
Cross-project Aging Related Bug Prediction

Fangyun Qin, Zheng Zheng,
Chenggang Bai, Yu Qiao

School of Automation Science and
Electrical Engineering

Beihang University
Beijing China

fangyunqin, zhengz@buaa.edu.cn

Zhenyu Zhang
Institute of Software Chinese

Academy of Sciences
Beijing, China

zhangzy@ios.ac.cn

Cheng Chen
School of Automation Science and

Electrical Engineering
Beihang University

Beijing China
clarkchenc@gmail.com

Abstract—In a long running system, software tends to
encounter performance degradation and increasing failure rate
during execution, which is called software aging. The bugs
contributing to the phenomenon of software aging are defined as
Aging Related Bugs (ARBs). Lots of manpower and economic
costs will be saved if ARBs can be found in the testing phase.
However, due to the low presence probability and reproducing
difficulty of ARBs, it is usually hard to predict ARBs within a
project. In this paper, we study whether and how ARBs can be
located through cross-project prediction. We propose a transfer
learning based aging related bug prediction approach (TLAP),
which takes advantage of transfer learning to reduce the
distribution difference between training sets and testing sets
while preserving their data variance. Furthermore, in order to
mitigate the severe class imbalance, class imbalance learning is
conducted on the transferred latent space. Finally, we employ
machine learning methods to handle the bug prediction tasks.
The effectiveness of our approach is validated and evaluated by
experiments on two real software systems. It indicates that after
the processing of TLAP, the performance of ARB bug prediction
can be dramatically improved.

Keywords—aging related bug; cross-project; bug prediction;
software aging; transfer learning

I. INTRODUCTION
Software aging, a phenomenon which behaves as

increasing failure rate and progressive degradation in the long
running software system, has been arising consistent attention
in both academic and industrial fields since its first
systematical investigation and acceptance nineteen years ago
[1]. Although software aging is a progressive phenomenon, its
influence couldn’t be neglected. Occasional system down
caused by software aging will not only cause economic loss,
but also influence company credibility. Moreover, software
aging can even result in the loss of human lives in the safety
critical system [2].

In order to counteract the influence of software aging, a
mechanism named software rejuvenation is explored. Although
it has been demonstrated that rejuvenation is an effective
strategy to mitigate the effects and costs of ARBs (Aging
Related Bugs, the bugs contributing to the phenomenon of
software aging [3]) during runtime phase [4][5][6], more
effects and costs will be saved if ARBs are avoided during the
testing phase in advance.

Bug prediction may help testers concentrate on the parts
that are probable to be buggy. Nevertheless, it is usually
difficult to predict ARBs within-project for the following
reasons. (1) Within-project bug prediction may reach a good
result if sufficient training data are obtained for building the
prediction model. However, ARBs occupy only a small part in
a project [3], and there may not have enough available data to
build the prediction model. (2) The low percentage of ARBs
leads to severe class imbalance problems in prediction [7]. The
rare class (ARB prone class) gets less attention than non-ARB
prone class, which has negative influence on the prediction. It
makes the prediction of ARBs difficult.

Based on above presentations, two interesting problems
arise:

(1) In order to get sufficient training data, can we use cross-
project data to make ARB prediction?

(2) If yes, how to do it?

Cross-project bug prediction can help to obtain enough
training data from a different project to build the prediction
model. The driving research hypothesis of this work is that
some software features, such as the software complexity, its
size, the programming structures related to resource
management, and other features, might be related to the
presence of ARBs, no matter in the same project or not [10].
Even from different projects, the types of ARBs are mainly
memory bloating and leaking, unreleased file-locks,
unterminated threads, storage fragmentation, data corruption,
accumulation of round-off errors and so on. Thus, the ARBs
may have similar features, which make their cross-project
prediction feasible. However, on the other hand, it’s a serious
challenge to get good prediction results for cross-project bug
prediction [8]. The main difficulty comes from the different
data distributions among the projects, so traditional machine
learning methods may not work well when they are conducted
directly on the training data set.

Transfer learning is a method that could reduce the
distribution difference between different objects. It has the
latent ability to explore the common characteristics between
training and testing projects to improve the prediction
performance [9]. However, different from the prediction of
bugs with frequent appearance, the severe class imbalance is
another challenge for the cross-project ARB prediction [7].

2015 IEEE International Conference on Software Quality, Reliability and Security

978-1-4673-7989-2/15 $31.00 © 2015 IEEE

DOI 10.1109/QRS.2015.17

43

2015 IEEE International Conference on Software Quality, Reliability and Security

978-1-4673-7989-2/15 $31.00 © 2015 IEEE

DOI 10.1109/QRS.2015.17

43

To solve the cross-project ARB prediction problem, a
transfer learning based aging related bug prediction approach
(TLAP) is proposed in this paper. It uses metrics proposed in
[10]. Based on these metrics, a latent space is found where
distance between the training sets and testing sets is minimized
[11]. In the latent space, the distributions of the two sets are
close, so traditional binary classification method can be used.
In addition, we use class imbalance learning to reorganize the
set in order to mitigate the class imbalance effects. To verify
the proposed method, we conduct experiments on two real
complex software systems: Linux and MySQL. We compare
the prediction performance with and without transfer learning
under three different machine learning methods.

The rest of the paper is organized as follows. Section II
presents the background, followed by the approach in detail in
Section III. In Section IV, experiments are presented and
threats to validity are discussed in Section V. Section VI
concludes this study and describes future work.

II. BACKGROUND
From the time when software aging was systematically

investigated [1], more and more researchers have been
throwing themselves into this area.

The bugs contributing to the phenomenon of software aging
are defined as Aging Related Bugs (ARBs) [3][12]. Due to
their influence on the real system, software rejuvenation is
proposed to mitigate the influence of software aging. It tries to
occasionally terminate the system, clean its internal state and
restart to release system resources so that software performance
can be recovered [4].

Bug prediction is a popular research area in software
engineering. Researchers struggle to predict the location of
bugs through establishing relationship between bug existence
and software metrics. Machine learning approaches are usually
used to handle the prediction.

 However, there are few works studying the prediction or
even mechanism of ARBs. Grottke et al. [12] discussed the
physics of aging related failures and summarized basic
concepts and foundation of software aging. Cotroneo et al. [13]
explored the relationship between several static software
metrics and software aging. Furthermore, they tried to predict
ARBs using traditional machine learning methods [10] and
achieved good prediction results in within-project prediction.

Different from traditional bug prediction, the low
proportion of ARBs leads to the difficulty in obtaining enough
training data for within-project bug prediction. Thus, Cross-
project bug prediction is necessary for the prediction of ARBs.

Transfer learning is a method that is proposed to deal with
the cross-project bug prediction [9]. It makes the transferred
sets close to each other [9]. Then traditional machine learning
methods can be back in service based on the transferred sets.

Pan et al. [11] proposed a method named Transfer
Component Analysis (TCA) that transfers both the training sets
and testing sets into a latent space using maximum mean
discrepancy. In the latent space, difference between two sets
was reduced while the data variance was preserved. In [14],

Nam et al. extended TCA to TCA+ by adding normalization
selection before performing TCA. Experiments showed that
TCA+ significantly improved the prediction performance in
cross-project bug prediction.

However, unlike bugs with frequent appearance [11], ARBs’
complex activation and/or propagation conditions lead to their
low percentage. Many transfer learning methods proposed for
cross-project bug prediction may not work well with respect of
cross-project ARBs prediction. As a result, more details should
be taken into consideration for the prediction problem.

III. TRANSFER LEARNING BASED ARB PREDICTION APPROACH
In this section, we propose a transfer learning based aging

related bug prediction approach (TLAP) to take the cross-
project ARB prediction. TLAP requires painstaking parameter
settings to build an appropriate model for the data in our case.
Therefore, the training data after class imbalance mitigating
procedure are randomly split into ten folds according to the bug
proportion. Then nine folds (training data) are used to build the
model, and one fold is used as validation data. On the same
training data, our method is conducted several times with
different parameters. Then optimal parameter is obtained from
the prediction performance on the validation data. With the
optimal parameter, the final adopted model is applied to the
testing sets. In our experiment, each case is repeated for ten
times in order to avoid the occasional situation. The flow chart
of the approach is shown in Fig. 1. In the following, we will
present each part in detail.

A. Data Preprocess
Let ��� = {(���, … , ���, ��)	, … , (�
��, … , �
��, �
�)	}

and ���={(���, … , ���)	, … , (�

�, … , �

�)	} be training and

Training Sets

Data
preprocess

Data
preprocess

Tansfer Component Analysis

Testing Sets in
Latent space

Training Sets in
 latent space

Class imbalance
mitigating

Prediction
results

Original data

Classifier

Transferred data

Classifying
Training

Data
Validation

Data

10-fold split

Classifier

Testing Sets

Optimal
parameter

9 folds 1 fold

Fig. 1 Aging Related Bug prediction process

4444

testing sets respectively, where ��� is the jth metric value of
sample �� and �� and �� are the number of samples in each set.
Meanwhile, p is the number of metrics extracted in each
project, and �� is the corresponding class of each sample.

Normalization is very useful for improving the performance
of a classifier by assigning all metrics in a data set an equal
weight. For each metric value ��� of sample ��, we have

 ���� = (��� − ���� (�.�)) ���(�.�)⁄ (1)

where ���� is the corresponding value after normalization,
����(�.�) is the mean value of the jth metric and ���(�.�) is
the corresponding standard deviation in each project. This
normalization is applied to both training and testing sets.

B. Transfer Component Analysis
Transfer Component Analysis (TCA) is a transfer learning

method which is able to reduce the distance between training
sets and testing sets and preserve data properties
simultaneously [11]. The method is graphically shown in Fig. 2
and described in detail as follows.

Kernel map Dimensional
reduction

X′ θ (X′) φ(X′)

Kernel map
space

Transferred
space

Preprocessed
 space

Fig. 2 The data process flow of TCA

Assume �� = [���� ����] , and that � is the kernel map

function that transforms the sample into the kernel map space.

� = ����,�� ���,��
���,�� ���,��

� = (�(��))	�(��) = (��
�)	��

� (2)

where K is the kernel matrix, ���,�� and ���,�� are the kernel
matrices in the training and testing sets respectively. ���,�� and
���,�� show the relationship between training and testing sets.
In our case, Laplacian kernel �(���, ���) = ��� (− ���� − ���� !⁄)
is used, where ! is a tradeoff parameter.

We use the distance between data means as the distance
between training and testing sets. Thus, their distance in the
kernel map space is "#��(�(����), �(����)) = �$(�%) , where
%�� = 1 ���⁄ if ���, ��� ∈ ���� , %�� = 1 ���⁄ if ���, ��� ∈ ���� ,
otherwise %�� = − 1 ����⁄ .

In addition, a matrix P is used to shift the samples from the
kernel map space to an m (� < �� + ��) dimensional space
(transferred space). Assume the comprehend function that
transfers data from preprocessed space to the transferred space
is ' , then we have ('(��))	'(��) = (*�(��))	*�(��) =
�--	� , where S= �/� �⁄ *	 . From above equations, it is
obtained that the corresponding data in the transferred space is
'(��) = -	�. In the transferred space, the distance between
two sets is "#��0'(����), '(����)2 = �$(-	�%�-).

The minimum distance between above two sets is
�#� �$(-	�%�-). However, minimizing the distance between
objects alone couldn’t reach a good prediction performance.
Keeping the data variance in the transferred space is helpful to

improve prediction performance. The data variance in the
transferred space is 3�$0'(��)2 = -	�4�- (�� + ��)⁄ ,
where4 = 05
�6

 − 1 (�� + ��)⁄ 7(
�6

)×(
�6

)2, 5
�6

 is
the identity matrix and 7(
�6

)×(
�6

) is a matrix in which
all elements equal to 1. Taking the data variance into
consideration, the above kernel learning problem can be
regarded as

�#� (�$(-	�%�-) + 8 �$(-	-))
�. �. -	�Z�- = 59

(3)

where 8 is a tradeoff parameter that controls the regularization
term �$(-	-). Finally, - can be solved as the m leading
eigenvectors of (�%� + 85
�6

)/��4�.

C. Class Imbalance Mitigating Procedure
Class imbalance learning mainly concentrates on the case

where some classes of data are severely under-represented
when compared to other classes [15]. By convention, the
under-represented class is regarded as minority class and
correspondingly the class whose size is larger is called the
majority class. The challenge of class imbalance learning is
that the minority class can’t draw same attention as majority
class [16].

Assuming D is a data set with N samples. "9�
 includes
examples belonging to the minority class (ARB prone class in
our case), and its size is :9�
. At the same time, "9;> is made
up of samples pertaining to the majority class with size :9;� .
Here, we define the size ratio between the majority and
minority classes as ? = :9;� :9�
⁄ .

Let @9�
 and @9;� denote the number of two classes after
class imbalance process respectively. Here, we keep the
number of majority class as before, that is @9;� = :9;� .
Meanwhile, we enlarge the minority class in the transferred
space in order to let it get more attention by the classifier. Here
we set @9�
 = ⌊1.5 ∗ ? ∗ :9�
⌋.
D. Machine Learning Methods for Classification

The target unit in our prediction problem is file. It is a
proper granularity to allow researchers to find the bug location
through analysis. Furthermore, we regard the problem of ARBs
location as a binary classification problem. We do not care the
number of ARBs in a file, but their existence. If there is at least
one ARB in the file, we mark the file as ARB prone. Otherwise,
it is labeled as ARB free.

Machine learning methods have been successfully used in
many applications to solve classification problems. Different
machine learning methods and their learned classifiers may
have different assumptions about the data and reach different
performance on the same data set. In this paper, we implement
TLAP with three popular machine learning methods.

1) Naive Bayes
Naive Bayes (NB) is a widely used machine learning

algorithm [17]. The posterior probability of the given sample is
written as

*0E��F2 = G∏ *0F��E�29�I� J*(E�)
*(F) (4)

4545

where m is the number of features, M is the representation of
all the features after class imbalance mitigating procedure and
F� presents the ith feature. Meanwhile, E� presents the jth class.
The predicted class of the sample belongs to the class which
has the largest value of *0E��F2.

2) Logistic Regression
Logistic regression (LR) [17] sets the value of dependent

variable between 0 and 1 through sigmoid function, which
helps to avoid too big or too small data in the calculation result.
The logistic regression function can be written as

*(F) = 1
1 + �/(;K6;�L�6∙∙∙6;NLN) (5)

where m is the number of the features and F� (i=1, 2, … , m)
presents the ith feature, �� (i=1, 2, … , m) is the coefficient of
corresponding feature. In our case, if *(F) is larger than 0.5,
the sample is classified as ARB prone, otherwise, it is
classified as ARB free.

3) K-nearest Neighbor
K-nearest neighbor (KNN) is a typical intuitive machine

learning method [17]. The samples belonging to the same class
must have close relationship. Given a new sample, the method
looks for its K-nearest neighbors and records their classes. The
class which has the largest number of samples is set to the class
of the given sample. It can be presented as follows:

O(F) = �$O ����I�,∙∙∙,P �(F) (6)

where Q�(F) is the number of samples belong to class j. c is
the number of classes, here c=2.

E. Software Complexity Metrics
The relationship among different software components is

complex. It is usually difficult and impractical to clarify all the
traits in each part to get the prediction model. In our approach,
static metrics are used, since they are relatively easy to get and
reflect certain characteristics of a software system.

The metrics we use are program size, McCabe’s cyclomatic
complexity, Halstead metrics and Aging-Related Metrics [10].
The first three categories of metrics are commonly used static
metrics in software reliability. Detailed information about the
meaning of each metric can be found in [18]. Aging-Related
Metrics are proposed by Cotroneo et al. [10], which can
improve the ARB prediction performance.

IV. EXPERIMENTS
In this section, we manage to verify our approach on two

real complex systems. We describe the data sets, evaluation
metrics and experimental results in detail. To the best of our
knowledge, this is the first work to predict ARBs with transfer
learning.

A. Data Sets
In order to test the performance of our model, we conduct

experiments on two real software systems: Linux and MySQL.
Because it is impractical to extract all the subsystems in a

project, we choose four important subsystems in Linux project
and three in MySQL as described in TABLE I [10].

As to ARBs, we use the classification criteria in [3], in
which authors classified bugs into Bohrbugs, ARBs and non-
aging-related Mandelbugs. Bohrbugs refer to bugs that are
easily to be isolated and their activation and error propagation
lack complexity. Mandelbugs are those whose activation or
error propagation is complex. The complexity can be regarded
as a time lag between the fault activation and the occurrence of
failure, or the bugs are influenced by indirect factors. The
indirect factors could be interaction with the system
environment, inputs time, sequence of operations and so on.
Meanwhile, Mandelbugs can be further divided into ARBs and
non-aging related bugs. In our prediction approach, 1
represents for ARB prone, and 0 represents for ARB free.

TABLE I lists the ARBs information used in this study [10].
It points out that ARB prone files make up relatively a small
part among the files we analyzed, especially in Linux, only
0.59 percent.

Data are collected from the bug repositories [19][20].
Cotroneo et al. [10] set the search criteria as CODE_FIX to the
resolution part and looked for corresponding subsystems in the
restricted time period. For Linux project, the time span is from
2003.12.01 to 2011.5.31 in version 2.6 and MySQL from
2006.08.01 to 2011.2.28 in version 5.1. The files are labeled
according to the Appendix in [10].

B. Evaluation Metrics
Since ARB prone files constitute only a small part in the

project, we do not use accuracy, precision, F-measure that are
commonly adopted by most papers. Because these metrics
work as poor indicators in the case where target class is rare [1].
We use PD, PF, and Bal as evaluation metrics because they are
widely used in the class imbalance case [1]. Before the
calculation of each measure, a confusion matrix is given in .
Based on the confusion matrix, each measure can be denoted as
below.

PD: it represents the percentage that an ARB prone file is
predicted as ARB prone. A high value indicates many ARB

TABLE I. ARBS INFORMATION IN THIS STUDY

Project Subsystem ARBs Files
ARB-
prone
files

% ARB-
prone files

Linux

Network Drivers 9

3400 20 0.59%
SCSI Drivers 4

EXT3 Filesystem 5
Networking/IPv4 2

MySQL

InnoDB Storge
Engine 6

730 41 5.6% Replication 5
Optimizer 5

TABLE II. CONFUSION MATRIX

Prediction class

ARB prone ARB free
Actual
class

ARB prone TP FN
ARB free FP TN

4646

prone files are predicted right. It is defined as *" =
R* (R* + S:⁄).

PF: it denotes the percentage that an ARB free file is
predicted as ARB prone. A low value indicates a minority of
ARB free files are predicted as ARB prone. It is defined as
S = S (S* + R:)⁄ .

Bal: it works as an indicator that reflects the comprehensive
behavior of the classifier [1]. PD and PF only manifest a part
of the classifier performance, and are often difficult to reach
desired value simultaneously. Generally, a high value of PD
accompanies with a high value of PF. Bal trades off above two
indicators and gives a sophisticated evaluation of the classifier.
It is defined as T�U = 1 − V(0 − *S)� + (1 − *")� √2⁄ .

C. Experimental Results
In this part, we attempt to investigate the performance of

our model. The prediction performance with and without our
model transfer learning based ARB prediction approach
(TLAP) is listed, along with three different classifiers.

TABLE III, Fig. 3 and Fig. 4 show the predicted result of
PD, PF, Bal in different ways. PD refers to the probability that
an ARB prone file is predicted right, the higher the score, the
better. PF represents the probability that an ARB free file is
predicted as ARB prone. The lower the value of PF is, the
better. Bal combines PD and PF and denotes the Euclidean
distance from the ideal objective PD=1 and PF=0. It’s a
comprehensive evaluation metric. The higher the value is, the
better the prediction performance of the model. In the table and
figures, NB, LR and KNN represent the naive Bayes classifier,
logistic regression, and K-nearest neighbor method
respectively. Avg. 1 is the mean of results in three plain cases,
and Avg. 2 is the mean after TLAP is added. From the table
and figures, we can have the following three conclusions:

(1) TLAP can improve cross-project ARBs prediction
performance

Bal values having an improvement when performed with
TLAP are in boldface. From the table and figures, it is obvious
that classifiers conducted upon TLAP work better than
traditional machine learning methods performed directly on
plain data set. When data extracted from Linux are used as
training sets, the mean of Bal without TLAP is only 0.321.
After TLAP is conducted, the mean of Bal improves to 0.600.
On the other side, when data extracted from MySQL are used
as training sets, the mean of Bal rises from 0.451 to 0.680 once
TLAP is performed.

On the plain set, the distributions of Linux and MySQL are
largely different. Traditional machine learning methods lose
their function when they are directly used on the plain data.
Moreover, the small constitution of ARB prone files in the
project increases the prediction difficulty. When sets are
processed with normalization, TCA, and class imbalance
learning step by step, the distribution difference between the
two sets is reduced, and minority class obtains more attention
from the classifier. After utilizing the method of TLAP,
although PF increases along with PD, its influence on Bal is
less than the increase in PD.

(2) The prediction performance after TLAP is stable

As shown in TABLE III, the prediction performance is
stable in each classification situation. Among the three
classifiers conducted on TLAP, NB+TLAP outperforms. When
data from Linux are used as training sets, the standard
deviation in PD is 0.038, in PF is 0.016, and in Bal is 0.016. At
the same time, in the opposite direction, the standard deviation

Fig. 3 The comparison of Bal when data extracted from

Linux are used as training sets

Fig. 4 The comparison of Bal when data extracted from
MySQL are used as training sets

TABLE III DIFFERENT METHODS WITH /WITHOUT TLAP

classifier
Linux→MySQL MySQL→Linux

PD PF Bal PD PF Bal
NB 0.122 0.044 0.378 0.650 0.146 0.732
LR 0 0 0.293 0 0 0.293

KNN 0 0 0.293 0.05 0.006 0.328
Avg. 1 0.041 0.015 0.321 0.233 0.051 0.451

NB+TLAP 0.678±0.038 0.215±0.016 0.725±0.016 0.962±0.020 0.445±0.006 0.684±0.004
LR+TLAP 0.765±0.095 0.261±0.093 0.735±0.030 0.941±0.076 0.439±0.099 0.674±0.068

KNN+TLAP 0.067±0.056 0.029±0.006 0.340±0.039 0.668±0.237 0.261±0.091 0.681±0.138
Avg. 2 0.503±0.380 0.168±0.123 0.600±0.225 0.857±0.165 0.382±0.104 0.680±0.005

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

NB LR KNN Avg. 1

without TLAP
with TLAP

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

NB LR KNN Avg. 2

without TLAP
with TLAP

4747

in PD is 0.020, in PF is 0.006, and in Bal is only 0.004. These
standard deviations are smaller than those in other cases, which
makes NB+TLAP outstand in the aspect of stable prediction
performance.

(3) The percentage of ARB prone files in a project has a big
influence on prediction performance when KNN is used as
classifier.

TABLE III points out that the prediction result of Bal is
very low (only 0.340) when data from Linux are used as
training sets. It is clear that KNN is very sensitive to the
distance between under-predicted sample and its surrounded
samples. Among the files we analyze, the ARB prone files
make up 5.6% in MySQL and only 0.59% in Linux [10]. When
data from Linux are used as training sets, it provides only a
small percentage of ARBs information. Class imbalance
mitigating procedure only duplicates the number of ARB prone
files, but it couldn’t contribute to more information on the
ARB characteristic. Only a project with higher percentage of
ARB prone files could give more information of the ARB
characteristic, and get more attention in the KNN.

From the experiments, we can answer the two research
questions proposed in Section I as follows:

A1: In order to get enough training data, cross-project data
can be used to make ARB prediction.

A2: By reducing the distribution difference among the data
sets extracted from different software systems, transfer learning
based ARB prediction approach can really improve the
prediction performance.

V. THREATS TO VALIDITY
As other empirical experiments, there are four main threats

to the validity of our study

(1) ARB mark precision

The bug information is collected on the bug reports, which
are descriptions written by users. So the accuracy and
completeness of the description influence the judge of bug.

(2) Open source validity

The projects we analyze are all open source projects, which
show different characteristic from closed source projects.

(3) More cases need to be studied

In the work, only two real cases are studied here. It is
necessary to verify the approach with more cases implemented
in different programming languages.

VI. CONCLUSION AND FUTURE WORK
In this paper, we apply a new method named TLAP in the

cross-project prediction of ARBs. Transfer learning can extract
some common information among two different distributed
objects and make their distribution close to each other. Here we
take advantage of TCA proposed by Pan et al. [11] to transfer
data to a latent space. By duplicating the minority class, the
approach deals with the class imbalance problem in the training
data, making minority class draw more attention from the
machine learning methods. The experiments in Linux and

MySQL show that the approach is effective to make cross-
project ARB prediction.

In the future, we plan to improve our work in several parts.
First, we only use two projects when validating the efficiency
of the method, more projects programed in different language
are suggested. Second, some aging related metrics will be
explored in order to improve the precision of the prediction.
Finally, more methods on class imbalance learning will be
explored to improve the prediction precision on ARBs.

REFERENCES
[1] Y. Huang, C. Kintala, N. Kolettis, and N.D. Fulton, “Software

rejuvenation: Analysis, models, and applications”, In Proc. of 25th Int.
Symposium on Fault-tolerance Computing, pp. 381-390, June 1995.

[2] E. Marshall, “Fatal error: how patriot overlooked a scud,” Science, pp.
1347-1347, 1992.

[3] M. Grottke, A.P. Nikora, and K.S. Trivedi, “An empirical investigation
of fault types in space mission system Software,” Proc. IEEE/IFIP Int’l
Conf. Dependable Systems and Networks, pp. 447-456, 2010.

[4] K. Vaidyanathan and K.S. Trivedi, “A comprehensive model for
software rejuvenation,” IEEE Trans. Dependable and Secure Computing,
vol. 2, no. 2, pp. 124-137, 2005.

[5] L. Zhao, Q. Song, and L. Zhu, “Common software-aging-related faults
in fault-tolerant systems,” CIMCA'2008, pp. 327-331, Dec. 2008.

[6] R. Matias and P. J. F. Filho, "An experimental study on software aging
and rejuvenation in web servers," 30th IEEE COMPSAC Washington,
DC, USA, pp. 189-196, Sept. 2006.

[7] S. Wang, and X. Yao, “Using class imbalance learning for software
defect prediction,” IEEE Trans. Rel., vol. 62, pp. 434-443, June 2013.

[8] T. Zimmermann, N. Nagappan, H. Gall, E. Giger and B. Murphy,
“Cross-project defect prediction: a large scale experiment on data vs.
domain vs. process,” Proceedings of the the 7th joint meeting of the
European software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering, pp. 91-100,
2009.

[9] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans.
Knowledge and Data Eng., vol. 22, pp. 1345–1359, Oct. 2010.

[10] D. Cotroneo, R. Natella, and R. Pietrantuono, “Predicting aging-related
bugs using software complexity metrics,” Performance Evaluation, vol.
70, pp. 163-178, March 2013.

[11] S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang, “Domain adaptation via
transfer component analysis,” IEEE Trans. Neural Netw., vol. 22, pp.
199-210, Feb. 2011.

[12] M. Grottke, R. Matias, and K. S. Trivedi, “The fundamentals of software
aging,” Proc. First Int’l Workshop Software Aging and Rejuvenation, pp.
1-6, Nov. 2008.

[13] D. Cotroneo, R. Natella, and R. Pietrantuono, “Is software aging related
to software metrics?,” Proc. Second Int’l Workshop Software Aging and
Rejuvenation, pp. 1-6, Nov. 2010.

[14] J. Nam, S.J. Pan, and S. Kim, “Transfer defect learning,” Proc. 2013
International Conference on Software Engineering, pp. 382-391, May
2013.

[15] H. He and E.A. Garcia, “Learning from imbalanced data,” IEEE Trans.
Knowledge and Data Eng., vol. 21, pp. 1263-1284, Sept. 2009.

[16] G. M. Weiss, “Mining with rarity: a unifying framework,” ACM
SIGKDD Explorations Newsletter, vol. 6, no. 1, pp. 7-19, June 2004.

[17] S. Theodoridis and K. Koutroumbas. Pattern Recognition, 4th ed.,
Elsevier Inc., 2009.

[18] https://scitools.com/
[19] Linux kernel: http://bugzilla.kernel.org
[20] MySQL DBMS: http://bugs.mysql.com.
[21] T. Menzies, J. Greenwald, and A. Frank, “Data mining static code

attributes to learn defect predictors,” IEEE Trans. Softw. Eng., vol. 33,
no. 1, pp. 2–13, Jan. 2007.

4848

