Synthesizing Component-Based WSN Applications via Automatic Combination of Code Optimization Techniques

Zhenyu Zhang  
The University of Hong Kong  
Pokfulam, Hong Kong  
zyzhang@cs.hku.hk

W. K. Chan  
City University of Hong Kong  
Tat Chee Avenue, Hong Kong  
wkchan@cs.cityu.edu.hk

T. H. Tse †  
The University of Hong Kong  
Pokfulam, Hong Kong  
thtse@cs.hku.hk

Abstract

Wireless sensor network (WSN) applications sense events in-situ and compute results in-network. Their software components should run on platforms with stringent constraints on node resources. Developers often design their programs by trial-and-error with a view to meeting these constraints. Through numerous iterations, they manually measure and estimate how far the programs cannot fulfill the requirements, and make adjustments accordingly. Such manual process is time-consuming and error-prone. Automated support is necessary.

Based on an existing task view that treats a WSN application as tasks and models resources as constraints, we propose a new component view that associates components with code optimization techniques and constraints. We develop algorithms to synthesize components running on nodes, fulfilling the constraints, and thus optimizing their quality. We evaluate our proposal by a simulation study adapted from a real-life WSN application.

Keywords: Wireless sensor network, adaptive software design, resource constraint, code optimization technique.

1. Introduction

A wireless sensor network (WSN) is a computer network of sensor nodes interconnected by short-range and short-life wireless communication channels [1]. Each sensor node may capture data, such as temperature and light intensity, from the environment. Applications running on WSNs, such as animal surveillances, automatic detections of geological events, and hospital administrations, should sense physical events in-situ [8] and analyze the sensed data in-network [12].

In WSNs, communication consumes the highest amount of energy in the sensor nodes, followed next by processing and then storage. Akin to design patterns or code refactoring for general object-oriented development, WSN developers use diverse code optimization techniques such as loop unfolding and lookup tables to tune the WSN software applications to meet the resource constraints. They apply different tactics to cater for different needs. This paper will collectively refer to such tactics as code optimization techniques, or COTs for short.

However, incorporating a code optimization technique in a WSN program currently needs significant manual effort. When an application does not work according to a COT, a simple pragmatic approach is to tune it iteratively and manually by means of trial-and-error. This is tedious, low-level, and time-consuming. Also, the underlying WSN platforms, both hardware and software, are diverse in quality. A seemingly innocuous change may drastically alter the constraints that these programs need to fulfill. The WSN software fit for a specific resource-stringent environment will need to be adapted further to adjust to the changed environment. The lack of a system-wide concept to deal with code optimization techniques further complicates how developers can apply various COTs for different software units.

To tackle these challenges, this paper proposes a task-oriented component-based COT model. It represents a WSN application as a set of components. In the task view, resource constraints, known as resource concerns or simply concerns, are defined at both the application and node levels. In the component view, every component is associated with its basis resource usages and a set of COTs.
The main contributions of the paper are threefold: Firstly, it proposes an application-level design optimization model for WSN applications. Next, it develops algorithms to construct components that support the automatic selection of a suite of COTs. Thirdly, it provides the first empirical study on the topic.

The rest of this paper is organized as follows: After reviewing the related work in Section 2, we describe a motivation example in Section 3. Section 4 presents our design model and algorithms, followed by an evaluation in Section 5. Finally, Section 6 concludes the paper.

2. Related Work

Many researchers have conducted studies to adapt WSN applications to resource constraints. Kuchcinski [7] synthesizes an embedded system to meet timing constraints. Similarly, Wang and Shin [14] construct tasks to tackle a similar issue with a view to minimizing the overall elapsed time. Other than timing constraints, Teich et al. [13] study the processing capability of partitioned processor arrays. Shin et al. [11] further investigate how to tackle the energy and code size constraints. Their study inspires our work.

In the above work, resource usages are optimized via different techniques including reconfiguration, task construction, code encoding, and compressing. These techniques are specific to different situations and, hence, may adversely affect the modifiability of the applications. On the other hand, Gay et al. [3] implements experimental design patterns in the context of WSNs. This inspires us to use combined code optimization techniques to optimize resource usages to cater for unanticipated fluctuations in environmental constraints. As in [6], code optimization techniques can be embedded into the code similarly to design patterns. A difference between our approach and that of [6] is that we consider aggregated effects of combined code optimization techniques while they do not.

Adopting code optimization techniques is related to program synthesis. In this field, Huselius and Andersson [5] introduce their model synthesis work for real-time systems, which focuses on architectures and observed behaviors. Kuchcinski [7] tackles timing constraints by assigning processes to processors. Our component-based model supports configurations with multiple resources, and we use combined code optimization techniques to optimize their overall usages. A similar concept is also introduced in [15], which only investigates the interaction relationships of optimization techniques but not their aggregated effect.

We treat WSN applications as components. Zhang and Cheng [16] use Petri nets as a model to cater for the design of adaptive behavior, while Šgroi et al. [10] propose a communicating finite state machines model with a similar aim. Their applicability to WSNs is yet to be studied.

3. Motivation Example

This section describes a motivation example using the component Timer.fired from Surge, a real-life application of TinyOS. The component, as shown in Figure 1, resides in a task initiated by periodic time-driven events. Let us call this version $P_0$ for the ease of reference.

In $P_0$, a switch construct accepts a message-type identifier (parameter $arg_0xb76cb2c8$) and invokes the corresponding processing functions. To do so, the component needs to compare the value of $arg_0xb76cb2c8$ with the cases in switch. The mean number of comparison operations, denoted by mean($COMP$), is $\frac{1 \times 2 + 3 \times 4 + 252 \times 4}{256} \approx 3.977$. This is because, for the uniform distribution of an unsigned 8-bit integer whose range is [0U, 255U], almost all of possible values will fall under the default branch, which means that they should pass through the first four case statements before reaching the default branch. In the worst case, all samples fall into [3U, 255U]. The maximum number of comparison operations, denoted

\[ inline \text{static result,} \\
\text{TimerM$\text{Timer}$fired (uint8\_1\ arg_0xb76cb2c8) \{ } \\
\text{unsigned char ret; } \\
\text{switch (arg_0xb76cb2c8) \{ } \\
\text{case 0U: } \\
\text{ret = SurgeM$\text{Timer}$fired(); } \\
\text{break;} \\
\text{case 1U: } \\
\text{ret = PhotoTempM$\text{PhotoTempTimer}$fired(); } \\
\text{break;} \\
\text{case 2U: } \\
\text{ret = AMPromiscuous$\text{ActivityTimer}$fired(); } \\
\text{break;} \\
\text{case 3U: } \\
\text{ret = MultiHopLEPSM$\text{Timer}$fired(); } \\
\text{break;} \\
\text{default: } \\
\text{TimerM$\text{Timer}$default$fired(); } \\
\text{return ret;} \\
\text{\}} \]

Figure 1. Timer.fired in Surge.

---

1 Available at http://www.tinyos.net/tinyos-1.x/apps/Surge/.
2 TinyOS, available at http://www.tinyos.net/, is an open-sourced operating system dedicated and widely used for wireless sensor network applications. Surge and Timer.fired are available at http://www.tinyos.net/tinyos-1.x/apps/Surge/.
typedef (unsigned char)(*FuncEntry)(void);
inline static result,
TimerMSTimer$fired (uint8_t arg_0x76cb2c8) {
    unsigned char ret;
    if (arg_0x76cb2c8 >= 4U) { // old default
        return TimerMSTimer$default$fired();
    }
    switch (arg_0x76cb2c8) {
        case 0U:
            ret = SurgeMSTimer$fired();
            break;
        case 1U:
            ret = PhotoTempMS$PhotoTempTimer$fired();
            break;
        case 2U:
            ret = AMPromiscuous$ActivityTimer$fired();
            break;
        case 3U:
            ret = MultiHopLEPSM$Timer$fired();
            break;
    }
    return ret;
}

Figure 2. Optimized version 1 of Timer.fired.

by max((COMP)), is 4.

We observe that this code fragment adopts at least one COT. The variables arg_0x76cb2c8 and ret as well as the case values 0U, 1U, 2U, and 3U are of the type uint8_t, that is, unsigned 8-bit integer. The use of unsigned 8-bit integer variables is a general code optimization technique for embedded applications to produce executable files of smaller sizes.

// lookup table
FuncEntry entries[4] = {
    SurgeM$Timer$fired,
    PhotoTempMS$PhotoTempTimer$fired,
    AMPromiscuous$ActivityTimer$fired,
    MultiHopLEPSM$Timer$fired,
};
// old default
return TimerMSTimer$default$fired();
}

return *(entries[arg_0x76cb2c8]); // dispatch
}

Figure 3. Optimized version 2 of Timer.fired.

Table 1. Effects of code optimization techniques on resource usages.

<table>
<thead>
<tr>
<th>COTs</th>
<th>Effect on mean(COM)</th>
<th>Effect on max(COM)</th>
<th>Effect on MEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>cot1</td>
<td>-2.938</td>
<td>+1</td>
<td>0</td>
</tr>
<tr>
<td>cot2</td>
<td>-0.039</td>
<td>-4</td>
<td>+16</td>
</tr>
</tbody>
</table>

The effect of optimization of resource usages by such COTs may be estimated statically. A prerequisite for implementing cot2 is that the case block in switch has no default case, which means that cot2 depends on cot1. The effects of optimization can be found by comparing version P1 with P0, and comparing version P2 with P1. Table 1 shows the effects of P1 and P2 in units of number of comparison operations and memory blocks.

Considering that cot2 depends on cot1, legitimate combinations of code optimization techniques to synthesize such a component include \{cot1\} and \{cot1, cot2\}. Their resource usages are shown in Table 2, in which \(\gamma_{\text{max}}\) stands for the basis memory usage of version P0.

While it cannot be guaranteed that estimated resource usages will truly reflect runtime resource usages, developers in practice often assume an approximately monotonic trend between them. Thus, they target at code versions with reduced estimated resource usages. Considering mean((COMP)), max((COMP)), and MEM in this example, P2 is the best version.

To deal with different concerns, developers often use different COTs or their combinations. While these COTs may have dependencies or conflicting relationships among one another, such as function inlining conflicting with function pointer table, most allocated memory block whose size is 16 bytes, that is, the size of 4 pointers in a 32-bit environment.

Suppose that, owing to the concern of low-end processors in sensor nodes, we plan to reduce the time complexity by reducing mean((COMP)). A simple COT is to add an if-then-else construct embracing the switch construct, which decides whether to call the default processing (see Figure 2). We denote this code optimization technique by cot1 and the optimized version by P1. The functional behavior of the example does not change after introducing cot1, while mean((COMP)) becomes \(\frac{2^{3}+3+5+232+1}{2^{36}} \approx 1.039\) and max((COMP)) increases to 5.

While COTs may reduce the amount of usage for one resource, they may increase another. Figure 3, for example, shows another version (P2) that includes another code optimization technique (cot2) on top of version P1. cot2 is designed to remove the time-wasting switch construct. This is achieved by introducing a lookup table to manage the pointers of the corresponding functions. P2 has the same functionality as P1 but needs only one comparison operation for any arg_0x76cb2c8, so that mean((COMP)) = max((COMP)) = 1. Still, it consumes an extra statically-
of the work in synthesizing the COTs is done manually at present. Each time the environment and the corresponding resource constraints change, extra manual work must be done to search for and adopt suitable code optimization techniques. While many standard approaches to optimization are available (as in $P_1$ and $P_2$), there may be many functional components requiring different COTs and many WSN nodes imposing different environmental constraints. It is very difficult to manually manage the complexity involved.

4. Model and Algorithms

This section presents our model and algorithms. Our component-based model is built on top of a task view described in Section 4.1. The model consists of a skeleton component view, basis resource usages, and code optimization techniques, as described in Sections 4.2 to 4.4.

4.1. Task View

A task is a notion used in the real-time and system communities. It is often realized as a process or a thread on many platforms including TinyOS and Java. It provides a simple and direct means of partitioning components for the analysis of resource usages. We adapt the task model from [14] as the formal model to represent a WSN application, where a task has a run-to-complete semantics, meaning that the task will complete its execution before another copy of the same task is being run. A task [14] is a tuple $\tau = \langle \Phi, \text{Prd}, d, o, \omega, \text{loc} \rangle$, where $\Phi = \langle \alpha_1, \alpha_2, \cdots, \alpha_m \rangle$ is a list of $m$ WSN components, Prd is the invocation period of the task, $d$ is its relative deadline, $o$ is its release time offset, $\omega$: $\tau \rightarrow Q^+_{\Phi}$ maps the task to its resource usages, and loc: $\tau \rightarrow N^+$ maps the task to an integer representing the WSN node.

4.2. Skeleton Component View

By considering all lists $\Phi$ of components of all the tasks $\tau$ in a task model, we set up our component model of WSN applications. We define a component as a tuple $\alpha = \langle \text{Prd}, d, \text{pre}, \text{post}, \text{loc} \rangle$, where Prd is the invocation period of the component, $d$ is its relative deadline, pre is its previous component in the original list $\Phi$, post is its next component in $\Phi$, and $\text{loc}$: $\alpha \rightarrow N^+$ maps the component to an integer representing the WSN node. In this way, the execution schedule of tasks in the original task model is converted to that of the components.

The component view will not be useful for resource optimization unless we attach to it the basis resource usages and the code optimization techniques. These concepts will be introduced in Sections 4.3 and 4.4.

4.3. Resource Concerns and Resource Usages

Resource concerns: We model a concern imposed by the application environment by means of its bounds. A concern $\kappa$ is a range $\kappa = [\min, \max]$, where $\min$ represents the lower bound, and $\max$ the upper bound. For instance, in the motivation example of Section 3, a concern for CPU may be $[0, 2000]$, which means that the CPU can support no more than 2000 operations per second. Similarly, a concern for memory may be $[0k, 30k]$, which means that the memory available to a node is no more than 30k bytes. We use $K = \langle \kappa_1, \kappa_2, \cdots, \kappa_n \rangle$ to denote a list of concerns for $n$ resources, where $\kappa_j$ denotes the constraint for the $j$-th resource.

Resource usages: For every component $\alpha$ of a WSN application, the resource usage $\gamma^\alpha_j$ of the $j$-th resource is a numerical value within the range specified by the appropriate concern $\kappa_j$. We use $\Gamma^\alpha = \langle \gamma^\alpha_1, \gamma^\alpha_2, \cdots, \gamma^\alpha_n \rangle$ to denote a list of $n$ resource usages.

Basis resource usages: Components should have resource usages even if software developers do not optimize them. To acknowledge this fact in our model, we attach a list of $n$ basis resource usages $\Gamma^\alpha = \langle \gamma^\alpha_1, \gamma^\alpha_2, \cdots, \gamma^\alpha_n \rangle$ to every component $\alpha$ of a WSN application.

After the resource usages $\Gamma^\alpha$ of every component $\alpha$ have been determined, we can assemble them to compute the resource usages of a node or the whole application, and compare them with the given $K$ to evaluate the overall impacts. This assembling computation is related to the executing schedule of the components. It will be further discussed in Section 5.1.

The basis resource usage $\Gamma^\alpha$ can be improved to $\Gamma^\alpha$ according to a code optimization technique. In the next section, we shall further formulate the COTs.

4.4. Code Optimization Techniques

Each code optimization technique (COT) is inscribed in a component. A COT usually has local effects on resource usages. In other words, it only
affects the resource usages of the component where it is inscribed. We model it as effects of optimization of resource usages.

Thus, we define a code optimization technique $\alpha$ for a component $\alpha$ as a list $\alpha = \{\delta_1, \delta_2, \cdots, \delta_n\}$, where each $\delta_j$ represents an increment or decrement of a resource usage $\gamma_j^\alpha$ from the corresponding basis usage $\tilde{\gamma}_j^\alpha$. In the example in Section 3, for instance, $\tilde{\Gamma}_{\text{Timer.fired}} = \langle 1000, 1100, 20k \rangle$ is the list of basis resource usages of the component. After adopting a code optimization technique $\alpha$, the resource usage will become $\Gamma_{\text{Timer.fired}} = (800, 1105, 22k)$.

For every component, developers may define a set of code optimization techniques $\alpha = \{\alpha_1, \alpha_2, \cdots, \alpha_n\}$.

In this way, we complete our adaptive design framework $(\alpha, \tilde{\Gamma}_\alpha, X^\alpha)$ for a WSN component.

4.5. Order of Priority

cot_1 and cot_2 in the example in Section 3 show very different effects on resource usages, as shown in Table 1. In general, one code optimization technique may increase a specific resource usage while another technique may reduce it. To remedy this situation, we propose to use an order of priority to optimize the $n$ resources. Here, $\langle p_1, p_2, \cdots, p_n \rangle$ is a permutation of $\{1, 2, \cdots, n\}$ and each $p_j$ means that the $p_j$-th resource is of the $j$-th highest priority in optimization. Finding an optimal solution for such a problem is NP-hard in general. We shall explain our algorithms in the next two sections.

4.6. Objective of Algorithms

Given the preambles introduced in Sections 4.1 to 4.4 above, we can formulate our problem statement as follows:

**Problem statement:** Consider a WSN application in which there is a resource concern $K$ and each component $\alpha$ is associated with a basis resource usage $\Gamma^\alpha$ and a set of code optimization techniques $X^\alpha$. Our goal is to find a combination of code optimization techniques $Y^\alpha_{\text{opt}} = \{y_1, y_2, \cdots, y_{|Y^\alpha_{\text{opt}}|}\}$ that collectively satisfy all the given concerns $K$ and minimize the overall resource usages $\Gamma = (\Gamma_1^\alpha, \Gamma_2^\alpha, \cdots, \Gamma_{\text{num}})$ for a given order of priority $P$ for resource optimization.

If the COTs only provide maximal local effects of optimization to their assigned components, and if we can adapt each COT independently, it is easy to prove that a sufficient condition for $Y^\alpha_{\text{opt}}$ to be an optimal solution for the entire wireless sensor network application is that there exists an optimal solution $Y^\alpha_{\text{opt}}$ for every component $\alpha$ such that $Y^\alpha_{\text{opt}} = Y^\alpha_{\text{opt}} \cup Y^\alpha_{\text{opt}} \cup \cdots \cup Y^\alpha_{\text{opt}}$. Formally, the **optimal combination of code optimization techniques** $Y^\alpha_{\text{opt}}$ for component $\alpha$ satisfies the four conditions in Figure 4.

The first condition ensures that, given any COT in $Y^\alpha_{\text{opt}}$, all its dependencies are also included in $Y^\alpha_{\text{opt}}$. The second condition guarantees that any two COTs in $Y^\alpha_{\text{opt}}$ will not conflict with each other. The last two conditions ensures that $Y^\alpha_{\text{opt}}$ is a subset of $X^\alpha$ and produces the optimal effects of optimization of resource usages.

Let us explain the notations in Figure 4 in more detail. The relation $y_i \triangleright x_i$ denotes that $y_i$ depends on $x_i$, so that $x_i$ must be adopted whenever $y_i$ is adopted. The relation $x_i \triangleright y_i$ denotes that $x_i$ conflicts with $y_i$, so that only $x_i$ or $y_i$ can be adopted but not both. $F(\tilde{\Gamma}_\alpha, Y) = (f_1(\tilde{\gamma}_{1,1}^\alpha, Y), f_2(\tilde{\gamma}_{1,2}^\alpha, Y), \cdots, f_n(\tilde{\gamma}_{1,n}^\alpha, Y))$ is a list of functions calculating the resource usages according to the basis usage $\Gamma$ after implementing a set $Y = \{y_1, y_2, \cdots, y_{|Y^\alpha_{\text{opt}}|}\}$ of code optimization techniques $y_i^\alpha = \{\delta_1^\alpha, \delta_2^\alpha, \cdots, \delta_n^\alpha\}$. Each function $f_j$ for the $j$-th resource usage is given by

$$f_j(\tilde{\gamma}_{j,k}^\alpha, Y) = \tilde{\gamma}_{j,k}^\alpha + \sum_{k=1}^{j-1} \delta_k^\alpha_{j,k}.$$  (1)

For a given $P$, we define $\Psi(P, \Gamma, \Gamma')$

$$\Psi(P \setminus \{p_1\}, \Gamma, \Gamma') = \begin{cases} -1 & \text{if } P = \langle p_1, p_2, \cdots, p_n \rangle \\ 1 & \text{if } P = \langle p_1, p_2, \cdots, p_n \rangle \\ \Psi(P \setminus \{p_1\}, \Gamma, \Gamma') & \text{if } P = \langle p_1, p_2, \cdots, p_n \rangle \\ 0 & \text{if } P = \emptyset. \end{cases}$$

It compares two resource usage sets $\Gamma$ and $\Gamma'$. A negative returned value means that $\Gamma$ is preferred to $\Gamma'$, a positive value means that $\Gamma'$ is preferred, and a zero means no preference.

When a solution is found, we can follow the description in Section 4.3 to set up a list of formulas $G = \langle g_1, g_2, \cdots, g_n \rangle$ to compute the application-level or node-level resource usages based on the $n$ resource usages at the component level, where $g_j((\tilde{\gamma}_{j,1}^\alpha, \tilde{\gamma}_{j,2}^\alpha, \cdots, \tilde{\gamma}_{j,n}^\alpha), Y)$ is a summary of the $j$-th resource usage of all $m$ components. For each $g_j$,
Inputs: unordered list of COTs $X = \{x_1, x_2, \ldots, x_{|X|}\}$; order of priority $P$

Output: ordered list of COTs $Z = \langle z_1, z_2, \ldots, z_{|X|} \rangle$

01. let $U = \langle u_1, u_2, \ldots, u_n \rangle = (0, 0, \ldots, 0)$
02. let $V = \langle v_1, v_2, \ldots, v_n \rangle = (0, 0, \ldots, 0)$
03. let $A = \langle a_1, a_2, \ldots, a_{|X|} \rangle = (0, 0, \ldots, 0)$
04. let $Z = \langle z_1, z_2, \ldots, z_{|X|} \rangle = \langle 1, 2, \ldots, |X| \rangle$
05. for $j = 1, 2, \ldots, n$ do
06. let $u_j = \min \left( \bigcup_{i=1}^{|X|} \{ \delta_{i,j} \} \right)$, $v_j = \max \left( \bigcup_{i=1}^{|X|} \{ \delta_{i,j} \} \right)$
07. for $k = 1, 2, \ldots, |X|$ do
08. let $a_k = \sum_{j=1}^n \text{utility}(\delta_{j,k}, u_j, v_j)$
09. for $i, j = 1, 2, \ldots, |X|$ such that $i < j$ do
10. if $a_i > a_j \vee (a_i = a_j \wedge \Psi(P, x_{z_i}, x_{z_j}) > 0)$ then
11. swap $z_i, z_j$
12. exit

Figure 5. Algorithm to sort code optimization techniques.

the first argument is a list of basis resource usages in respective components, and the second argument is a set of COTs. By comparing the resulting values of $G$ with the given concerns $K$, we can evaluate the solution.

4.7. The Algorithms

Our algorithms cover two phases: the sorting of code optimization techniques and the generation of a combination.

Sorting of code optimization techniques: The algorithm will firstly estimate the optimization capability of each code optimization technique, which means how much the COT may optimize within given concerns. It will then sort all the COTs with respect to their estimated optimization capabilities. The algorithm, depicted in Figure 5, accepts a set of code optimization techniques and an order of priority $P$ as arguments and returns an ordered list of COTs $Z = \langle z_1, z_2, \ldots, z_{|X|} \rangle$. 5

For the purpose of flexibility when comparing effects of optimization in the algorithm, we use a utility function utility to estimate the optimization capability of components. Thus, the optimization capability for the $j$-th resource is represented as a function of the effect of optimization $\delta_{j,k}$ of the $k$-th COT as well as the minimum resource usage $u_j$ and the maximum resource usage $v_j$ of all COTs. We define our utility function in Section 5; software developers may define their own utility function instead. The result of this function should be monotonic to the value of the input $\delta_j$.

Generation of combination: Given a sorted list of COTs produced in the first phase, the present phase generates a suboptimal combination. We use a hill-climbing strategy in the algorithm. Every possible combination of COTs fulfilling the order of priority $P$ will be considered in turn. We rank the combinations before the algorithm begins. For every combination of $r$ selections from $|Z|$ choices, denoted by $\{z_{s_1}, z_{s_2}, \ldots, z_{s_r}\}$, its lexicographical index [2] is the concatenated string "$s_1s_2\cdots s_r$". We simply sort all the combinations in ascending order of the lexicographical indexes, and use $C_j$ to denote the $j$-th combination in the ordered list. (Since this is a fundamental concept in combinatorics, we do not include it in the skeleton algorithm in Figure 6.) The iteration will continue until the concerns have been satisfied and a locally optimal result has been found, which means that the first minimum point has been reached. Then, the algorithm returns a combination of COTs $Y = \{y_1, y_2, \ldots, y_{|Y|}\}$. If all legitimate combinations have been exhausted but the concerns cannot be fulfilled, the algorithm returns an empty set.

The procedure dependences in the algorithm accepts a code optimization technique $z_j$ as input and returns a combination of code optimization techniques $Y = \{y_1, y_2, \ldots, y_{|Y|}\}$, which includes the COTs $z_j$ depends on. The procedure valid accepts $Y$ and returns a Boolean value indicating whether it is a legitimate combination of COTs that satisfies the concerns.

The main entry of this algorithm iteratively processes all legitimate selections of COTs. After some iterations, when sufficient number of COTs have been considered, the result may be able to meet the resource constraints of the WSN application. When the iteration process continues, the estimation result is expected to further improve, but only up to a certain limit. When the algorithm finds that the resultant resource usage begins to recede, a heuristic solution has been found and the algorithm terminates. The experimental results in the next section show that such a heuristic strategy can be very helpful in the search for good solutions.

Complexity of algorithms: The prototype algorithm for sorting code optimization techniques can be completed in $O(|X|^2 \cdot n)$ time, where $|X|$ is the number of COTs and $n$ is the number of resource types.

The prototype algorithm for generating combination iteratively evaluates possible selections until a solution is found. A disadvantage of this prototype is its high time complexity in the worst case, which is $O(2^{|X|} \cdot |X|^2 \cdot n)$. On the other hand, we note from the experiment in Section 5 that the algorithm can find solutions much earlier than exhaustive search. We note also that, in practice, we may set an affordable upper
Algorithm: Generation of Combination

**Inputs:**
- ordered list of COTs \( Z = \{z_1, z_2, \ldots, z_j, \ldots, z_j \} \);
- basis resource usages \( (\Gamma_{\alpha_1}, \Gamma_{\alpha_2}, \ldots, \Gamma_{\alpha_n}) \);
- order of priority \( P \)

**Output:** combination of COTs \( Y = \{y_1, y_2, \ldots, y_j \} \)

01. let \( Y = \emptyset \)
02. for \( j = 1, 2, \ldots, 2^|Z| - 1 \) do
03.  let \( Y' = \emptyset \)
04.    foreach \( z_k \) in \( C_j \) do
05.     let \( Y' = Y' \cup \text{dependencies}(z_k) \)
06.     if valid\( (Y') \) then
07.        let \( \text{last} = G(\{\Gamma_{\alpha_1}, \Gamma_{\alpha_2}, \ldots, \Gamma_{\alpha_n}\}, Y) \)
08.        let \( \text{curr} = G(\{\Gamma_{\alpha_1}, \Gamma_{\alpha_2}, \ldots, \Gamma_{\alpha_n}\}, Y') \)
09.     if \( \Psi(P, \text{last}, \text{curr}) < 0 \) then
10.      exit
11.    let \( Y = Y' \)
12.   exit

**Procedure:** dependencies

**Input:** COT \( z_j \)

**Output:** set of COTs \( Y \)

01. let \( Y = \{z\} \)
02. foreach \( z_j \in Z \) such that \( z_j > z_j \) do
03.   let \( Y = Y \cup \text{dependencies}(z_j) \)
04. exit

**Procedure:** valid

**Input:** set of COTs \( Y \)

**Output:** Boolean value

01. foreach \( y_1, y_j \in Y \) do
02.   if \( y_1 \neq y_j \) then
03.    return false and exit
04.   foreach \( g_j \) of \( G \) do
05.     if \( g_j(\{\Gamma_{\alpha_1}, \Gamma_{\alpha_2}, \ldots, \Gamma_{\alpha_n}\}, Y) \notin \kappa_j \) then
06.       return false and exit
07. return true and exit

**Figure 6.** Algorithm to generate combination.

5. Experimental Study

In this section, we firstly select a few representative types of resource for experiment and set up their calculation formulas \( G \). Then, we construct a model of a real-life application and evaluate the performance of the algorithms.

### 5.1. The Resources

We select three most common and widely-used resources for our experimentation on optimization. For every individual node, we study the average CPU operations per second (CPU), the maximum memory usage (MEM), and the volume of application-level communication \(^6\) (COMM). Hence, in the following experiment, the resource usage can be represented by \( \Gamma = (\gamma_{CPU}, \gamma_{MEM}, \gamma_{COMM}) \) and the resource constraint by \( K = (k_{CPU}, k_{MEM}, k_{COMM}) \).

Figure 7 shows the calculation formulas \( G = (g_{CPU}, g_{MEM}, g_{COMM}) \) for computing application- or node-level resource usages based on the usages in two components \( \alpha_1 \) and \( \alpha_2 \). In particular, \( g_{CPU}^{\text{est}} \) is formula for concurrent execution of two components and \( g_{CPU}^{\text{est}} \) is for sequential execution of the same. For the case of more than two components, their formulas can be reasoned hierarchically according to the execution schedule.

**Figure 7.** Calculation formulas.

### 5.2. Subject of Experiment

The subject program is CntToLedsAndRfm \(^7\) written in nesC for the project TOSSIM. TOSSIM is a representative emulator of TinyOS [9].

A TinyOS application on any node of a wireless sensor network is designed to support only sequentially and periodically executed tasks [4]. Although tasks on different nodes may be executed concurrently, those on the same node are executed sequentially. Each task is processed in a run-to-complete manner. Thus, we can work out the execution schedule of the components from the tasks and, hence, set up the functions \( F \) to compute the resource usages.

### 5.3. Setup of Experiment

CntToLedsAndRfm consists of two nodes of the same function. Each node periodically increases a local counter, shows the lower bit values of the counter on LEDs, and sends the counter value to another node.

For the purpose of experimentation, we remove the debugging task and expand the application by cloning nodes and components. The resultant program consists of three nodes, each having three to four components with fixed orders of execution without idle time. Each

\(^6\) That is, the estimated total number of bytes sent or received.

\(^7\) Available at http://www.tinyos.net/tinyos-1.x/apps/CntToLedsAndRfm/.
component is equipped with COTs, some of which have dependences or conflicting relationships among one another. Figure 8 shows a schematic component-and-connector diagram of the program.

Suppose we have resource concerns regarding CPU and MEM at the node level and COMM at the application level. They can be calculated using the formulas in Figure 7. This is illustrated by Figure 9, where \( g_{cpu} \) represents the average number of CPU operations per second of an individual node, \( g_{mem} \) represents the maximum memory usage of an individual node, \( g_{comm} \) represents the volume of communication of the application, and \( f_{cpu}, f_{mem}, \) and \( f_{comm} \) are calculated by equation (1).

To apply the algorithms introduced in Section 4.7, we use utility \( \delta_{j,k} = \frac{108_{j,k} - 5y_j - 5v_j}{2v_j - 2u_j} \) in the experiment to evaluate the overall optimization capability of a COT. The lower the resulting value, the stronger will be the optimization capability. In general, a proper utility function can be chosen after a code review of the original subject program.

Our experiment is conducted on a Dell Inspiron 6400 laptop, which is equipped with an Inter Core(TM)2 T5600 @ 1.83GHz stepping 06 CPU and 1G memory. The operating system is Ubuntu 6.06 LTS Linux with kernel version 2.6.15-28-386 (build@terranova).

The subject application is from the TinyOS tool set TOSSIM version 1.1.15 (December 2005), which can be downloaded from http://www.TinyOS.net/download.html. Our driver programs are coded in C++. All the programs are compiled with gcc version 4.0.3 (Ubuntu 4.0.3-1ubuntu 5).

5.4. Experimental Evaluation Results

This section presents the experimental evaluation results with respect to the overall optimization capability, the order of priority for resource optimization, and sensitivity. For the space reasons, we shall not discuss efficiency results but concentrate only on the effectiveness of our approach.

Comparison with other solutions: Our experiment can be repeated deterministically. We report the results with the order of priority for resource optimization to be set as \( P = (CPU, COMM, MEM) \) and the concerns \( K \) to be 1.5 times the basis resource usages.

We compare our approach with three other solutions for code optimization, as shown in Figure 10. The three other solutions include: (a) Fully optimal solution: We iterate all legitimate selections and find the fully optimal solution. (b) Randomly selected solution: We randomly pick 300 COTs and then choose from them the COTs with the minimum resource usages. The magic number 300 is chosen from experience according to the scale of the problem. (c) Unoptimized solution: The original subject program is taken as an “unoptimized” solution. We should point out that the original subject program is manually crafted by professional developers. Since it targets for wireless sensor network applications, code optimization has been conducted, albeit not to an optimized level. The resource usages of the subject program are normalized as 1.0 as a benchmark for various solutions.

Resource usages are classified into three groups, namely (from top to bottom in Figure 10) CPU, COMM, and MEM; the usages in the four solutions are shown under each group. We notice that CPU usage is best optimized, followed by COMM usage, according to the order of priority specified by \( P \). This is consistent with our hypothesis that CPU and COMM usages are reduced at the expense of increased MEM usage. We also notice that, for the CPU resource, which is the main objective of optimization in the empirical study, our model obviously produces a better usage pattern than a randomly selected combination of COTs. Our results are only overtaken by the optimal solution for the MEM resource, which is at the lowest priority of optimization.

Changes in resource usages for different orders of priority: To analyze the adaptive capability of our algorithm to different orders of priority, we submit all six possible priority orders for resource optimization...
as inputs and present the results in Figure 11. The results are plotted in six groups, showing the results for six different orders of priority. Each group consists of three columns representing the resource usages of CPU, MEM, and COMM. We notice that, whenever we set a top priority to a resource, the usage of that resource will automatically be best optimized. This indicates that our model have a high adaptation capability for different orders of priority.

We also observe from the experiment that resources may have different properties when being optimized. In the example, many COTs that target at reducing CPU or COMM do so at the expense of increased MEM. This is because many code optimization techniques are achieved through additional memory usages, such as caches and lookup tables, which are very common in real-life. On the other hand, COMM is very difficult to be reduced. Even inconspicuous reductions in COMM, such as orders 5 and 6 in the figure, may result in disproportionate increases in CPU and MEM usages.

**Variations in resource usages for different COT counts:** Intuitively, the number of code optimization techniques used in an experiment (referred to as the COT count) should enhance the results. In our experiment, we vary the COT count from 2 to 10. Figure 12 shows the variations in resource usages with respect to different COT counts. The x-axis is the COT count while the y-axis is the normalized resource usages. We notice that when the COT count increases from two to three, all the three resource usages are reduced. When the COT count continues to increase, the resource usages showed fluctuations; however, they still show descending trends. We postulate that this is due to the hill-climbing strategy used in our algorithm.

The results are expected to improve by implementing more advanced algorithms.

The results also show that having more choices of code optimization techniques may help improve CPU and MEM. When the COT count increases, however, the complexity in choosing a promising one from different combinations increases. It makes our automated approach to synthesize COTs in WSN applications more attractive.

**5.5. Threats to Validity**

A threat to internal validity is the assumption that code optimization techniques are applied in WSN applications. There is no guarantee that COTs are considered in any given real-world application.

A threat to external validity may be due to the
resources chosen for experimentation. We have taken three representative kinds of resource for the study and set up the corresponding calculation formulas. A TinyOS application may include other kinds of concern.

Other threats to external validity include the use of a monotonic utility function and the use of the specific WSN platform TinyOS. As we have described in Section 4.7, the utility function should be monotonic. The quality of our results depends on this characteristic. Although developers may define their own utility functions, such functions must also be monotonic. Also, while TinyOS is the most widely used platform for WSN applications, we have not investigated any other platforms.

A construct validity is that we clone components and COTs in the experiment, which may affect the optimized result.

6. Conclusion

Optimization is indispensable in the design and implementation of wireless sensor network applications because of the stringent resource constraints referred to as concerns. Developers often need to iteratively select possible code optimization techniques (COTs) to meet the resource concerns. Such manual work is inefficient and error-prone.

In this paper, we present a model to manage COTs and evaluate its usefulness in optimizing the effectiveness under given concerns and a user-defined order of priority. The evaluation is conducted through estimated usages of resources based on the infrastructure of an application under study. An experimental study shows that our approach provides a promising solution to code optimization. As future work, it will be interesting to explore context-awareness, runtime adaptation, and more elaborate experimentation. We will also study how to specify COTs and how interactions among COTs may affect our approach.

References