
Which Factor Impacts GUI Traversal-Based Test 
Case Generation Technique Most? * 

A Controlled Experiment on Android Applications 
          

 
Bo Jiang, Yaoyue Zhang 

School of Computer Science and Engineering 
Beihang University  

Beijing, China 
{jiangbo, zhangyaoyue }@buaa.edu.cn 

 

W.K. Chan† 
Department of Computer Science 

City University of Hong Kong 
Hong Kong  

wkchan@cityu.edu.hk  

Zhenyu Zhang 
State Key Laboratory of Computer Science 

Institute of Software,  
Chinese Academy of Sciences  

Beijing, China  
zhangzy@ios.ac.cn 

 
 

 
Abstract—There are many research works on automated GUI 

traversal-based test case generation techniques for Android 
application. However, the effect of different factors used in a GUI 
traversal algorithm has not been systematically explored. In this 
work, we report a controlled experiment on 33 real-world 
applications to expose their real failures to systematically study 
three major factors that are commonly observed in testing tools 
for this class of applications. They include the notion of GUI state 
equivalence, the state search (or exploration) strategy, and the 
amount of time to wait between two input events. Our 
experimental results clearly show that different notions of GUI 
state equivalences have significantly different effects on failure 
detection rate and code coverage, randomized search is 
comparable to systematic search, and different choices of waiting 
time strategies do not make significant differences in terms of 
testing effectiveness. We also report other interesting results in 
this paper.  

Keywords—Android applications; GUI traversal; test case 
generation; Automatic testing 

I. INTRODUCTION  
Android is a prominent kind of mobile operating system 

[28]. As of early 2017, the number of Android applications 
(excluding those low-quality ones) in Google Play alone has 
reached 2.4 million [30]. Many of these applications have been 
extensively used in our digital living environments. In view of 
the keen competitions among Android applications offering the 
same kind of functions, developers are increasingly aware of 
placing a high priority in assuring the quality of their Android 
applications because applications that crash and/or malfunction 
frequently are unlikely to be welcomed by end-users. 
Improving the quality of Android applications as a whole thus 

leads to an improvement of the quality of their digital life. 

Program testing is one of the most widely practiced 
approaches to assure the correctness of applications in software 
development projects. Owing to the presence of a large number 
of Android applications to be developed and released, 
automated test case generation techniques 
[3][5][11][12][15][18] are one of the major research focuses in 
the software engineering research, which not only targets at 
generating test inputs but also exposes failures efficiently. 
These techniques can be broadly classified into a few 
categories, including fuzzers (e.g., monkey and IntentFuzzer 
[26]), GUI modeling and traversal-based techniques 
[1][5][11][18], search-based techniques [24] and symbolic 
execution techniques [2]. Among these classes of techniques, 
techniques based on traversal of GUI models have been 
regarded as one of the most promising directions [25]. For ease 
of our presentation, we refer this class of techniques to as 

. 

Typical  techniques follow the following 
workflow: A  technique starts from a given 
initial GUI state of the Android application under test. To 
support this process of GUI state identification, it defines what 
constitutes a GUI state and an objective criterion to determine 
whether two GUI states are equivalent. Among all operable 
and unexplored widgets of the current GUI states reached by 
the technique, it selects one of them, and sends input events to 
the widget to explore the GUI state space of the application 
under test. It then waits for a while before extracting the 
current GUI state and sending the next event. The above 
procedure repeats until all the operable widgets of all reached 
GUI states have been explored.  

In the above workflow, there are multiple (and major) 
configurable parameters that each  technique can 
choose to initialize. Since this class of techniques is a state 
exploration technique, the notion of state and state equivalence 
are fundamental.   
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Once the notion of state and state equivalence are decided, 
the next important design of such a technique is to decide the 
search strategy to be used for exploration the state space based 
on the encountered GUI states.  

Also, the time to wait between two input events is also an 
interesting design factor. For instance, one popular intuition is 
that the next event should be sent after the GUI state has 
become stable. Is there really a significant difference to test 
effectiveness if not following this intuition in tool design such 
as by waiting just for a certain amount of time between two 
events?  

In this paper, to the best of our knowledge, we present the 
first work in reporting a large-scale controlled experiment that 
systematically studies the above important parameters 
configurable for  techniques using 33 real-world 
Android applications to expose real and critical failures (e.g., 
crash). We have studied the effects on failure detection ability 
of different factor levels of the following three factors: GUI 
state equivalence criterion, search strategy over the GUI state 
transition graph, and the waiting time strategy described above. 
Our controlled experiment has chosen to use a number of 
representative factor levels of each of these factors to gain 
significance and relevance to the industry and research rigor. 
Specifically, we have chosen to use identical Activity ID of a 
widget, identical UI hierarchy of a GUI state, and similar GUI 
hierarchy and attributes (in the sense of cosine similarity) as 
the factor levels for the state equivalence criterion, use breadth 
first search, depth first search, and randomized search as the 
factor levels for the search strategy, and use wait-for-idle and 
wait-for-time-period  (with more than 10 fold difference in 
timing period among concrete time period used) as the factor 
levels of the waiting time factor. To support the data analysis, 
we have implemented all combinations of these factor levels in 
our full factorial design of the experiment, and executed each 
of these applications for 3600 seconds for each such 
combination. In total, we have executed these 33 applications 
for 1188 hours.  

 Our controlled experiment revealed interesting results. 
First, we found that using Cosine similarity as the notion of 
state equivalence resulted in higher failure detection ability and 
statement coverage achieved by the corresponding test 
executions both in a statistically meaningful way at the 5% 
significance level. Second, interestingly, the randomized search 
strategy was statistically comparable to other systematic 
exploration strategies at the 5% significance level in both 
failure detection rate and statement code coverage. Third, the 
strategy of waiting for all activities idle before sending the next 
input event to the application under test was not statistically 
more effective than the strategy of waiting for a fixed time 
interval at the 5% significance level in terms of both failure 
detection rate and statement code coverage. Moreover, by 
fixing the factor level of each factor one at a time, we also 
identified many combinations of two factors (at the factor 
levels) resulted in highest failure detection rates and statement 
code coverage.  

The contribution of this paper is threefold: (1) To the best 
of our knowledge, this paper reports the first experimental 
study that investigates the impact of different levels and 

treatments of  techniques on test effectiveness 
systematically. (2) It reveals that the notion of state 
equivalence is a significant design factor of  
technique. Moreover, randomized search is surprisingly 
effective compared to systematic search. It also clarifies the 
popular misunderstanding that waiting until GUI state becomes 
stable before sending the next event is crucial for effective test 
case generation of Android applications. (3) It shows that there 
are many combinations of factor levels can attain the same 
high level of failure detection rate and high statement code 
coverage in the experiment, indicating that there could be 
many good configurations in configuring . It 
points to the research direction of studying the Pareto 
efficiency in test case generation for this class of techniques. 

The organization of the rest of the paper is as follows. In 
Section II, we introduce the generic GUI traversal-based test 
case generation framework. In Section III, we present the 
details of each design factors studied in our controlled study. In 
Section IV, we present our controlled experiment as well as the 
results analysis. Then we describe the related work in Section 
V. Finally, we conclude our work in Section VI. 

II. A GUI TRAVERSAL-BASED TEST CASE GENERATION 
FRAMEWORK 

A. Overview of the PUMA Framework  
PUMA [11] is an extensible framework for dynamic 

analysis and GUI traversal-based test case generation. Both its 
dynamic analysis component and its component for exploration 
of a UI transition model can be customized.   

PUMA Script Original APP

Instrumented
APP

     PUMA

Interpreter

Instrumenter

UiAutomator

     

Monkey

 
Fig. 1. Overview of  PUMA 

Fig. 1 shows the overview of the PUMA workflow. 
Developers should firstly provide a PUMAScript code and the 
binary code of an Android application to PUMA where 
PUMAScript is a language implemented as a Java extension. 
Next, the PUMA interpreter interprets the given PUMAScript 
code, and translates the code instructions into monkey-specific 
directives (via UIAutomator) and app-specific directives. 
PUMA’s app instrumenter statically analyzes the application to 
determine the parts of the code relevant to analysis and 
instruments the application. The output is an instrumented 
version of the given application that satisfies the app-specific 
directives specified through the given PUMAScript code. 
Finally, a programmable monkey configured with the monkey-
specific directives specified in the PUMAScript code executes 
the instrumented version of the application. Upon the 
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completion of the program execution, PUMA generates logs 
which contain outputs specified in the app-specific directives, 
as well outputs generated by the programmable monkey.  

B. The Generic GUI Exploration-based Test Case  
Generation Framework  
TABLE I presents the pseudo-code of the PUMA. The 

underlined part is the configuration points (i.e., parameters 
stated in Section I), which can be extended in the PUMA 
framework. 

In the algorithm, s represents a GUI state and S represents 
the set of GUI states. (We note that in Section III, we will 
present the notion of GUI state.) Each state is associated with a 
set of clickable UI elements. If there is any clickable UI 
element not yet receiving an input (click) event, the state is 
called unfinished, otherwise, finished.  

TABLE I GENERIC GUI EXPLORATION-BASED TEST CASE  GENERATION 
FRAMEWORK OF PUMA 

1: while not all apps have been explored do
2:    pick a new app and start the app
3:    S empty stack
4:    push initial page to S
5:    while S is not empty do
6:      pop an unfinished page si from S
7:      go to page si
8:      pick next clickable UI element from si  
         // Factor 2: Search strategy 
9:      perform the click
10:    wait for next page sj to load  
         // Factor 3: Waiting time 
11:    flag sj is equivalent to an explored page  
         // Factor 1: State equivalence 
12:    if not flag then
13:       add sj to S
14:       update finished clicks for si
15:    if all clicks in si are explored then
16:       remove si from S
17:    if S is empty then
18:       terminate this app

 

The algorithm firstly selects an application from the 
application set under test and starts the application. Then, it 
puts the initial page of the application into the GUI state set, 
which is empty initially. Next, it selects an unfinished state 
from the GUI state set, picks a clickable UI element, and clicks 
on it. Third, it waits for a certain period of time so that next UI 
page can be loaded, then compares the new state with those 
explored states one by one to determine whether the new state 
is equivalent to an explored state. If there is no match, the 
algorithm puts this new state into the GUI state set. If all the 
clickable UI elements have been explored by clicking on them, 
the finished state is removed from the GUI state set. The above 
procedure then repeats until the state set is empty. 

The code lines (lines 8, 10, and 11) with underlined 
comments in the algorithm are the locations of three major 
factors to be studied in our controlled experiment. In the next 

section, we describe our design of the factor levels of these 
design factors at these three configuration points. 

III. DESIGN FACTORS 
In this section, we present the three design factors to be 
studied in our controlled experiment, and the factor levels 
therein.  

A. Characterization of GUI State and State Equivalence  
The first design factor to be studied is how to characterize a 

GUI state and how to consider two GUI states to be equivalent.  

We aim to explore the factor levels that have been proposed 
separately in different previous work. The main purpose is to 
critically examine whether there is any significant difference in 
test effectiveness, which, to the best of our knowledge, the 
present work is the first one to report it.  

Specifically, three state equivalence criteria chosen in our 
controlled experiment as three factor levels of State 
Equivalence are as follows: the cosine similarity used by the 
DECAF [17] and PUMA [11], the UI hierarchy used by 
SwiftHand [5], and ActivityID used in A3E [3].   

Factor level Cosine: In DECAF [17], a feature vector is 
used to represent a UI hierarchy. This feature vector extracts 
the type, the level in the DOM tree and the text from each 
visible UI element in the DOM tree of the UI hierarchy. For 
instance, a button can be expressed as (Button@2, “red”, 
“Dial”) in the feature vector, which represents that the UI 
element is a red button with text “Dial” at the level 2 of the 
DOM tree of the UI hierarchy. A state is a set of UI hierarchies 
that every pair of UI hierarchies in the same state are similar to 
one another based on the cosine similarity coefficient with a 
default threshold (0.95) used by PUMA. In this paper, the 
cosine similarity is expressed by the eigenvectors of the UI 
widgets. We also adopt the same default threshold in our 
controlled experiment. 

Factor level UI Hierarchy: In this factor level, each GUI 
widget in a UI Hierarchy is mapped to the GUI type of that 
GUI widget and the same structure of the UI Hierarchy is 
maintained to connect these GUI types. For example, this 
factor level represents a button at the level 2 in the DOM tree 
of the UI Hierarchy as (Button@2). In our controlled 
experiment, we use the Widgets tree structure to represent the 
UI hierarchy, and use the following criterion to determine state 
equivalence: two GUI states are equivalent if and only if the 
widgets trees are the same. 

 Factor level ActivityID: In this factor level, if the activity 
identifiers of two sets of activities are the same, then the two 
sets of activities refer to the same GUI state. ActivityID is the 
only and intrinsic identity of each activity. It is coarser in 
granularity than the cosine similarity and UI hierarchy. 
ActivityID can be obtained by calling UIAutomator's API 
getCurrentActivityName(). Then we compare the two states’ 
ActivityID using string comparison. 

B. Search Strategy   
Search strategy is the second design factor to be studied in 

our controlled experiment. Based on the root widget of a GUI 
state, we can get the set of clickable widgets reachable from 
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this root widget. The different orders of clicking these elements 
affect the traversal path in the GUI model. We propose to study 
three basic search strategies in the experiment: Breadth First 
Search (BFS) [11], Depth First Search (DFS) [3], and 
Randomized Search (Random for short) [36]. 

                        
Fig. 2. A Sample GUI Widget Tree 

The BFS algorithm is shown in TABLE II. In our 
controlled experiment, we get all the clickable widgets in the 
form of widgets tree and transform the tree into a queue. 
Firstly, it en-queues the root node in an empty queue. Next, it 
de-queues the first widget and puts the widget into the list ret, 
then puts the children of this widget into the queue. The loop 
continues until the queue is empty.  

TABLE II SEARCH STRATEGY-BFS ALGORITHM 

1:    get root clickable UI element in current app state 
2:    Q empty queue  
3:    ret empty list as clickable UI element list 
4:    put root into Q 
5:    while Q is not empty do 
6:       qto queue Q’s head element 
7:       take qto, add it to clickable list ret 
8:       put the children clickable UI elements of qto into Q 
9:   end-while 
10:   return current clickable list ret 

 

The DFS algorithm is shown in TABLE III. In this paper, 
we get all the clickable events in the form of widgets tree and 
transform the tree into a stack. As shown in TABLE III, the 
algorithm is similar to that presented in TABLE II, except that 
it uses a stack instead of a queue for implementation. Fig. 2 
shows a sample GUI widget tree where each node represents a 
clickable widget and each edge represents their parent-child 
relationship. For DFS traversal, n0 is put into the stack firstly, 
and then n0 is clicked and popped out from the stack. Next, n1 
is put into the stack. Then n1 is clicked and taken out from the 
stack, then n3, n4 and n5 are put into the stack in turn and 
clicked one by one. Finally, n2 is put into the stack and clicked. 

Both BFS and DFS get the next element from the ordered 
clickable list returned in each step. On the other hand, the 
randomized strategy just randomly chooses one widget w from 
the clickable widget set, and puts the children widget of w in 
the clickable widget set, then clicks on w, and so on. 

TABLE III NEXT CLICK STRATEGY-DFS ALGORITHM 

1:    get root clickable UI element in current app state 
2:    S empty stack  
3:    ret empty list as clickable UI element list 
4:    push root into S 
5:    while S is not empty do 
6:       sto←the top element of stack S  
7:       pop sto, add it to clickable list ret 
8:       push the children clickable UI elements of sto into S 
9:    end-while 
10:  return current clickable list ret 

 

C. Waiting Time 
The waiting time is the third factor to be studied in our 

controlled experiment. It determines the time for a testing tool 
to wait for the next GUI state to finish loading after event. 
Different waiting times may lead to different GUI states 
sampled from the program execution. An intuition is that a 
testing tool should wait until the next GUI state is completely 
rendered, or the time period should be long enough to ensure 
the next GUI state is ready to accept next event. 

In our controlled experiment, we choose four different 
factor levels to evaluate the above intuition.   

PUMA [11] uses a waiting time policy called waitForIdle() 
invoked through its UIAutomator API, which waits for the 
current program execution of the application to become idle. 
This API call ensures that a full GUI state is loaded.  

Apart from the synchronization approach taken by PUMA, 
another popular strategy is to use timing control. One intuition 
stated above is that a longer waiting time seems to be more 
desirable, therefore, we consider multiple waiting time periods, 
which differs by 10 folds as a whole. Shauvik et al. set the 
delay time of 200ms in the use of Monkey tools for Android 
application stress test [25]. ACTEve [2] keeps the waiting time 
for the next state to be 3000ms, whereas, SwiftHand [5] sets it 
to 5000ms. We denote these three factor levels as wait200ms, 
wait3000ms, and wait5000ms, respectively. 

D. Summary of Factors and Factor Levels  

TABLE IV THREE FACTORS AND THEIR LEVLES 

Factor 
Level  

Factor 1:  
State Equivalence 

Factor 2:  
Search Strategy 

Factor 3: 
Waiting Time 

0 Cosine  BFS waitForIdle 
1 UI Hierarchy DFS wait200ms 
2 ActivityID Random wait3000ms 
3 — — wait5000ms 
 

TABLE IV summarizes the factor levels for each factor 
studied in the experiment. The three levels for the factor state 
equivalence are cosine-similarity metric, UI hierarchy and 
ActivityID. The three levels for factor search strategy are BFS, 
DFS and Random. The four levels for waiting time are 
waitForIdle, wait 200ms, wait 3000ms and wait 5000ms. 
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TABLE V LIST OF APPS USED IN OUR STUDY 

 Android apps Version Category 
Previously 

Used by 

1 BookCatalogue  1.6  Utility A3E 
2 TomdroidNotes 2.0a  Social A3E 
3 Wordpress 0.5.0 Productiv A3E 
4 SpriteMethodTest - Sample ACTEve 
5 RandomMusicPlayer 1 Music ACTEve 
6 CountdownTimer 1.1.0 Utility ACTEve 
7 Ringdroid 2.6 Media ACTEve 
8 Translate 3.8 Utility ACTEve 
9 Nectroid  1.2.4 Media DynoDroid 
10 MunchLife 1.4.2 Entertain DynoDroid 
11 Addi  1.98 Utility DynoDroid 
12 Photostream 1.1 Media DynoDroid 
13 SyncMyPix 0.15 Media DynoDroid 
14 aLogCat 2.6.1 Tools DynoDroid 
15 Multi SMS  2.3 Comm. DynoDroid 
16 BaterryDog 0.1.1 Utility DynoDroid 
17 NetCounter 0.1.4 Utility DynoDroid 
18 DivideAndConquer 1.4 Casual DynoDroid 
19 HotDeath 1.0.7 Card DynoDroid 
20 Bomber  1 l Casua DynoDroid 
21 Auto Answer 1.5 Utility DynoDroid 
22 PasswordMakerPro  1.1.7 Utility DynoDroid 
23 K-9 Mail  3.512 Comm. DynoDroid 
24 AardDictionary  1.4.1 Reference DynoDroid 
25 LearnMusicNotes 1.2 Puzzle SwiftHand 
26 MiniNoteViewer 0.4 Utility SwiftHand 
27 TippyTipper 1.1.3 Finance SwiftHand 
28 WeightChart 1.0.4 Health SwiftHand 
29 Sanity 2.11 Comm. SwiftHand 
30 Mileage  3.1.1 Finance SwiftHand 
31 MyExpenses 1.6.0 Finance SwiftHand 
32 Whohasmystuff 1.0.7 Utility SwiftHand 
33 DalvikExplorer  3.4 Utility SwiftHand 

IV. CONTROLLED EXPERIMENT 
In this section, we describe our controlled experiment and 

present the evaluation results. 

A. Research Questions 
RQ1: Does choosing different notions of state equivalence 
have significant impact on the test effectiveness in terms of 
failure detection rate and code coverage? 

RQ2: Is choosing a systematic search strategy (DFS or BFS) 
superior to choosing the randomized strategy (Random) in 
terms of failure detection rate and code coverage? 

RQ3: Is there any significant difference between Wait-for-Idle 
and Wait-for-a-While strategies in the factor of Waiting Time? 
Moreover, within the group of Wait-for-a-While strategies, is it 
true that a longer waiting time leads to a higher failure 
detection rate or higher code coverage? 

RQ4: Is there any particularly effective treatment observed in 
the controlled experiment in terms of failure detection rate and 
code coverage? 

B. Benchmarks 
We selected 33 real-world open-source mobile apps used 

by four previous tool projects as our benchmark suite. Sixteen 
(16) of these apps were taken from Dynodroid[18], 3 from 

A3E[3], 5 from ACTEve[2], and 9 from SwiftHand[5]. 
TABLE V lists the benchmarks with version number, 
application category, and other tools that have previously 
evaluated them.  

C. Experimental Setup 
To evaluate the effects of the factor levels and their 

applicable combinations (known as treatments) of these three 
factors, we implemented all above-mentioned factor levels in 
the PUMA framework. Then we set up the PUMA framework 
to test the 33 Android applications. 

The controlled experiment was carried out on two virtual 
machines installed with Ubuntu 14.04 operating systems. We 
used the open source virtualization software named Oracle 
VirtualBox. The Oracle VirtualBox can install multiple client 
operating systems and each client system can be opened, 
suspended and stopped independently. Each virtual machine 
was configured with dual-core processor and 6GB memory. 
We selected Vagrant to build virtual testing environment and 
manage these virtual machines.  

D. Experimental Procedure 
There were in total 36 (i.e., 3*3*4) combinations of factor 

levels for the three factors (state equivalence, search strategy 
and waiting time). Each combination is a configuration in the 
PUMA framework. Therefore, we ran the 33 benchmarks with 
the PUMA tool under each of the 36 configurations for 1 hour 
each. Then, we collected the code coverage and failure 
information at the end of each execution. The whole process 
took 1188 testing hours in total on our 2 virtual machines. 

For RQ1 to RQ3, we aim to study and compare the effects 
of different levels of each factor on test effectiveness (failure 
detection rate and code coverage). When we analyzed the data 
for the levels of one factor, we aggregated the results for all the 
levels of the other two factors. For example, when we studied 
the effects of different levels for the factor state equivalence, 
we grouped all the results with the same level together and 
compared their populations statistically.  

For RQ4, we aim to study the impact of different 
treatments (i.e., combination of levels) on testing effectiveness. 
When we studied the impact of one treatment, we grouped the 
results for other factor levels of the same factor together and 
compared their statistical populations among these groups. For 
example, when we compared different treatments having two 
factor levels fixed to <state equivalence, search strategy>, we 
grouped all results of Waiting Time for each treatment and then 
compared their populations. 

For all research questions, we conducted the one-way 
ANalyses Of VAriances (ANOVAs) (e.g., also used in [16]) to 
compare the distributions of groups of data to check whether 
their means differed significantly from one other. We then used 
the multiple comparison procedures to perform pair-wised 
comparison. 

In this experiment, failure detection rate and statement code 
coverage were chosen as the two metrics to evaluate the test 
effectiveness. These two metrics are also used in previous 
testing research to evaluate test effectiveness (e.g., [25]). We 
did not use any seeded faults in the experiment. In other words, 
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all the failures detected are also real failures in real-world 
applications. 

To collect the code coverage of each application under each 
treatment, we used the Emma [31] to generate coverage reports 
and collect the line coverage. To gather the failure information 
of each program execution, we collected the system logcat file 
of each application and extracted the exceptions and errors 
with stack trace information. We wrote a script to parse 
exceptions and errors triggered in the testing process. Because 
some failures occurred repeatedly during the testing process, 
we considered two failures as the same if they had the same 
stack traces and produced the same kind of error messages 
upon failure. In this way, we were able to measure the number 
of distinct failures within a 1-hour testing to evaluate the 
failure detection rate.  

E. Results and Analysis 
In this section, we present our data analysis to answer each 

research question stated in Section V.A. 

1) Ansering RQ1 
Fig. 3 shows the box-whisker plot representing the 

distribution of number of distinct failures detected within the 1-
hour testing period for each notion of state equivalence. We 
can see that the notches of Cosine, UI Hierarchy and 
ActivityID do not overlap with each other. Moreover, Cosine 
achieves a higher median number of failures than UI 
Hierarchy, which in turn is higher than ActivityID. This shows 
the median values of the 3 definitions of state equivalence 
differ significantly from each other.  

 
Fig. 3. Comparison of three definitions of state equivalence for failure 

detection rate. 

We further perform the multiple comparisons to see 
whether the means of different notions of state equivalence 
differ significantly from each other at the 5% significance 
level. The result is shown in Fig. 4, in which we can see that 
there is no overlap between the three state equivalence 
definitions. This result confirms that Cosine is significantly 
more effective than UI Hierarchy, which is in turn more 
effective than ActivityID in detecting failures.  

We further check the test cases generated from different 
levels of the factor State Equivalence. We found that the 
Cosine was a finer notion of state equivalence, which in turn 

made the GUI state model more fine-grained. As a result, 
within the same testing period, the PUMA tool with Cosine as 
the configuration parameter may have a higher chance to visit 
more transitions between distinct state pairs.  Similarly, the UI 
Hierarchy is coarser than Cosine distance but finer than 
ActivityID. Therefore, adopting UI Hierarchy is more effective 
than ActivityID but less effective than Cosine. 

The result seems indicating that the ability to explore more 
dynamic states is a superior design option in engineering a test 
case generation tool. Nonetheless, a question is whether the 
same observation can be made using typical code coverage as a 
measure. 

 
Fig. 4. Multiple comparison results on three notions of state equivalence for 

failure detection rate. 

Fig. 5 shows that the distributions of the three notions of 
state equivalences in terms of statement code coverage. We 
find again that the notches of different state equivalence 
definitions do not overlap with each other, which shows their 
median values differ significantly from each other. 
Furthermore, the multiple comparison results of Fig. 6 show 
that, Cosine achieves a higher code coverage rate than UI 
Hierarchy, which in turn performs better than ActivityID at a 
5% significance level. 

 
Fig. 5.   Comparison of three notions of state equivalence for code coverage 
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Fig. 6.  Multiple comparison results on three notions of state equivalence for 
code coverage 

Combining the two aspects (failure detection rate and code 
coverage), it appears to us that there is a significant difference 
in the testing effect when using different notions of state 
equivalence in the test case generation process. It seems the 
finer the state equivalence definition, the better the failure 
detection and code coverage results. 

Finding 1: Using a finer notion of state equivalence 
(Cosine Similarity > UI Hierarchy > ActivityID ) resulted 
in higher failure detection ability and code coverage rate as 
achieved by the corresponding test executions in a 
statistically meaningful way at the 5% significance level. 
 

2) Ansering RQ2 
The result on the failure detection rates for the factor 

Search Strategy is shown in Fig. 7 and the corresponding 
multiple mean comparison result is shown in Fig. 8. We can 
see from Fig. 7 the median values of different search strategy 
do not differ significantly from each other. From Fig. 8, we 
find that the difference in their mean values is also not 
significant at the 5% significance level. This result is 
interesting. Random requires less design effort than BFS and 
DFS, but it can achieve comparable results in detecting 
failures.  

 

Fig. 7. Comparison of three search strategies for failure detection rate. 

 

Fig. 8. Multiple comparison results on three search strategies for failure 
detection rate.  

Indeed, from the code coverage perspective, Fig. 9 shows 
that BFS, DFS and Random all achieve similar code coverage, 
which is further confirmed by the multiple comparisons shown 
in Fig. 10. 

 

Fig. 9.  Comparison of the three search strategies for code coverage.  

 

Fig. 10.   Multiple comparison results on three search strategies for code 
coverage. 
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The overall results show that there is no significant 
difference between the systematic and randomized search 
strategies. The result also indicates that Random is a 
surprisingly good search strategy for test case generation for 
Android application due to its simplicity. 

 
Finding 2: Interestingly, the randomized search strategy 
was statistically comparable to other systematic exploration 
strategies at the 5% significance level in both failure 
detection rate and statement code coverage. It indicates that 
the additional time overhead incurred by a systematic 
search strategy (BFS and DFS) is not paid off. 

 
3) Ansering RQ3 
For the factor Waiting Time, in terms of failure detection 

rate, we can see from Fig. 11 that the median values of using 
different waiting time do not differ significantly from each 
other.  

 

Fig. 11. Comparison of the waiting time levels for failure detection rate.  

The result for the multiple comparisons in Fig. 12 further 
shows that the distributions of the mean values of these four 
strategies do not differ in a statistical meaningful way. 

 

Fig. 12. Multiple comparison results on the four waiting time strategies for 
failure detection rate.  

In terms of code coverage, we observe from their boxplots 
shown in Fig. 13 and the multiple mean comparisons shown in 
Fig. 14 that they are almost the same statistically. It indicates 
that waiting time is not an important design factor for code 
coverage. Thus, testers of Android applications can safely set 
this factor as a low priority in making decisions in configuring 
a test case generation tool for improved code coverage. 

 

Fig. 13.  Comparison of the four waiting time strategies for code coverage.  

 

Fig. 14.  Multiple comparison results on four waiting time strategies for code 
coverage.   

Finding 3: The strategy to wait until GUI state is stable 
before sending the next input event is not statistically more 
effective than the strategy of waiting for a fixed time 
interval at the 5% significance level in terms of both failure 
detection rate and statement code coverage.   

4) Ansering RQ4 
In this research question, we aim to explore whether there 

are particularly effective combinations of design factor levels. 
For completeness purpose, we show the best treatment in terms 
of failure detection rate when none or one factor level is fixed 
in TABLE VI. 

Specifically, we encode each treatment as follows: we use 
the triple (i, j, k) to represent a specific treatment, where i 
represents levels for state equivalence, j represents levels for 
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search strategy; and k represents levels for waiting time, where 
the levels of i, j, and k can be found in TABLE IV. 

From TABLE VI, when none of the factor levels is fixed, 
treatment (0,0,3) is the best. In other words, <Cosine 
Similarity, BFS, wait5000ms> is the best configuration among 
all combinations of levels in terms of failure detection rate in 
our experiment. It has detected 25 failures in the whole 
experiment. 

For the row indicated with a fixed factor level (e.g., Cosine 
in the first column), the second column shows the best 
treatment observed when the factor level shown in the first 
column is used. We can see that for 7 out of 10 studied factor 
levels, we can find a treatment that results in the highest 
number of detected distinct failures.  

TABLE VI BEST TREATMENT IN FAILURE DETECTION RARE 

Fixed level Treatment and Metric 
Best Strategy # of Detected Failures 

None is fixed (0,0,3) 25 
Cosine (0,0,3) 25 

UI Hierarchy (1,2,0) 25 
ActivityID (2,0,0) 13 

BFS (0,0,3) 25 
DFS (0,1,3) 24 

Random (1,2,0) 25 
waitForIdle (0,0,0) 25 
wait200ms (0,0,1) 25 

wait3000ms (0,1,2) 22 
wait5000ms (0,0,3) 25 

 
The best treatment in terms of code coverage when none or 

one factor level is fixed is shown in TABLE VII. Note that we 
use the same triple (i,j,k) as above to encode each treatment. 

TABLE VII BEST TREATMENT IN CODE COVERAGE 

Fixed dimension Combination and Metrics 
Best Strategy Average (%) Variance (%) 

None is fixed (0,1,3) 31.64 17.79 
Cosine (0,1,3) 31.64 17.79 

UI hierarchy (1,2,2) 29.48 18.35 
ActivityID (2,0,2) 19.67 15.82 

BFS (0,0,3) 31 18.35 
DFS (0,1,3) 31.64 17.79 

Random (1,2,2) 29.48 18.35 
waitForIdle (0,1,0) 30.88 17.44 
wait200ms (0,1,1) 31.52 17.64 

wait3000ms (0,1,2) 31.42 17.67 
wait5000ms (0,1,3) 31.64 17.79 

 
When none of the factor level is fixed, treatment (0,1,3) is 

the best (i.e., <Cosine Similarity, DFS, wait5000ms>). Its 
mean statement coverage is 31.64%. When one dimension is 
fixed, the best strategy for code coverage can be interpreted 
similarly in other rows. 

Finding 4: There were many combinations of factor levels 
can attain the same high level of failure detection rate and 
high level of statement code coverage in the experiment. It 
indicates that there could be many good configurations in 
configuring StateTraversal. The findings point to the 
research direction of more comprhensive study in the 
Pareto efficiency of test case generation for the techniques. 

F. Threats to Validity 
The first factor affecting the threat to validity is the 

correctness of our tools. We implemented those factor levels 
within the PUMA tool and the virtualized experiment 
framework was adapted from [25]. To reduce the threats due to 
bugs in our implementation, we had carefully examined our 
source code and repeated the experiment results of [25] for 
double checks. 

We used 33 subjects studied and evaluated in previous 
work. An experimental study on other subjects may result in 
different results.  

There may be other different factors affecting the 
effectiveness of GUI exploration-based test case generation 
techniques. And there may be different factor levels for the 
factors studied in this work. It is interesting to extend our work 
to take those factors and levels into consideration in the future. 

Similar to previous work [13][29][48], we used code 
coverage and failure detection rate to evaluate different factor 
levels and treatments. An experimental study on other metrics 
such as the time to the first failure may show different results. 

V. RELATED WORK 
In this section, we will briefly review some closely related 

work.  

A. Test Development Platform for Android Application 
As Glenford J.Myers [22] described it, software testing is 

the process of executing a program for the purpose of 
discovering errors. Automated testing is the process of 
controlling the execution of tests using special software and 
comparing the actual results to the expected results [35]. At 
present, there are several test development platforms for 
Android application, such as MonkeyRunner [33], Robotium 
[34], and UIAutomator [29]. 

MonkeyRunner [33] is a testing tool provided by Android 
SDK. The user uses the testing API interfaces provided by the 
tool to write Python scripts. The script is sent to 
MonkeyRunner as a test case for execution. In addition, It also 
has a screen capture and image comparison mechanism, which 
can serve as test oracles. Robotium [34] is another popular 
automated application testing tool. It is based on Android's 
instrumentation framework, supporting the black box 
automatic testing. UIAutomator [29] is Google's new 
automated testing tool for android applications. It requires the 
users to create a test project for the application under test. 
Users can write test scripts to simulate UI events such as tap, 
drag, and text input.  

B. Test Case Generation Technique for Android 
Hu et al. [13] classified android application errors into 

activity error, event error, dynamic type error, API error, I/O 
error and concurrency error. They proposed an event-based 
testing tool for Android application. Starting with the source 
code of the application, they used the Java test case generation 
tool JUnit to generate user test case. For each test case, they 
used the automated event generation tool Monkey to add some 
events to simulate the user interaction. In the implementation 
of test cases, the system log file records the application details. 
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When the testing has finished, the tool will analyze the log files 
for potential errors.  

Model based testing technology [9] must first construct the 
model of the android applications under test. Then test case 
generation algorithm will traverse the model in a systematic 
manner to generate test cases.  

Amalfitano et al. [1] proposed a crawler-based testing 
technique for Android application. This technique first uses 
crawler-based technique to generate the GUI model of the 
application under test, then it further generates event sequences 
based on the generated model. Hao et al. [11] presented a tool 
named PUMA, which is a generic dynamic analysis framework 
and test case generation tool for Android application. The 
strength of PUMA is not in its strategy of exploring apps, but 
in its generic design. PUMA is a framework that can be 
extended according to tester’s needs. Users can easily perform 
all kinds of dynamic analysis by extending the basic 
exploration strategy, such as accessibility violation detection 
and Ad fraud detection. 

Choi et al. [5] implemented a tool named SwiftHand. The 
tool aims to maximize the code coverage of app under test. It 
learns a dynamic finite state model while testing the app. And 
it uses the learned model to generate user inputs. Moreover, it 
can further improve the learned model during the GUI model 
exploration process. A key feature of the algorithm is to 
minimize the number of restarts during exploration, which can 
save a lot of testing time. 

A3E [3] is uses two different and complementary strategies 
to implement the exploration. The first strategy is A3E-Depth-
First, which implements a depth first search on the dynamic 
model of the app. The dynamic model abstracts each activity 
into a single state, without considering the different states the 
widgets of the activity. This approach could lead to more 
efficient exploration of the behavior of an activity. The second 
strategy is A3E-Targeted, which can construct a static activity 
transition graph of the app under test via taint analysis. Such 
graph allows the tool to cover activities more efficiently by 
generating intents.  

Monkey [36] is an application automated testing tool 
provided by Google. It is mainly used for stress testing and 
reliability testing. Monkey runs in emulator or a device and 
generates pseudo-random streams of user events (key input, 
touch screen input, gesture input, etc.) to the application under 
test. Due to its simplicity and applicability, it is widely adopted 
in industry.  

Dynodroid [18] implements a random exploration strategy 
similar to Monkey, but it is more effective than Monkey based 
on the following features. First, it can also generate system 
events in addition to user events by examining which ones are 
related to the application. Second, its exploration strategy is 
more flexible. It can either select the events that have been 
least frequently selected (Frequency strategy) and can take into 
account the context (BiasedRandom strategy), that is, events 
that are relevant in more contexts will be selected more often.  

Sapienz [19] is multi-objective search-based automated 
testing tool for Android applications. It sets several goals for its 
search-based generation process: higher failure detection rate, 

higher code coverage, and smaller test case size. Their 
experimental results show that the technique is competitive 
when compared with existing techniques. 

ACTEve [2] is a concolic-testing tool that symbolically 
tracks events from the point in the framework where they are 
generated up to the point where they are handled in the app. 
For this reasons, ACTEve needs to instrument both the 
framework and the app under test. The limitation is in its 
scalability: it can only generate test cases with 4 touch events 
at most.  

VI. CONCLUSION 
GUI traversal-based test case generation techniques are 

promising for effective Android application testing. However, 
there are several configurable steps (factors) within the test 
case generation process, whose impact on test case generation 
effectiveness has not been studied systematically. In this work, 
we report a controlled experiment on 33 real-world 
applications to study 3 factors in a full-factorial design setting 
resulting in 36 treatments.  Our experimental results show that 
different notions of state equivalence will significantly affect 
the failure detection rates and the code coverage, baseline 
systematic search strategies (BFS and DFS) are comparable to 
the randomized search strategy (Random) in both failure 
detection rate and code coverage, and waiting for idle and 
waiting for a fixed time period have no significant difference in 
these two metrics either. We have also observed that Cosine 
notion of state equivalence is statistically superior in our 
controlled experiment. Among all the 36 treatments, the 
treatment <Cosine Similarity, BFS, wait5000ms> is the best 
configuration for GUI traversal-based test case generation 
technique in terms of both failure detection rate. And the 
treatment <Cosine Similarity, DFS, wait5000ms> is the best 
configuration for code coverage. Moreover, with respect to the 
same factor level of each factor, there are many good 
treatments that achieved the highest failure detection rates and 
statement code coverage.  

This work points to the research direction of studying the 
Pareto efficiency in test case generation for this class of 
techniques. It is interesting to find out the underlying reasons 
on why state equivalence in a finer granularity could improve 
failure detection rate but not affect the code coverage and why 
longer waiting time negatively correlates to the failure 
detection rate.  
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