

processing speed. Zhang et al. (2012) use the locality characteristic

to do VM snapshot deduplication. They classify the deduplication

of VM snapshot into two categories: inner-VM and cross-VM. They

use distributed multilevel deduplication to conduct segment level

and block level inner VM deduplication. Cross-VM deduplication is

performed by excluding a small number of popular common data

blocks from being backed up. However, their work can only work

with virtual machine image snapshot. Our method can work with

image, snapshot and template. Moreover, our work focus on the

preprocessing method before the deduplication and we use the

most regular deduplication method introduced in ( Quinlan and

Dorward, 2002 ) in deduplication stage while Zhang et al. focus on

deduplication process. Xia et al. (2011) and Xia et al. (2014) believe

that many existing deduplication work perform poorly in certain

situation for they only consider the locality or the similarity. So,

in their work, the join the two dimensions together to improve

the overall performance of deduplication. This work also focus

on deduplication stage and complicates the deduplication process

while our work focus on preprocess stage. The key technique of

our work does not conflict, and it is possible to merge our work

together to further improve the performance. 

In summary, the biggest differences between our work and the

existing acceleration work are that we focus on the preprocessing

phase while the other work focus on the deduplication phase and

there is no conflict with the key steps. In particular, some of the

existing work can be integrated into our work to further speed up

the deduplication process. Based on this consideration, we do not

compare the existing acceleration method with ours in this paper. 

6. Conclusion 

The deduplication technology can save a huge storage space in

virtual machine image backup in a cloud environment. However, it

may result in a heavy performance degradation to the applications

running on the hosted virtual machine. In our environment, the

application performance could be reduced by 15% to 20%. In our

previous work, we have exploited the feature of the virtual ma-

chine image and introduced a key improvement in deduplication

technology aiming at reducing the resource overhead in virtual

machine image deduplication approach. In this work, we revisit

various common scenarios of VM image, employ clustering as the

key technology to local duplication, and emphasize timing issuers

in particular. Experimental results show that it will accelerate the

backup process with a little increment of disk space usage. 

Furthermore, VM deduplication backup in cloud environment

is complex. In this work, we focus on the mode of “one to one”,

which represents one backup storage serves for one runtime stor-

age. However, this mode simplifies the problem complexity. In

practice, a backup storage server often serves multiple runtime

storage, which is symbolized in “many to one” mode. That will

cause the serious concurrency conflict ( Wei et al., 2015 ) and com-
Please cite this article as: J. Xu et al., Clustering-based acceleration for

The Journal of Systems and Software (2016), http://dx.doi.org/10.1016/j.
rehensive backup strategy selection ( Wang et al., 2014 ). In the fu-

ure, we will focus to resolve the many to one deduplication prob-

em. 
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