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a b s t r a c t 

Fault localization is the activity to locate faults in programs. Spectrum-based fault localization (SBFL) is 

a class of techniques for it. It contrasts the code coverage achieved by passed runs and that by failed 

runs, and estimates program entities responsible for the latter. Although previous work has empirically 

shown that the effectiveness of typical SBFL techniques can be improved by incorporating more failed 

runs, debugging often takes place when there are very few of them. 

In this paper, we report a comprehensive study to investigate the impact of cloning the failed test 

cases on the effectiveness of SBFL techniques. We include 33 popular such techniques, and examine the 

accuracy of their formulas on twelve benchmark programs, using four accuracy metrics and in three sce- 

narios. The empirical results show that on 22, 21, and 23 of them the fault-localization accuracy can be 

significantly improved, when the failed test cases are cloned in the single-fault, double-fault, and triple- 

fault scenarios, respectively. We also analytically show that on 19 of them the improvements are provable 

for an arbitrary program and an arbitrary test suite, in the single-fault scenario; and moreover, for ten of 

the rest formulas, their accuracy are proved unaffected in all scenarios. 

© 2017 Elsevier Inc. All rights reserved. 
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. Introduction 

Program debugging involves fault localization and repair. It is

ime-consuming and tedious, and represents major bottlenecks in

ypical software development projects. To reduce the cost of pro-

ram debugging, many techniques have been proposed in the liter-

ture to (semi-)automate various debugging activities. In particular,

here is a large body of research on fault localization. Spectrum-

ased fault localization (SBFL) is one of them under active study
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ram of China (project no. 2014CB340702), a grant from the National Natural Sci- 
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ratory of Computer Science (project no. SYSKF1608), and grants from the General 

esearch Fund of the Research Grants Council of Hong Kong (project nos.1120 0 015 

nd 11201114). 
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n the recent decades ( Jones et al., 2002; Liblit et al., 2015; Zhang

t al., 2005; Abreu et al., 20 06; 20 07; Wong et al., 20 07; 20 08b;

hang et al., 2009; Naish et al., 2011; Zhang et al., 2011; Wong

t al., 2012; Xie et al., 2013b, 2013a; Xu et al., 2013; Wong et al.,

014 ). 

A program spectrum is the dynamic program behavior extracted

rom the execution profile of a program run. It can be collected for

rogram entities of selected granularities, such as program state-

ents and branches ( Reps et al., 1997; Harrold et al., 1998; Xie

t al., 2013a ). SBFL techniques accept the program spectra and the

est outcomes of a set of test cases as inputs, and recommend sus-

icious regions in the faulty program that are likely to contain

aults responsible for the failed runs of the test cases. A typical

BFL technique computes a suspiciousness score for each program

ntity in the program using a risk evaluation formula (or formula for

hort). The greater the suspiciousness score, the more the associ-

ted program entity is assessed to be fault-relevant by that tech-

ique. Given a particular suspiciousness score threshold reflecting

he debugging effort s a program can afford, the SBFL technique can

hen output a set of program entities, for each of which the asso-

iated suspiciousness score does not exceed the given threshold.
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The effectiveness of a SBFL technique is thus measured as whether

the output set of program entities includes the fault(s). For ease

of presentation, we refer to the accuracy of a formula embedded

in a SBFL technique as the minimum proportion of such an output

set of program entities to the total number of program entities in

the program code. 1 Researchers have proposed many SBFL formu-

las, such as Jaccard (1901) , Ochiai (1957) , and Jones and Harrold

(2005) . Almost all previous works focus on reporting empirical re-

sults to compare the effectiveness of the selected SBFL techniques

( Jones et al., 2002; Jones and Harrold, 2005; Liblit et al., 2015; Do

et al., 2005; Liu et al., 2006; Abreu et al., 20 06; 20 07; Wong et al.,

20 07; Zhang et al., 20 09; Wong et al., 2010; Gore and Reynolds,

2012 ). At the same time, some analytical findings among the ac-

curacy of SBFL formulas ( Lee et al., 2009; Naish et al., 2011; Xie

et al., 2013a ) have also been obtained recently. For instance, Lee

et al. (2009) proved that the q e formula and the Tarantula formula

are equivalent in accuracy in some scenarios. In their follow-up

work ( Naish et al., 2011 ), they proposed two risk evaluation for-

mulas, validated more groups of risk evaluation formulas which

accuracy was empirically equivalent, and showed that two formu-

las consistently achieved accuracy higher than, if not equivalent to,

some other risk evaluation formulas. Xie et al. (2013a ) proposed

an analytical framework to investigate risk evaluation formulas in

a specific single-fault scenario. They proved that many risk evalu-

ation formulas can be placed into six groups of formulas such that

the formulas in each group share the same accuracy as or are al-

ways less accurate than the formulas in some other groups. They

showed that two of the six groups contain formulas that no other

formulas they analyzed can be more accurate than the former for-

mulas. 

Apart from the study on the relationships among formulas,

there are also studies on investigating the relationships among test

cases in a test suite. For instance, Gong et al. (2012 ) referred to

the ratio of the number of passed test cases to the number of

failed test cases as the class balance ratio of a test suite. A test

suite having a class balance ratio of 1 is called a class-balanced

test suite . They empirically showed that SBFL techniques tend to

achieve higher accuracy if the class balance ratio is closer to 1

(i.e., more like a class-balanced test suite). On the other hand, in

practice, fault localization may have to start when there is only

a small number of failed runs (or failed test cases), even though

many passed test runs have been available. Hence, even though

using a class-balanced test suite tends to make a SBFL technique

empirically more effective, in practice, this notion is difficult to

be directly applied. In the preliminary version ( Gao et al., 2013 )

of this paper, we acknowledged this limitation to prevent the re-

search results to be transferred to the industry, and proposed to

clone the available failed test cases in a given test suite to con-

struct a class-balanced test suite. It also reported that such test

suites constructed by cloning the failed test cases can theoretically

improve the effectiveness of two particular SBFL techniques under

specific conditions. 

In this paper, we first revisit the notion of class imbalance prob-

lem in the context of spectrum-based fault localization. Specifi-

cally, some SBFL formulas may become less accurate if there is

very few failed test cases and the class balance ratio is therefore

far from 1. We propose to clone the whole set of failed test cases

to enlarge it until it catches up with the set of passed test cases in

size. We report a controlled experiment on the formulas of 33 SBFL

techniques in both single-fault and multi-fault scenarios on seven

small-scale and five medium-scale program benchmark programs.

For each faulty version of each subject program, we run the test
1 In the controlled experiment, we incorporate different variants of this accuracy 

definition to generalize the results. 

r  

fi  

m  

q  
uite over it, and collect the spectrum information and test out-

ome (i.e., pass or fail). We use each pair of spectrum information

nd test results as an input to separately drive each of the 33 SBFL

ormulas, and evaluate their accuracy accordingly. Next, we repeat

he above procedure but apply our cloning strategy to generate a

ew set of failed test cases to replace the original. We therefore

an contrast the accuracy of each SBFL formula on each faulty pro-

ram with each test suite before and after applying the cloning

trategy, and empirically evaluate the impact of the cloning strat-

gy on the accuracy of the studied SBFL formulas. On the other

and, a real-world program may contain more than one fault. To

imulate the situation, we synthesize double-fault program ver-

ions by incorporating the faults in two randomly chosen faulty

ersions of the corresponding program. We also repeat a similar

rocedure to synthesize triple-fault program versions. 

The empirical results show that 22, 21, and 23 (out of the 33)

BFL formulas exhibit improvements, in terms of average fault-

ocalization accuracy, after cloning the failed test cases, in the

ingle-fault, double-fault, and triple-fault scenarios, respectively.

urthermore, the observed improvements for each SBFL formula

re determined statistically significant by hypothesis testing. To

urther evaluate the cloning strategy, we incorporate four different

ccuracy metrics in the experiment and always obtain similar em-

irical results and consistent observations. At the same time, there

re ten SBFL formulas, which fault-localization accuracy is never

bserved changed in either scenario. 

In this paper, we also show through mathematical analysis that

he identified non-negative changes in fault localization accuracy

re not by chances. We formally classify the impact of cloning

he set of failed test cases on the accuracy of a SBFL formula

nto four types, denoted by Preserved , Improved , Deteriorated , and

on-deterministic . We summarize our findings into four theorems

nd four corollaries, which are further applied to label each of

he 33 SBFL formulas using one of these four types. The analyt-

cal study confirms that 19 of the 33 studied formulas are more

ffective when the failed test cases in a given test suite are cloned

n the single-fault scenario. Moreover, the ten formulas, which ac-

uracy is observed unchanged in the experiment, are proved to be

naffected in all scenarios. 

This paper significantly extends its preliminary version ( Gao

t al., 2013 ) in two main aspects: First, we report a comprehen-

ive and new experiment in both the single-fault scenario and

ulti-fault scenarios to investigate the use of the above-mentioned

loning strategy on 33 SBFL formulas. It also uses multiple effec-

iveness metrics to validate the results empirically. Second, we an-

lytically investigate the improvements achieved with the 33 risk

valuation formulas, which reconcile the observations obtained in

he empirical evaluation. The scale of the empirical study is one

rder of magnitude larger than that presented in the preliminary

ersion. 

The main contribution of this work is twofold. (i) In both the

ingle-fault and the multi-fault scenarios, the effects of the cloning

trategy on improving the formulas of the 33 widely-studied SBFL

echniques are reported. (ii) Both empirical results on the extent of

he improvements and theoretical analysis to confirm the improve-

ents are reported. 

The paper is organized as follows. Section 2 formulates the

lass-imbalanced problem for spectrum-based fault localization

nd presents our proposal to address it. It also raises the research

uestions that we aim to investigate empirically. Section 3 reports

 controlled experiment for evaluating the proposal, and summa-

izes our findings and observations. Section 4 presents our theo-

etical framework and summarizes the analytical results on con-

rming the empirical observations on different risk evaluation for-

ulas. Section 5 summarizes the findings, answers the research

uestions, and discusses threats to the validity of the conclusions.
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2 The cloning strategy may have variants. For example, if the numbers of test 

cases P and F are relatively prime, the best strategy is to clone both the set of 

passed test cases and the set of failed test cases to their least common multiple, to 

reach the optimal “balance”. 
3 Note that we always assume c > 0 in this paper. 
ection 6 reviews the closely related work. Section 7 concludes the

ork. Appendix A and B contains the proofs. 

. Research problem 

In this section, we revisit the class-imbalance problem and our

loning strategy, and present the research questions. 

.1. Preliminaries 

In conducting a typical software test, after the execution, each

est case in a given test suite of a program can be classified into

ne of the two subsets: the set of failed test cases and the set of

assed test cases, according to whether the execution of the pro-

ram over the test case reveals unexpected output or not. The ef-

ectiveness of spectrum-based fault localization techniques is influ-

nced by the characteristics of test suites. One aspect of study on

uch influences is to measure the extent of class balance between

he number P of passed test cases and number F of failed test cases

 Gong et al., 2012 ). 

.1.1. The class-imbalance phenomenon 

Regarding the class-imbalance phenomenon ( Gong et al., 2012 )

xisting in spectrum-based fault localization, we first give the fol-

owing notations for ease of the reference. 

otation 2.1 ( P & F ) . The notations P and F denote the number

f the passed test cases and the number of the failed test cases,

espectively, in a given test suite. 

We refer to the ratio ( P : F ) as the class balance ratio ( Gong et al.,

012 ). If the class balance ratio of a test suite is not close to 1,

he test suite is said to be class-imbalanced . It is well-known that

he class balance ratios of many practical test suites of real-world

rograms are not close to 1. In fact, in most cases, the number of

ailed test cases is often much smaller than the number of passed

est cases in the same test suite. Our previous work ( Gong et al.,

012 ) reported that if the class balance ratio was much larger than

, many SBFL techniques such as Jaccard, Hamann, Wong2, Euclid,

chiai and Wong3 produced rather low accuracy, which indicated

hat the fault-localization effectiveness of SBFL techniques when

sing such a test suite was undesirable. 

In general, to handle such a problem, there are at least three

asic strategies, which aim to add, remove, or modify test cases,

espectively. (i) To achieve a class-balanced test suite, a baseline

eletion-based strategy is to remove some passed test cases from

he given test suite if the class-balanced ratio is greater than 1

r to remove some failed test cases from a given test suite if the

lass-balanced ratio is lower than 1. Nonetheless, this strategy will

ikely produce a reduced test suite containing very few test cases

n some cases. This is because in practice, the class-balanced ra-

io of a given test suite is much larger than 1. For instance, if a

iven class-imbalanced test suite contains M (e.g., 100) test cases,

nd only m (e.g., 3) of them are failed test cases, then the resultant

lass-balanced test suite will only contain 2 · m (e.g., 6) test cases.

lthough the resultant test suite is class-balanced, and is likely to

ake a SBFL technique more effective than a class-imbalanced test

uite of the same suite size ( Gong et al., 2012 ), the resultant ac-

uracy is likely significantly lower than the one using the original

est suite due to the disadvantage of the test suite size. (ii) A base-

ine modification-based strategy is to revise some passed test cases

e.g., changing the input values or strengthening the oracle check

ncoded in these changed test cases) into some other test cases.

owever, whether these changed test cases will expose program

ailures is uncertain, which requires further research so that effec-

ive modifications can be resulted in a class-balanced test suite. A

ay to make the above modification-based strategy feasible is to
evise (i.e., re-code) some passed test cases into existing failed test

ases to form a class-balanced test suite. Nonetheless, this strategy

ill reduce the diversity of the program spectra achieved by the

riginal subset of passed test cases in the given test suite, which

akes the process of contrasting the program spectra of the re-

aining passed test cases against those of the failed test cases less

ffective due to the loss of factual data points. (iii) In the next sub-

ection, we are going to present our addition-based strategy. 

.1.2. Cloning: our proposed solution 

A conservative strategy is to treat all the test information as

seful and do not reduce test information. We ( Gao et al., 2013 )

rgued that a good direction to mitigate the class-imbalance prob-

em stated in the last subsection is to construct a class-balanced

est suite from a given class-imbalanced one. 

An addition-based strategy is to add test cases to the given test

uite. Adding arbitrary test cases to produce a class-balanced test

uite is beyond the scope of this work. In this paper, we strate-

ically choose to clone the failed test cases. One may wonders

hich particular failed test cases to be cloned (or cloned more),

nd yet the question remains to be answered until sufficient em-

irical findings are accumulated. Toward understanding the influ-

nce of addition-based strategy, we ( Gao et al., 2013 ) have pro-

osed to clone the entire given set of failed test cases for a cer-

ain number of times until the size of the enlarged set of failed

est cases caught up with the size of the original set of passed test

ases, which is formally presented below. 2 

otation 2.2 ( c ) . c = � P F � is the number of times each failed test

ase is cloned. 3 

Gao et al. (2013) have already studied the above cloning strat-

gy on the risk evaluation formulas of two SBFL formulas ( Abreu

t al., 2007 ) and Wong2 ( Wong et al., 2007 ) in the single-fault

cenario through a postmortem analysis. Specifically, for each pro-

ram entity (e.g., a statement) i in a single-fault program, we com-

uted its suspiciousness scores using each of the two risk eval-

ation formulas with each applicable test suite. For ease of ref-

rence, we denote their suspiciousness scores by Jaccard ( i ) and

ong 2( i ), respectively. Since we conducted a postmodern analysis,

e knew the location of the fault in the faulty program. We there-

ore marked the faulty program entity f , and computed the differ-

nce Susp � = Jaccard(i ) − Jaccard( f ) with respect to the program

ntity i and the faulty program entity f . In the preliminary version

 Gao et al., 2013 ) of this paper, based on these differences, we con-

tructed three sets of program entities containing every program

ntity i that Susp � > 0 , Susp � = 0 , and Susp � = 0 , respectively. 

Regarding the proposed cloning strategy to address the problem

f class imbalance, we further introduce the following notations to

implify the presentation of this paper. 

otation 2.3 ( P ′ & F ′ ) . P ′ ( = P ) and F ′ ( = c · F ) denote the number

f the passed test cases and the number of the failed test cases,

espectively, in a given test suite, after cloning . 

With P ′ passed test cases and F ′ failed test cases in the enlarged

est suite, Gao et al. (2013) repeated the above procedure for each

rogram entity i to compute its revised suspiciousness score using

ach risk evaluation formula. It classified the program entity i into

hree sets to determine whether each corresponding risk evalua-

ion formula becomes more accurate or not, after the set of failed
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test cases is cloned using the above cloning strategy. Gong et al.

(2012 ) have also empirically shown that both Jaccard and Wong2

became more accurate with more balanced test suites. 

2.2. Problem formulation 

In this section, we give the problem settings to formulate the

proposed cloning solution, together with an accuracy metric to

evaluate it. 

2.2.1. The fault localization problem settings 

Like many existing studies ( Xie et al., 2013b, 2013a ), in our

model, there is a program, a test suite, and a matrix containing

the coverage spectrum achieved by each program run of each test

case. We adopt the following notations. 

Notation 2.4 ( a ep , a np , a ef , a nf ) . The notations a ep and a np repre-

sent the numbers of passed test cases exercising and not exercis-

ing a program entity, respectively. The notations a ef and a nf repre-

sent the numbers of failed test cases exercising and not exercising

a program entity, respectively. 

Following the prior studies ( Xie et al., 2013b, 2013a ), in our

model, we evaluate risk evaluation formulas in terms of accuracy.

The risk evaluation formula of a typical SBFL technique is defined

as a function to map a set of parameters to a real number. 

Definition 2.1 (risk evaluation formula & suspiciousness score:

Susp) . A risk evaluation formula (or formula ) is the function of

a SBFL technique to map the parameters a ef , a ep , a nf , and a np to

a real number, for each program entity in a program. A real num-

ber thus mapped is named as a suspiciousness score, expressed as

Susp, of the program entity. 

Since applying the cloning strategy will alter the test suite, the

spectra arguments after the cloning has been applied are given us-

ing the following notations. 

Notation 2.5 ( a ′ ep , a 
′ 
np , a 

′ 
ef 

, a ′ 
nf 

) . We denote the corresponding val-

ues of a ep , a np , a ef , a nf , after the cloning strategy has been applied,

by a ′ ep , a ′ np , a ′ 
ef 

, a ′ 
nf 

, respectively. That is, a ′ ep and a ′ np denote the

numbers of passed test cases in the test suite after cloning, exer-

cising and not exercising the program entity in question, respec-

tively. The notations a ′ 
ef 

and a ′ 
nf 

denote the numbers of failed test

cases in the test suite after cloning, exercising and not exercising

the program entity in question, respectively. 

According to the strategy to clone the set of failed test cases,

which has been presented above, it is easy to know that a ′ ep = a ep ,

a ′ np = a np , a 
′ 
ef 

= c · a ef , and a ′ 
nf 

= c · a nf . 

2.2.2. Measuring the effectiveness of fault localization boosting 

A SBFL formula assigns a suspiciousness score to each program

entity. Suppose that a risk evaluation formula has assigned each

program entity (in a faulty program) a suspiciousness score. A sim-

ple way to reference the fault localization result is to arrange all

the program entities into a sequence in the descending order of

their suspiciousness scores. As a result, the position of the faulty

program entity in the ranked list reflects the fault-localization ac-

curacy. 

Definition 2.2 (The Avg expense ( Wong et al., 2007 )) . The expense

to locate a faulty program entity f is measured as the effort a de-

veloper spends to check along the ranked list before reaching the

fault. It is calculated as the ratio of the rank of f in the ranked list

to the length of the ranked list. When f shares identical suspicious-

ness score with some other program entities, thus forming a tie in

the list, it will be checked as the middle one in the tie. Such an
xpense is referred to as Avg expense in previous work ( Li et al.,

014 ). 

We are interested in studying the change in expense by apply-

ng the cloning strategy. Thus, we further define the notion of in-

rease (see below). It aims to measure the difference in expense

efore and after the cloning strategy has been applied to a given

est suite with respect to the same SBFL formula. 

efinition 2.3 (increase & increase ratio) . The increase is the ex-

ense achieved by a SBFL formula over a given test suite subtract-

ng the expense achieved by the same SBFL formula over a test

uite generated by applying the cloning strategy on the original

est suite. The increase ratio is defined as the percentage of in-

rease with respect to the expense achieved by the same SBFL for-

ula over the given test suite. 

A positive increase ratio and a negative one indicate the accu-

acy of a SBFL formula improved and deteriorated by cloning, re-

pectively. A zero-valued increase ratio indicates that the accuracy

f a SBFL formula is preserved (i.e., not affected) by the cloning

trategy. The increase ratio may be different when adopting differ-

nt expense metrics. Nonetheless, the essence is that the higher

he ratio, the more a risk evaluation formula is improved by the

loning strategy. 

.3. Expectations and research questions 

In this section, we first make expectations on the effectiveness

f the proposed cloning solution in the general fault localization

roblem setting. After that, we present the research questions to

e studied. 

.3.1. Potential benefits 

We recall that the proposed solution is to clone the entire failed

et without distinguishing individual test cases. One benefit is that

he involved calculation can be simplified by manipulating the for-

ulas rather than including concrete additional failed test cases

o run the program. Therefore, the computational complexity of

dopting our solution is low. Moreover, the strategy can be ana-

ytically studied since there is only a change in weighting the ar-

uments of the formulas. In another word, the increased computa-

ional cost is marginal. 

Many spectrum-based fault localization techniques are inspired

y the fact that the exercising of faulty statements is responsible

or the appearance of most program failures. As a result, many of

hem follow the principle to design the risk evaluation formulas

hose Susp value increases with the argument a ef or decreases

ith the argument a ep . In such a way, statements exercised more

ften in failed runs are intentionally marked as more suspicious by

iving higher suspiciousness scores, and statements exercised more

ften in passed runs are marked as safer by giving lower suspi-

iousness scores. 

Let us further consider an ideal case for a faulty statement f

nd an ordinary statement i . Generally, exercising a faulty state-

ent f can result in some kind of error and may lead the test run

o fail. As a result, in practice, most of the observed passed runs

re the consequences of skipping the exercise on f , which is ex-

ressed by 
a 

f 
ep 

F ≈ 0 . On the other hand, most of the observed failed

uns are the consequences of exercising f , which is expressed by
a 

f 
ef 
P ≈ 1 . On the contrary, since exercising an arbitrary program en-

ity i has no strong relationship with whether or not a test run will

ail, we conjecture that in general, there is no significant difference

etween the probability of i being exercised in passed runs and

hat in failed runs, which is expressed by 
a i 

ef ≈ a i ep ∈ (0 , 1) . Finally,
F P 
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e have 1 ≈ a 
f 
ef 
F > 

a i 
ef 
F ≈ a i ep 

P > 

a 
f 
ep 

P ≈ 0 most of the time. In such a

ase, cloning the set of failed test cases not only increases a 
f 
ef 

and

 

i 
ef 

, but also enlarges the gap between a 
f 
ef 

and a i 
ef 

for c times. As

 result, f is ranked higher according to the monotonic increasing

ature of the Susp formulas. 

Although existing empirical studies have successfully shown

hat f can be effectively located using the heuristics, analytical

tudy can be complicated for coincidental correctness cases, where

xercising f may have some probability in producing a passed

un. Second, no universal or general conclusion can be made on

hether a boosting method definitely works for all fault localiza-

ion formulas. For example, a boosting method improving the for-

ula a ef − a ep must deteriorate the formula a ep − a ef at the same

ime. It should be noted that such pairs of opposite formulas can

e easily constructed. Third, there are fault localization formulas

hat are theoretically unaffected by a cloning strategy (e.g., the for-

ula 
a ef 
F − a ep 

P of technique AMPLE2 ( Xie et al., 2013a )). To further

nderstand the accuracy change made by the proposed cloning

trategy on SBFL formulas, we propose to study a set of research

uestions, which are presented in the next subsection. 

.3.2. Research questions 

In this study, we include 33 SBFL formulas, which are adopted

rom existing work ( Naish et al., 2011; Xie et al., 2013a ). To the

est of our knowledge, Naish et al. (2011) and Xie et al. (2013a )

onducted the two most comprehensive theoretical investigations

n SBFL risk evaluation formulas in the literature. For presenta-

ion completeness, the 33 risk evaluation formulas of these stud-

ed techniques are listed in Table 1 . The groups of these formulas,

f any, are adopted from Xie et al. (2013a ). 

The experiments in prior studies ( Debroy and Wong, 2009;

aish et al., 2011; Gong et al., 2012; Naish et al., 2015 ) sometimes

lassified faulty programs based on the number of known faults

xisting in these programs. If there is only one known fault, we

ame it a single-fault scenario. If there are more than one known

ault, we name it a multi-fault scenario. We also follow this classi-

cation of scenarios in this paper. 4 

It is worth noting that although many SBFL techniques are de-

eloped in the background of single-fault scenario, these tech-

iques have been empirically shown applicable to locate faults

n various multi-fault scenarios. On the other hand, theoretical

nalyses ( Naish et al., 2011; Xie et al., 2013a ) are developed in

he single-fault scenario, but their analysis results have not been

hown generalized to multi-fault scenarios. Gong et al. (2012 )

howed that in single-fault scenario, six risk evaluation formulas

an exhibit higher accuracy by using a class-balanced test suite.

ao et al. (2013) successfully proved that the changes in accuracy

f two risk evaluation formulas Jaccard and Wong2 by using the

loning strategy are always non-negative (i.e., with a non-negative

ncrease ratio). Thus, we wonder whether the results obtained so

ar can be further generalized beyond those two SBFL formulas.

oreover, if this is the case, we would also like to know the ex-

ent of improvement that may be observed empirically. Therefore,

n this study, we formulate the following research questions. 

1. In which scenarios and for which risk evaluation formulas, will

the cloning strategy improve their fault-localization accuracy?

Are the improvements statistically significant? 

2. To what extent and in what expense metrics can an improve-

ment in accuracy be achieved by each formula? Moreover, is
4 In both scenarios, we investigate the kind of faults, exercising which in a test 

un is the cause of the failures observed from that test run. In case of a code omis- 

ion fault, we mark the closest adjacent program entity or directly affected program 

ntity to be “faulty” to continue ( Zhang et al., 2009 ). 

3  

g  

a

the improvement applicable to the single-fault scenario only,

the multi-fault scenario only, or both? 

3. Are the improvements achieved by the same formula consistent

across all possible programs, all possible faults, and all possible

test suites? 

Research question Q1 aims to study whether the cloning strat-

gy is an plausible approach to improving the accuracy of risk

valuation formulas. However, knowing whether there is an im-

rovement in accuracy is not enough. Research question Q2 further

tudies the extent of improvement in terms of expense, observed

ith the studied formulas. We are going to answer these two re-

earch questions empirically through a controlled experiment. If

he answer to Q2 provides strong evidences that there are con-

istent improvements with some formulas, we will be further in-

erested in knowing whether the cloning strategy to improve the

ccuracy of these formulas can be confirmed analytically, which

urther consolidate the empirical findings from Q2 toward a theory

f SBFL-based debugging. We will present an analytical framework

n Section 4 and systematically show the results on each formula

nder the assumption that “every program execution of the pro-

ram over any failed test case always exercises one or more faulty

rogram entities”, to answer Q3. 

. Controlled experiment 

In this section, we introduce the experiment used to validate

ur proposal. 

.1. Experiment setup 

We chose the Siemens suite ( Software-artifact Infrastruc-

ure Repository, 2005 ), the program “space”, and four UNIX util-

ty programs (“flex”, “gzip”, “grep”, and “sed”) as the benchmarks

n our experiment. We downloaded the benchmarks (including

ll versions and associated test suites) from the SIR repository

 Software-artifact Infrastructure Repository, 2005 ). The descriptive

tatistics of these benchmarks are shown in Table 2 . Take the

rst row of the table as an example. The subject “print_tokens” is

quipped with five seeded faults. Each faulty version has 194–195

ines of code. The subject also came with a test suite containing

130 test cases, 1.7% of which were failed ones. We deemed a ver-

ion without enabling any equipped fault as a golden version of

he subject. The data for the remaining benchmark shown in the

able can be interpreted similarly. 

There are originally 247 faulty versions in the program suite.

e ran each faulty version of each subject over each applicable

est case, and compared with the program run of the golden ver-

ion of the same subject over the same test case to mark the test

utcome, that is, “pass” or “fail”. Following previous experiments

 Zhang et al., 2009 ), we applied the whole test suite as inputs to

ndividual program versions. If a faulty version was not associated

ith any failed run, like Zhang et al. (2009) , we excluded that ver-

ion from our data analysis. 5 Among the Siemens programs, we

iscarded the versions 4 and 6 of program “print_tokens” because

he faults were located in the header files. Besides, we discarded

he version 9 of program “schedule2”, versions 6 and 7 of program

schedule”, and versions 19, 27, and 32 of program “replace”. It was

ecause that there was no failed execution observed after running

ll the test cases of all these program versions. For the same rea-

on, we also discarded versions 1, 2, 4, 6, 25, 26, 30, 32, 34, 35,

6, and 38 of program “space”. Similarly, for the four UNIX pro-

rams “flex”, “grep”, “gzip” and “sed”, we finally selected 32, 13,
5 We also excluded those test cases that were associated with crash run, and 

pplied the rest test cases as inputs to individual subject programs. 
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Table 1 

Risk evaluation formulas of studied SBFL techniques. 

Group Formula Formula 

ER1 Naish1 

{
−1 if a ef < f 

a np if a ef = F 
Naish2 a ef − a ep 

P+1 

( Naish et al., 2011 ) ( Naish et al., 2011 ) 

ER2 Anderberg a ef 

2 F−a ef +2 a ep 
Dice 2 a ef 

F+ a ep 

( Anderberg, 1988 ) ( Dice, 1945 ) 

Goodman 
3 a ef −F−a ep 

a ef + F+ a ep 
Jaccard a ef 

F+ a ep 

( Goodman and Kruskal, 1954 ) ( Jaccard, 1901 ) 

Sørensen-Dice 2 a ef 

2 F−a nf + a ep 

( Duarte et al., 1999 ) 

ER3 CBI inc. a ef 

a ef + a ep 
− F 

F+ P q e 
a ef 

a ef + a ep 

( Liblit et al., 2015 ) ( Lee et al., 2009 ) 

Tarantula a ef /F 
a ef /F+ a ep /P 

( Jones et al., 2002 ) 

ER4 Hamann 
2 a ef +2 a np 

F+ P − 1 Euclid 
√ 

a ef + a np 

( Hamming, 1950 ) ( Krause, 1973 ) 

Rogers & Tanimoto 
a ef + a np 

a nf + a ep + F+ P Hamming etc. a ef + a np 

( Rogers and Tanimoto, 1960 ) ( Naish et al., 2011 ) 

Simple Matching 
a ef + a np 

F+ P Wong2 a ef − a ep 

( Meyer et al., 2004 ) ( Wong et al., 2007 ) 

Sokal 
2 a ef +2 a np 

a ef + a np + F+ P 
( Lourenco et al., 2004 ) 

ER5 Binary 

{
0 if a ef < f 

1 if a ef = F 
Russel & Rao a ef 

F+ P 

( Naish et al., 2011 ) ( Russel and Rao, 1940 ) 

Wong1 a ef 

( Wong et al., 2007 ) 

ER6 Rogot1 a ef / 2 
a ef + F+ a ep 

+ 

a np / 2 

a nf + a np + P 
( Rogot and Goldberg, 1966 ) 

Scott 
4 a ef a np −2 a nf a ep −a 2 

nf 
−a 2 ep 

(a ef + F+ a ep )(a np + a nf + P) 

( Scott, 1955 ) 

Non-grouped AMPLE 
∣∣ a ef 

F 
− a ep 

P 

∣∣ AMPLE2 a ef 

F 
− a ep 

P 

( Meyer et al., 2004 ) ( Xie et al., 2013a ) 

Arithmetic Mean 
2 a ef a np −2 a nf a ep 

(a ef + a ep )(a nf + a np )+ FP 
Kulcznski1 a ef 

F−a ef + a ep 

( Rogot and Goldberg, 1966 ) ( Lourenco et al., 2004 ) 

Cohen 
2 a ef a np −2 a nf a ep 

(a ef + a ep ) P+(a nf + a np ) F 
Kulcznski2 a ef 

2 F 
+ 

a ef 

2 a ef +2 a ep 

( Cohen, 1960 ) ( Lourenco et al., 2004 ) 

Fleiss 
4 a ef a np −2 a nf a ep −a 2 

nf 
−a 2 ep 

2 F+2 P 
Ochiai a ef √ 

F (a ef + a ep ) 

( Fleiss, 1965 ) ( Ochiai, 1957 ) 

M1 
a ef + a np 

F−a ef + a ep 
M2 a ef 

2 F−a ef + P+ a ep 

( Everitt, 1978 ) ( Everitt, 1978 ) 

Wong3 a ef −

⎧ ⎨ 

⎩ 

a ep if a ep ≤ 2 

2 + 0 . 1(a ep − 2) if 2 < a ep ≤ 10 

2 . 8 + 0 . 001(a ep − 10) if a ep > 10 ( Wong et al., 2007 ) 

Table 2 

Descriptive statistics of benchmarks. 

Small-scaled LoC ∗ # of faulty versions Fault type Test suite size % of failed test cases 

print_tokens 194–195 5 Seeded 4130 1.7 

print_tokens2 196–200 9 Seeded 4115 5.4 

replace 241–246 29 Seeded 5542 2.0 

schedule 151–154 5 Seeded 2650 2.4 

schedule2 128–130 9 Seeded 2710 3.2 

tcas 63–67 41 Seeded 1608 2.4 

tot_info 122–123 23 Seeded 1052 5.6 

Medium-scaled LoC ∗ # of faulty versions Fault type Test suite size % of failed test cases 

flex 4002–4035 32 Seeded 567 38.9 

grep 3198–3466 13 Seeded 809 11.7 

gzip 1740–2041 13 Seeded 214 1.6 

sed 1520–3733 22 Seeded 370 13.4 

space 3651–3657 26 Real 13,645 14.8 

∗: lines of executable statements. 
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3 and 22 versions, respectively, which was in line with the previ-

us experiments ( Xie et al., 2013b ). Finally, in total 227 faulty ver-

ions were used to simulate the single-fault scenario. We also con-

tructed double-fault versions by pair-wisely combining the faults

f each benchmark. If two faults could not coexist, we excluded

he generation of the corresponding double-fault version from the

xperiment. Specifically, we randomly chose 50% of all the legit-

mate pair-wise fault combination for each benchmark, excluded

hose versions which were not associated with any failed run (as

hat we did in the single-fault scenario), and finally included a

otal of 1259 such faulty versions to simulate the double-fault sce-

ario. By following the procedure as what we did to synthesize

ouble-fault programs, we also synthesized and chose 20 0 0 triple-

ault program versions for the benchmarks. We then computed the

uspiciousness scores of the program entities in each faulty ver-

ion over each test suite via each risk evaluation formula shown

n Table 1 . Next, we measured the expense (see Definition 2.2 )

chieved by each risk evaluation formula (see Definition 2.1 ), and

omputed the increase (see Definition 2.3 ). 

Our experiment was carried out on an Ubuntu 13.10 desktop

ystem with a configuration of 8-core i7-870 (2.93G) CPU with 4GB

hysical memory. We used the tool gcov 4.6 to obtain the coverage

nformation of the programs compiled with gcc 4.7. 

.2. Experiment results 

In this section, we report the accuracy improvements by apply-

ng the cloning strategy, together with hypothesis testing to deter-

ine whether there are statistically significant differences. 

Table 3 shows the increase ratio observed from the data for

ach risk evaluation formula. All the individual formulas or formula

roups are listed in descending order of their accuracy improve-

ents across all benchmarks. Take the formula Wong3 (the 8th

ow) and the benchmark “print_tokens” (the third column) as an

xample. The expense of Wong3 on the program print_tokens are

.0095 before cloning and 0.0080 after cloning. That is, 0.95% of all

he program entities has been checked before the fault is reached

n the ranked list generated by Wong3. And, by using the test

uite after cloning to drive Wong3, 0.80% of all the program en-

ities need to be checked before the fault is reached in the ranked

ist. Accordingly, the code examination effort is reduced by apply-

ng cloning, and the increase ratio (i.e., Inc. Ratio in the table) is

omputed as 0 . 0 095 −0 . 0 080 
0 . 0095 = 0 . 1559 (or 15.59%). The results of in-

rease ratios on the other benchmarks are similarly computed. By

veraging all the 12 benchmarks, the mean increase ratio across all

he programs is 0.1157 (or 11.57%). Other cells in the table can be

nterpreted similarly. 

When two formulas manifested identical accuracy on each in-

ividual faulty version, we classified them into specific groups. In

ummary, we observe from the table that in the single-fault sce-

ario, on average, the increase ratio observed on 31 risk evaluation

ormulas are non-negative, and those of Kulcznski2 and Arithmetic

ean are of mixed results after the cloning strategy has been ap-

lied. A close look at the experimental results reveals the follow-

ng: 

R1. The average increase ratios of ER4, M1, ER6, Fleiss, ER2, Kul-

czynski1, Cohen, Wong3, Ochiai, and M2 are positive on all

the benchmarks. In other words, the accuracy of these for-

mulas have been improved by applying the cloning strategy.

R2. The increase ratios of Arithmetic Mean are positive on all

benchmarks except two (“schedule2” and “flex”, which are

negative). The overall average of Arithmetic Mean across

all benchmarks is also positive. The increase ratio of Kul-

cznski2 is on average negative and also negative on four

(“print_tokens2”, “schedule2”, “tcas”, and “tot_info”) of the
12 benchmarks. It indicates that the accuracy of these two

formulas can only be partially improved in the single-fault

scenario. 

R3. The average increase ratios of AMPLE, AMPLE2, ER1, ER3, and

ER5 over different subject programs are always zero. It also

means that on average, the accuracy of these formulas are

preserved by the cloning strategy. 

To verify whether the results observed can be statistically

eaningful, we adopt the Wilcoxon signed rank test method. The

ilcoxon signed rank test is a nonparametric test for two popula-

ions when the observations are paired ( MathWorld, 2010 ). A null

ypothesis is set to stand for the fact that the difference between

he two sets of pairs follows a symmetric distribution around zero.

 p-value can be calculated for the Wilcoxon signed rank test. It

s defined as the probability, under the assumption of the null hy-

othesis, of obtaining a result equal to or more extreme than what

as actually observed. In our experiment, in case an improvement

n terms of average accuracy is observed with a SBFL formula, we

pply the Wilcoxon signed rank test to measure how much the

bserved on average improvement might come from two sample

opulations without significant differences. Here, the two popula-

ions are the SBFL formula scores before and after cloning. In gen-

ral, the smaller the p-value, the less probably the null hypothe-

is holds. In other words, the smaller the p-value, the more confi-

ence we have that there is a significant improvement by cloning

he failed test runs. 

Since Table 3 shows that the accuracy of most formulas is im-

roved on most benchmarks in the top eleven rows (except Arith-

etic Mean on schedule2 and flex), we want to know whether

here is any statistically significant difference with the improve-

ents. The last two columns of Table 3 present the results of the

bove hypothesis testing in the single-fault scenario. In each ta-

le, the p-value column shows the results of the Wilcoxon signed

ank test in h-value of 1.0 0 0 0 and at the significance level of 0.05.

ote that for the cases where the increase ratios are on aver-

ge zero (ER1, ER3, ER5, AMPLE2, AMPLE) or negative (Kulcznski2),

e skipped to apply hypothesis testing to check the improvement

chieved. The corresponding cells in the table is marked “imap-

licable”. From the remaining cases in the table, we observe that

he null hypotheses are always rejected at the significance level of

.05. More specifically, we observe that in the single-fault scenario,

he fault-localization accuracy of 22 formulas have been improved

hen the clone strategy is applied. 

Overall speaking, the results show that two in every three stud-

ed SBFL formulas can be positively affected by the cloning strategy

o increase their fault-localization accuracy. 

.2.1. Impact of different scenarios 

Definition 2.2 describes the expense metrics with respect to a

ault. We therefore measured the expense achieved by each risk

valuation formula to locate each fault in the multi-fault scenario.

n the multi-fault scenario, we also measured the expenses and the

alues of increase by following the procedure used in the single-

ault scenario. 

Table 4 presents the increase ratios of the 33 risk evaluation

ormulas on 1259 double-fault program versions used in our ex-

eriment to study the double-fault scenario. It also presents the

ncrease ratios of the 33 risk evaluation formulas on 20 0 0 faulty

ersions used in our experiment to study the triple-fault scenario.

e note that when two formulas manifested identical accuracy

n each individual faulty version, we classified them into specific

roups. A formula in a group in Table 4 does not indicate whether

he formula is in some particular group shown in Table 3 . 
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Table 3 

Effectiveness of cloning on different formulas over each benchmark. 

Group/Formula Expenses Small-sized Medium-sized Avg. Inc. Ratio p-value 

prnt_tkns prnt_tkns2 replace schedule schedule2 tcas tot_info space flex sed gzip grep 

ER4 Before 0.0779 0.0734 0.0938 0.0515 0.2795 0.0918 0.1219 0.0311 0.2297 0.0487 0.0544 0.0980 

After 0.0095 0.0416 0.0267 0.0109 0.2092 0.0507 0.0744 0.0192 0.2032 0.0319 0.0412 0.0846 0.4273 2 . 5 × 10 −22 

Inc. ratio 0.8779 0.4328 0.7156 0.7884 0.2514 0.4477 0.3900 0.3841 0.1155 0.1362 0.2427 0.3455 

M1 Before 0.0779 0.0734 0.0938 0.0515 0.2795 0.0918 0.1219 0.0311 0.2297 0.0487 0.0544 0.0980 

After 0.0095 0.0416 0.0267 0.0109 0.2092 0.0507 0.0744 0.0192 0.2032 0.0319 0.0412 0.0846 0.4273 2 . 5 × 10 −22 

Inc. ratio 0.8779 0.4328 0.7156 0.7884 0.2514 0.4477 0.3900 0.3841 0.1155 0.1362 0.2427 0.3455 

ER6 Before 0.0353 0.0631 0.0565 0.0484 0.2770 0.0884 0.1362 0.0015 0.2297 0.0428 0.0544 0.0743 

After 0.0095 0.0448 0.0316 0.0131 0.2285 0.0510 0.0823 0.0013 0.2010 0.0347 0.0479 0.0677 0.3203 2 . 7 × 10 −19 

Inc. ratio 0.7309 0.2899 0.4403 0.7299 0.1750 0.4232 0.3960 0.1356 0.1250 0.0892 0.1199 0.1882 

Fleiss Before 0.0551 0.2459 0.1715 0.9083 0.9258 0.7751 0.7604 0.0014 0.2241 0.2168 0.0549 0.0800 

After 0.0158 0.1777 0.0915 0.2946 0.7541 0.4 4 47 0.4576 0.0013 0.1984 0.1901 0.0525 0.0693 0.3056 4 . 0 × 10 −9 

Inc. ratio 0.7137 0.2773 0.4665 0.6757 0.1855 0.4263 0.3982 0.1101 0.1146 0.1331 0.0428 0.1233 

ER2 Before 0.0165 0.0267 0.0285 0.0112 0.2181 0.0505 0.0562 0.0014 0.2200 0.0218 0.0913 0.0082 

After 0.0095 0.0181 0.0219 0.0082 0.1814 0.0461 0.0405 0.0012 0.1968 0.0187 0.0818 0.0072 0.20 0 0 1 . 7 × 10 −14 

Inc. ratio 0.4223 0.3207 0.2326 0.2723 0.1685 0.0878 0.2805 0.1473 0.1053 0.1187 0.1034 0.1407 

Kulcznski1 Before 0.0165 0.0267 0.0285 0.0112 0.2181 0.0505 0.0562 0.0014 0.2200 0.0218 0.0913 0.0082 

After 0.0095 0.0181 0.0219 0.0082 0.1814 0.0461 0.0405 0.0012 0.1968 0.0187 0.0818 0.0072 0.20 0 0 1 . 7 × 10 −14 

Inc. ratio 0.4223 0.3207 0.2326 0.2723 0.1685 0.0878 0.2805 0.1473 0.1053 0.1187 0.1034 0.1407 

Cohen Before 0.0167 0.0490 0.0326 0.0138 0.2150 0.0509 0.0660 0.0014 0.2297 0.0229 0.0544 0.0082 

After 0.0095 0.0419 0.0262 0.0109 0.1720 0.0496 0.0595 0.0014 0.2097 0.0214 0.0496 0.0080 0.1217 1 . 6 × 10 −11 

Inc. ratio 0.4296 0.1441 0.1964 0.2127 0.0200 0.0257 0.0988 0.0555 0.0873 0.0327 0.0889 0.0689 

Wong3 Before 0.0095 0.0069 0.0197 0.0109 0.1986 0.0556 0.0335 0.1607 0.2296 0.1871 0.0561 0.0569 

After 0.0080 0.0064 0.0190 0.0088 0.1699 0.0498 0.0375 0.1576 0.2201 0.1524 0.0463 0.0539 0.1157 1 . 6 × 10 −6 

Inc. ratio 0.1559 0.0667 0.0373 0.1875 0.1445 0.1047 0.1203 0.0190 0.0415 0.0528 0.1755 0.1856 

Ochiai Before 0.0108 0.0204 0.0238 0.0091 0.1860 0.0488 0.0461 0.0014 0.2200 0.0201 0.0913 0.0081 

After 0.0095 0.0165 0.0210 0.0082 0.1791 0.0458 0.0391 0.0013 0.2181 0.0177 0.0827 0.0081 0.0936 1 . 6 × 10 −11 

Inc. ratio 0.1235 0.1945 0.1164 0.1045 0.0372 0.0605 0.1522 0.1106 0.0083 0.0041 0.0943 0.1168 

Arithmetic Mean Before 0.0126 0.0459 0.0283 0.0089 0.1832 0.0511 0.0581 0.0014 0.2297 0.0214 0.0544 0.0081 

After 0.0095 0.0400 0.0236 0.0082 0.2071 0.0491 0.0553 0.0014 0.2299 0.0202 0.0501 0.0081 0.0605 1 . 0 × 10 −6 

Inc. ratio 0.2477 0.1297 0.1683 0.0786 -0.1307 0.0399 0.0478 0.0070 −0.0 0 07 0.0060 0.0789 0.0539 

M2 Before 0.0095 0.0122 0.0214 0.0082 0.1761 0.0459 0.0387 0.0014 0.2200 0.0173 0.0913 0.0079 

After 0.0095 0.0098 0.0207 0.0082 0.1606 0.0452 0.0348 0.0014 0.2194 0.0171 0.0912 0.0079 0.0382 7 . 9 × 10 −7 

Inc. ratio 0.0 0 0 0 0.1978 0.0305 0.0 0 0 0 0.0884 0.0157 0.1010 0.0102 0.0026 0.0037 0.0 0 06 0.0077 

AMPLE Before 0 0 inapplicable 

AMPLE2 

ER1 After 0 0 inapplicable 

ER3 Inc. ratio 0 0 inapplicable 

ER5 

Before 0.0095 0.0096 0.0210 0.0082 0.1591 0.0442 0.0233 0.0014 0.2200 0.0174 0.0913 0.0081 

Kulcznski2 After 0.0095 0.0140 0.0209 0.0082 0.1656 0.0457 0.0273 0.0012 0.2145 0.0174 0.0833 0.0081 −0.0403 

Inc. ratio 0.0 0 0 0 −0.4561 0.0059 0.0 0 0 0 −0.0405 −0.033 −0.1738 0.0954 0.0248 0.0041 0.0876 0.0020 
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We have the following observations on the results summarized

in the double- and triple-fault scenarios. 6 

R4. The average increase ratios of ER4, M1, Fleiss, ER6, Cohen,

ER2, Kulcznski1, Cohen, Ochiai, Arithmetic Mean, and Kul-

cznski2 are positive in both the double-fault and the triple-

fault scenarios. In other words, on average, the accuracy of

these formulas can be improved by applying the cloning

strategy. 

R5. The average increase ratios of Wong3 and M2 are negative

in the double-fault scenario. In other words, their accuracy

cannot be improved by cloning, in the double-fault scenario.

R6. The increase ratios of AMPLE, AMPLE2, ER1, ER3, and ER5 are

always zero. It means that on average, the accuracy of these

formulas are preserved by the cloning strategy. 
6 What are not shown in this table include (a) the increase ratios of Ochiai on 

program “space” and Arithmetic Mean on program “schedule2” are negative, in 

both the double-fault and triple-fault scenarios, (b) the increase ratios of Kulcznski2 

are negative on programs “replace”, “schedule”, “schedule2”, “tcas”, and “tot_info”, 

in the double-fault scenario, (c) the increase ratio of Wong3 is only negative on 

programs “schedule2”, “tot_info”, and “grep”, in the double-fault scenario, and (d) 

the increase ratio of M2 is only negative on programs “print_tokens”, “schedule2”, 

“tcas”, and “tot_info”, in the double-fault scenario. 

o

 

c  

p  

f  
.2.2. Impact of different expense metrics 

In this section, we also include three other metrics to evaluate

he effectiveness achieved by the cloning strategy. In Definition 2.2 ,

 tie containing the faulty program entity f in the ranked list is

roken in such a way that program entities are checked in order

nd f is checked as the middle one of the tie. It is also named the

vg metric in previous studies ( Li et al., 2014 ). In this section, we

et f be checked as the last one in the tie containing it, and follow

xisting work ( Wong et al., 2007 ) to name such a metric Max . Be-

ides Avg and Max, a Min expense, which means checking f as the

rst element in the tie containing it, has also been used in previ-

us studies ( Wong et al., 2007 ). These three metrics differ in how

he program entities in a tie will be checked ( Wong et al., 2007;

i et al., 2014 ). However, in this study, we did not include the Min

xpense. It is because that solely referencing Min may result in an

ver-estimation of fault localization accuracy. 7 

Table 3 shows that the cloning strategy can improve the ac-

uracy of 22 studied formulas using Avg as the metric. But in

ractice, developers may only care about the top portion of the

ault localization results. For example, if the program has a few
7 For example, let us consider a fictitious SBFL formula that cannot distinguish 

any program entities and assigns an identical suspicious score to each of them. For 

such a formula, the faulty program entity is always given the highest rank by the 

Min expense metric, resulting in a very high fault-localization accuracy. 
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Table 4 

Effectiveness of cloning in different scenarios. 

Group/Formula Single-fault Double-fault Triple-fault 

Avg. inc. ratio p-value Avg. inc. ratio p-value Avg. inc. ratio p-value 

ER4 0.4273 2 . 5 × 10 −22 0.4224 4 . 7 × 10 −16 0.4402 3 . 6 × 10 −12 

M1 0.4273 2 . 5 × 10 −22 0.4224 4 . 7 × 10 −16 0.4402 3 . 6 × 10 −12 

ER6 0.3203 2 . 7 × 10 −19 0.2321 5 . 0 × 10 −6 0.2958 6 . 0 × 10 −7 

Fleiss 0.3056 4 . 0 × 10 −9 0.3217 3 . 8 × 10 −5 0.3472 4 . 0 × 10 −6 

ER2 0.20 0 0 1 . 7 × 10 −14 0.1829 3 . 3 × 10 −11 0.1991 1 . 6 × 10 −9 

Kulcznski1 0.20 0 0 1 . 7 × 10 −14 0.1829 3 . 3 × 10 −11 0.1991 1 . 6 × 10 −9 

Cohen 0.1217 1 . 6 × 10 −11 0.2020 1 . 8 × 10 −5 0.1489 4 . 7 × 10 −4 

Ochiai 0.0936 1 . 6 × 10 −11 0.0909 3 . 7 × 10 −7 0.1432 4 . 3 × 10 −6 

Arithmetic Mean 0.0605 1 . 0 × 10 −6 0.0802 9 . 6 × 10 −5 0.0815 1 . 8 × 10 −7 

AMPLE 0 Inapplicable 0 Inapplicable 0 Inapplicable 

AMPLE2 

ER1 

ER3 

ER5 

Wong3 0.1157 1 . 6 × 10 −6 −0.0622 Inapplicable 0.2025 2 . 5 × 10 −5 

M2 0.0382 7 . 9 × 10 −7 −1.2200 Inapplicable 0.0124 3 . 6 × 10 −6 

Kulcznski2 −0.0403 Inapplicable 0.0177 1 . 7 × 10 −4 0.0694 2 . 0 × 10 −4 

Table 5 

Effectiveness of cloning in different expense metrics. 

Group/Formula Avg ( Definition 2.2 ) Max Top-5 Top-5 ‰ 

Avg Inc. Ratio p-value Avg Inc. Ratio p-value Avg Inc. Ratio p-value Avg Inc. Ratio p-value 

ER4 0.4273 2 . 5 × 10 −22 0.4020 1 . 8 × 10 −19 1.2581 8 . 6 × 10 −10 0.3878 6 . 7 × 10 −7 

M1 0.4273 2 . 5 × 10 −22 0.4020 1 . 8 × 10 −19 1.2581 8 . 6 × 10 −10 0.3878 6 . 7 × 10 −7 

ER6 0.3203 2 . 7 × 10 −19 0.3092 7 . 8 × 10 −17 0.5556 6 . 5 × 10 −5 0.0984 5 . 3 × 10 −4 

Fleiss 0.3056 4 . 0 × 10 −9 0.2844 7 . 3 × 10 −7 0.4894 2 . 8 × 10 −4 0.0308 2 . 1 × 10 −4 

ER2 0.20 0 0 1 . 7 × 10 −14 0.1819 3 . 5 × 10 −10 0.1667 4 . 7 × 10 −8 0.2143 3 . 3 × 10 −6 

Kulcznski1 0.20 0 0 1 . 7 × 10 −14 0.1819 3 . 5 × 10 −10 0.1667 4 . 7 × 10 −8 0.2143 3 . 3 × 10 −6 

Cohen 0.1217 1 . 6 × 10 −11 0.1115 7 . 9 × 10 −9 0.0606 7 . 4 × 10 −5 0.0806 1 . 6 × 10 −4 

Wong3 0.1157 1 . 6 × 10 −6 0.0918 5 . 8 × 10 −4 0.1268 3 . 5 × 10 −5 0.0476 9 . 4 × 10 −4 

Ochiai 0.0936 1 . 6 × 10 −11 0.0701 2 . 2 × 10 −9 0.0845 4 . 6 × 10 −6 0.1525 7 . 2 × 10 −5 

Arithmetic Mean 0.0605 1 . 0 × 10 −6 0.0544 9 . 5 × 10 −4 0.1324 1 . 8 × 10 −4 0.0806 4 . 6 × 10 −4 

M2 0.0382 7 . 9 × 10 −7 0.0339 1 . 9 × 10 −5 0.0132 4 . 3 × 10 −6 0.0926 8 . 1 × 10 −4 

AMPLE 0 Inapplicable 0 Inapplicable 0 Inapplicable 0 Inapplicable 

AMPLE2 

ER1 

ER3 

ER5 

Kulcznski2 −0.0403 Inapplicable −0.0475 Inapplicable −0.0130 Inapplicable 0.0169 1 . 0 × 10 −4 
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8 For ease of presentation, the increase ratio of each formula on each individual 

program is not shown in this table. We note that in summary, they are consistent 
housand lines of executable statements, developers may just care

bout some top few suggested candidates. That is, the other parts

ay exceed the effort a developer affordable to examine ( Song,

014; Kochhar et al., 2016 ). If the faulty entity appears only after

he top selected few, it can be considered useless and developers

ay just switch to other fault localization manners to finish their

ebugging tasks. Hence, we check only a portion of the ranked list

ather than using the whole list, and compute the percentage of

aulty versions, in which their faults can be located when checking

 limited portion of the ranked list. It is natural that when han-

ling programs of a larger scale, a developer may be more tolerant

o the accuracy of a fault localization tool and want to check more

uspicious candidates than usual before giving up. Thus, we use

wo notions Top-N and Top-N ‰ to replace the notion of expense in

efinition 2.2 , and accordingly calculate the increase ratios. Here,

he Top-N and the Top-N ‰ metrics calculate the increase ratios

f fault-localization accuracy after cloning, by solely examining the

op N elements and the top N ‰ elements in the ranked list, re-

pectively. In this study, N is chosen to be 5, i.e., we choose to

heck the top 5 and the top 5 ‰ part of a ranked list for a pro-

ram version, respectively. We measure whether the improvement

s observable to developers under these two metrics. 

t

o

p

Table 5 shows the Max, Top-5 and Top-5 ‰ results for each risk

valuation formula in the single-fault scenario. Take the formula

R4 (the second row) and Max (the second column) as an example.

he number “0.4020” denotes the average increase ratio (i.e., Avg.

nc. Ratio in the table) in terms of the Max expense. Other cells

an be interpreted similarly. We have the following observations. 8 

R7. The average increase ratios of ER4, M1, Fleiss, ER6, Cohen,

ER2, Kulcznski1, Cohen, Wong3, Ochiai, Arithmetic Mean,

and M2 are always positive in terms of Max, Top-5 and Top-

5 ‰ . In other words, on average, the accuracy of these for-

mulas can be improved by applying the cloning strategy. 

R8. The average increase ratios of Kulcznski2 are negative in

terms of Max and Top-5 and positive in terms of Top-5 ‰ . In

other words, the accuracy of Kulcznski2 may not be always

improved. 
o the observations we have presented in Table 3 that Kulcznski2 is only negative 

n programs “replace”, “schedule”, “schedule2”, “tcas”, and “tot_info”, when incor- 

orating the Top-N and Max metrics. 
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R9. The increase ratios of AMPLE, AMPLE2, ER1, ER3, and ER5 are

always zero. It also means that on average, the accuracy of

these formulas are preserved by the cloning strategy. 

3.3. Summary 

In Table 3 , we have found that on average, the cloning strat-

egy has aided formulas in groups ER2, ER4, and ER6 as well as

formulas M1, Kulcznski1, Cohen, and Fleiss. Moreover, on average,

the strategy has not changed the accuracy of the formulas in ER1,

ER3 and ER5 as well as the formulas AMPLE and AMPLE2. We have

further found that the results do not vary significantly in single-,

double- and triple-fault scenarios. Using metrics Max, Top-5, and

Top-5 ‰ , the obtained results do not significantly derivate from the

results on using the metric Avg. 

Overall speaking, the results have shown that a large proportion

of studied SBFL formulas can be positively affected by the cloning

strategy to increase their fault-localization accuracy. We have also

observed that formulas exhibiting positive or zero increase ratios

in Tables 4 and 5 are very consistent. Is it a coincidence? Or, is

there any theoretical reason behind the scenes? In the next sec-

tion, we are going to study these formulas from an analytical view-

point. 

4. Theoretical analysis 

In this section, we present our results by giving mathematical

proofs to the formulas which accuracy was observed to have been

consistently improved or preserved by applying the cloning strat-

egy in the experiment reported in the last section. We first formu-

late the process of the cloning strategy, then define the possible

types of a SBFL formula that can be affected by the cloning strat-

egy. Finally, we determine the type of each SBFL formula studied. 

4.1. Type of a SBFL formula 

We suppose that we are given a program containing fault(s)

that have been executed over a given test suite such that the code

coverage information has been collected and all test cases in the

given test suite have been labeled as either failed or passed. We

want to determine a SBFL formula to be one of the four types

that the accuracy of the corresponding types of SBFL formulas will

be improved, preserved, deteriorated , or nondeterministic after ap-

plying the cloning strategy, respectively. In this section, when we

discuss the accuracy of a fault localization formula, it is evalu-

ated using the two expense metrics Avg ( Definition 2.2 ) and Max

( Section 2.2.2 ). We do not include the metrics Top-N or Top-N ‰
( Section 2.2.2 ) because there is no objective criterion in choosing

N in these metrics. Nevertheless, the Min ( Wong et al., 2007 ) ex-

pense metrics is included to help generalize our theoretical anal-

ysis with Avg and Max. To separate from the expense metrics used

in the controlled experiment in Section 3.2 , we consistently list out

Avg, Min, and Max as expense schemes in this section. The defini-

tions of types are given as follows. It is easy to know they are mu-

tually exclusive, and a SBFL formula must belong to one of them. 

Definition 4.1 (Type Preserved ) . A SBFL formula is said to be

Preserved if for any program, any fault (including every fault in a

multi-fault scenario), any test suite, and any expense scheme, the

increase ratio is always zero. 

Definition 4.2 (Type Improved ) . A SBFL formula is said to be

Improved if for any program, any fault (including every fault in a

multi-fault scenario), any test suite, and any expense scheme, the

increase ratio is always non-negative; and for at least one program,

one fault (can be one fault in a multi-fault scenario), one test suite,

and one expense scheme, the increase ratio is positive. 
efinition 4.3 (Type Deteriorated ) . A SBFL formula is said to be

eteriorated if for any program, any fault (including every fault in a

ulti-fault scenario), any test suite, and any expense scheme, the

ncrease ratio is always non-positive; and for at least one program,

ne fault (can be one fault in a multi-fault scenario), one test suite,

nd one expense scheme, the increase ratio is negative. 

efinition 4.4 (Type Non-deterministic ) . A SBFL formula is said to

e Non-deterministic if for at least one program, one fault (can be

ne fault in a multi-fault scenario), one test suite, and one expense

cheme, the increase ratio is positive; and for at least one program,

ne fault (can be one fault in a multi-fault scenario), one test suite,

nd one expense scheme, the increase ratio is negative. 

.2. The determination of types 

In this section, we first list out lemma, definitions, and nota-

ions used for easy of presentation. After that, we give theorems

nd proofs on how we determine the types of a SBFL formula. 

.2.1. Lemma, definitions, and notations 

otation 4.1 ( Prog, Suite, i, f ) . We use Prog to denote a program,

nd use Suite to denote a test suite. Further, we use i to denote

n arbitrary program entity in Prog, and use f to denote a faulty

rogram entity in Prog. 

otation 4.2 ( S usp �) . S usp � = S usp i − S usp f . 

The notation Susp � denotes the result of the subtraction of the

uspiciousness score of f from the suspiciousness score of i . A posi-

ive Susp � for a program entity i indicates that the program entity

 is more suspicious than the program entity f . Similarly, a neg-

tive Susp � indicates that the corresponding program entity i is

ess suspicious than f . If Susp � = 0, it indicates that i is equally

uspicious as f . The proofs in this paper are based on the concept

f mutually exclusive sets ( Xie et al., 2013a ). 

efinition 4.5 (Mutually exclusive sets S et H , S et E , and S et L ( Xie

t al., 2013a )) . Program entities can be grouped into three exclu-

ive sets , according to whether the suspiciousness score of a pro-

ram entity is higher than, equal to, or lower than the suspicious-

ess score of f. These three sets are denoted by Set H , Set E , and

et L , respectively. 

Here, S et H , S et E , and S et L can be determined based on

usp �, as Set H = { i | Susp � > 0 } , Set E = { i | Susp � = 0 } ,
nd Set L = { i | Susp � < 0 } . With Set H , Set E , and Set L , the

in, Max, and Avg schemes (see Section 3.2.2 ) can be ex-

ressed as 
|Set H | + 1 

|Set H | + |Set E | + |Set L | , 
|Set H | + |Set E | 

|Set H | + |Set E | + |Set L | , and

�|Set H | + 1 / 2 + |Set E | / 2 � 
|Set H | + |Set E | + |Set L | , respectively. 

Regarding the cloning strategy, we also introduce the following

otations to simplify the presentation. 

otation 4.3 ( Susp ′ 
�

, Set ′ 
H 
, Set ′ 

E 
, Set ′ 

L 
) . Susp ′ 

�
, Set ′ 

H 
, Set ′ 

E 
, Set ′ 

L
enote the corresponding values of Susp �, Set H , Set E , Set L , after

loning, respectively. 

We use a ′ ep , a ′ np , a ′ 
ef 

, a ′ 
nf 

to compute Susp ′ and Susp ′ 
�

, use

usp ′ 
�

to determine the sets S et ′ 
H 
, S et ′ 

E 
, S et ′ 

L 
, and finally compute

he expense increases and the increase ratios with respect to dif-

erent expense schemes. 
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10 From the tables, we not only identify SBFL formulas of type Improved and 
.2.2. Theorems and corollaries 

emma 4.1. In the single-fault scenario, (a 
f 
ef 

, a 
f 
nf 

) = (F , 0) . Xie et al.

2013a) 9 

heorem 4.1 (Determining a Preserved -typed formula) . A SBFL for-

ula is of type Preserved when all of C1-C3 are satisfied. 

C1: ∀Prog, ∀S uite, (S usp � > 0 ⇒ Susp ′ 
�

> 0) ; 

C2: ∀Prog, ∀S uite, (S usp � = 0 ⇒ Susp ′ 
�

= 0) ; 

C3: ∀Prog, ∀S uite, (S usp � < 0 ⇒ Susp ′ 
�

< 0) . 

roof. Satisfying C1 means that any program entity, which belongs

o the set Set ′ 
H 

before the cloning, also belongs to Set H after apply-

ng cloning. Satisfying C2 means that any program entity, which

elongs to the set Set ′ 
E 

before the cloning, also belongs to Set E af-

er applying cloning. Satisfying C3 means that any program entity,

hich belongs to the set Set ′ 
L 

before the cloning, also belongs to

et L after applying cloning. As a result, the sizes of the three sets

o not vary before and after cloning. So the expenses calculated

efore and after cloning are the same, and the expense increase

nd increase ratio are both zero. �

orollary 4.1. A SBFL formula is of type Preserved when any two of

1-C3 are satisfied. 

C1: ∀Prog, ∀Suite, (Susp � > 0 ⇔ Susp ′ 
�

> 0) ; 

C2: ∀Prog, ∀Suite, (Susp � = 0 ⇔ Susp ′ 
�

= 0) ; 

C3: ∀Prog, ∀Suite, (Susp � < 0 ⇔ Susp ′ 
�

< 0) . 

roof. The result directly follows Theorem 4.1 because the sets

 et H , S et E , and Set L are mutually exclusive. �

heorem 4.2 (Determining an Improved -typed formula) . A SBFL for-

ula is of type Improved when all of C1-C4 are satisfied. 

C1: ∀Prog, ∀Suite, (Susp � > 0 ⇐ Susp ′ 
�

> 0) ; 

C2: ∀Prog, ∀S uite, (S usp � < 0 ⇒ Susp ′ 
�

< 0) ; 

C3: ∃Prog, ∃S uite, (S usp � > 0 ∧ Susp ′ 
�

≤ 0) ; 

C4: ∃Prog, ∃S uite, (S usp � ≥ 0 ∧ Susp ′ 
�

< 0) . 

roof. Similarly to the proof of Theorem 4.1 , satisfying C1 and

2 respectively mean that the Min scheme and the Max scheme

ever increase in all cases of cloning. On the other hand, satisfying

3 and C4 respectively mean that the Min scheme and the Max

cheme decrease in some cases of cloning. Since the Avg scheme is

n averaging of the Min scheme and the Max scheme, as a result,

atisfying all of C1-C4 means all the three kinds of schemes never

ncrease in all cases, and at least one of them decreases in some

ases. �

orollary 4.2. A SBFL formula is of type Improved when all of C1-C3

re satisfied. 

C1: ∀Prog, ∀S uite, (S usp � ≥ S usp ′ 
�

) ; 

C2: ∃Prog, ∃S uite, (S usp � > 0 ∧ Susp ′ 
�

≤ 0) ; 

C3: ∃Prog, ∃S uite, (S usp � ≥ 0 ∧ Susp ′ 
�

< 0) . 

roof. Since the condition C1 here implies both

∀Prog, ∀S uite, (S usp � > 0 ⇐ Susp ′ 
�

> 0) ” (C1 of Theorem 4.2 )

nd “∀Prog, ∀S uite, (S usp � > 0 ⇐ Susp ′ 
�

> 0) ” (C2 of

heorem 4.2 ), the corollary follows Theorem 4.2 . �

orollary 4.3. A SBFL formula is of type Improved when both C1 and

2 are satisfied. 

C1: ∀Prog, ∀S uite, (S usp � ≥ S usp ′ 
�

) ; 

C2: ∃Prog, ∃S uite, (S usp � > 0 ∧ Susp ′ 
�

< 0) . 

roof. Since the condition C2 here implies both

∃Prog, ∃S uite, (S usp � > 0 ∧ Susp ′ 
�

≤ 0) ” (C3 of Theorem 4.2 )

nd “∃Prog, ∃S uite, (S usp � ≥ 0 ∧ Susp ′ 
�

< 0) ” (C4 of

heorem 4.2 ), the corollary follows Theorem 4.2 . �
9 Note that the happening of coincidental correctness does not affect this fact. 

P

t

f

orollary 4.4. A SBFL formula is of type Improved when all of C1-C3

re satisfied. 

C1: ∀Prog, ∀S uite, (S usp ′ 
�

= αS usp � + β, α > 0 , β ≤ 0) ; 

C2: ∃Prog, ∃S uite, (S usp � > 0 ∧ Susp ′ 
�

≤ 0) ; 

C3: ∃Prog, ∃S uite, (S usp � ≥ 0 ∧ Susp ′ 
�

< 0) . 

roof. From C1, we can obtain “Susp ′ 
�

> 0 ⇒ αSusp � + β >

 ⇒ αSusp � > 0 ⇒ Susp � > 0 ” (C1 of Theorem 4.2 ) and

Susp � < 0 ⇒ αSusp ′ 
�

< 0 ⇒ αSusp ′ 
�

+ β < 0 ⇒ Susp ′ 
�

< 

 ” (C2 of Theorem 4.2 ). In other words, the corol-

ary also follows Theorem 4.2 because C1 here implies

∀Prog, ∀S uite, (S usp � > 0 ⇐ Susp ′ 
�

> 0) ” (C1 of Theorem 4.2 )

nd “∀Prog, ∀S uite, (S usp � < 0 ⇒ Susp ′ 
�

< 0) ” (C2 of

heorem 4.2 ). �

heorem 4.3. (Determining a. Deteriorated -typed formula). A SBFL

ormula is of type Deteriorated when all of C1-C4 are satisfied. 

C1: ∀Prog, ∀S uite, (S usp � < 0 ⇐ Susp ′ 
�

< 0) ; 

C2: ∀Prog, ∀S uite, (S usp � > 0 ⇒ Susp ′ 
�

> 0) ; 

C3: ∃Prog, ∃S uite, (S usp � < 0 ∧ Susp ′ 
�

≥ 0) ; 

C4: ∃Prog, ∃S uite, (S usp � ≤ 0 ∧ Susp ′ 
�

> 0) . 

roof. Similar to the proof of Theorem 4.1 , satisfying C1 and C2

ean that the Min and Max schemes never decrease in all cases

f cloning. On the other hand, satisfying C3 and C4 respectively

ean that the Min scheme and the Max scheme increase in some

ases of cloning. As a result, satisfying all of C1-C4 means that the

xpense under each of the three kinds of expense schemes never

ecreases in all cases, and may increase in some cases. �

heorem 4.4 (Determining a Non-deterministic -typed formula) . A

ormula is of type Non-deterministic when both C1 and C2 are sat-

sfied. 

C1: ∃Prog, ∃S uite, (S usp � > 0 ∧ Susp ′ 
�

≤ 0) ; 

C2: ∃Prog, ∃S uite, (S usp � < 0 ∧ Susp ′ 
�

≥ 0) . 

roof. Similar to the proof of Theorem 4.1 , satisfying C1 means

hat the expense can increase in some cases of cloning. Satisfying

2 means that the expense can decrease in some cases of cloning.

s a result, satisfying both C1 and C2 means the expenses can ei-

her decrease or increase in specified cases of cloning. �

.3. Results of analysis 

By applying the theorems and corollaries in the last subsection,

e can analytically determine the type of a SBFL formula, in the

ingle-fault and multi-fault scenarios, respectively. 

Xie et al. (2013a) have proved six equivalent groups in the

ingle-fault scenario, namely, ER1 to ER6. We follow their work

o list out the groups and formulas in Table 6 . As a result, in the

ingle-fault scenario, there are mainly six equivalent groups of for-

ulas and 11 ungrouped formulas. Since Naish et al. (2011) have

howed the equivalence for five groups of them with no assump-

ion of single-fault or multi-fault, in the multi-fault scenario, there

re another five equivalent groups of formulas, namely, ER2 to ER6.

pecifically, formulas originally in ER1 is now known not to be

ept under the same group, and Binary is no longer in group ER5.

he proofs of these relations reported in Table 6 are reported in

ppendix B.11, B.12 , and B.15 . ER1 and ER5 are previously claimed

o be maximal by Xie et al. (2013a) . Our results show that formulas

n ER1 and ER5 can be generalized to the multi-fault scenario. 10 
reserved , but also identify SBFL formulas of type Non-deterministic , which means 

heir accuracy can be either improved or deteriorated, depending on the program, 

ault, and test cases. 
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Table 6 

Theoretical analysis of the effectiveness of cloning. 

Group/Formula Scenarios Proof 

single-fault multi-fault 

ER2 Improved Non-deterministic Appendix A.1, B.1 

ER4 Appendix A.2, B.2 

ER6 Appendix A.3, B.3 

Ochiai Appendix A.4, B.4 

M1 Appendix A.5, B.5 

M2 Appendix A.6, B.6 

Wong3 Appendix A.7, B.7 

Kulcznski1 Appendix A.8, B.8 

AMPLE Preserved Preserved Appendix A.9, B.9 

AMPLE2 Appendix A.10, B.10 

ER1 Appendix A.11, B.11, B.12 

ER3 Appendix A.12, B.13 

ER5 Appendix A.13, B.14, B.15 

Fleiss Non-deterministic Non-deterministic Appendix A.14, B.16 

Cohen Appendix A.15, B.16 

Arithmetic Mean Appendix A.16, B.16 

Kulcznski2 Appendix A.17, B.16 
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The results on the SBFL type are showed in the “Type” column

of Table 6 for both the single-fault and multi-fault scenarios. From

Table 6 , we can obtain the following results. 

R10. In total, 19 formulas, including five ungrouped formulas

Ochiai, M1, M2, Wong3, and Kulcznski1 and formulas in

three groups ER2, ER4, and ER6, are of type Improved in

the single-fault scenario, and of type Non-deterministic in the

multi-fault scenario. 

R11. In total, ten formulas, including two ungrouped formulas

AMPLE and AMPLE2 and formulas in three groups ER1, ER3,

and ER5, are of type Preserved , in both the single-fault and

the multi-fault scenarios. 

R12. Formulas Kulcznski2, Arithmetic Mean, Cohen and Fleiss are

of type Non-deterministic in both scenarios. 

R13. None of the formulas is of type Deteriorated in any scenario.

5. Summary 

In this section, we answer the research questions, and discuss

threats to the validity. 

5.1. Answering research questions 

To answer the research questions, we have reported a con-

trolled experiment in Section 3 and a theoretical analysis in

Section 4 in both single-fault and multi-fault scenarios. Table 7

summarizes the major findings reported in Tables 3 –6 . It shows

both the empirical and theoretical results in both single-fault and

multi-fault scenarios for all the 33 studied formulas. We can thus

answer the three research questions as follows: 

1 

(a) Improvements in average accuracy are observed on 22,

21, and 23 formulas, in the single-fault scenario, double-

fault, and triple-fault scenarios, respectively. 

(b) Consistent results are observed when incorporating four

different accuracy metrics, and all the observed improve-

ments are determined statistically significant, using hy-

pothesis testing. 

(c) At the same time, the accuracy of ten formulas are ob-

served unaffected, in the single-fault, double-fault, and

triple-fault scenarios. 

2 

(a) The observed improvement ratios in the Avg expense

accuracy on the 22, 21, and 23 formulas are in range
of [3.82%, 42.73%], [1.77%, 42.24%], and [1.24%, 44.02%],

in the single-fault, double-fault, and triple-fault, respec-

tively. 

(b) The observed improvement ratios on the 22 formulas in

the single-fault scenario are in range of [3.39%, 40.20%],

[1.32%, 125.81%], and [3.08%, 38.78%], when incorporating

the Max, Top-5, and Top-5 ‰ accuracy metrics, respec-

tively. 

(c) However, in each scenario, some formulas result in ad-

verse effects in accuracy on some benchmarks occasion-

ally (see Tables 3 and 4 ). 

3 

(a) In the single-fault scenario, the improvements on average

accuracy on 19 formulas are analytically proved to be con-

sistent across all programs, all faults, all test suites, and all

adopted expense metrics. 

(b) On the other hand, accuracy of ten of the rest formulas are

analytically confirmed unaffected across all programs in all

scenarios. 

.2. Threats to validity 

In this section, we discuss the factors affecting em pirical ob-

ervations and the issues resulting in different theoretical analysis

onclusion. 

.2.1. Different experiment setups 

We used twelve benchmarks to reduce the possibility of over-

tting of the results. Nonetheless, although some of the subjects of

hese benchmarks were real-life and medium-scale programs, they

nly represented several classes of programs. For object-oriented

rograms, our model can also be applied. However, the character-

stics of this kind of language may be quite different from that of

rocedural languages, such as C, which is the language all the sub-

ect programs are written in. Different characteristics of program-

ing languages result in different program structures and that may

lso produce different results. Using other kinds of programs and

ore benchmarks in an experiment can strengthen the measure to

lleviate this threat to validity. 

Besides, the experiment used the SIR test suites and test cases

s starting points to generate class-balanced test suites for each

enchmark. It may lead to a bias in the experimental results if

he test suites and test cases downloaded from the SIR is not to-

ally fair. By cross-validating the results of our theoretical analysis

eported in the present paper, we observe a high consistency in

hether the increase ratio is zero or positive with the empirical

ndings. We tend to believe that the use of these test suites and

est cases are trustworthy in our experiment. 

We followed the SIR documents to manipulate the data set to

imulate a software development scenario. Experiments simulating

ther development scenarios may manifest different observations.

e used gcov to conduct coverage profiling. The tool gcov is a re-

iable coverage profiling tool except the inability to handle stack

verflow errors. To give a better support for the crashing runs, we

sed some tactics associated with gcov to retrieve the traces for

hose exception cases. Previous work Fu and Ryder (2007) ; Yuan

t al. (2010) have investigated this topic that the exception infor-

ation in runtime contains plenty of error information, providing

ore information to ease fault localization. It is worth noting that

ifferent configurations on a coverage profiling tool may result in

ifferent observations. 

The main purpose of the multi-fault scenario is to produce a

cenario that not all failed test cases in a given test suite refer to

he same fault. In this way, the cloning strategy is not limited by

he theoretical relations already found in prior theoretical analy-
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Table 7 

Summary of empirical observations and theoretical analysis. 
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e  

in different observations. 
is studies (e.g., Xie et al., 2013a ) in the single-fault scenario. The

rocedure to produce multi-fault versions is applicable to serve

his purpose. We simulated the multi-fault scenario by using pair-

ise combinations of existing faults in the SIR benchmarks, and

sed 50% of pair-wise combination program versions and 20 0 0 of

riple-wise combination of program versions due to the constraint

f our resources and co-existential conflict among faults. On the

ther hand, we only used the faulty versions produced or synthe-

ized from the faults available in SIR in the experiment. Observa-

ions from the empirical results may vary with programs contain-

ng more faults are used (e.g., the subjects in the experiments of

u et al., 2015 ). The use of other faults and the use of other ways

o simulate the multi-fault scenarios may give different empirical

esults. 

On the other hand, in the double-fault scenario, we only eval-

ated the accuracy of a formula in locating the first fault. It is be-

ause the accuracy of them in locating the second fault has been

valuated in the single-fault experiment. For the same reason, in

he triple-fault scenario, we only evaluated the accuracy of a fault

ocalization formula in locating the first fault. It is because that the
ccuracy of them in locating the second fault had been evaluated

n the double-fault experiment, and the accuracy of them in lo-

ating the third fault had been evaluated in the single-fault exper-

ment. We intentionally did so to avoid the mix up of empirical

esults from different scenarios. Another reason supporting us to

o so is that in practice a developer never knows whether more

han one fault exists in the program under debugging. As a result,

he most efficient approach is to test the revised program right af-

er a fault is fixed, since examining the whole or rest part of the

anked list of a previous program version may not be meaningful.

n some cases, fixing the first fault may also break the error prop-

gation chain of some other faults, which may coincidentally also

x the latter too. In such a way, referencing the accuracy of such

 formula in locating the first fault better reflects the efforts of a

eveloper’s work. However, different empirical observations might

e obtained when using different evaluation strategies. 

There also exist other kinds of tie breaking strategies (e.g., Le

t al., 2016 ). Incorporating other accuracy metrics may also result
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Table 8 

Effectiveness of cloning on the formula R . 

Test cases ER1 ER4 

t 1 t 2 t 3 t 4 t 5 t 6 (e.g., Naish1) (e.g., Wong2) R 

before after before after before after 

s 1 • • ◦ ◦ • • 2 2 0 2 2 −2 

s 2 ◦ ◦ • • • • 2 2 0 2 2 −2 

s 3: faulty • • • • • • 0 0 −2 0 −4 0 

s 4 • • • ◦ • ◦ −1 −1 −2 −1 −5 −3 

s 5 • ◦ ◦ • • • 2 2 0 2 2 −2 

pass pass pass pass fail fail rank: 4 rank: 4 rank: 5 rank: 4 rank: 4 rank: 1 

unaffected catches up exceeds 
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5.2.2. Formulas beyond this study 

Since Xie et al. (2013a ) have proved that the ER1 formulas are

the maximum among the 33 studied formulas in any single-fault

scenario, they are also the maximum among the 33 formulas af-

ter cloning. As a result of theoretical analysis, the cloning strat-

egy improves the accuracy of 19 studied formulas, but can neither

help them outperform ER1 nor improve ER1, in the single-fault sce-

nario. Table 3 also shows that the increase ratios are always zero

on twelve programs by the cloning strategy. However, by includ-

ing formulas that have no partial order with ER1 ( Xie et al., 2013a ),

the conclusions can be different. For exam ple, let us discuss the

following artificial formula R . 

R = 

{
−1 − 2 · (a ef − a ep ) 2 if a ef < F 

P − a ep − 2 · (a ef − a ep ) 2 if a ef = F 

We use a program containing five entities, namely s 1, s 2, s 3, s 4,

s 5, and three test cases, namely t 1, t 2, t 3, where the program entity

s 3 contains a fault, t 1 and t 2 are the passed test cases, and t 3 is the

failed test case. The coverage information is shown in Table 8 , in

which “•” denotes that a statement is executed by a test case, and

“◦” denotes that the statement is not executed by the test case. The

numbers indicate a suspiciousness score which is calculated for a

program entity by a formula. 

Xie et al. (2013a ) have shown that formulas in the ER1 group

is more accuracy than formulas in the ER4 group in the single-

fault scenario. From Table 8 , we can see that Wong2 (from the

ER4 group) catches up with Naish1 (from the ER1 group) after the

cloning strategy is applied. We can also see that Naish1 outper-

forms R before cloning, but R becomes outperforming Naish1 after

the cloning strategy is applied. Though we show detailed spectra

for Naish1 and Wong2 to exemplify ER1 and ER4 in Table 8 , the

above observation also applies on any formulas from the ER1 group

and any fromula from the ER4 group. 

In summary, even though the cloning strategy preserves the

maximum accuracy of the 33 studied formulas, there exist formu-

las, which have no partial-order relationship with the ER1 formu-

las in theory, but also benefit from the cloning strategy and can

outperform the ER1 formulas in practice. 

6. Related work 

Software development process can be tedious and time-

consuming because of the appearance and occurrence of faults

(also known as bugs). A fault localization task is to locate the

root cause of software defects in the source code. At present, typi-

cal software fault localization methods include slicing-based fault

localization ( Zhang et al., 2005 ), model-based fault localization

( Mayer et al., 2007; Xie et al., 2013b ), spectrum-based fault local-

ization ( Abreu et al., 20 06; 20 07; Zhang et al., 2008; Baah et al.,

2010; Xu et al., 2013 ), and so on ( Dallmeier et al., 2005; Jeffrey

et al., 2008; Debroy and Wong, 2009; Kim et al., 2013; Yoo et al.,
013; Masri and Assi, 2014; Lin and Li, 2014 ). Among them, the

pectrum-based fault localization techniques form one of the most

eavily studied family of techniques. In recent years, as the re-

uirement of software quality gets higher, software testing is also

ecoming more and more important. With the advantage of better

ccuracy and lower cost, spectrum-based fault localization attracts

 number of researchers. 

Jones et al. (2002) and Jones and Harrold (2005) propose

arantula. Their proposal uses the mean values of the execution

ount statistics to compose a formula to assess suspiciousness

f statements. Observing that individual executions of statements

ay have different contributions to indicate suspicious statements,

ong et al. (2007) proposed to calibrate the contribution of each

assed execution. Their techniques are shown empirically to out-

erform Tarantula, and they further defined a series of heuris-

ics ( Wong et al., 2010 ). There are many other such techniques.

ussel and Rao (1940) , Dice (1945) , Ochiai (1957) , Rogers and Tani-

oto (1960) , Anderberg (1988) , Sørensen-Dice ( Duarte et al., 1999 ),

nd Simple Matching and Ochiai2 ( Meyer et al., 2004 ) are origi-

ally used in the botany domain. Further, Overlap ( Krause, 1973 )

s a general version of Ochiai (1957) . Formulas of the follow-

ng techniques are also visited in this paper, including Hamming

1950) , Goodman and Kruskal (1954) , Scott (1955) , Cohen (1960) ,

leiss (1965) , Rogot1, Rogot2, Harmonic Mean, and Arithmetic

ean ( Rogot and Goldberg, 1966 ), Geometric Mean ( Maxwell and

illiner, 1968 ), Euclid ( Krause, 1973 ), M1, and M2 ( Everitt, 1978 ),

accard (1901) , Kulczynskil and Kulczynski2 ( Lourenco et al., 2004 ),

amann and Sokal ( Lourenco et al., 2004 ), Ample ( Dallmeier et al.,

005 ), Zoltar ( Sanchez, 2007 ), and Wong1, Wong2, and Wong3

 Wong et al., 2007 ). Different from the listed works, the present

ork does not develop any novel formulas. Rather, we focus on

he factors that have impacts on the accuracy across many SBFL

ormulas. 

Lee et al. (2009) used the Siemens Suite and Space as bench-

arks. Their experiment suggested that Ochiai is more effective

han Jaccard. Naish et al. (2011) have similar conclusions. Wong

t al. (2012) proposed crosstab-based technique, and their experi-

ental results showed that the crosstab-based technique is more

ffective than other techniques, such as Jaccard, SOBER and Li-

lit05. The formula ( Ochiai, 1957 ) was first introduced from the

olecular biology field into spectrum-based fault localization by

breu et al. (2006) . In their work ( Abreu et al., 2006 ), they have

hown that Ochiai is more effective than Jaccard, AMPLE and

arantula. However, they did not discover the basic inherent prin-

iples. From the theoretical view, Xie et al. (2013a ) analyzed Naish,

accard, Tarantula and other related formulas. In the single-fault

cenario, they obtained the relationship (best, worst, original or-

er) among different formulas. Tang et al. (2017) managed to relax

ome assumptions in Xie et al. (2013a ) and evaluate the accuracies

f formulas. Compared to their works, the present work reports a

heoretical analysis in the multi-fault scenario as well. 
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since c > 0 is assumed (see Notation 2.2 ). �
The class proportion of data sets has been widely studied in

he field of machine learning and pattern recognition. Japkowicz

nd Shaju (2002) establish a relationship between complexity, class

roportion level, and size of the training set. They drew a con-

lusion that the class imbalance phenomenon of the training set

rings negative impact to a standard classifier adapting to the class

alance situations. Moreover, related studies ( Jones and Harrold,

005; Wong et al., 2008b ) also showed that the class imbalance

henomenon of data sets usually has influence on the efficiency of

lassification. In essence, software fault localization can be viewed

s a pattern recognition problem of how to effectively distinguish

tatements containing latent faults with other ones. As a result,

pectrum-based fault localization techniques are influenced by the

haracteristics of test suites, which can be measured as the ex-

ent of class balance between the number of passed test cases and

umber of failed test cases ( Gong et al., 2012 ). Indeed, this prob-

em has been revisited from different aspects. Applying the for-

ula of Tarantula to rank statements, Baudry et al. (2006) em-

irically showed that fewer test cases are required to achieve the

ame fault-localization effectiveness. In recent years, the test suite

eduction techniques ( Yu et al., 2008; Xuan and Monperrus, 2014 ),

eing paid much attention by relevant researchers, tried to im-

rove fault localization accuracy by carefully reducing the size of

est suite. Hao et al. (2005) suggested that they can effectively im-

rove the efficiency of fault localization formulas, by cutting sim-

lar test cases and reducing information redundancy. Baudry et al.

2006) also came to similar conclusions as the above work. How-

ver, there are related studies that reached different conclusions.

u et al. (2008) with ten test suite reduction methods, by compar-

ng four fault localization techniques, concluded that current test

uite reduction techniques may reduce the efficiency of fault lo-

alization techniques. Gong et al. (2012 ) empirically showed that

 test suite containing approximately identical numbers of passed

nd failed test cases can favor existing fault localization techniques.

n this paper, we extend the preliminary version of this work by

oth empirically and theoretically studying the effect of applying

he cloning strategy on formulas of 33 SBFL techniques. 

Many works aim at exploring the integration of different spec-

ra or fault localization techniques. Santelices et al. (2009) devel-

ped an integration technique that exploits the combination of dif-

erent spectra for fault localization. Empirical studies demonstrate

hat, on average, combining multiple coverages improves the effec-

iveness of fault localization, better approximates the ideal choice

f coverage per fault, and provides more stable fault localization

han using an individual coverage. Debroy and Wong (2013) pro-

osed a consensus-based strategy that combines the results of

ultiple fault localization techniques, to improve their quality, ir-

espective of data set. The main idea of the strategy is to com-

ine different rank orderings generated by multiple fault localiza-

ion techniques in order to obtain a “better ordering”. Lucia et al.

2014) proposed a fault localizer fusing approach, assessing the ac-

uracy of several coefficients in software debugging, which consists

f three steps: score normalization, technique selection, and data

usion. Besides, a few works are based on machine learning tech-

iques. Wong et al. (2014) proposed a Dstar approach based on an

tilization of binary similarity measures and four intuitions. Wong

nd Qi (2009) and Wong et al. (20 08a ); 20 09 ) developed two fault

ocalization methods based on BP neural network and RBF neural

etwork, respectively. In their methods, network is trained to learn

he relationship between the statement coverage information of a

est case and its corresponding execution results, pass or fail. 

. Conclusion 

The effectiveness of spectrum-based fault localization tech-

iques can be affected by the number of passed and failed test

ases. Previous studies showed that the use of class-balanced test
uite, which contained almost identical numbers of passed test

ases and failed test cases, can increase the fault-localization ef-

ectiveness of such techniques, compared to the use of class-

mbalanced test suites. 

In the preliminary version of this paper, we proposed a cloning

trategy to produce a class-balanced test suite to improve fault

ocalization effectiveness. In this paper, from a theoretical per-

pective, we have comprehensively analyzed the impact of such a

loning strategy on the accuracy of the formulas of 33 techniques

n single-, double- and triple-fault scenarios. We have used twelve

ubject programs to conduct a controlled experiment to evaluate

he accuracy. Empirical results have shown that 22, 21, and 23

ormulas show higher average fault-localization accuracy after the

ailed test cases are cloned, in these three scenarios, respectively.

t the same time, consistent empirical observations have been ob-

ained by incorporating four different accuracy metrics. Further,

he observed improvements have been validated to be statistically

ignificant using hypothesis testing method. We have also formally

efined the criteria that the accuracy of a SBFL formula being im-

roved, deteriorated, preserved, or non-deterministically affected, 

nd give mathematical theorems and proofs on these four types.

e have shown by theorems that the accuracy for 19 of the 33

ormulas are improved in the single-fault scenario and ten of the

3 formulas are preserved in both single-fault and multi-fault sce-

arios. 

It is encouraging that the empirical results and theoretical anal-

sis agree with each other, improving the reliability of our results.

hey both show the cloning strategy useful to improve, or at least

eep, the accuracy of most of the studied spectrum-based fault lo-

alization formulas. Our work has uncovered a previously unknown

ayer of connection between empirical findings and theoretical re-

ults. For future work, we recommend to explore better test suite

eneration and construction formulas to further improve the preci-

ion and practicality of spectrum-based fault localization. It is also

 good idea to include more large-scale real-world benchmarks to

tudy debugging techniques so that the research results can be

ore relevant to the industry. 

ppendix A. Proofs in the single-fault scenario 

1. The ER2 group ( Improved ) 

roof. Since all the formulas in the group are equivalent in the

ingle-fault scenario ( Xie et al., 2013a ), we take Jaccard as example,

or which we have: 

usp � = 

a i 
ef 

F + a i ep 

− F 

F + a f ep 

= 

F 
(
a i 

ef 
− F 

)
+ a i 

ef 
a f ep − F a i ep (

F + a i ep 

)(
F + a f ep 

)
usp ′ � = 

ca i 
ef 

cF + a i ep 

− cF 

cF + a f ep 

= 

c 
[
cF 

(
a i 

ef 
− F 

)
+ a i 

ef 
a f ep − F a i ep 

]
(
cF + a i ep 

)(
cF + a f ep 

)
e next give the following derivation: 

 usp ′ � = 

c 
(
F + a i ep 

)(
F + a f ep 

)
(
cF + a i ep 

)(
cF + a f ep 

)S usp � + 

c(c − 1) F 
(
a i 

ef 
− F 

)
(
cF + a i ep 

)(
cF + a f ep 

)
t the same time, the conditions (Susp � > 0 ∧ Susp ′ 

�
< = 0)

nd (Susp ′ 
�

< 0 ∧ Susp � > = 0) in Corollary 4.4 can be satisfied

y 〈 a f ep = 2 F , a 
f 
ef 

= F , a i ep = 

F 
2 , a 

i 
ef 

= 

F 
3 〉 and 〈 a f ep = 2 F , a 

f 
ef 

= F , a i ep =
F 
2 , a 

i 
ef 

= 

F 
2 〉 , respectively. As a result, Jaccard is of type Improved



50 L. Zhang et al. / The Journal of Systems and Software 129 (2017) 35–57 

 

 

 

 

 

 

 

L

⎧⎨
⎩
⇒

 

〈  

t

A

P

S

S

W

S

S

 

a  

4  
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A2. The ER4 group ( Improved ) 

Proof. Since all the formulas in the group are equivalent in the

single-fault scenario ( Xie et al., 2013a ), we take Wong2 as example,

for which we have: 

Susp � = a i ef − a i ep −
(
a f 

ef 
− a f ep 

)
= a i ef − F −

(
a i ep − a f ep 

)
Susp ′ � = ca i ef − a i ep −

(
ca f 

ef 
− a f ep 

)
= c 

(
a i ef − F 

)
−

(
a i ep − a f ep 

)
We next give the following derivation: 

Susp ′ � = (c − 1) 
(
a i ef − F 

)
+ Susp � ⇒ Susp ′ � ≤ Susp �

At the same time, the conditions (Susp � > 0 ∧ Susp ′ 
�

< = 0)

and (Susp ′ 
�

< 0 ∧ Susp � > = 0) of Corollary 4.2 can be satisfied

by 〈 a f ep = F , a 
f 
ef 

= F , a i ep = 

F 
3 , a 

i 
ef 

= 

F 
2 〉 and 〈 a f ep = F , a 

f 
ef 

= F , a i ep =
F 
2 , a 

i 
ef 

= 

F 
2 〉 , respectively. Finally, Wong2 is of type Improved . �

A3. The ER6 group ( Improved ) 

Proof. Since all the formulas in the group are equivalent in the

single-fault scenario ( Xie et al., 2013a ), we take Rogot1 as example,

for which we have: 

Susp � = 

1 

2 

(
a i 

ef 

a i 
ef 

+ F + a i ep 

− F 

2 F + a f ep 

)

+ 

1 

2 

(
a i np 

a i np + a i 
nf 

+ P 
− a f np 

a f np + P 

)

Susp ′ � = 

1 

2 

(
ca i 

ef 

ca i 
ef 

+ cF + a i ep 

− cF 

2 cF + a f ep 

)

+ 

1 

2 

(
a i np 

a i np + ca i 
nf 

+ P 
− a f np 

a f np + P 

)

We next give the following derivation: 

Case 1 ( a 
f 
ep ≤ a i ep ): We know that 

Susp � = 

1 

2 

(
a i 

ef 

a i 
ef 

+ F + a i ep 

− F 

2 F + a f ep 

)

+ 

1 

2 

(
P − a i ep 

2 P − a i ep + F − a i 
ef 

− P − a f ep 

2 P − a f ep 

)

< 

1 

2 

(
a i 

ef 

a i 
ef 

+ F + a i ep 

− F 

2 F + a f ep 

)
< 0 , 

Susp ′ � = 

1 

2 

(
ca i 

ef 

ca i 
ef 

+ cF + a i ep 

− cF 

2 cF + a f ep 

)

+ 

1 

2 

(
P − a i ep 

2 P − a i ep + cF − ca i 
ef 

− P − z 

2 P − a f ep 

)

< 

1 

2 

(
ca i 

ef 

ca i 
ef 

+ cF + a i ep 

− cF 

2 cF + a f ep 

)
< 0 

Case 2 ( a 
f 
ep > a i ep ): We know that 

∂Susp ′ �
∂c 

= 

1 

2 

[ 

a i 
ef 

a i ep (
ca i 

ef 
+ cF + a i ep 

)2 
− F a f ep (

2 cF + a f ep 

)2 

−
(
P − a i ep 

)(
F − a i 

ef 

)
(
2 P − a i ep + cF − ca i 

ef 

)2 

] 
≤ 1 

2 

[ 

a i 
ef 

a i ep (
ca i 

ef 
+ cF + a i ep 

)2 
− F a f ep (

2 cF + a f ep 

)2 

] 

et G 

(
a i 

ef 
, a i ep 

)
= 

a i 
ef 

a i ep (
ca i 

ef 
+ cF + a i ep 

)2 , then we can get 

 

 

 

∂G ( a i ef 
, a i ep ) 

∂a i 
ef 

= 

ca i ep ( F −a i 
ef ) + a i ep 

2 

( ca i 
ef 

+ cF + a i ep ) 
3 > 0 ⇒ G 

(
a i 

ef 
, a i ep 

)
≤ G 

(
F , a i ep 

)
∂G ( F, a i ep ) 

∂a i ep 
= 

2 cF 2 −F a i ep 

( 2 cF + a i ep ) 
3 > 0 ⇒ G 

(
F , a i ep 

)
< G 

(
F , a f ep 

)
 G 

(
a i ef , a 

i 
ep 

)
< G 

(
F , a f ep 

)
⇒ 

∂Susp ′ �
∂c 

< 0 ⇒ Susp ′ � < Susp �. 

The conditions (Susp � > 0 ∧ Susp ′ 
�

< 0) can be satisfied by

 c = 10 , a 
f 
ep = 10 F , a 

f 
ef 

= F , a i ep = 9 F , a i 
ef 

= 

F 
2 〉 . Finally, Rogot1 is of

ype Improved (by Corollary 4.3 ). �

4. The Ochiai formula ( Improved ) 

roof. First, 

usp � = 

a i 
ef √ 

F 
(
a i 

ef 
+ a i ep 

) − F √ 

F 
(
F + a f ep 

) , 

usp ′ � = 

ca i 
ef √ 

cF 
(
ca i 

ef 
+ a i ep 

) − cF √ 

cF 
(
cF + a f ep 

)
e next give the following derivation: 

usp ′ � > 0 ⇒ 

ca i 
ef √ 

cF 
(
ca i 

ef 
+ a i ep 

) > 

cF √ 

cF 
(
cF + a f ep 

)
⇒ 

( 1 − c ) 
(
F − a i 

ef 

)
ca i 

ef 
F 

+ 

a i 
ef 

+ a i ep /c 

a f 
ef 

2 
< 

F + a f ep /c 

F 2 

⇒ 

1 − c 

ca f ep 

+ 

a f ep + a i ep /c 

a i 
ef 

2 
< 

1 − c 

cF 
+ 

F + a f ep /c 

F 2 

⇒ 

1 

a f 
ef 

+ 

a i ep 

a i 
ef 

2 
< 

1 

F 
+ 

a f ep 

F 2 
⇒ T > 0 

usp � < 0 ⇒ 

1 

a f 
ef 

+ 

a i ep 

a i 
ef 

2 
> 

1 

F 
+ 

a f ep 

F 2 

⇒ 

1 − c 

ca f ep 

+ 

a f ep + a i ep /c 

a i 
ef 

2 
> 

1 − c 

cF 
+ 

F + a f ep /c 

F 2 

⇒ 

( 1 − c ) 
(
F − a i 

ef 

)
ca i 

ef 
F 

+ 

a i 
ef 

+ a i ep /c 

a f 
ef 

2 
> 

F + a f ep /c 

F 2 

⇒ 

ca i 
ef √ 

cF 
(
ca i 

ef 
+ a i ep 

) < 

cF √ 

cF 
(
cF + a f ep 

) ⇒ T ′ < 0 

At the same time, the conditions (Susp � > 0 ∧ Susp ′ 
�

< = 0)

nd (Susp ′ 
�

< 0 ∧ Susp � > = 0) can be satisfied by 〈 c = 2 , a 
f 
ep =

 F , a 
f 
ef 

= F , a i ep = 

F 
2 , a 

i 
ef 

= 

F 
2 〉 and 〈 c = 2 , a 

f 
ep = 3 F , a 

f 
ef 

= F , a i ep =
F 
2 , a 

i 
ef 

= 

F 
2 〉 , respectively. Finally, Ochiai is of type Improved (by

heorem 4.2 ). �

5. The M1 formula ( Improved ) 

roof. First, 

usp � = 

( F + P ) 
(
a i 

ef 
+ a f ep − F − a i ep 

)
(
F − a i 

ef 
+ a i ep 

)
a f ep 

, 
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A
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usp ′ � = 

( cF + P ) 
(
ca i 

ef 
+ a f ep − cF − a i ep 

)
(
cF − ca i 

ef 
+ a i ep 

)
a f ep 

here a i 
nf 

+ a i ep � = 0 and a 
f 
nf 

+ a 
f 
ep � = 0 . We next give the following

erivation: 

usp ′ � > 0 ⇒ c 
(
a i ef − F 

)
+ a f ep − a i ep > 0 

⇒ a i ef − F + a f ep − a i ep > 0 ⇒ Susp � > 0 , 

usp � < 0 ⇒ a i ef − F + a f ep − a i ep < 0 

⇒ c 
(
a i ef − F 

)
+ a f ep − a i ep < 0 ⇒ Susp ′ � < 0 

At the same time, the conditions (Susp � > 0 ∧ Susp ′ 
�

< = 0)

nd (Susp ′ 
�

< 0 ∧ Susp � > = 0) can be satisfied by c = 10 , 〈 a f ep =
0 F , a 

f 
ef 

= F , a i ep = 9 F , a i 
ef 

= 

F 
2 〉 . Finally, M1 is of type Improved (by

heorem 4.2 ). �

6. The M2 formula ( Improved ) 

roof. First, 

usp � = 

a i 
ef 

2 F + P − a i 
ef 

+ a i ep 

− F 

F + P + a f ep 

, 

usp ′ � = 

ca i 
ef 

2 cF + P − ca i 
ef 

+ a i ep 

− cF 

cF + P + a f ep 

. 

e next give the following derivation: 

usp ′ � = 

c 
(
2 F + P − a i 

ef 
+ a i ep 

)(
F + P + a f ep 

)
(
2 cF + P − ca i 

ef 
+ a i ep 

)(
cF + P + a f ep 

)T 

+ 

2 c ( c − 1 ) F 
(
a i 

ef 
− F 

)
(
2 cF + P − ca i 

ef 
+ a i ep 

)(
cF + P + a f ep 

)
At the same time, the conditions (Susp � > 0 ∧ Susp ′ 

�
< = 0)

nd (Susp ′ 
�

< 0 ∧ Susp � > = 0) can be satisfied by 〈 P = 5 F , a 
f 
ep =

 , a 
f 
ef 

= F , a i ep = F , a i 
ef 

= 

4 F 
5 〉 . Finally, M2 is of type Improved (by

orollary 4.4 ). �

7. The Wong3 formula ( Improved ) 

roof. Case 1 ( a i ep ≤ 2 ): T = a i 
ef 

− F + δ1 , T 
′ = c 

(
a i 

ef 
− F 

)
+ δ1 ,

here δ1 = 

⎧ ⎨ 

⎩ 

−a i ep + a 
f 
ep if a 

f 
ep ≤ 2 

−a i ep + 1 . 8 + 0 . 1 a 
f 
ep if 2 < a 

f 
ep ≤ 10 

−a i ep + 2 . 79 + 0 . 001 a 
f 
ep if 2 < a 

f 
ep ≤ 10 

Case 2 ( 2 < a i ep ≤ 10 ): T = a i 
ef 

− F + δ2 , T 
′ = c 

(
a i 

ef 
− F 

)
+ δ2 ,

here δ2 = 

⎧ ⎨ 

⎩ 

−0 . 1 a i ep − 1 . 8 + a 
f 
ep if a 

f 
ep ≤ 2 

−0 . 1 a i ep + 0 . 1 a 
f 
ep if 2 < a 

f 
ep ≤ 10 

−0 . 1 a i ep + 0 . 99 + 0 . 001 a 
f 
ep if 2 < a 

f 
ep ≤ 10 

Case 3 ( a i ep > 10 ): T = a i 
ef 

− F + δ3 , T 
′ = c 

(
a i 

ef 
− F 

)
+ δ3 , where

3 = 

⎧ ⎨ 

⎩ 

−0 . 001 a i ep − 2 . 79 + a 
f 
ep if a 

f 
ep ≤ 2 

−0 . 001 a i ep − 0 . 99 + 0 . 1 a 
f 
ep if 2 < a 

f 
ep ≤ 10 

−0 . 0 01 a i ep + 0 . 0 01 a 
f 
ep if 2 < a 

f 
ep ≤ 10 

We next give the following derivation, 

 usp ′ � = S usp � + ( c − 1 ) 
(
a i ef − F 

)
At the same time, the conditions (Susp � > 0 ∧ Susp ′ 

�
< = 0)

nd (Susp ′ 
�

< 0 ∧ Susp � > = 0) can be satisfied by 〈 c = 2 , F =
0 , a 

f 
ep = 10 , a 

f 
ef 

= 10 , a i ep = 1 , a i 
ef 

= 9 〉 and 〈 c = 2 , a 
f 
ep = 2 , a 

f 
ef 

=
0 , a i ep = 1 , a i 

ef 
= 9 〉 , respectively. Finally, Wong3 is of type
mproved (by Corollary 4.4 ). � S
8. The Kulcznski1 formula ( Improved ) 

roof. First, 

usp � = 

F 
(
a i 

ef 
− F 

)
+ a i 

ef 
a f ep − F a i ep (

F − a i 
ef 

+ a i ep 

)
a f ep 

, 

usp ′ � = 

c 
[
cF 

(
a i 

ef 
− F 

)
+ a i 

ef 
a f ep − F a i ep 

]
(
cF − ca i 

ef 
+ a i ep 

)
a f ep 

, 

here a i 
nf 

+ a i ep � = 0 and a 
f 
nf 

+ a 
f 
ep � = 0 . We next give the following

erivation: 

 usp ′ � = 

c 
(
F − a i 

ef 
+ a i ep 

)
a f ep (

cF − ca i 
ef 

+ a i ep 

)
a f ep 

Susp � + 

c ( c − 1 ) F 
(
a i 

ef 
− F 

)
(
cF − ca i 

ef 
+ a i ep 

)
a f ep 

At the same time, the conditions (Susp � > 0 ∧ Susp ′ 
�

< =
) and (Susp ′ 

�
< 0 ∧ Susp � > = 0) can be satisfied by 〈 a f ep =

 F , a 
f 
ef 

= F , a i ep = 

F 
2 , a 

i 
ef 

= 

F 
3 〉 and 〈 a f ep = 2 F , a 

f 
ef 

= F , a i ep = 

F 
2 , a 

i 
ef 

=
F 
2 〉 , respectively. The Kulcznski1 is of type Improved (by the

orollary 4.4 ). �

9. The AMPLE formula ( Preserved ) 

roof. Since all the formulas in the group are equivalent in the

ingle-fault scenario ( Xie et al., 2013a ), we take Wong1 as example,

or which we have: 

usp � = 

∣∣∣∣a i 
ef 

F 
− a i ep 

P 

∣∣∣∣ −
∣∣∣∣F 

F 
− a f ep 

P 

∣∣∣∣, 
usp ′ � = 

∣∣∣∣ ca i 
ef 

cF 
− a i ep 

P 

∣∣∣∣ −
∣∣∣∣ cF 

cF 
− a f ep 

P 

∣∣∣∣ = 

∣∣∣∣a i 
ef 

F 
− a i ep 

P 

∣∣∣∣ −
∣∣∣∣F 

F 
− a f ep 

P 

∣∣∣∣
e next have S usp � = S usp ′ 

�
. Finally, AMPLE is of type

reserved . �

10. The AMPLE2 formula ( Preserved ) 

roof. First, 

usp � = 

a i 
ef 

F 
− a i ep 

P 
−

(
F 

F 
− a f ep 

P 

)
, 

usp ′ � = 

ca i 
ef 

cF 
− a i ep 

P 
−

(
cF 

cF 
− a f ep 

P 

)
= 

a i 
ef 

F 
− a i ep 

P 
−

(
F 

F 
− a f ep 

P 

)
. 

e next have S usp � = S usp ′ 
�

. Finally, AMPLE2 is of type

reserved . �

11. The ER1 group ( Preserved ) 

roof. Since all the formulas in the group are equivalent in the

ingle-fault scenario ( Xie et al., 2013a ), we take Niash2 as example,

or which we have 

usp � = a i ef −
a i ep 

P + 1 

−
(

a f 
ef 

− a f ep 

P + 1 

)
= a i ef − F − a i ep − a f ep 

P + 1 

, 

usp ′ � = c · a i ef −
a i ep 

P + 1 

−
(

c · a f 
ef 

− a f ep 

P + 1 

)

= c 
(
a i ef − F 

)
− a i ep − a f ep 

P + 1 

. 

e next give the following derivation: 

usp � > 0 ⇒ a i ef − F > 

a i ep − a f ep 

P + 1 
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1  

t

A

P

S

S

H  

〈  

c  

〈  

A

A

P

S

S

⇒ 

( 

a i ef − F = 0 

∧ a i ep − a f ep 

P + 1 

< 0 

) 

⇒ c 
(
a i ef − F 

)
> 

a i ep − a f ep 

P + 1 

⇒ Susp ′ � > 0 , 

Susp � = 0 ⇒ a i ef − F = 

a i ep − a f ep 

P + 1 

⇒ 

(
a i ef − F = 0 

∧ 

a i ep − a f ep = 0 

)
⇒ c 

(
a i ef − F 

)
= 

a i ep − a f ep 

P + 1 

⇒ Susp ′ � = 0 , 

Susp � < 0 ⇒ a i ef − F < 

a i ep − a f ep 

P + 1 

⇒ c 
(
a i ef − F 

)
< 

a i ep − a f ep 

P + 1 

⇒ Susp ′ � < 0 . 

Finally, Niash2 is of type Preserved (by Theorem 4.1 ). �

A12. The ER3 group ( Preserved ) 

Proof. Since all the formulas in the group are equivalent in the

single-fault scenario ( Xie et al., 2013a ), we take q e as example, for

which we have: 

Susp � = 

a i 
ef 

a i 
ef 

+ a i ep 

− a f 
ef 

a f 
ef 

+ a f ep 

= 

a i 
ef 

a i 
ef 

+ a i ep 

− F 

F + a f ep 

= 

a i 
ef 

a f ep − a i ep F (
a i 

ef 
+ a i ep 

)(
F + a f ep 

)
Susp ′ � = 

ca i 
ef 

ca i 
ef 

+ a i ep 

− ca f 
ef 

ca f 
ef 

+ a f ep 

= 

ca i 
ef 

ca i 
ef 

+ a i ep 

− cF 

cF + a f ep 

= 

c 
(
a i 

ef 
a f ep − a i ep F 

)
(
ca i 

ef 
+ a i ep 

)(
cF + a f ep 

)
We next give the following derivation: 

Susp ′ � = 

c 
(
a i 

ef 
+ a i ep 

)(
F + a f ep 

)
(
ca i 

ef 
+ a i ep 

)(
cF + a f ep 

)
S usp � ⇒ 

{ 

S usp � > 0 ⇔ Susp ′ � > 0 

S usp � = 0 ⇔ Susp ′ � = 0 

S usp � < 0 ⇔ Susp ′ � < 0 

Finally, q e is of type Preserved (by Theorem 4.1 ). �

A13. The ER5 group ( Preserved ) 

Proof. Since all the formulas in the group are equivalent in the

single-fault scenario ( Xie et al., 2013a ), we take Wong1 as exam-

ple, for which we have: Susp � = a i 
ef 

− a 
f 
ef 

= a i 
ef 

− F , Susp ′ 
�

= ca i 
ef 

−
ca 

f 
ef 

= c 
(
a i 

ef 
− F 

)
. We next have S usp ′ 

�
= cS usp �. Finally, Wong1 is

of type Preserved (by Theorem 4.1 ). �

A14. The Fleiss formula ( Non-deterministic ) 

Proof. We can get the functions Susp � and Susp ′ 
�

of Fleiss: 

Susp � = 

4 a i 
ef 

(
P − a i ep 

)
−

(
F − a i 

ef 
− a i ep 

)2 − 4 F 
(
P − a f ep 

)
+ a f ep 

2 

2 F + 2 P 

Susp ′ � = 

4 ca i 
ef 

(
P − a i ep 

)
−

(
cF − ca i 

ef 
− a i ep 

)2 − 4 cF 
(
P − a f ep 

)
+ a f ep

2 cF + 2 P 
ere, (Susp � > 0 ∧ Susp ′ 
�

< = 0) can be satisfied by

 P = 10 0 0 , F = 10 0 , a 
f 
ep = 468 , a 

f 
ef 

= 100 , a i ep = 1 , a i 
ef 

= 1 〉 . And

(Susp � < 0 ∧ Susp ′ 
�

> = 0) can be satisfied by 〈 P = 10 0 0 , F =
00 , a 

f 
ep = 839 , a 

f 
ef 

= 100 , a i ep = 888 , a i 
ef 

= 1 〉 . Finally, Fleiss is of

ype Non-deterministic (by Theorem 4.4 ). �

15. The Cohen formula ( Non-deterministic ) 

roof. 

usp � = 

2 a i 
ef 

(
P − a i ep 

)
− 2 

(
F − a i 

ef 

)
a i ep (

a i 
ef 

+ a i ep 

)
P + 

(
F − a i 

ef 
+ P − a i ep 

)
F 

−
2 F 

(
P − a f ep 

)
(
F + a f ep 

)
P + 

(
P − a f ep 

)
F 

usp ′ � = 

2 ca i 
ef 

(
P − a i ep 

)
− 2 

(
cF − ca i 

ef 

)
a i ep (

ca i 
ef 

+ a i ep 

)
P + 

(
cF − ca i 

ef 
+ P − a i ep 

)
cF 

−
2 cF 

(
P − a f ep 

)
(
cF + a f ep 

)
P + 

(
P − a f ep 

)
cF 

ere, (Susp � > 0 ∧ Susp ′ 
�

< = 0) can be satisfied by

 P = 10 0 0 , F = 10 0 , a 
f 
ep = 992 , a 

f 
ef 

= 100 , a i ep = 1 , a i 
ef 

= 1 〉 . And

(Susp � < 0 ∧ Susp ′ 
�

> = 0) can be satisfied by 〈 P = 10 0 0 , F =
00 , a 

f 
ep = 999 , a 

f 
ef 

= 100 , a i ep = 118 , a i 
ef 

= 12 〉 . Finally, Cohen is of

ype Non-deterministic (by Theorem 4.4 ). �

16. The arithmetic mean formula ( Non-deterministic ) 

roof. 

usp � = 

2 a i 
ef 

(
P − a i ep 

)
− 2 

(
F − a i 

ef 

)
a i ep (

a i 
ef 

+ a i ep 

)(
F − a i 

ef 
+ P − a i ep 

)
+ P F 

−
2 F 

(
P − a f ep 

)
(
F + a f ep 

)(
P − a f ep 

)
+ P F 

usp ′ � = 

2 ca i 
ef 

(
P − a i ep 

)
− 2 c 

(
F − a i 

ef 

)
a i ep (

ca i 
ef 

+ a i ep 

)(
cF − ca i 

ef 
+ P − a i ep 

)
+ cP F 

−
2 cF 

(
P − a f ep 

)
(
cF + a f ep 

)(
P − a f ep 

)
+ cP F 

ere, (Susp � > 0 ∧ Susp ′ 
�

< = 0) can be satisfied by

 P = 10 0 0 , F = 10 0 , a 
f 
ep = 999 , a 

f 
ef 

= 100 , a i ep = 1 , a i 
ef 

= 1 〉 . The

ondition (Susp � < 0 ∧ Susp ′ 
�

> = 0) can be satisfied by

 P = 10 0 0 , F = 10 0 , a 
f 
ep = 989 , a 

f 
ef 

= 100 , a i ep = 3 , a i 
ef 

= 18 〉 . Finally,

rithmetic Mean is of type Non-deterministic (by Theorem 4.4 ). �

17. The Kulcznski2 formula ( Non-deterministic ) 

roof. First, 

usp � = 

1 

2 

(
a i 

ef 

a i 
ef 

+ a i 
nf 

+ 

a i 
ef 

a i 
ef 

+ a i ep 

)
− 1 

2 

( 

a f 
ef 

a f 
ef 

+ a f 
nf 

+ 

a f 
ef 

a f 
ef 

+ a f ep 

) 

= 

a i 
ef 

− F 

2 F 
+ 

1 

2 

(
a i 

ef 

a i 
ef 

+ a i ep 

− F 

F + a f ep 

)
, 

usp ′ � = 

1 

2 

(
ca i 

ef 

ca i 
ef 

+ ca i 
nf 

+ 

ca i 
ef 

ca i 
ef 

+ a i ep 

)
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( 

ca f 
ef 

c 
a f 

ef 
+ ca f 

nf 
+ 

ca f 
ef 

ca f 
ef 

+ a f ep 

) 

= 

a i 
ef 

− F 

2 F 
+ 

1 

2 

(
ca i 

ef 

ca i 
ef 

+ a i ep 

− cF 

cF + a f ep 

)
. 

At the same time, conditions (Susp � > 0 ∧ Susp ′ 
�

< = 0)

nd (Susp � < 0 ∧ Susp ′ 
�

> = 0) can be satisfied by 〈 c = 2 , a 
f 
ep =

 F , a 
f 
ef 

= F , a i ep = 0 , a i 
ef 

= 

F 
2 〉 and 〈 c = 2 , a 

f 
ep = F , a 

f 
ef 

= F , a i ep =
 , a i 

ef 
= 

F 
2 〉 , respectively. Kulcznski2 is of type Non-deterministic (by

heorem 4.4 ). �

ppendix B. Multi-fault program 

1. The ER2 group ( Non-deterministic ) 

roof. Since all the formulas in the group are equivalent ( Naish

t al., 2011 ), we take Jaccard as example: 

usp � = 

F 
(
a i 

ef 
− a f 

ef 

)
+ a i 

ef 
a f ep − a f 

ef 
a i ep (

F + a i ep 

)(
F + a f ep 

) , 

usp ′ � = 

c 
[
cF 

(
a i 

ef 
− a f 

ef 

)
+ a i 

ef 
a f ep − a f 

ef 
a i ep 

]
(
cF + a i ep 

)(
cF + a f ep 

)
(Susp � > 0 ∧ Susp ′ 

�
< = 0) and (Susp � < 0 ∧ Susp ′ 

�
> = 0) can

e satisfied by 〈 a f ep = F , a 
f 
ef 

= F , a i ep = 

F 
3 , a 

i 
ef 

= 

F 
2 〉 and 〈 a f ep =

F 
3 , a 

f 
ef 

= 

F 
2 , a 

i 
ep = F , a i 

ef 
= F 〉 , respectively. So, ER2 is of type

on-deterministic (by Theorem 4.4 ). �

2. The ER4 group ( Non-deterministic ) 

roof. Since all the formulas in the group are equivalent ( Naish

t al., 2011 ), we take Wong2 as example, for which we

ave: Susp � = a i 
ef 

− a 
f 
ef 

− a i ep + a 
f 
ep , Susp ′ 

�
= c(a i 

ef 
− a 

f 
ef 
) − a i ep +

 

f 
ep . (Susp � > 0 ∧ Susp ′ 

�
< = 0) and (Susp � < 0 ∧ Susp ′ 

�
> = 0)

an be respectively satisfied by the tuples 〈 a f ep = F , a 
f 
ef 

= F , a i ep =
F 
3 , a 

i 
ef 

= 

F 
2 〉 and 〈 a f ep = 

F 
2 , a 

f 
ef 

= 

F 
2 , a 

i 
ep = F , a i 

ef 
= F 〉 . Finally, ER4 is of

ype Non-deterministic (by Theorem 4.4 ). �

3. The ER6 group ( Non-deterministic ) 

roof. Since all the formulas in the group are equivalent ( Naish

t al., 2011 ), we take Rogot1 as example, for which we have: 

usp � = 

1 

2 

( 

a i 
ef 

a i 
ef 

+ F + a i ep 

− a f 
ef 

a f 
ef 

+ F + a f ep 

) 

+ 

1 

2 

( 

P − a i ep 

2 P − a i ep + F − a i 
ef 

− P − a f ep 

2 P − a f ep + F − a f 
ef 

) 

usp ′ � = 

1 

2 

( 

ca i 
ef 

ca i 
ef 

+ cF + a i ep 

− ca f 
ef 

ca f 
ef 

+ cF + a f ep 

) 

+ 

1 

2 

( 

P − a i ep 

2 P − a i ep + cF − ca i 
ef 

− P − a f ep 

2 P − a f ep + cF − ca f 
ef 

) 

R6 is of type Non-deterministic (by Theorem 4.4 ) because

 c = 10 , a 
f 
ep = 10 F , a 

f 
ef 

= F , a i ep = 9 F , a i 
ef 

= 

F 
2 〉 satisfies (Susp � >

 ∧ Susp ′ 
�

< = 0) . And 〈 c = 10 , a 
f 
ep = 9 F , a 

f 
ef 

= 

F 
2 , a 

i 
ep = 10 F , a i 

ef 
= F 〉

′ 
atisfies (Susp � < 0 ∧ Susp 
�

> = 0) . � fi  
4. The Ochiai formula ( Non-deterministic ) 

roof. First, 

usp � = 

a i 
ef √ 

F 
(
a i 

ef 
+ a i ep 

) − a f 
ef √ 

F 
(
a f 

ef 
+ a f ep 

) , 

usp ′ � = 

ca i 
ef √ 

cF 
(
ca i 

ef 
+ a i ep 

) − ca f 
ef √ 

cF 
(
ca f 

ef 
+ a f ep 

)
At the same time, the conditions (Susp � > 0 ∧ Susp ′ 

�
< = 0)

nd (Susp � < 0 ∧ Susp ′ 
�

> = 0) can be satisfied by 〈 c = 2 , a 
f 
ep =

 F , a 
f 
ef 

= F , a i ep = 

F 
2 , a 

i 
ef 

= 

F 
2 〉 and 〈 c = 2 , a 

f 
ep = 

F 
2 , a 

f 
ef 

= 

F 
2 , a 

i 
ep =

 F , a i 
ef 

= F 〉 , respectively. Finally, Ochiai is of type Non-deterministic

by Theorem 4.4 ). �

5. The M1 formula ( Non-deterministic ) 

roof. First, 

usp � = 

( F + P ) 
(
a i 

ef 
+ a f ep − a f 

ef 
− a i ep 

)
(
F − a i 

ef 
+ a i ep 

)(
F − a f 

ef 
+ a f ep 

) , 

usp ′ � = 

( cF + P ) 
(
ca i 

ef 
+ a f ep − ca f 

ef 
− a i ep 

)
(
cF − ca i 

ef 
+ a i ep 

)(
cF − ca f 

ef 
+ a f ep 

)
At the same time, the conditions (Susp � > 0 ∧ Susp ′ 

�
< = 0)

nd (Susp � < 0 ∧ Susp ′ 
�

> = 0) can be satisfied by 〈 a f ep = F , a 
f 
ef 

=
 , a i ep = 

F 
3 , a 

i 
ef 

= 

F 
2 〉 and 〈 a f ep = 

F 
2 , a 

f 
ef 

= 

F 
2 , a 

i 
ep = F , a i 

ef 
= F 〉 , respec-

ively. Finally, M1 is of type Non-deterministic (by Theorem 4.4 ). �

6. The M2 formula ( Non-deterministic ) 

roof. First, 

usp � = 

a i 
ef 

2 F + P − a i 
ef 

+ a i ep 

− a f 
ef 

2 F + P − a f 
ef 

+ a f ep 

, 

usp ′ � = 

ca i 
ef 

2 cF + P − ca i 
ef 

+ a i ep 

− ca f 
ef 

2 cF + P − ca f 
ef 

+ a f ep 

At the same time, the conditions (Susp � > 0 ∧ Susp ′ 
�

< = 0)

nd (Susp � < 0 ∧ Susp ′ 
�

> = 0) can be satisfied by 〈 P = 5 F , a 
f 
ep =

 , a 
f 
ef 

= F , a i ep = F , a i 
ef 

= 

4 F 
5 〉 and 〈 P = 5 F , a 

f 
ep = F , a 

f 
ef 

= 

4 F 
5 , a 

i 
ep =

 , a i 
ef 

= F 〉 , respectively. Finally, M2 is of type Non-deterministic (by

heorem 4.4 ). �

7. The Wong3 formula ( Non-deterministic ) 

roof. First, 

usp � = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

a i 
ef 

− a f 
ef 

− a i ep + a f ep if a f ep ≤ 2 

a i 
ef 

− a f 
ef 

− a i ep + 1 . 8 + 0 . 1 a f ep if 2 < a f ep ≤ 10 

a i 
ef 

− a f 
ef 

− a i ep + 2 . 79 + 0 . 001 a f ep if 2 < a f ep ≤ 10 

usp ′ � = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

ca i 
ef 

− ca f 
ef 

− a i ep + a f ep if a f ep ≤ 2 

ca i 
ef 

− ca f 
ef 

− a i ep + 1 . 8 + 0 . 1 a f ep if 2 < a f ep ≤ 10 

ca i 
ef 

− ca f 
ef 

− a i ep + 2 . 79 + 0 . 001 a f ep if 2 < a f ep ≤ 10 

he condition (Susp � > 0 ∧ Susp ′ 
�

< = 0) can be satis-

ed by 〈 c = 2 , F = 10 , a 
f 
ep = 10 , a 

f 
ef 

= 10 , a i ep = 1 , a i 
ef 

= 9 〉 . The
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condition (Susp � < 0 ∧ Susp ′ 
�

> = 0) can be satisfied by

〈 c = 2 , F = 10 , a 
f 
ep = 1 , a 

f 
ef 

= 9 , a i ep = 10 , a i 
ef 

= 10 〉 . Finally, Wong3 is

of type Non-deterministic (by Theorem 4.4 ). �

B8. The Kulcznski1 formula ( Non-deterministic ) 

Proof. First, 

Susp � = 

F 
(
a i 

ef 
− a f 

ef 

)
+ a i 

ef 
a f ep − a f 

ef 
a i ep (

F − a i 
ef 

+ a i ep 

)(
F − a f 

ef 
+ a f ep 

) , 

Susp ′ � = 

c 
[
cF 

(
a i 

ef 
− a f 

ef 

)
+ a i 

ef 
a f ep − a f 

ef 
a i ep 

]
(
cF − ca i 

ef 
+ a i ep 

)(
cF − ca f 

ef 
+ a f ep 

)
At the same time, the conditions (Susp � > 0 ∧ Susp ′ 

�
< =

0) and (Susp � < 0 ∧ Susp ′ 
�

> = 0) can be satisfied by 〈 a f ep =
F , a 

f 
ef 

= F , a i ep = 

F 
3 , a 

i 
ef 

= 

F 
2 〉 and 〈 a f ep = 

F 
3 , a 

f 
ef 

= 

F 
2 , a 

i 
ep = F , a i 

ef 
= F 〉 ,

respectively. Finally, Kulcznski1 is of type Non-deterministic (by

Theorem 4.4 ). �

B9. The AMPLE formula ( Preserved ) 

Proof. First, 

Susp � = 

∣∣∣∣∣a i 
ef 

F 
− a i ep 

P 

∣∣∣∣∣ −
∣∣∣∣∣a f 

ef 

F 
− a f ep 

P 

∣∣∣∣∣, 
Susp ′ � = 

∣∣∣∣∣ ca i 
ef 

cF 
− a i ep 

P 

∣∣∣∣∣ −
∣∣∣∣∣ ca f 

ef 

cF 
− a f ep 

P 

∣∣∣∣∣
We next have S usp � = S usp ′ 

�
. Finally, AMPLE is of type

Preserved . �

B10. The AMPLE2 formula ( Preserved ) 

Proof. we can get the functions Susp � and Susp ′ 
�

of the formula

of AMPLE2: 

Susp � = 

a i 
ef 

F 
− a i ep 

P 
−

( 

a f 
ef 

F 
− a f ep 

P 

) 

, 

Susp ′ � = 

ca i 
ef 

cF 
− a i ep 

P 
−

( 

ca f 
ef 

cF 
− a f ep 

P 

) 

= 

a i 
ef 

F 
− a i ep 

P 
−

( 

a f 
ef 

F 
− a f ep 

P 

) 

We next have S usp � = S usp ′ 
�

. Finally, AMPLE2 is of type

Preserved . �

B11. The Naish1 formula ( Preserved ) 

Proof. First, 

Susp � = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

0 if a i 
ef 

< F and a f 
ef 

< F 

P − a i ep + 1 if a i 
ef 

= F and a f 
ef 

< F 

−P + a f ep − 1 if a i 
ef 

< F and a f 
ef 

= F 

a f ep − a i ep if a i 
ef 

= F and a f 
ef 

= F 

, 
F

usp ′ � = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

0 if ca i 
ef 

< cF and ca f 
ef 

< cF 

P − a i ep + 1 if ca i 
ef 

= cF and ca f 
ef 

< cF 

−P + a f ep − 1 if ca i 
ef 

< cF and ca f 
ef 

= cF 

a f ep − a i ep if ca i 
ef 

= cF and ca f 
ef 

= cF 

e next have S usp � = S usp ′ 
�

. Finally, Naish1 is of type

reserved . �

12. The Naish2 formula ( Preserved ) 

roof. First, 

usp � = a i ef − a f 
ef 

− a i ep − a f ep 

P + 1 

, Susp ′ � = c 
(
a i ef − a f 

ef 

)
− a i ep − a f ep 

P + 1 

e next have, 

usp � > 0 ⇒ a i ef − a f 
ef 

> 

a i ep − a f ep 

P + 1 

⇒ 

( 

a i ef − a f 
ef 

= 0 

∧ a i ep − a f ep 

P + 1 

< 0 

) ∨ (
a i ef − a f 

ef 
> 0 

)

⇒ c 
(
a i ef − a f 

ef 

)
> 

a i ep − a f ep 

P + 1 

⇒ Susp ′ � > 0 

usp � = 0 ⇒ a i ef − a f 
ef 

= 

a i ep − a f ep 

P + 1 

⇒ 

(
a i ef − a f 

ef 
= 0 

∧ 

a i ep − a f ep = 0 

)
⇒ c 

(
a i ef − a f 

ef 

)
= 

a i ep − a f ep 

P + 1 

⇒ Susp ′ � = 0 

usp � < 0 ⇒ a i ef − a f 
ef 

< 

a i ep − a f ep 

P + 1 

( 

a i ef − a f 
ef 

= 0 

∧ a i ep − a f ep 

P + 1 

> 0 

)
∨ 

(
a i ef − a f 

ef 
< 0 

)
⇒ c 

(
a i ef − a f 

ef 

)
< 

a i ep − a f ep 

P + 1 

⇒ Susp ′ � < 0 . 

o Naish2 is of type Preserved (by Theorem 4.1 ). �

13. The ER3 group ( Preserved ) 

roof. Since all the formulas in the group are equivalent in the

ingle-fault scenario ( Naish et al., 2011 ), we take q e as example,

or which we have: 

 usp � = 

a i 
ef 

a i 
ef 

+ a i ep 

− a f 
ef 

a f 
ef 

+ a f ep 

, S usp ′ � = 

ca i 
ef 

ca i 
ef 

+ a i ep 

− ca f 
ef 

ca f 
ef 

+ a f ep 

e next give the following derivation: 

usp ′ � = 

c 
(
a i 

ef 
+ a i ep 

)(
a f 

ef 
+ a f ep 

)
(
ca i 

ef 
+ a i ep 

)(
ca f 

ef 
+ a f ep 

)
 usp � ⇒ 

⎧ ⎨ 

⎩ 

S usp � > 0 ⇔ Susp ′ � > 0 

S usp � = 0 ⇔ Susp ′ � = 0 

S usp � < 0 ⇔ Susp ′ � < 0 
inally, q e is of type Preserved (by Theorem 4.1 ). �
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14. The ER5 group ( Preserved ) 

roof. Since all the formulas in the group are equivalent in the

ingle-fault scenario ( Naish et al., 2011 ), we take Wong1 as ex-

mple, for which we have: S usp � = a i 
ef 

− a 
f 
ef 

, S usp ′ 
�

= c(a i 
ef 

− a 
f 
ef 
) .

ext, we have S usp ′ 
�

= cS usp �. So ER5 is of type Preserved (by

orollary 4.1 ). �

15. The binary formula ( Preserved ) 

roof. 

usp � = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

0 if 
(
a f 

ef 
< F and a i 

ef 
< F 

)
or 

(
a f 

ef 
= F and a i 

ef 
= F 

)
−1 if a f 

ef 
= F and a i 

ef 
< F 

1 if a f 
ef 

< F and a i 
ef 

= F 

(B.1) 

usp ′ � = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

0 if 
(
ca f 

ef 
< cF and ca i 

ef 
< cF 

)
or 

(
ca f 

ef 
= cF and ca i 

ef 
= cF 

)
−1 if ca f 

ef 
= cF and ca i 

ef 
< cF 

1 if ca f 
ef 

< cF and ca i 
ef 

= cF 

(B.1) 

e next have S usp � = S usp ′ 
�

. Finally, Binary is of type Preserved

by Corollary 4.1 ). �

16. The Fleiss, Cohen, arithmetic mean, and Kulcznski2 formulas 

 Non-deterministic ) 

roof. There formulas are of type Non-deterministic in the single-

ault scenario ( a 
f 
ef 

= F ), and a fault example including coverage pa-

ameters a ef , a nf , a ep , a np are given in previous proofs. Let us clone

he fault in each fault example to generate a two-fault version. It

s easy to know that the accuracy to locate two faults in the gener-

ted multi-fault version, by using each formula, can be either im-

roved or deteriorated. As a result, these formulas are also of type

on-deterministic in the multi-fault scenario (by Theorem 4.4 ). �
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