

Toward Effectively Locating Integration-Level Faults in BPEL Programs

Chang-ai Sun1,2*, Yimeng Zhai1, Yan Shang1, Zhenyu Zhang2
1School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China

2State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Science, Beijing 100190, China
Emails: casun@ustb.edu.cn, 570282867@qq.com, shangyan@live.com, zhangzy@ios.ac.cn

Abstract—Business Process Execution Language (BPEL) is a
widely recognized executable service composition language.
Since BPEL integrates services of desired functionality to
compose business processes, it is significantly different from
typical programming languages. How to effectively locate the
integration-level faults in BPEL programs is an open issue. In
this paper, we propose the BPEL fault localization guidelines
based on the characteristics of BPEL programs, and adapt
Tarantula, a traditional fault localization technique, to locate
the integration-level faults in BPEL programs. We also
conducted an empirical study to demonstrate the feasibility of
our methodology.

Keywords- Service Compositions; BPEL; Fault Localization

I. INTRODUCTION
Service Oriented Architecture (SOA) has been

increasingly adopted to develop various applications [7][9].
In the context of SOA software, Web services are basic units
which provide their functionalities by exposing a set of
interfaces, and are coordinated in some way to execute
complex business processes. The Business Process
Execution Language (BPEL) [5] is a process-oriented
executable service composition language which can be used
to construct loosely coupled systems by orchestrating a
bundle of Web services. Such service compositions exhibit
some specific features. For instance, Web services under
composition can be implemented in any programming
languages and from different application domains. Such
features make BPEL programs different from traditional
module integrations.

Basically, BPEL integrates different services of desired
functionalities to compose a business process. There is no
guarantee that such composition is bug-free. However, there
is no dedicated study on locating the representative
integration-level faults in BPEL.

In this paper, we investigate how to effectively locate the
integration-level faults within BPEL programs. We
investigate the characteristics of BPEL programs and
propose to adapt Tarantula [4], which is one of the most
popular fault localization techniques, to effectively locate
faults in BPEL programs. An empirical study is conducted to
validate the feasibility of our methodology, and report the
effectiveness of fault localization.

The contributions of this paper are three-fold. Firstly, we
propose the BPEL fault localization guideline based on the
characteristics of the representative BPEL integration-level
faults. Secondly, we adapt a traditional fault localization
technique to locate the integration-level faults in BPEL

programs. Thirdly, we empirically evaluate the feasibility of
our methodology the report the effectiveness of fault
localization.

The rest of the paper is organized as follows. Section II
introduces the underlying concepts related to BPEL. Section
III elaborates on how to adapt Tarantula to locate
integration-level faults in BPEL programs. Section IV
describes the empirical study which is used to validate the
feasibility of the proposed methodology. Section V
concludes the paper and discusses the future work.

II. BACKGROUND
BPEL [11] is an executable service composition

language which executes complex business processes by
orchestrating Web services. BPEL programs are significantly
different from the traditional programs. Firstly, BPEL
provides an explicit integration mechanism (architectural
glues) to compose Web services into large-scale systems,
while such integrations in traditional programs are implicit.
Secondly, Web services composed by BPEL programs may
be implemented in different programming languages, while
modules in the traditional programs are usually implemented
in the same programming languages. Thirdly, BPEL
programs are represented as XML files, and the statements
are not the same as the one in the traditional programs.
Finally, BPEL provides concurrency among activities via
flow activities and synchronization via link tags within flows,
which is not common in the traditional programs. Testing
such programs meets new challenges [2][9].

Usually, a BPEL program consists of four sections,
namely partner link section, variable section, handler
section and interaction section [5]. The partner link section
describes the relationship among the BPEL process and
invoked Web services. The variable section defines input
and output messages. The handler section declares the
handlers when an exception or specific event occurs. The
interaction section describes the process how external Web
Services are coordinated to execute a business process.
Activities are the basic interaction units of BPEL processes,
and are further divided into basic activities and structural
activities. The former executes an atomic execution step. The
latter are composites of basic activities and/or structural
activities, including sequence, switch, while, flow, and so on.

Debugging is a very challenging and inevitable task
during software development. Debugging starts after testers
detect a fault. To debug a program, one first needs to know
the possible location that the fault may happen to, and then
attempt to revise the relevant codes. In this context, locating
the suspicious statements is crucial, and in recent years

* Corresponding author.

2012 12th International Conference on Quality Software

1550-6002/12 $26.00 © 2012 IEEE

DOI 10.1109/QSIC.2012.48

17

various fault localization techniques have been proposed to
improve the performance of debugging activities [4][8][11]
[12]. Their effectiveness has been validated through
empirical studies on typical programs such as C or Java
[8][11][12]. For example, The intuition behind the
Tarantula technique is that the entities in a program covered
by “failed” test cases are more likely to be faulty than those
that are covered by “passed” test cases. Following this
intuition, the suspiciousness score of an entity e can be
calculated using the following equation.

dtotalfaile
efailed

dtotalpasse
epassed

dtotalfaile
efailed

enesssuspicious)()(

)(

)(
�

�

 (1)
where passed(e) is the number of “passed” test cases that
executed the entity e at least once; failed(e) is the number of
“failed” test cases that executed the entity e at least once;
totalpassed and totalfailed are the sum of “passed” test
cases and “failed” test cases, respectively.

Traditional fault localization techniques work out a
ranked list of suspicious program elements and suggest the
programmer to search for faults along the resulting ranked
list. However, when these techniques are employed to debug
BPEL service compositions, are they still effective with
respect to the specific features of BPEL programs? In this
paper, we will propose how to employ traditional fault
localization techniques to locate the integration-level faults
in BPEL based on the characteristics of BPEL programs.

III. FAULT LOCALIZATION FOR BPEL PROGRAMS
In this section, we first present substantial concerns when

debugging BPEL programs, and then employ a fault
localization technique to demonstrate how to adapt it to
locate faults in BPEL programs.

A. Debugging Concerns of BPEL Programs
Based on the BPEL programming model discussed in
Section II, the most important concerns are as follows when
debugging BPEL programs.

(1) Integration level debugging
As mentioned before, BPEL is a kind of architectural

glues which is used to assemble Web services to build an
executable process. BPEL programs only focus on the
integration of Web services, and do not at all touch the
implementation of Web services. This means that service
integrations and service implementations are completely
separated. In this context, we only focus on the integration

faults when debugging BPEL programs.
(2) Interaction debugging
Among four sections of BPEL program as illustrated in

Section II, only interaction statements represent the
execution steps of a business process and direct interactions
with services under composition. These statements are
crucial to the correctness of BPEL programs, while
statements in other sections are not executable. One should
give the highest priority to the interaction section when she
debugs BPEL programs. In this paper, we will focus on how
to effectively locate faults related to interactions. Locating
faults in other sections beyond the scope of this study.

B. Dividing BPEL Programs into Statement Blocks
Based on the BPEL programming model and debugging
concerns discussed above, we assume that possible faults
only happen in statement blocks in the interaction section.
Here, BPEL programs are represented as a set of hierarchical
statement blocks. A statement block corresponds to a set of
elements enclosed by the matched XML tags. Figure 1
illustrates an example of the invoke statement block, which
describes the interaction through specifying the activity type,
operation name, input variable, output variable, partner link,
port type, target link name and source link name. Each
activity can be treated as a statement block, and the whole
BPEL program is composed of statement blocks in a
hierarchical way.

In our model, statement blocks are further classified into
atomic statement block and non-atomic statement block. The
former refers to an atomic execution step, including assign,
invoke, receive, reply, throw, wait and empty. The latter is
composites of atomic statement blocks or non-atomic
statement blocks, including sequence, switch, while, flow and
pick. We further abstract those statement blocks with similar
semantics as the same type. In this context, non-atomic
statement blocks can be classified into the following four
types, namely sequential, optional, parallel, and loop.
• Sequential statement blocks refer to those whose child

statement blocks are executed in a sequential order, such
as sequence activity.

• Optional statement blocks refer to those among whose
child statement blocks, only one can be executed, such as
switch, if/else/elseif, and pick activity.

• Parallel statement blocks refer to those whose child
statement blocks are executed simultaneously, such as
flow activity.

• Loop statement blocks refer to those whose child
statement blocks are executed all the time until some
conditions are satisfied, such as while, unitlWhile and
forEach activity.

C. BPEL Fault Localization Guidelines
According to the characteristics of the integration-level faults
in BPEL programs, we design the following fault
localization guidelines to facilitate accurate fault localization
in BPEL programs.

(1) Usually, fault localization techniques can locate faults
accurately in the traditional programs. This may not be true

<invoke inputVariable="request" name="invokeapprover"
operation="approve" outputVariable="approvalInfo"
partnerLink="approver" portType="apns:loanApprovalPT">

<target linkName="receive-to-approval" />
<target linkName="assess-to-approval" />
<source linkName="approval-to-reply" />

</invoke>

Figure 1. An illustration of BPEL statement blocks

18

because statement blocks in BPEL programs are composed
in a hierarchical way, and when a fault occurs at the higher
level statement blocks, it may propagate downstream to the
lower-level statement blocks. Therefore, for statement blocks
in optional, loop or parallel having the highest
suspiciousness, one should debug in the condition part.

(2) If a statement block in the sequential statement block
has the highest suspiciousness, one should debug faults from
near to far at the most suspicious statement blocks. It is
rather natural to blame those statement blocks close to the
most suspicious statement blocks if the latter are not the fault.

D. Locating Integration-Level Faults in BPEL Programs
We next demonstrate how we use Tarantula to locate the
integration-level faults in BPEL in four steps.
Step 1: When a failure f is reported during testing BPEL

program bp, we first get the test suite ts which was
used to reveal f.

Step 2: For each test case t in ts, we run bp to decide which
statement blocks are covered, and the current test
passes or fails. Correspondingly, t is identified as a
“passed” test case or a “failed” test case.

Step 3: Repeat Step 2 until all test cases in ts are executed,
and then apply Tarantula to figure out the most
suspicious statement block mssb with the available
testing history.

Step 4: According to the type of mssb, the possible position
set pps is recommended to check using the BPEL
fault localization guideline.

IV. AN EMPIRICAL STUDY

A. Choosing Subject Programs
Two programs SupplyChain and SmartShelf are chosen as
subjects in this empirical study. They demonstrate most of
major features of BPEL.

SupplyChain [1] is widely used to demonstrate common
features of BPEL. The implementation involves two Web
services and consists of 11 BPEL statement blocks. The
working process receives an order which is represented by
an input message consisting of name and amount of goods
and returns an output message to indicate whether the
warehouse can accept the order.

SmartShelf [6] is complex and demonstrates some other
features of BPEL, for instance supporting the concurrency
behavior. BPEL program for SmartShelf involves 14 Web
services’ interactions and consists of 48 statement blocks.
SmartShelf receives an input message called commodity,
which is composed of three fields, namely name, amount
and status and returns an output message which is composed
of quantity, localization and status.

B. Mimicking Faults of BPEL Programs
We first seed some faults into two BPEL programs. Among
the 26 mutation operators proposed in [3], only six of them
are selected to generate the mimicking faults. This is
because not all these mutation operators are applicable to
our subject programs. In addition, we have manually seeded

faults into BPEL programs because up to now, there is yet
not an automatic and practical mutation system for this task.

For the BPEL program of the SupplyChain and
SmartShelf, 13 and 20 faults are generated, respectively.

C. Generating Test Suites
To apply the above fault localization techniques to BPEL
programs, test suites (including “passed” test cases and
“failed” test cases) are required. For this task, the scenario-
oriented testing approach proposed in our previous work [10]
is employed.

We first generate a set of test scenarios for the two
BPEL programs with respect to a given coverage criteria.
Each test scenario corresponds to a sequence of statement
blocks. For a specific test scenario, we derive 20 test cases
which can be used as inputs to drive the execution of the test
scenario. As a result, we derive a test suite of 40 test cases
for the SupplyChain. For the SmartShelf, we generate 10
test cases for each test scenario and finally derive a test suite
of 120 test cases.

D. Adapting Tarantula to Locate Faults
We then execute tests. For each test case, we record its
actual output of a mutant and compare it with the expected
one, which corresponds to the output of the original BPEL
program for the same test case.

If the actual output is the same as the expected one, this
test case is said to be a “passed” test case; it is said to be a
“failed” test case. For each fault, we apply the proposed
method to figure out the most suspicious statement block. If
it contains the actual fault, the fault localization is successful;
otherwise, it failed.

Finally, we use the average fault localization success
rate to measure the effectiveness of Tarantula.

E. Results and Discussions
The evaluation results of Tarantula are summarized in Table
I and II, respectively. Note that No refers to fault number;
NE refers to “Number of test cases whose output is the same
as the expected”; NNE refers to “Number of test cases whose
output is different from the expected”; MSSB refers to “Most
Suspicious Statement Block”; PPS refers to “fault’s Possible
Position Set”; and LF refers to “whether Locate the Fault”
TABLE I. EVALUATION RESULTS OF OF TARANTULA FOR SUPPLYCHAIN

No NE NNE MSSB PPS LF
1 20 20 5-8 {4, 5} Y
2 30 10 5-8 {4, 5} Y
3 30 10 5-8 {4, 5} Y
4 30 10 5-8 {4, 5} Y
5 30 10 5-8 {4, 5} Y
6 39 1 9-10 {4, 9} Y
7 21 19 5-8 {4, 5} Y
8 20 20 5-8 {4, 5} Y
9 29 11 5-8 {4, 5} Y

10 31 9 9-10 {4, 9} Y
11 20 20 9-10 {4, 9} Y
12 30 10 5-8 {4, 5} Y
13 30 10 9-10 {4, 9} Y

19

(“Y” means success, while “N” means failure).
From Tables I and II, we have the following observations.

• For the BPEL programs of SupplyChain, Tarantula can
successfully locate all the 13 faults. The correctness
percentage of fault localization is 100%. For the
SmartShelf, it can successfully locate 16 of 20 faults. The
correctness percentage of fault localization is 80%.

• The effectiveness of the Tarantula technique varies when
used to locate faults in two BPEL programs. This is
because the BPEL program of SupplyChain is simpler
and faults are clustered at some locations, while the
BPEL program of SmartShelf is rather complex and the
faults are scattered in a widen code region.

F. Summary
Through this empirical study, on one hand we validated the
feasibility of the proposed methodology and the BPEL fault
localization guideline; on the other hand we adapt a popular
traditional fault localization technique Tarantula to locate the
integration-level faults in BPEL programs, and show that it is
effective.

V. CONCLUSIONS AND FUTURE WORK
How to effectively locate the representative integration-

level faults in BPEL programs is inadequately studied. In this
paper, we have proposed a BPEL fault localization
guidelines and demonstrate how to adapt a popular fault
localization technique in this domain.

We also have conducted an empirical study, and
successfully validate the feasibility of the proposed
methodology and the effectiveness of the fault localization
technique when adapted to debug BPEL programs.

In our future work, we plan to involve more BPEL
subject programs and more types of faults by means of
mutation operators to evaluate the effectiveness of more fault
localization techniques. Further, we will integrate with our
previous work [12] to locate faults in BPEL programs from
user feedback or failure reports.

ACKNOWLEDGMENT
Authors thank to Tieheng Xue and Ke Wang from

University of Science and Technology Beijing for their
implementations of BPEL programs which are used for the
empirical study. This research is supported by the National
Natural Science Foundation of China (Grant No. 60903003),
the Beijing Natural Science Foundation of China (Grant No.
4112037), the Fundamental Research Funds for the Central
Universities (Grant No. FRF-SD-12-015A) and the Open
Funds of the State Key Laboratory of Computer Science of
Chinese Academy of Science (Grant No. SYSKF1105).

REFERENCES
[1] L. Baresi, R. Heckel, S. Thöne, and D. Varró, “Modeling and

validation of service-oriented architectures: application vs.
style”, Proceedings of the 9th European Software
Engineering Conference held jointly with 11th ACM
SIGSOFT international symposium on Foundations of
Software Engineering (ESEC/FSE-11), 2003, pp. 68–77.

[2] G. Canfora, and M. Di Penta. “Service Oriented Architecture
Testing: A Survey”, LNCS 5413, Springer, 2009, pp78–105.

[3] A. Estero-Botaro, F. Palomo-Lozano, and I. Medina-Bulo,
“Mutation Operators for WS-BPEL 2.0”, Proceedings of 21th
International Conference on Software & Systems Engineering
and their Applications (ICSSEA 2008), 2008. pp.1-7

[4] J. A. Jones and M. J. Harrold. “Empirical Evaluation of the
Tarantula Automatic Fault-Localization Technique”,
Proceedings of the 20th IEEE/ACM International Conference
on Automated Software Engineering (ASE 2005), 2005, pp.
273–282.

[5] OASIS, “Web Services Business Process Execution Language
Version 2.0”, http://docs. oasis-
open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html, 2007.

[6] J. Park, M. Moon, and K. Yeom, “The BCD view model:
Business analysis view, service Composition view and service
Design view for service oriented software design and
development”, Proceedings of 12th IEEE International
Workshop on Future Trends of Distributed Computing System,
2008, pp. 37-43.

[7] M. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann,
“Service-Oriented Computaing: A Research Roadmap”,
International Journal on Cooperative Information Systems,
2008, 17(2): 223-255.

[8] M. Renieris and S. Reiss. “Fault localization with nearest
neighbor queries”, Proceedings of the International
Conference on Automated Software Engineering, 2003,
pp.30-39.

[9] C. Sun. “On Open Issues on SOA-based Software
Development”, China Sciencepaper Online,
http://www.paper.edu.cn/index.php/
default/releasepaper/content/201107-461. 2011.

[10] C. Sun, Y. Shang, Y. Zhao, T.Y. Chen, “Scenario-Oriented
Testing of Service Compositions using BPEL”. to appear in
Proceedings of QSIC 2012.

[11] W. E. Wong, Y. Qi, L. Zhao and K. Y. Cai. “Effective Fault
Localization using Code Coverage”, Proceedings of 31st
Annual International Computer Software and Applications
Conference (COMPSAC 2007), 2007, pp.449-456.

[12] Z. Zhang, W. K. Chan, and T. H. Tse, “Fault Localization
without Success Record: a Review and Proposal”, to appear in
IEEE Computer, 2012.

TABLE II. EVALUATION RESULTS OF TARANTULA FOR SMARTSHELF
No NE NNE MSSB PPS LF
1 4 116 13-25 {12, 13} Y
2 116 4 21-24 {16, 21} N
3 4 116 13-25 {12, 13} Y
4 36 84 13-25 {12, 13} Y
5 84 36 26-27 {12, 26} Y
6 44 76 17-20 {16, 17} Y
7 116 4 21-24 {16, 21} Y
8 40 80 13-25 {12, 13} N
9 76 44 17-20 {16, 17} Y
10 84 36 21-24 {16, 21} Y
11 0 120 1-48 {1, 2} N
12 6 114 40-45 {39, 40} Y
13 114 6 46-47 {39, 46} Y
14 0 120 1-48 {1, 2} N
15 54 66 40-45 {39, 40} Y
16 66 54 46-47 {39, 46} Y
17 80 40 21-24 {16, 21} Y
18 80 40 26-27 {12, 26} Y
19 60 60 35-36 {30, 35} Y
20 60 60 46-47 {39, 46} Y

20

