
Which Factor Impacts GUI Traversal-Based Test
Case Generation Technique Most? *

A Controlled Experiment on Android Applications

Bo Jiang, Yaoyue Zhang

School of Computer Science and Engineering
Beihang University

Beijing, China
{jiangbo, zhangyaoyue }@buaa.edu.cn

W.K. Chan†
Department of Computer Science

City University of Hong Kong
Hong Kong

wkchan@cityu.edu.hk

Zhenyu Zhang
State Key Laboratory of Computer Science

Institute of Software,
Chinese Academy of Sciences

Beijing, China
zhangzy@ios.ac.cn

Abstract—There are many research works on automated GUI

traversal-based test case generation techniques for Android
application. However, the effect of different factors used in a GUI
traversal algorithm has not been systematically explored. In this
work, we report a controlled experiment on 33 real-world
applications to expose their real failures to systematically study
three major factors that are commonly observed in testing tools
for this class of applications. They include the notion of GUI state
equivalence, the state search (or exploration) strategy, and the
amount of time to wait between two input events. Our
experimental results clearly show that different notions of GUI
state equivalences have significantly different effects on failure
detection rate and code coverage, randomized search is
comparable to systematic search, and different choices of waiting
time strategies do not make significant differences in terms of
testing effectiveness. We also report other interesting results in
this paper.

Keywords—Android applications; GUI traversal; test case
generation; Automatic testing

I. INTRODUCTION
Android is a prominent kind of mobile operating system

[28]. As of early 2017, the number of Android applications
(excluding those low-quality ones) in Google Play alone has
reached 2.4 million [30]. Many of these applications have been
extensively used in our digital living environments. In view of
the keen competitions among Android applications offering the
same kind of functions, developers are increasingly aware of
placing a high priority in assuring the quality of their Android
applications because applications that crash and/or malfunction
frequently are unlikely to be welcomed by end-users.
Improving the quality of Android applications as a whole thus

leads to an improvement of the quality of their digital life.

Program testing is one of the most widely practiced
approaches to assure the correctness of applications in software
development projects. Owing to the presence of a large number
of Android applications to be developed and released,
automated test case generation techniques
[3][5][11][12][15][18] are one of the major research focuses in
the software engineering research, which not only targets at
generating test inputs but also exposes failures efficiently.
These techniques can be broadly classified into a few
categories, including fuzzers (e.g., monkey and IntentFuzzer
[26]), GUI modeling and traversal-based techniques
[1][5][11][18], search-based techniques [24] and symbolic
execution techniques [2]. Among these classes of techniques,
techniques based on traversal of GUI models have been
regarded as one of the most promising directions [25]. For ease
of our presentation, we refer this class of techniques to as

.

Typical techniques follow the following
workflow: A technique starts from a given
initial GUI state of the Android application under test. To
support this process of GUI state identification, it defines what
constitutes a GUI state and an objective criterion to determine
whether two GUI states are equivalent. Among all operable
and unexplored widgets of the current GUI states reached by
the technique, it selects one of them, and sends input events to
the widget to explore the GUI state space of the application
under test. It then waits for a while before extracting the
current GUI state and sending the next event. The above
procedure repeats until all the operable widgets of all reached
GUI states have been explored.

In the above workflow, there are multiple (and major)
configurable parameters that each technique can
choose to initialize. Since this class of techniques is a state
exploration technique, the notion of state and state equivalence
are fundamental.

† Correspondence Author
* This research is supported in part by the Key Research Fund of the MIIT of
China (project no. MJ-Y-2012-07), the Research Grants Council of HKSAR
(project nos. 11201114, 11200015, 11214116), an open project from the State
Key Laboratory of Computer Science (project no. SYSKF1608), and the
National Natural Science Foundation of China (project no. 61379045).

2017 IEEE International Conference on Software Quality, Reliability and Security

978-1-5386-0592-9/17 $31.00 © 2017 IEEE

DOI 10.1109/QRS.2017.12

21

2017 IEEE International Conference on Software Quality, Reliability and Security

978-1-5386-0592-9/17 $31.00 © 2017 IEEE

DOI 10.1109/QRS.2017.12

21

Once the notion of state and state equivalence are decided,
the next important design of such a technique is to decide the
search strategy to be used for exploration the state space based
on the encountered GUI states.

Also, the time to wait between two input events is also an
interesting design factor. For instance, one popular intuition is
that the next event should be sent after the GUI state has
become stable. Is there really a significant difference to test
effectiveness if not following this intuition in tool design such
as by waiting just for a certain amount of time between two
events?

In this paper, to the best of our knowledge, we present the
first work in reporting a large-scale controlled experiment that
systematically studies the above important parameters
configurable for techniques using 33 real-world
Android applications to expose real and critical failures (e.g.,
crash). We have studied the effects on failure detection ability
of different factor levels of the following three factors: GUI
state equivalence criterion, search strategy over the GUI state
transition graph, and the waiting time strategy described above.
Our controlled experiment has chosen to use a number of
representative factor levels of each of these factors to gain
significance and relevance to the industry and research rigor.
Specifically, we have chosen to use identical Activity ID of a
widget, identical UI hierarchy of a GUI state, and similar GUI
hierarchy and attributes (in the sense of cosine similarity) as
the factor levels for the state equivalence criterion, use breadth
first search, depth first search, and randomized search as the
factor levels for the search strategy, and use wait-for-idle and
wait-for-time-period (with more than 10 fold difference in
timing period among concrete time period used) as the factor
levels of the waiting time factor. To support the data analysis,
we have implemented all combinations of these factor levels in
our full factorial design of the experiment, and executed each
of these applications for 3600 seconds for each such
combination. In total, we have executed these 33 applications
for 1188 hours.

 Our controlled experiment revealed interesting results.
First, we found that using Cosine similarity as the notion of
state equivalence resulted in higher failure detection ability and
statement coverage achieved by the corresponding test
executions both in a statistically meaningful way at the 5%
significance level. Second, interestingly, the randomized search
strategy was statistically comparable to other systematic
exploration strategies at the 5% significance level in both
failure detection rate and statement code coverage. Third, the
strategy of waiting for all activities idle before sending the next
input event to the application under test was not statistically
more effective than the strategy of waiting for a fixed time
interval at the 5% significance level in terms of both failure
detection rate and statement code coverage. Moreover, by
fixing the factor level of each factor one at a time, we also
identified many combinations of two factors (at the factor
levels) resulted in highest failure detection rates and statement
code coverage.

The contribution of this paper is threefold: (1) To the best
of our knowledge, this paper reports the first experimental
study that investigates the impact of different levels and

treatments of techniques on test effectiveness
systematically. (2) It reveals that the notion of state
equivalence is a significant design factor of
technique. Moreover, randomized search is surprisingly
effective compared to systematic search. It also clarifies the
popular misunderstanding that waiting until GUI state becomes
stable before sending the next event is crucial for effective test
case generation of Android applications. (3) It shows that there
are many combinations of factor levels can attain the same
high level of failure detection rate and high statement code
coverage in the experiment, indicating that there could be
many good configurations in configuring . It
points to the research direction of studying the Pareto
efficiency in test case generation for this class of techniques.

The organization of the rest of the paper is as follows. In
Section II, we introduce the generic GUI traversal-based test
case generation framework. In Section III, we present the
details of each design factors studied in our controlled study. In
Section IV, we present our controlled experiment as well as the
results analysis. Then we describe the related work in Section
V. Finally, we conclude our work in Section VI.

II. A GUI TRAVERSAL-BASED TEST CASE GENERATION
FRAMEWORK

A. Overview of the PUMA Framework
PUMA [11] is an extensible framework for dynamic

analysis and GUI traversal-based test case generation. Both its
dynamic analysis component and its component for exploration
of a UI transition model can be customized.

PUMA Script Original APP

Instrumented
APP

 PUMA

Interpreter

Instrumenter

UiAutomator

Monkey

Fig. 1. Overview of PUMA

Fig. 1 shows the overview of the PUMA workflow.
Developers should firstly provide a PUMAScript code and the
binary code of an Android application to PUMA where
PUMAScript is a language implemented as a Java extension.
Next, the PUMA interpreter interprets the given PUMAScript
code, and translates the code instructions into monkey-specific
directives (via UIAutomator) and app-specific directives.
PUMA’s app instrumenter statically analyzes the application to
determine the parts of the code relevant to analysis and
instruments the application. The output is an instrumented
version of the given application that satisfies the app-specific
directives specified through the given PUMAScript code.
Finally, a programmable monkey configured with the monkey-
specific directives specified in the PUMAScript code executes
the instrumented version of the application. Upon the

2222

completion of the program execution, PUMA generates logs
which contain outputs specified in the app-specific directives,
as well outputs generated by the programmable monkey.

B. The Generic GUI Exploration-based Test Case
Generation Framework
TABLE I presents the pseudo-code of the PUMA. The

underlined part is the configuration points (i.e., parameters
stated in Section I), which can be extended in the PUMA
framework.

In the algorithm, s represents a GUI state and S represents
the set of GUI states. (We note that in Section III, we will
present the notion of GUI state.) Each state is associated with a
set of clickable UI elements. If there is any clickable UI
element not yet receiving an input (click) event, the state is
called unfinished, otherwise, finished.

TABLE I GENERIC GUI EXPLORATION-BASED TEST CASE GENERATION
FRAMEWORK OF PUMA

1: while not all apps have been explored do
2: pick a new app and start the app
3: S empty stack
4: push initial page to S
5: while S is not empty do
6: pop an unfinished page si from S
7: go to page si
8: pick next clickable UI element from si
 // Factor 2: Search strategy
9: perform the click
10: wait for next page sj to load
 // Factor 3: Waiting time
11: flag sj is equivalent to an explored page
 // Factor 1: State equivalence
12: if not flag then
13: add sj to S
14: update finished clicks for si
15: if all clicks in si are explored then
16: remove si from S
17: if S is empty then
18: terminate this app

The algorithm firstly selects an application from the
application set under test and starts the application. Then, it
puts the initial page of the application into the GUI state set,
which is empty initially. Next, it selects an unfinished state
from the GUI state set, picks a clickable UI element, and clicks
on it. Third, it waits for a certain period of time so that next UI
page can be loaded, then compares the new state with those
explored states one by one to determine whether the new state
is equivalent to an explored state. If there is no match, the
algorithm puts this new state into the GUI state set. If all the
clickable UI elements have been explored by clicking on them,
the finished state is removed from the GUI state set. The above
procedure then repeats until the state set is empty.

The code lines (lines 8, 10, and 11) with underlined
comments in the algorithm are the locations of three major
factors to be studied in our controlled experiment. In the next

section, we describe our design of the factor levels of these
design factors at these three configuration points.

III. DESIGN FACTORS
In this section, we present the three design factors to be
studied in our controlled experiment, and the factor levels
therein.

A. Characterization of GUI State and State Equivalence
The first design factor to be studied is how to characterize a

GUI state and how to consider two GUI states to be equivalent.

We aim to explore the factor levels that have been proposed
separately in different previous work. The main purpose is to
critically examine whether there is any significant difference in
test effectiveness, which, to the best of our knowledge, the
present work is the first one to report it.

Specifically, three state equivalence criteria chosen in our
controlled experiment as three factor levels of State
Equivalence are as follows: the cosine similarity used by the
DECAF [17] and PUMA [11], the UI hierarchy used by
SwiftHand [5], and ActivityID used in A3E [3].

Factor level Cosine: In DECAF [17], a feature vector is
used to represent a UI hierarchy. This feature vector extracts
the type, the level in the DOM tree and the text from each
visible UI element in the DOM tree of the UI hierarchy. For
instance, a button can be expressed as (Button@2, “red”,
“Dial”) in the feature vector, which represents that the UI
element is a red button with text “Dial” at the level 2 of the
DOM tree of the UI hierarchy. A state is a set of UI hierarchies
that every pair of UI hierarchies in the same state are similar to
one another based on the cosine similarity coefficient with a
default threshold (0.95) used by PUMA. In this paper, the
cosine similarity is expressed by the eigenvectors of the UI
widgets. We also adopt the same default threshold in our
controlled experiment.

Factor level UI Hierarchy: In this factor level, each GUI
widget in a UI Hierarchy is mapped to the GUI type of that
GUI widget and the same structure of the UI Hierarchy is
maintained to connect these GUI types. For example, this
factor level represents a button at the level 2 in the DOM tree
of the UI Hierarchy as (Button@2). In our controlled
experiment, we use the Widgets tree structure to represent the
UI hierarchy, and use the following criterion to determine state
equivalence: two GUI states are equivalent if and only if the
widgets trees are the same.

 Factor level ActivityID: In this factor level, if the activity
identifiers of two sets of activities are the same, then the two
sets of activities refer to the same GUI state. ActivityID is the
only and intrinsic identity of each activity. It is coarser in
granularity than the cosine similarity and UI hierarchy.
ActivityID can be obtained by calling UIAutomator's API
getCurrentActivityName(). Then we compare the two states’
ActivityID using string comparison.

B. Search Strategy
Search strategy is the second design factor to be studied in

our controlled experiment. Based on the root widget of a GUI
state, we can get the set of clickable widgets reachable from

2323

this root widget. The different orders of clicking these elements
affect the traversal path in the GUI model. We propose to study
three basic search strategies in the experiment: Breadth First
Search (BFS) [11], Depth First Search (DFS) [3], and
Randomized Search (Random for short) [36].

Fig. 2. A Sample GUI Widget Tree

The BFS algorithm is shown in TABLE II. In our
controlled experiment, we get all the clickable widgets in the
form of widgets tree and transform the tree into a queue.
Firstly, it en-queues the root node in an empty queue. Next, it
de-queues the first widget and puts the widget into the list ret,
then puts the children of this widget into the queue. The loop
continues until the queue is empty.

TABLE II SEARCH STRATEGY-BFS ALGORITHM

1: get root clickable UI element in current app state
2: Q empty queue
3: ret empty list as clickable UI element list
4: put root into Q
5: while Q is not empty do
6: qto queue Q’s head element
7: take qto, add it to clickable list ret
8: put the children clickable UI elements of qto into Q
9: end-while
10: return current clickable list ret

The DFS algorithm is shown in TABLE III. In this paper,
we get all the clickable events in the form of widgets tree and
transform the tree into a stack. As shown in TABLE III, the
algorithm is similar to that presented in TABLE II, except that
it uses a stack instead of a queue for implementation. Fig. 2
shows a sample GUI widget tree where each node represents a
clickable widget and each edge represents their parent-child
relationship. For DFS traversal, n0 is put into the stack firstly,
and then n0 is clicked and popped out from the stack. Next, n1
is put into the stack. Then n1 is clicked and taken out from the
stack, then n3, n4 and n5 are put into the stack in turn and
clicked one by one. Finally, n2 is put into the stack and clicked.

Both BFS and DFS get the next element from the ordered
clickable list returned in each step. On the other hand, the
randomized strategy just randomly chooses one widget w from
the clickable widget set, and puts the children widget of w in
the clickable widget set, then clicks on w, and so on.

TABLE III NEXT CLICK STRATEGY-DFS ALGORITHM

1: get root clickable UI element in current app state
2: S empty stack
3: ret empty list as clickable UI element list
4: push root into S
5: while S is not empty do
6: sto←the top element of stack S
7: pop sto, add it to clickable list ret
8: push the children clickable UI elements of sto into S
9: end-while
10: return current clickable list ret

C. Waiting Time
The waiting time is the third factor to be studied in our

controlled experiment. It determines the time for a testing tool
to wait for the next GUI state to finish loading after event.
Different waiting times may lead to different GUI states
sampled from the program execution. An intuition is that a
testing tool should wait until the next GUI state is completely
rendered, or the time period should be long enough to ensure
the next GUI state is ready to accept next event.

In our controlled experiment, we choose four different
factor levels to evaluate the above intuition.

PUMA [11] uses a waiting time policy called waitForIdle()
invoked through its UIAutomator API, which waits for the
current program execution of the application to become idle.
This API call ensures that a full GUI state is loaded.

Apart from the synchronization approach taken by PUMA,
another popular strategy is to use timing control. One intuition
stated above is that a longer waiting time seems to be more
desirable, therefore, we consider multiple waiting time periods,
which differs by 10 folds as a whole. Shauvik et al. set the
delay time of 200ms in the use of Monkey tools for Android
application stress test [25]. ACTEve [2] keeps the waiting time
for the next state to be 3000ms, whereas, SwiftHand [5] sets it
to 5000ms. We denote these three factor levels as wait200ms,
wait3000ms, and wait5000ms, respectively.

D. Summary of Factors and Factor Levels

TABLE IV THREE FACTORS AND THEIR LEVLES

Factor
Level

Factor 1:
State Equivalence

Factor 2:
Search Strategy

Factor 3:
Waiting Time

0 Cosine BFS waitForIdle
1 UI Hierarchy DFS wait200ms
2 ActivityID Random wait3000ms
3 — — wait5000ms

TABLE IV summarizes the factor levels for each factor
studied in the experiment. The three levels for the factor state
equivalence are cosine-similarity metric, UI hierarchy and
ActivityID. The three levels for factor search strategy are BFS,
DFS and Random. The four levels for waiting time are
waitForIdle, wait 200ms, wait 3000ms and wait 5000ms.

2424

TABLE V LIST OF APPS USED IN OUR STUDY

 Android apps Version Category
Previously

Used by

1 BookCatalogue 1.6 Utility A3E
2 TomdroidNotes 2.0a Social A3E
3 Wordpress 0.5.0 Productiv A3E
4 SpriteMethodTest - Sample ACTEve
5 RandomMusicPlayer 1 Music ACTEve
6 CountdownTimer 1.1.0 Utility ACTEve
7 Ringdroid 2.6 Media ACTEve
8 Translate 3.8 Utility ACTEve
9 Nectroid 1.2.4 Media DynoDroid
10 MunchLife 1.4.2 Entertain DynoDroid
11 Addi 1.98 Utility DynoDroid
12 Photostream 1.1 Media DynoDroid
13 SyncMyPix 0.15 Media DynoDroid
14 aLogCat 2.6.1 Tools DynoDroid
15 Multi SMS 2.3 Comm. DynoDroid
16 BaterryDog 0.1.1 Utility DynoDroid
17 NetCounter 0.1.4 Utility DynoDroid
18 DivideAndConquer 1.4 Casual DynoDroid
19 HotDeath 1.0.7 Card DynoDroid
20 Bomber 1 l Casua DynoDroid
21 Auto Answer 1.5 Utility DynoDroid
22 PasswordMakerPro 1.1.7 Utility DynoDroid
23 K-9 Mail 3.512 Comm. DynoDroid
24 AardDictionary 1.4.1 Reference DynoDroid
25 LearnMusicNotes 1.2 Puzzle SwiftHand
26 MiniNoteViewer 0.4 Utility SwiftHand
27 TippyTipper 1.1.3 Finance SwiftHand
28 WeightChart 1.0.4 Health SwiftHand
29 Sanity 2.11 Comm. SwiftHand
30 Mileage 3.1.1 Finance SwiftHand
31 MyExpenses 1.6.0 Finance SwiftHand
32 Whohasmystuff 1.0.7 Utility SwiftHand
33 DalvikExplorer 3.4 Utility SwiftHand

IV. CONTROLLED EXPERIMENT
In this section, we describe our controlled experiment and

present the evaluation results.

A. Research Questions
RQ1: Does choosing different notions of state equivalence
have significant impact on the test effectiveness in terms of
failure detection rate and code coverage?

RQ2: Is choosing a systematic search strategy (DFS or BFS)
superior to choosing the randomized strategy (Random) in
terms of failure detection rate and code coverage?

RQ3: Is there any significant difference between Wait-for-Idle
and Wait-for-a-While strategies in the factor of Waiting Time?
Moreover, within the group of Wait-for-a-While strategies, is it
true that a longer waiting time leads to a higher failure
detection rate or higher code coverage?

RQ4: Is there any particularly effective treatment observed in
the controlled experiment in terms of failure detection rate and
code coverage?

B. Benchmarks
We selected 33 real-world open-source mobile apps used

by four previous tool projects as our benchmark suite. Sixteen
(16) of these apps were taken from Dynodroid[18], 3 from

A3E[3], 5 from ACTEve[2], and 9 from SwiftHand[5].
TABLE V lists the benchmarks with version number,
application category, and other tools that have previously
evaluated them.

C. Experimental Setup
To evaluate the effects of the factor levels and their

applicable combinations (known as treatments) of these three
factors, we implemented all above-mentioned factor levels in
the PUMA framework. Then we set up the PUMA framework
to test the 33 Android applications.

The controlled experiment was carried out on two virtual
machines installed with Ubuntu 14.04 operating systems. We
used the open source virtualization software named Oracle
VirtualBox. The Oracle VirtualBox can install multiple client
operating systems and each client system can be opened,
suspended and stopped independently. Each virtual machine
was configured with dual-core processor and 6GB memory.
We selected Vagrant to build virtual testing environment and
manage these virtual machines.

D. Experimental Procedure
There were in total 36 (i.e., 3*3*4) combinations of factor

levels for the three factors (state equivalence, search strategy
and waiting time). Each combination is a configuration in the
PUMA framework. Therefore, we ran the 33 benchmarks with
the PUMA tool under each of the 36 configurations for 1 hour
each. Then, we collected the code coverage and failure
information at the end of each execution. The whole process
took 1188 testing hours in total on our 2 virtual machines.

For RQ1 to RQ3, we aim to study and compare the effects
of different levels of each factor on test effectiveness (failure
detection rate and code coverage). When we analyzed the data
for the levels of one factor, we aggregated the results for all the
levels of the other two factors. For example, when we studied
the effects of different levels for the factor state equivalence,
we grouped all the results with the same level together and
compared their populations statistically.

For RQ4, we aim to study the impact of different
treatments (i.e., combination of levels) on testing effectiveness.
When we studied the impact of one treatment, we grouped the
results for other factor levels of the same factor together and
compared their statistical populations among these groups. For
example, when we compared different treatments having two
factor levels fixed to <state equivalence, search strategy>, we
grouped all results of Waiting Time for each treatment and then
compared their populations.

For all research questions, we conducted the one-way
ANalyses Of VAriances (ANOVAs) (e.g., also used in [16]) to
compare the distributions of groups of data to check whether
their means differed significantly from one other. We then used
the multiple comparison procedures to perform pair-wised
comparison.

In this experiment, failure detection rate and statement code
coverage were chosen as the two metrics to evaluate the test
effectiveness. These two metrics are also used in previous
testing research to evaluate test effectiveness (e.g., [25]). We
did not use any seeded faults in the experiment. In other words,

2525

all the failures detected are also real failures in real-world
applications.

To collect the code coverage of each application under each
treatment, we used the Emma [31] to generate coverage reports
and collect the line coverage. To gather the failure information
of each program execution, we collected the system logcat file
of each application and extracted the exceptions and errors
with stack trace information. We wrote a script to parse
exceptions and errors triggered in the testing process. Because
some failures occurred repeatedly during the testing process,
we considered two failures as the same if they had the same
stack traces and produced the same kind of error messages
upon failure. In this way, we were able to measure the number
of distinct failures within a 1-hour testing to evaluate the
failure detection rate.

E. Results and Analysis
In this section, we present our data analysis to answer each

research question stated in Section V.A.

1) Ansering RQ1
Fig. 3 shows the box-whisker plot representing the

distribution of number of distinct failures detected within the 1-
hour testing period for each notion of state equivalence. We
can see that the notches of Cosine, UI Hierarchy and
ActivityID do not overlap with each other. Moreover, Cosine
achieves a higher median number of failures than UI
Hierarchy, which in turn is higher than ActivityID. This shows
the median values of the 3 definitions of state equivalence
differ significantly from each other.

Fig. 3. Comparison of three definitions of state equivalence for failure

detection rate.

We further perform the multiple comparisons to see
whether the means of different notions of state equivalence
differ significantly from each other at the 5% significance
level. The result is shown in Fig. 4, in which we can see that
there is no overlap between the three state equivalence
definitions. This result confirms that Cosine is significantly
more effective than UI Hierarchy, which is in turn more
effective than ActivityID in detecting failures.

We further check the test cases generated from different
levels of the factor State Equivalence. We found that the
Cosine was a finer notion of state equivalence, which in turn

made the GUI state model more fine-grained. As a result,
within the same testing period, the PUMA tool with Cosine as
the configuration parameter may have a higher chance to visit
more transitions between distinct state pairs. Similarly, the UI
Hierarchy is coarser than Cosine distance but finer than
ActivityID. Therefore, adopting UI Hierarchy is more effective
than ActivityID but less effective than Cosine.

The result seems indicating that the ability to explore more
dynamic states is a superior design option in engineering a test
case generation tool. Nonetheless, a question is whether the
same observation can be made using typical code coverage as a
measure.

Fig. 4. Multiple comparison results on three notions of state equivalence for

failure detection rate.

Fig. 5 shows that the distributions of the three notions of
state equivalences in terms of statement code coverage. We
find again that the notches of different state equivalence
definitions do not overlap with each other, which shows their
median values differ significantly from each other.
Furthermore, the multiple comparison results of Fig. 6 show
that, Cosine achieves a higher code coverage rate than UI
Hierarchy, which in turn performs better than ActivityID at a
5% significance level.

Fig. 5. Comparison of three notions of state equivalence for code coverage

2626

Fig. 6. Multiple comparison results on three notions of state equivalence for
code coverage

Combining the two aspects (failure detection rate and code
coverage), it appears to us that there is a significant difference
in the testing effect when using different notions of state
equivalence in the test case generation process. It seems the
finer the state equivalence definition, the better the failure
detection and code coverage results.

Finding 1: Using a finer notion of state equivalence
(Cosine Similarity > UI Hierarchy > ActivityID) resulted
in higher failure detection ability and code coverage rate as
achieved by the corresponding test executions in a
statistically meaningful way at the 5% significance level.

2) Ansering RQ2
The result on the failure detection rates for the factor

Search Strategy is shown in Fig. 7 and the corresponding
multiple mean comparison result is shown in Fig. 8. We can
see from Fig. 7 the median values of different search strategy
do not differ significantly from each other. From Fig. 8, we
find that the difference in their mean values is also not
significant at the 5% significance level. This result is
interesting. Random requires less design effort than BFS and
DFS, but it can achieve comparable results in detecting
failures.

Fig. 7. Comparison of three search strategies for failure detection rate.

Fig. 8. Multiple comparison results on three search strategies for failure
detection rate.

Indeed, from the code coverage perspective, Fig. 9 shows
that BFS, DFS and Random all achieve similar code coverage,
which is further confirmed by the multiple comparisons shown
in Fig. 10.

Fig. 9. Comparison of the three search strategies for code coverage.

Fig. 10. Multiple comparison results on three search strategies for code
coverage.

2727

The overall results show that there is no significant
difference between the systematic and randomized search
strategies. The result also indicates that Random is a
surprisingly good search strategy for test case generation for
Android application due to its simplicity.

Finding 2: Interestingly, the randomized search strategy
was statistically comparable to other systematic exploration
strategies at the 5% significance level in both failure
detection rate and statement code coverage. It indicates that
the additional time overhead incurred by a systematic
search strategy (BFS and DFS) is not paid off.

3) Ansering RQ3
For the factor Waiting Time, in terms of failure detection

rate, we can see from Fig. 11 that the median values of using
different waiting time do not differ significantly from each
other.

Fig. 11. Comparison of the waiting time levels for failure detection rate.

The result for the multiple comparisons in Fig. 12 further
shows that the distributions of the mean values of these four
strategies do not differ in a statistical meaningful way.

Fig. 12. Multiple comparison results on the four waiting time strategies for
failure detection rate.

In terms of code coverage, we observe from their boxplots
shown in Fig. 13 and the multiple mean comparisons shown in
Fig. 14 that they are almost the same statistically. It indicates
that waiting time is not an important design factor for code
coverage. Thus, testers of Android applications can safely set
this factor as a low priority in making decisions in configuring
a test case generation tool for improved code coverage.

Fig. 13. Comparison of the four waiting time strategies for code coverage.

Fig. 14. Multiple comparison results on four waiting time strategies for code
coverage.

Finding 3: The strategy to wait until GUI state is stable
before sending the next input event is not statistically more
effective than the strategy of waiting for a fixed time
interval at the 5% significance level in terms of both failure
detection rate and statement code coverage.

4) Ansering RQ4
In this research question, we aim to explore whether there

are particularly effective combinations of design factor levels.
For completeness purpose, we show the best treatment in terms
of failure detection rate when none or one factor level is fixed
in TABLE VI.

Specifically, we encode each treatment as follows: we use
the triple (i, j, k) to represent a specific treatment, where i
represents levels for state equivalence, j represents levels for

2828

search strategy; and k represents levels for waiting time, where
the levels of i, j, and k can be found in TABLE IV.

From TABLE VI, when none of the factor levels is fixed,
treatment (0,0,3) is the best. In other words, <Cosine
Similarity, BFS, wait5000ms> is the best configuration among
all combinations of levels in terms of failure detection rate in
our experiment. It has detected 25 failures in the whole
experiment.

For the row indicated with a fixed factor level (e.g., Cosine
in the first column), the second column shows the best
treatment observed when the factor level shown in the first
column is used. We can see that for 7 out of 10 studied factor
levels, we can find a treatment that results in the highest
number of detected distinct failures.

TABLE VI BEST TREATMENT IN FAILURE DETECTION RARE

Fixed level Treatment and Metric
Best Strategy # of Detected Failures

None is fixed (0,0,3) 25
Cosine (0,0,3) 25

UI Hierarchy (1,2,0) 25
ActivityID (2,0,0) 13

BFS (0,0,3) 25
DFS (0,1,3) 24

Random (1,2,0) 25
waitForIdle (0,0,0) 25
wait200ms (0,0,1) 25

wait3000ms (0,1,2) 22
wait5000ms (0,0,3) 25

The best treatment in terms of code coverage when none or

one factor level is fixed is shown in TABLE VII. Note that we
use the same triple (i,j,k) as above to encode each treatment.

TABLE VII BEST TREATMENT IN CODE COVERAGE

Fixed dimension Combination and Metrics
Best Strategy Average (%) Variance (%)

None is fixed (0,1,3) 31.64 17.79
Cosine (0,1,3) 31.64 17.79

UI hierarchy (1,2,2) 29.48 18.35
ActivityID (2,0,2) 19.67 15.82

BFS (0,0,3) 31 18.35
DFS (0,1,3) 31.64 17.79

Random (1,2,2) 29.48 18.35
waitForIdle (0,1,0) 30.88 17.44
wait200ms (0,1,1) 31.52 17.64

wait3000ms (0,1,2) 31.42 17.67
wait5000ms (0,1,3) 31.64 17.79

When none of the factor level is fixed, treatment (0,1,3) is

the best (i.e., <Cosine Similarity, DFS, wait5000ms>). Its
mean statement coverage is 31.64%. When one dimension is
fixed, the best strategy for code coverage can be interpreted
similarly in other rows.

Finding 4: There were many combinations of factor levels
can attain the same high level of failure detection rate and
high level of statement code coverage in the experiment. It
indicates that there could be many good configurations in
configuring StateTraversal. The findings point to the
research direction of more comprhensive study in the
Pareto efficiency of test case generation for the techniques.

F. Threats to Validity
The first factor affecting the threat to validity is the

correctness of our tools. We implemented those factor levels
within the PUMA tool and the virtualized experiment
framework was adapted from [25]. To reduce the threats due to
bugs in our implementation, we had carefully examined our
source code and repeated the experiment results of [25] for
double checks.

We used 33 subjects studied and evaluated in previous
work. An experimental study on other subjects may result in
different results.

There may be other different factors affecting the
effectiveness of GUI exploration-based test case generation
techniques. And there may be different factor levels for the
factors studied in this work. It is interesting to extend our work
to take those factors and levels into consideration in the future.

Similar to previous work [13][29][48], we used code
coverage and failure detection rate to evaluate different factor
levels and treatments. An experimental study on other metrics
such as the time to the first failure may show different results.

V. RELATED WORK
In this section, we will briefly review some closely related

work.

A. Test Development Platform for Android Application
As Glenford J.Myers [22] described it, software testing is

the process of executing a program for the purpose of
discovering errors. Automated testing is the process of
controlling the execution of tests using special software and
comparing the actual results to the expected results [35]. At
present, there are several test development platforms for
Android application, such as MonkeyRunner [33], Robotium
[34], and UIAutomator [29].

MonkeyRunner [33] is a testing tool provided by Android
SDK. The user uses the testing API interfaces provided by the
tool to write Python scripts. The script is sent to
MonkeyRunner as a test case for execution. In addition, It also
has a screen capture and image comparison mechanism, which
can serve as test oracles. Robotium [34] is another popular
automated application testing tool. It is based on Android's
instrumentation framework, supporting the black box
automatic testing. UIAutomator [29] is Google's new
automated testing tool for android applications. It requires the
users to create a test project for the application under test.
Users can write test scripts to simulate UI events such as tap,
drag, and text input.

B. Test Case Generation Technique for Android
Hu et al. [13] classified android application errors into

activity error, event error, dynamic type error, API error, I/O
error and concurrency error. They proposed an event-based
testing tool for Android application. Starting with the source
code of the application, they used the Java test case generation
tool JUnit to generate user test case. For each test case, they
used the automated event generation tool Monkey to add some
events to simulate the user interaction. In the implementation
of test cases, the system log file records the application details.

2929

When the testing has finished, the tool will analyze the log files
for potential errors.

Model based testing technology [9] must first construct the
model of the android applications under test. Then test case
generation algorithm will traverse the model in a systematic
manner to generate test cases.

Amalfitano et al. [1] proposed a crawler-based testing
technique for Android application. This technique first uses
crawler-based technique to generate the GUI model of the
application under test, then it further generates event sequences
based on the generated model. Hao et al. [11] presented a tool
named PUMA, which is a generic dynamic analysis framework
and test case generation tool for Android application. The
strength of PUMA is not in its strategy of exploring apps, but
in its generic design. PUMA is a framework that can be
extended according to tester’s needs. Users can easily perform
all kinds of dynamic analysis by extending the basic
exploration strategy, such as accessibility violation detection
and Ad fraud detection.

Choi et al. [5] implemented a tool named SwiftHand. The
tool aims to maximize the code coverage of app under test. It
learns a dynamic finite state model while testing the app. And
it uses the learned model to generate user inputs. Moreover, it
can further improve the learned model during the GUI model
exploration process. A key feature of the algorithm is to
minimize the number of restarts during exploration, which can
save a lot of testing time.

A3E [3] is uses two different and complementary strategies
to implement the exploration. The first strategy is A3E-Depth-
First, which implements a depth first search on the dynamic
model of the app. The dynamic model abstracts each activity
into a single state, without considering the different states the
widgets of the activity. This approach could lead to more
efficient exploration of the behavior of an activity. The second
strategy is A3E-Targeted, which can construct a static activity
transition graph of the app under test via taint analysis. Such
graph allows the tool to cover activities more efficiently by
generating intents.

Monkey [36] is an application automated testing tool
provided by Google. It is mainly used for stress testing and
reliability testing. Monkey runs in emulator or a device and
generates pseudo-random streams of user events (key input,
touch screen input, gesture input, etc.) to the application under
test. Due to its simplicity and applicability, it is widely adopted
in industry.

Dynodroid [18] implements a random exploration strategy
similar to Monkey, but it is more effective than Monkey based
on the following features. First, it can also generate system
events in addition to user events by examining which ones are
related to the application. Second, its exploration strategy is
more flexible. It can either select the events that have been
least frequently selected (Frequency strategy) and can take into
account the context (BiasedRandom strategy), that is, events
that are relevant in more contexts will be selected more often.

Sapienz [19] is multi-objective search-based automated
testing tool for Android applications. It sets several goals for its
search-based generation process: higher failure detection rate,

higher code coverage, and smaller test case size. Their
experimental results show that the technique is competitive
when compared with existing techniques.

ACTEve [2] is a concolic-testing tool that symbolically
tracks events from the point in the framework where they are
generated up to the point where they are handled in the app.
For this reasons, ACTEve needs to instrument both the
framework and the app under test. The limitation is in its
scalability: it can only generate test cases with 4 touch events
at most.

VI. CONCLUSION
GUI traversal-based test case generation techniques are

promising for effective Android application testing. However,
there are several configurable steps (factors) within the test
case generation process, whose impact on test case generation
effectiveness has not been studied systematically. In this work,
we report a controlled experiment on 33 real-world
applications to study 3 factors in a full-factorial design setting
resulting in 36 treatments. Our experimental results show that
different notions of state equivalence will significantly affect
the failure detection rates and the code coverage, baseline
systematic search strategies (BFS and DFS) are comparable to
the randomized search strategy (Random) in both failure
detection rate and code coverage, and waiting for idle and
waiting for a fixed time period have no significant difference in
these two metrics either. We have also observed that Cosine
notion of state equivalence is statistically superior in our
controlled experiment. Among all the 36 treatments, the
treatment <Cosine Similarity, BFS, wait5000ms> is the best
configuration for GUI traversal-based test case generation
technique in terms of both failure detection rate. And the
treatment <Cosine Similarity, DFS, wait5000ms> is the best
configuration for code coverage. Moreover, with respect to the
same factor level of each factor, there are many good
treatments that achieved the highest failure detection rates and
statement code coverage.

This work points to the research direction of studying the
Pareto efficiency in test case generation for this class of
techniques. It is interesting to find out the underlying reasons
on why state equivalence in a finer granularity could improve
failure detection rate but not affect the code coverage and why
longer waiting time negatively correlates to the failure
detection rate.

REFERENCES
[1] D. Amalfitano, A. R. Fasolino, P. Tramontana, B. D. Ta, and A. M.

Memon, MobiGUITAR – a tool for automated model-based testing of
mobile apps, IEEE Software, 32(5):1-1, vol. PP, no. 99, 2014.

[2] S. Anand, M. Naik, M. J. Harrold, and H. Yang, Automated Concolic
Testing of Smartphone Apps, in Proceedings of the ACM SIGSOFT
20th International Symposium on the Foundations of Software
Engineering (FSE2012), NY, USA: ACM, pp. 59:1–59:11, 2012.

[3] T. Azim and I. Neamtiu, Targeted and Depth-first Exploration for
Systematic Testing of Android Apps, in Proceedings of the 2013 ACM
SIGPLAN International Conference on Object Oriented Programming
Systems Languages & Applications (OOPSLA2013), New York, NY,
USA: ACM, pp. 641–660, 2013.

3030

[4] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie. P. Scout: analyzing the
Android permission specification, in Proceedings of ACM Conference
on Computer and Communications Security (CCS2012), pp. 217-228,
2012.

[5] W. Choi, G. Necula, and K. Sen, Guided GUI Testing of Android Apps
with Minimal Restart and Approximate Learning, in Proceedings of the
2013 ACM SIGPLAN International Conference on Object Oriented
Programming Systems Languages & Applications (OOPSLA2013),
New York, NY, USA: ACM, 2013, pp. 623–640, 2013.

[6] J. Crussell, C. Gibler, and H. Chen. Attack of the Clones:
DetectingCloned Applications on Android Markets.” in Proceedings of
European Symposium on Research in Computer Security (
ESORICS2012), 81(13):2454-2456, 2012.

[7] M. Egele, C. Kruegel, E. Kirda, and G. Vigna. PiOS: DetectingPrivacy
Leaks in iOS Applications, in Proceedings of National Down Syndrome
Society (NDSS2011), 2011.

[8] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and
A. N. Sheth. TaintDroid: An information-flow tracking system for
realtime privacy monitoring on smartphones, in Proceedings of the 9th
USENIX Conference on Operating Systems Design and Implementation
(OSDI2010), Berkeley, CA, USA, 2010, pp. 1–6, 2010.

[9] M. C. Gaudel, Testing can be formal, too, P.D. Mosses, M. Nielsen, M.I.
Schwartzbach (Eds.), tapsoft '95: Theory and Practice of Software
Development, Lecture Notes in Computer Science, number 915,
Springer-Verlag, Heidelberg, pp. 82-96, 1995.

[10] A. Gorla, I. Tavecchia, F. Gross, and A. Zeller, Checking app behavior
against app descriptions, in Proceedings of the 36th International
Conference on Software Engineering (ICSE2014), New York, NY,
USA: ACM, June 2014, pp. 1025–1035, 2014.

[11] S. Hao, B. Liu, S. Nath, W. G. Halfond, and R. Govindan, PUMA:
Programmable UI-automation for large-scale dynamic analysis of
mobile apps, in Proceedings of the 12th Annual International
Conference on Mobile Systems, Applications, and Services (
MobiSys2014), New York, NY, USA: ACM, 2014, pp. 204–217, 2014.

[12] C. Hu and I. Neamtiu, Automating GUI Testing for Android
Applications, in Proceedings of the 6th International Workshop on
Automation of Software Test (AST 2011), New York, NY, USA: ACM,
pp. 77–83, 2011.

[13] C. Hu and I. Neamtiu, Testing of Android Apps, in Proceedings of ACM
Object-Oriented Programming, Systems, Languages & Applications
(OOPSLA2013), 2013.

[14] M. Kechagia, D. Mitropoulos, and D. Spinellis, Charting the API
minefield using software telemetry data, Empirical Software
Engineering (ESE2014), pp. 1–46, 2014.

[15] Xiujiang Li, Yanyan Jiang, Yepang Liu, Chang Xu, Xiaoxing Ma and
Jian Lu. User Guided Automation for Testing Mobile Apps. In
Proceedings of the 21st Asia-Pacific Software Engineering Conference
(APSEC 2014), pp. 27-34, Jeju, Korea, Dec 2014.

[16] Z. Li, M. Harman and R. M. Hierons. Search Algorithms for Regression
Test Case Prioritization, in IEEE Transactions on Software Engineering,
33(4):225-237, 2007.

[17] B. Liu, S. Nath, R. Govindan, and J. Liu. DECAF: Detecting and
Characterizing Ad Fraud in Mobile Apps. in Proceedings of the National
Spatial Data Infrastructure (NSDI2014), pp. 57-70, 2014.

[18] A. Machiry, R. Tahiliani, and M. Naik, Dynodroid: An Input Generation
System for Android Apps, in Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering (ESEC/FSE 2013), New York,
NY, USA: ACM, 2013, pp. 224–234, 2013.

[19] K. Mao, M. Harman, and Y. Jia. Sapienz: multi-objective automated
testing for Android applications. In Proceedings of the 25th International
Symposium on Software Testing and Analysis (ISSTA2016), ACM,
New York, NY, USA, pp. 94-105, 2016.

[20] A. P. Mathur, Foundations of Software Testing. Pearson Education
India, 2008.

[21] A. Memon, I. Banerjee, and A. Nagarajan, GUI Ripping: Reverse
Engineering of Graphical User Interfaces for Testing, in Proceedings of
the 10th Working Conference on Reverse Engineering (WCRE2003),
Washington, DC, USA: IEEE Computer Society, 2003, pp. 260–, 2003.

[22] G. J. Myers, C. Sandler and T. Badgett, The art of software testing. John
Wiley & Sons, pp. 7-8, 2011.

[23] D. Octeau, S. Jha, and P. McDaniel, Retargeting Android Applications
to Java Bytecode, in Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering
(FSE2012), New York, NY, USA: ACM, 2012, pp. 6:1–6:11, 2012.

[24] R. Rakesh, P. Rabins and M. S. Chandra, Review of Search based
Techniques in Software Testing. International Journal of Computer
Applications (IJCA2012), 51(6):42-45, 2012.

[25] R. C. Shauvik, G. Alessandra and Oo. Alessandro, Automated Test
Input Generation for Android: Are We There Yet? in Proceedings of
30th IEEE/ACM International Conference on Automated Software
Engineering (ASE2015), Lincoln, Nebraska, USA, pp. 429-440, 2015.

[26] K. Yang, J. Zhuge, Y. Wang, L. Zhou, and H. Duan. 2014. IntentFuzzer:
detecting capability leaks of android applications. In Proceedings of the
9th ACM symposium on Information, computer and communications
security (ASIA CCS2014). ACM, NY, USA, pp. 531-536, 2014.

[27] A. Zeller, R. Hildebrandt, Simplifying and isolating failure-inducing
input. Software Engineering (TSE2002), IEEE Transactions on,
28(2):183-200, 2002.

[28] Android.http://www.android.com, last access on Jan, 2017.
[29] Android uiautomator.

http://developer.android.com/tools/help/uiautomator/index.html.
[30] AppBrain. The number of applications in Google Play.

https://www.appbrain.com/stats/number-of-android-apps
[31] Emma. http://emma.sourceforge.net/.
[32] Gartner. http://www.199it.com/archives/408226.html, last access on

November28, 2015.
[33] Monkeyrunner.http://www.android-

doc.com/tools/help/monkeyrunner_concepts.html.
[34] Robotium. https://github.com/RobotiumTech/robotium
[35] Software Testing Research Survey Bibliography.

http://web.engr.illinois.edu/~taoxie/testingresearchsurvey.htm.
[36] The Monkey UI android testing tool,

http://developer.android.com/tools/help/monkey.html.

3131

