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Abstract—In a long running system, software tends to 
encounter performance degradation and increasing failure rate 
during execution, which is called software aging. The bugs 
contributing to the phenomenon of software aging are defined as 
Aging Related Bugs (ARBs). Lots of manpower and economic 
costs will be saved if ARBs can be found in the testing phase. 
However, due to the low presence probability and reproducing 
difficulty of ARBs, it is usually hard to predict ARBs within a 
project. In this paper, we study whether and how ARBs can be 
located through cross-project prediction. We propose a transfer 
learning based aging related bug prediction approach (TLAP), 
which takes advantage of transfer learning to reduce the 
distribution difference between training sets and testing sets 
while preserving their data variance. Furthermore, in order to 
mitigate the severe class imbalance, class imbalance learning is 
conducted on the transferred latent space. Finally, we employ 
machine learning methods to handle the bug prediction tasks. 
The effectiveness of our approach is validated and evaluated by 
experiments on two real software systems. It indicates that after 
the processing of TLAP, the performance of ARB bug prediction 
can be dramatically improved. 

Keywords—aging related bug; cross-project; bug prediction; 
software aging; transfer learning  

I.  INTRODUCTION  
Software aging, a phenomenon which behaves as 

increasing failure rate and progressive degradation in the long 
running software system, has been arising consistent attention 
in both academic and industrial fields since its first 
systematical investigation and acceptance nineteen years ago 
[1]. Although software aging is a progressive phenomenon, its 
influence couldn’t be neglected. Occasional system down 
caused by software aging will not only cause economic loss, 
but also influence company credibility. Moreover, software 
aging can even result in the loss of human lives in the safety 
critical system [2].  

In order to counteract the influence of software aging, a 
mechanism named software rejuvenation is explored. Although 
it has been demonstrated that rejuvenation is an effective 
strategy to mitigate the effects and costs of ARBs (Aging 
Related Bugs, the bugs contributing to the phenomenon of 
software aging [3]) during runtime phase [4][5][6], more 
effects and costs will be saved if ARBs are avoided during the 
testing phase in advance.  

Bug prediction may help testers concentrate on the parts 
that are probable to be buggy. Nevertheless, it is usually 
difficult to predict ARBs within-project for the following 
reasons. (1) Within-project bug prediction may reach a good 
result if sufficient training data are obtained for building the 
prediction model. However, ARBs occupy only a small part in 
a project [3], and there may not have enough available data to 
build the prediction model. (2) The low percentage of ARBs 
leads to severe class imbalance problems in prediction [7]. The 
rare class (ARB prone class) gets less attention than non-ARB 
prone class, which has negative influence on the prediction. It 
makes the prediction of ARBs difficult. 

Based on above presentations, two interesting problems 
arise: 

(1) In order to get sufficient training data, can we use cross-
project data to make ARB prediction?  

(2) If yes, how to do it? 

Cross-project bug prediction can help to obtain enough 
training data from a different project to build the prediction 
model. The driving research hypothesis of this work is that 
some software features, such as the software complexity, its 
size, the programming structures related to resource 
management, and other features, might be related to the 
presence of ARBs, no matter in the same project or not [10]. 
Even from different projects, the types of ARBs are mainly 
memory bloating and leaking, unreleased file-locks, 
unterminated threads, storage fragmentation, data corruption, 
accumulation of round-off errors and so on. Thus, the ARBs 
may have similar features, which make their cross-project 
prediction feasible. However, on the other hand, it’s a serious 
challenge to get good prediction results for cross-project bug 
prediction [8]. The main difficulty comes from the different 
data distributions among the projects, so traditional machine 
learning methods may not work well when they are conducted 
directly on the training data set. 

Transfer learning is a method that could reduce the 
distribution difference between different objects. It has the 
latent ability to explore the common characteristics between 
training and testing projects to improve the prediction 
performance [9]. However, different from the prediction of 
bugs with frequent appearance, the severe class imbalance is 
another challenge for the cross-project ARB prediction [7].  
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To solve the cross-project ARB prediction problem, a 
transfer learning based aging related bug prediction approach 
(TLAP) is proposed in this paper. It uses metrics proposed in 
[10]. Based on these metrics, a latent space is found where 
distance between the training sets and testing sets is minimized 
[11]. In the latent space, the distributions of the two sets are 
close, so traditional binary classification method can be used. 
In addition, we use class imbalance learning to reorganize the 
set in order to mitigate the class imbalance effects. To verify 
the proposed method, we conduct experiments on two real 
complex software systems: Linux and MySQL. We compare 
the prediction performance with and without transfer learning 
under three different machine learning methods.  

The rest of the paper is organized as follows. Section II 
presents the background, followed by the approach in detail in 
Section III. In Section IV, experiments are presented and 
threats to validity are discussed in Section V. Section VI 
concludes this study and describes future work. 

II. BACKGROUND 
From the time when software aging was systematically 

investigated [1], more and more researchers have been 
throwing themselves into this area. 

The bugs contributing to the phenomenon of software aging 
are defined as Aging Related Bugs (ARBs) [3][12]. Due to 
their influence on the real system, software rejuvenation is 
proposed to mitigate the influence of software aging. It tries to 
occasionally terminate the system, clean its internal state and 
restart to release system resources so that software performance 
can be recovered [4].  

Bug prediction is a popular research area in software 
engineering. Researchers struggle to predict the location of 
bugs through establishing relationship between bug existence 
and software metrics. Machine learning approaches are usually 
used to handle the prediction. 

 However, there are few works studying the prediction or 
even mechanism of ARBs. Grottke et al. [12] discussed the 
physics of aging related failures and summarized basic 
concepts and foundation of software aging. Cotroneo et al. [13] 
explored the relationship between several static software 
metrics and software aging. Furthermore, they tried to predict 
ARBs using traditional machine learning methods [10] and 
achieved good prediction results in within-project prediction. 

Different from traditional bug prediction, the low 
proportion of ARBs leads to the difficulty in obtaining enough 
training data for within-project bug prediction. Thus, Cross-
project bug prediction is necessary for the prediction of ARBs. 

Transfer learning is a method that is proposed to deal with 
the cross-project bug prediction [9]. It makes the transferred 
sets close to each other [9]. Then traditional machine learning 
methods can be back in service based on the transferred sets. 

Pan et al. [11] proposed a method named Transfer 
Component Analysis (TCA) that transfers both the training sets 
and testing sets into a latent space using maximum mean 
discrepancy. In the latent space, difference between two sets 
was reduced while the data variance was preserved. In [14], 

Nam et al. extended TCA to TCA+ by adding normalization 
selection before performing TCA. Experiments showed that 
TCA+ significantly improved the prediction performance in 
cross-project bug prediction.  

However, unlike bugs with frequent appearance [11], ARBs’ 
complex activation and/or propagation conditions lead to their 
low percentage. Many transfer learning methods proposed for 
cross-project bug prediction may not work well with respect of 
cross-project ARBs prediction. As a result, more details should 
be taken into consideration for the prediction problem. 

III. TRANSFER LEARNING BASED ARB PREDICTION APPROACH 
In this section, we propose a transfer learning based aging 

related bug prediction approach (TLAP) to take the cross-
project ARB prediction. TLAP requires painstaking parameter 
settings to build an appropriate model for the data in our case. 
Therefore, the training data after class imbalance mitigating 
procedure are randomly split into ten folds according to the bug 
proportion. Then nine folds (training data) are used to build the 
model, and one fold is used as validation data. On the same 
training data, our method is conducted several times with 
different parameters. Then optimal parameter is obtained from 
the prediction performance on the validation data. With the 
optimal parameter, the final adopted model is applied to the 
testing sets. In our experiment, each case is repeated for ten 
times in order to avoid the occasional situation. The flow chart 
of the approach is shown in Fig. 1. In the following, we will 
present each part in detail. 

A. Data Preprocess 
Let ��� = {(���, … , ���,  ��)	, … , (�
��, … , �
��,  �
�)	} 

and ���={(���, … , ���)	, … , (�

�, … , �

�)	} be training and 

Training Sets

Data 
preprocess

Data 
preprocess

Tansfer Component Analysis

Testing Sets in
Latent space

Training Sets in
 latent space

Class imbalance 
mitigating

Prediction 
results

Original data

Classifier

Transferred data

Classifying
Training

Data
Validation

Data

10-fold split

Classifier

Testing Sets

Optimal
parameter

9 folds 1 fold

 
Fig. 1 Aging Related Bug prediction process 
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testing sets respectively, where ���  is the jth metric value of 
sample �� and �� and �� are the number of samples in each set. 
Meanwhile, p is the number of metrics extracted in each 
project, and �� is the corresponding class of each sample.  

Normalization is very useful for improving the performance 
of a classifier by assigning all metrics in a data set an equal 
weight. For each metric value ���  of sample ��, we have  

  ���� = (��� − ���� (�.�)) ���(�.�)⁄  (1) 

where ����  is the corresponding value after normalization,  
����(�.�) is the mean value of the jth metric and ���(�.�) is 
the corresponding standard deviation in each project. This 
normalization is applied to both training and testing sets. 

B. Transfer Component Analysis 
Transfer Component Analysis (TCA) is a transfer learning 

method which is able to reduce the distance between training 
sets and testing sets and preserve data properties 
simultaneously [11]. The method is graphically shown in Fig. 2 
and described in detail as follows. 

Kernel map Dimensional 
reduction

X′ θ (X′)  φ(X′) 

Kernel map
space

Transferred 
space

Preprocessed
 space

 
Fig. 2 The data process flow of TCA 

 
Assume �� = [����  ���� ] , and that �  is the kernel map 

function that transforms the sample into the kernel map space. 

� = ����,�� ���,��
���,�� ���,��

� = (�(��))	�(��) = (��
�)	��

� (2) 

where K is the kernel matrix, ���,��  and ���,��  are the kernel 
matrices in the training and testing sets respectively. ���,�� and 
���,�� show the relationship between training and testing sets. 
In our case, Laplacian kernel �(���, ���) = ��� (− ���� − ���� !⁄ ) 
is used, where ! is a tradeoff parameter. 

We use the distance between data means as the distance 
between training and testing sets. Thus, their distance in the 
kernel map space is "#��(�(���� ), �(���� )) = �$(�%) , where 
%�� = 1 ���⁄  if  ���, ��� ∈ ���� , %�� = 1 ���⁄  if ���, ��� ∈ ���� , 
otherwise %�� = − 1 ����⁄ .  

In addition, a matrix P is used to shift the samples from the 
kernel map space to an m (� <  �� + ��) dimensional space 
(transferred space). Assume the comprehend function that 
transfers data from preprocessed space to the transferred space 
is ' , then we have ('(��))	'(��) = (*�(��))	*�(��) =
�--	� , where S= �/� �⁄ *	 . From above equations, it is 
obtained that the corresponding data in the transferred space is 
'(��) = -	�. In the transferred space, the distance between 
two sets is "#��0'(���� ), '(���� )2 = �$(-	�%�-). 

The minimum distance between above two sets is 
�#� �$(-	�%�-). However, minimizing the distance between 
objects alone couldn’t reach a good prediction performance. 
Keeping the data variance in the transferred space is helpful to 

improve prediction performance. The data variance in the 
transferred space is 3�$0'(��)2 = -	�4�- (�� + ��)⁄ , 
where4 = 05
�6

 − 1 (�� + ��)⁄ 7(
�6

)×(
�6

)2, 5
�6

  is 
the identity matrix and 7(
�6

)×(
�6

) is a matrix in which 
all elements equal to 1. Taking the data variance into 
consideration, the above kernel learning problem can be 
regarded as  

�#� (�$(-	�%�-) + 8 �$(-	-)) 
�. �.  -	�Z�- = 59 

(3) 

where 8 is a tradeoff parameter that controls the regularization 
term �$(-	-).  Finally, -  can be solved as the m leading 
eigenvectors of (�%� + 85
�6

)/��4�. 

C. Class Imbalance Mitigating Procedure 
Class imbalance learning mainly concentrates on the case 

where some classes of data are severely under-represented 
when compared to other classes [15]. By convention, the 
under-represented class is regarded as minority class and 
correspondingly the class whose size is larger is called the 
majority class. The challenge of class imbalance learning is 
that the minority class can’t draw same attention as majority 
class [16].  

Assuming D is a data set with N samples. "9�
  includes 
examples belonging to the minority class (ARB prone class in 
our case), and its size is :9�
. At the same time, "9;> is made 
up of samples pertaining to the majority class with size :9;� . 
Here, we define the size ratio between the majority and 
minority classes as ? =  :9;� :9�
⁄ . 

Let @9�
 and @9;� denote the number of two classes after 
class imbalance process respectively. Here, we keep the 
number of majority class as before, that is @9;� =  :9;� . 
Meanwhile, we enlarge the minority class in the transferred 
space in order to let it get more attention by the classifier. Here 
we set @9�
 =  ⌊1.5 ∗ ? ∗ :9�
⌋. 
D. Machine Learning Methods for Classification 

The target unit in our prediction problem is file. It is a 
proper granularity to allow researchers to find the bug location 
through analysis. Furthermore, we regard the problem of ARBs 
location as a binary classification problem. We do not care the 
number of ARBs in a file, but their existence. If there is at least 
one ARB in the file, we mark the file as ARB prone. Otherwise, 
it is labeled as ARB free.  

Machine learning methods have been successfully used in 
many applications to solve classification problems. Different 
machine learning methods and their learned classifiers may 
have different assumptions about the data and reach different 
performance on the same data set. In this paper, we implement 
TLAP with three popular machine learning methods.  

1) Naive Bayes 
Naive Bayes (NB) is a widely used machine learning 

algorithm [17]. The posterior probability of the given sample is 
written as  

*0E��F2 = G∏ *0F��E�29�I� J*(E�)
*(F)  (4) 
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where m is the number of features, M is the representation of 
all the features after class imbalance mitigating procedure and 
F� presents the ith feature. Meanwhile, E� presents the jth class. 
The predicted class of the sample belongs to the class which 
has the largest value of *0E��F2. 

2) Logistic Regression 
Logistic regression (LR) [17] sets the value of dependent 

variable between 0 and 1 through sigmoid function, which 
helps to avoid too big or too small data in the calculation result. 
The logistic regression function can be written as 

*(F) = 1
1 + �/(;K6;�L�6∙∙∙6;NLN) (5) 

where m is the number of the features and F� (i=1, 2, … , m) 
presents the ith feature, �� (i=1, 2, … , m) is the coefficient of 
corresponding feature. In our case, if *(F) is larger than 0.5, 
the sample is classified as ARB prone, otherwise, it is 
classified as ARB free. 

3) K-nearest Neighbor 
K-nearest neighbor (KNN) is a typical intuitive machine 

learning method [17]. The samples belonging to the same class 
must have close relationship. Given a new sample, the method 
looks for its K-nearest neighbors and records their classes. The 
class which has the largest number of samples is set to the class 
of the given sample. It can be presented as follows: 

O(F) = �$O ����I�,∙∙∙,P �(F) (6) 

where Q�(F) is the number of samples belong to class j. c is 
the number of classes, here c=2. 

E. Software Complexity Metrics 
The relationship among different software components is 

complex. It is usually difficult and impractical to clarify all the 
traits in each part to get the prediction model. In our approach, 
static metrics are used, since they are relatively easy to get and 
reflect certain characteristics of a software system.  

The metrics we use are program size, McCabe’s cyclomatic 
complexity, Halstead metrics and Aging-Related Metrics [10]. 
The first three categories of metrics are commonly used static 
metrics in software reliability. Detailed information about the 
meaning of each metric can be found in [18]. Aging-Related 
Metrics are proposed by Cotroneo et al. [10], which can 
improve the ARB prediction performance. 

IV. EXPERIMENTS 
In this section, we manage to verify our approach on two 

real complex systems. We describe the data sets, evaluation 
metrics and experimental results in detail. To the best of our 
knowledge, this is the first work to predict ARBs with transfer 
learning. 

A. Data Sets 
In order to test the performance of our model, we conduct 

experiments on two real software systems: Linux and MySQL. 
Because it is impractical to extract all the subsystems in a 

project, we choose four important subsystems in Linux project 
and three in MySQL as described in TABLE I [10].  

As to ARBs, we use the classification criteria in [3], in 
which authors classified bugs into Bohrbugs, ARBs and non-
aging-related Mandelbugs. Bohrbugs refer to bugs that are 
easily to be isolated and their activation and error propagation 
lack complexity. Mandelbugs are those whose activation or 
error propagation is complex. The complexity can be regarded 
as a time lag between the fault activation and the occurrence of 
failure, or the bugs are influenced by indirect factors. The 
indirect factors could be interaction with the system 
environment, inputs time, sequence of operations and so on. 
Meanwhile, Mandelbugs can be further divided into ARBs and 
non-aging related bugs. In our prediction approach, 1 
represents for ARB prone, and 0 represents for ARB free. 

TABLE I lists the ARBs information used in this study [10]. 
It points out that ARB prone files make up relatively a small 
part among the files we analyzed, especially in Linux, only 
0.59 percent. 

Data are collected from the bug repositories [19][20]. 
Cotroneo et al. [10] set the search criteria as CODE_FIX to the 
resolution part and looked for corresponding subsystems in the 
restricted time period. For Linux project, the time span is from 
2003.12.01 to 2011.5.31 in version 2.6 and MySQL from 
2006.08.01 to 2011.2.28 in version 5.1. The files are labeled 
according to the Appendix in [10]. 

B. Evaluation Metrics 
Since ARB prone files constitute only a small part in the 

project, we do not use accuracy, precision, F-measure that are 
commonly adopted by most papers. Because these metrics 
work as poor indicators in the case where target class is rare [1]. 
We use PD, PF, and Bal as evaluation metrics because they are 
widely used in the class imbalance case [1]. Before the 
calculation of each measure, a confusion matrix is given in . 
Based on the confusion matrix, each measure can be denoted as 
below. 

PD: it represents the percentage that an ARB prone file is 
predicted as ARB prone. A high value indicates many ARB 

TABLE I.  ARBS INFORMATION IN THIS STUDY 

Project Subsystem ARBs Files 
ARB-
prone 
files 

% ARB-
prone files 

Linux 

Network Drivers 9 

3400 20 0.59% 
SCSI Drivers 4 

EXT3 Filesystem 5 
Networking/IPv4 2 

MySQL 

InnoDB Storge 
Engine 6 

730 41 5.6% Replication 5 
Optimizer 5 

 

TABLE II. CONFUSION MATRIX 

 
Prediction class 

ARB prone ARB free 
Actual 
class 

ARB prone TP FN 
ARB free FP TN 
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prone files are predicted right. It is defined as *" =
R* (R* + S:⁄ ). 

PF: it denotes the percentage that an ARB free file is 
predicted as ARB prone. A low value indicates a minority of 
ARB free files are predicted as ARB prone. It is defined as 
*S = S* (S* + R:)⁄ . 

Bal: it works as an indicator that reflects the comprehensive 
behavior of the classifier [1]. PD and PF only manifest a part 
of the classifier performance, and are often difficult to reach 
desired value simultaneously. Generally, a high value of PD 
accompanies with a high value of PF. Bal trades off above two 
indicators and gives a sophisticated evaluation of the classifier. 
It is defined as T�U = 1 − V(0 − *S)� + (1 − *")� √2⁄ . 

C. Experimental Results 
In this part, we attempt to investigate the performance of 

our model. The prediction performance with and without our 
model transfer learning based ARB prediction approach 
(TLAP) is listed, along with three different classifiers.  

TABLE III, Fig. 3 and Fig. 4 show the predicted result of 
PD, PF, Bal in different ways. PD refers to the probability that 
an ARB prone file is predicted right, the higher the score, the 
better. PF represents the probability that an ARB free file is 
predicted as ARB prone. The lower the value of PF is, the 
better. Bal combines PD and PF and denotes the Euclidean 
distance from the ideal objective PD=1 and PF=0. It’s a 
comprehensive evaluation metric. The higher the value is, the 
better the prediction performance of the model. In the table and 
figures, NB, LR and KNN represent the naive Bayes classifier, 
logistic regression, and K-nearest neighbor method 
respectively. Avg. 1 is the mean of results in three plain cases, 
and Avg. 2 is the mean after TLAP is added. From the table 
and figures, we can have the following three conclusions:  

(1) TLAP can improve cross-project ARBs prediction 
performance 

Bal values having an improvement when performed with 
TLAP are in boldface. From the table and figures, it is obvious 
that classifiers conducted upon TLAP work better than 
traditional machine learning methods performed directly on 
plain data set. When data extracted from Linux are used as 
training sets, the mean of Bal without TLAP is only 0.321. 
After TLAP is conducted, the mean of Bal improves to 0.600. 
On the other side, when data extracted from MySQL are used 
as training sets, the mean of Bal rises from 0.451 to 0.680 once 
TLAP is performed. 

On the plain set, the distributions of Linux and MySQL are 
largely different. Traditional machine learning methods lose 
their function when they are directly used on the plain data. 
Moreover, the small constitution of ARB prone files in the 
project increases the prediction difficulty. When sets are 
processed with normalization, TCA, and class imbalance 
learning step by step, the distribution difference between the 
two sets is reduced, and minority class obtains more attention 
from the classifier. After utilizing the method of TLAP, 
although PF increases along with PD, its influence on Bal is 
less than the increase in PD. 

(2) The prediction performance after TLAP is stable 

As shown in TABLE III, the prediction performance is 
stable in each classification situation. Among the three 
classifiers conducted on TLAP, NB+TLAP outperforms. When 
data from Linux are used as training sets, the standard 
deviation in PD is 0.038, in PF is 0.016, and in Bal is 0.016. At 
the same time, in the opposite direction, the standard deviation 

 
Fig. 3  The comparison of Bal when data extracted from 

Linux  are used as training sets  

 
Fig. 4 The comparison of Bal when data extracted from 
MySQL are used as training sets  

TABLE III DIFFERENT METHODS WITH /WITHOUT TLAP 

classifier 
Linux→MySQL MySQL→Linux 

PD PF Bal PD PF Bal 
NB 0.122 0.044 0.378 0.650 0.146 0.732 
LR 0 0 0.293 0 0 0.293 

KNN 0 0 0.293 0.05 0.006 0.328 
Avg. 1 0.041 0.015 0.321 0.233 0.051 0.451 

NB+TLAP 0.678±0.038 0.215±0.016 0.725±0.016 0.962±0.020 0.445±0.006 0.684±0.004 
LR+TLAP 0.765±0.095 0.261±0.093 0.735±0.030 0.941±0.076 0.439±0.099 0.674±0.068 

KNN+TLAP 0.067±0.056 0.029±0.006 0.340±0.039 0.668±0.237 0.261±0.091 0.681±0.138 
Avg. 2 0.503±0.380 0.168±0.123 0.600±0.225 0.857±0.165 0.382±0.104 0.680±0.005 
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in PD is 0.020, in PF is 0.006, and in Bal is only 0.004. These 
standard deviations are smaller than those in other cases, which 
makes NB+TLAP outstand in the aspect of stable prediction 
performance. 

(3) The percentage of ARB prone files in a project has a big 
influence on prediction performance when KNN is used as 
classifier. 

TABLE III points out that the prediction result of Bal is 
very low (only 0.340) when data from Linux are used as 
training sets. It is clear that KNN is very sensitive to the 
distance between under-predicted sample and its surrounded 
samples. Among the files we analyze, the ARB prone files 
make up 5.6% in MySQL and only 0.59% in Linux [10]. When 
data from Linux are used as training sets, it provides only a 
small percentage of ARBs information. Class imbalance 
mitigating procedure only duplicates the number of ARB prone 
files, but it couldn’t contribute to more information on the 
ARB characteristic. Only a project with higher percentage of 
ARB prone files could give more information of the ARB 
characteristic, and get more attention in the KNN. 

From the experiments, we can answer the two research 
questions proposed in Section I as follows: 

A1: In order to get enough training data, cross-project data 
can be used to make ARB prediction. 

A2: By reducing the distribution difference among the data 
sets extracted from different software systems, transfer learning 
based ARB prediction approach can really improve the 
prediction performance. 

V. THREATS TO VALIDITY 
As other empirical experiments, there are four main threats 

to the validity of our study 

(1)  ARB mark precision 

The bug information is collected on the bug reports, which 
are descriptions written by users. So the accuracy and 
completeness of the description influence the judge of bug.  

(2)  Open source validity 

The projects we analyze are all open source projects, which 
show different characteristic from closed source projects.  

(3)  More cases need to be studied 

In the work, only two real cases are studied here. It is 
necessary to verify the approach with more cases implemented 
in different programming languages. 

VI. CONCLUSION AND FUTURE WORK 
In this paper, we apply a new method named TLAP in the 

cross-project prediction of ARBs. Transfer learning can extract 
some common information among two different distributed 
objects and make their distribution close to each other. Here we 
take advantage of TCA proposed by Pan et al. [11] to transfer 
data to a latent space. By duplicating the minority class, the 
approach deals with the class imbalance problem in the training 
data, making minority class draw more attention from the 
machine learning methods. The experiments in Linux and 

MySQL show that the approach is effective to make cross-
project ARB prediction. 

In the future, we plan to improve our work in several parts. 
First, we only use two projects when validating the efficiency 
of the method, more projects programed in different language 
are suggested. Second, some aging related metrics will be 
explored in order to improve the precision of the prediction. 
Finally, more methods on class imbalance learning will be 
explored to improve the prediction precision on ARBs. 
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