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Abstract—Business Process Execution Language (BPEL) is a 
widely recognized executable service composition language. 
Since BPEL integrates services of desired functionality to 
compose business processes, it is significantly different from 
typical programming languages. How to effectively locate the 
integration-level faults in BPEL programs is an open issue. In 
this paper, we propose the BPEL fault localization guidelines 
based on the characteristics of BPEL programs, and adapt 
Tarantula, a traditional fault localization technique, to locate 
the integration-level faults in BPEL programs. We also 
conducted an empirical study to demonstrate the feasibility of 
our methodology.  
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I.  INTRODUCTION 
Service Oriented Architecture (SOA) has been 

increasingly adopted to develop various applications [7][9]. 
In the context of SOA software, Web services are basic units 
which provide their functionalities by exposing a set of 
interfaces, and are coordinated in some way to execute 
complex business processes. The Business Process 
Execution Language (BPEL) [5] is a process-oriented 
executable service composition language which can be used 
to construct loosely coupled systems by orchestrating a 
bundle of Web services. Such service compositions exhibit 
some specific features. For instance, Web services under 
composition can be implemented in any programming 
languages and from different application domains. Such 
features make BPEL programs different from traditional 
module integrations. 

Basically, BPEL integrates different services of desired 
functionalities to compose a business process. There is no 
guarantee that such composition is bug-free. However, there 
is no dedicated study on locating the representative 
integration-level faults in BPEL. 

In this paper, we investigate how to effectively locate the 
integration-level faults within BPEL programs. We 
investigate the characteristics of BPEL programs and 
propose to adapt Tarantula [4], which is one of the most 
popular fault localization techniques, to effectively locate 
faults in BPEL programs. An empirical study is conducted to 
validate the feasibility of our methodology, and report the 
effectiveness of fault localization.  

The contributions of this paper are three-fold. Firstly, we 
propose the BPEL fault localization guideline based on the 
characteristics of the representative BPEL integration-level 
faults. Secondly, we adapt a traditional fault localization 
technique to locate the integration-level faults in BPEL 

programs. Thirdly, we empirically evaluate the feasibility of 
our methodology the report the effectiveness of fault 
localization. 

The rest of the paper is organized as follows. Section II 
introduces the underlying concepts related to BPEL. Section 
III elaborates on how to adapt Tarantula to locate 
integration-level faults in BPEL programs. Section IV 
describes the empirical study which is used to validate the 
feasibility of the proposed methodology. Section V 
concludes the paper and discusses the future work. 

II. BACKGROUND 
BPEL [11] is an executable service composition 

language which executes complex business processes by 
orchestrating Web services. BPEL programs are significantly 
different from the traditional programs. Firstly, BPEL 
provides an explicit integration mechanism (architectural 
glues) to compose Web services into large-scale systems, 
while such integrations in traditional programs are implicit. 
Secondly, Web services composed by BPEL programs may 
be implemented in different programming languages, while 
modules in the traditional programs are usually implemented 
in the same programming languages. Thirdly, BPEL 
programs are represented as XML files, and the statements 
are not the same as the one in the traditional programs. 
Finally, BPEL provides concurrency among activities via 
flow activities and synchronization via link tags within flows, 
which is not common in the traditional programs. Testing 
such programs meets new challenges [2][9]. 

Usually, a BPEL program consists of four sections, 
namely partner link section, variable section, handler 
section and interaction section [5]. The partner link section 
describes the relationship among the BPEL process and 
invoked Web services. The variable section defines input 
and output messages. The handler section declares the 
handlers when an exception or specific event occurs. The 
interaction section describes the process how external Web 
Services are coordinated to execute a business process. 
Activities are the basic interaction units of BPEL processes, 
and are further divided into basic activities and structural 
activities. The former executes an atomic execution step. The 
latter are composites of basic activities and/or structural 
activities, including sequence, switch, while, flow, and so on. 

Debugging is a very challenging and inevitable task 
during software development. Debugging starts after testers 
detect a fault. To debug a program, one first needs to know 
the possible location that the fault may happen to, and then 
attempt to revise the relevant codes. In this context, locating 
the suspicious statements is crucial, and in recent years   
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various fault localization techniques have been proposed to 
improve the performance of debugging activities [4][8][11] 
[12]. Their effectiveness has been validated through 
empirical studies on typical programs such as C or Java 
[8][11][12]. For example,  The intuition behind the 
Tarantula technique is that the entities in a program covered 
by “failed” test cases are more likely to be faulty than those 
that are covered by “passed” test cases. Following this 
intuition, the suspiciousness score of an entity e can be 
calculated using the following equation. 
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             (1) 
where passed(e) is the number of “passed” test cases that 
executed the entity e at least once; failed(e) is the number of 
“failed” test cases that executed the entity e at least once; 
totalpassed and totalfailed are the sum of “passed” test 
cases and “failed” test cases, respectively.  

Traditional fault localization techniques work out a 
ranked list of suspicious program elements and suggest the 
programmer to search for faults along the resulting ranked 
list. However, when these techniques are employed to debug 
BPEL service compositions, are they still effective with 
respect to the specific features of BPEL programs? In this 
paper, we will propose how to employ traditional fault 
localization techniques to locate the integration-level faults 
in BPEL based on the characteristics of BPEL programs. 

III. FAULT LOCALIZATION FOR BPEL PROGRAMS 
In this section, we first present substantial concerns when 

debugging BPEL programs, and then employ a fault 
localization technique to demonstrate how to adapt it to 
locate faults in BPEL programs.   

A. Debugging Concerns of BPEL Programs  
Based on the BPEL programming model discussed in 
Section II, the most important concerns are as follows when 
debugging BPEL programs.  

(1) Integration level debugging 
As mentioned before, BPEL is a kind of architectural 

glues which is used to assemble Web services to build an 
executable process. BPEL programs only focus on the 
integration of Web services, and do not at all touch the 
implementation of Web services. This means that service 
integrations and service implementations are completely 
separated. In this context, we only focus on the integration 

faults when debugging BPEL programs. 
(2) Interaction debugging  
Among four sections of BPEL program as illustrated in 

Section II, only interaction statements represent the 
execution steps of a business process and direct interactions 
with services under composition. These statements are 
crucial to the correctness of BPEL programs, while 
statements in other sections are not executable. One should 
give the highest priority to the interaction section when she 
debugs BPEL programs. In this paper, we will focus on how 
to effectively locate faults related to interactions. Locating 
faults in other sections beyond the scope of this study. 

B. Dividing BPEL Programs into Statement Blocks 
Based on the BPEL programming model and debugging 
concerns discussed above, we assume that possible faults 
only happen in statement blocks in the interaction section. 
Here, BPEL programs are represented as a set of hierarchical 
statement blocks. A statement block corresponds to a set of 
elements enclosed by the matched XML tags. Figure 1 
illustrates an example of the invoke statement block, which 
describes the interaction through specifying the activity type, 
operation name, input variable, output variable, partner link, 
port type, target link name and source link name. Each 
activity can be treated as a statement block, and the whole 
BPEL program is composed of statement blocks in a 
hierarchical way. 

In our model, statement blocks are further classified into 
atomic statement block and non-atomic statement block. The 
former refers to an atomic execution step, including assign, 
invoke, receive, reply, throw, wait and empty. The latter is 
composites of atomic statement blocks or non-atomic 
statement blocks, including sequence, switch, while, flow and 
pick. We further abstract those statement blocks with similar 
semantics as the same type. In this context, non-atomic 
statement blocks can be classified into the following four 
types, namely sequential, optional, parallel, and loop. 
• Sequential statement blocks refer to those whose child 

statement blocks are executed in a sequential order, such 
as sequence activity. 

• Optional statement blocks refer to those among whose 
child statement blocks, only one can be executed, such as 
switch, if/else/elseif, and pick activity. 

• Parallel statement blocks refer to those whose child 
statement blocks are executed simultaneously, such as 
flow activity. 

• Loop statement blocks refer to those whose child 
statement blocks are executed all the time until some 
conditions are satisfied, such as while, unitlWhile and 
forEach activity.  

C. BPEL Fault Localization Guidelines 
According to the characteristics of the integration-level faults 
in BPEL programs, we design the following fault 
localization guidelines to facilitate accurate fault localization 
in BPEL programs. 

(1) Usually, fault localization techniques can locate faults 
accurately in the traditional programs. This may not be true 

<invoke inputVariable="request" name="invokeapprover" 
operation="approve" outputVariable="approvalInfo" 
partnerLink="approver" portType="apns:loanApprovalPT">

<target linkName="receive-to-approval" /> 
<target linkName="assess-to-approval" /> 
<source linkName="approval-to-reply" /> 

</invoke> 

Figure 1. An illustration of BPEL statement blocks 
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because statement blocks in BPEL programs are composed 
in a hierarchical way, and when a fault occurs at the higher 
level statement blocks, it may propagate downstream to the 
lower-level statement blocks. Therefore, for statement blocks 
in optional, loop or parallel having the highest 
suspiciousness, one should debug in the condition part. 

(2) If a statement block in the sequential statement block 
has the highest suspiciousness, one should debug faults from 
near to far at the most suspicious statement blocks. It is 
rather natural to blame those statement blocks close to the 
most suspicious statement blocks if the latter are not the fault. 

D. Locating Integration-Level Faults in BPEL Programs  
We next demonstrate how we use Tarantula to locate the 
integration-level faults in BPEL in four steps.  
Step 1: When a failure f is reported during testing BPEL 

program bp, we first get the test suite ts which was 
used to reveal f. 

Step 2: For each test case t in ts, we run bp to decide which 
statement blocks are covered, and the current test 
passes or fails. Correspondingly, t is identified as a 
“passed” test case or a “failed” test case.   

Step 3: Repeat Step 2 until all test cases in ts are executed, 
and then apply Tarantula to figure out the most 
suspicious statement block mssb with the available 
testing history.  

Step 4: According to the type of mssb, the possible position 
set pps is recommended to check using the BPEL 
fault localization guideline. 

IV. AN EMPIRICAL STUDY 

A. Choosing Subject Programs 
Two programs SupplyChain and SmartShelf are chosen as 
subjects in this empirical study. They demonstrate most of 
major features of BPEL. 

SupplyChain [1] is widely used to demonstrate common 
features of BPEL. The implementation involves two Web 
services and consists of 11 BPEL statement blocks. The 
working process receives an order which is represented by 
an input message consisting of name and amount of goods 
and returns an output message to indicate whether the 
warehouse can accept the order. 

SmartShelf [6] is complex and demonstrates some other 
features of BPEL, for instance supporting the concurrency 
behavior. BPEL program for SmartShelf involves 14 Web 
services’ interactions and consists of 48 statement blocks. 
SmartShelf receives an input message called commodity, 
which is composed of three fields, namely name, amount 
and status and returns an output message which is composed 
of quantity, localization and status.  

B. Mimicking Faults of BPEL Programs 
We first seed some faults into two BPEL programs. Among 
the 26 mutation operators proposed in [3], only six of them 
are selected to generate the mimicking faults. This is 
because not all these mutation operators are applicable to 
our subject programs. In addition, we have manually seeded 

faults into BPEL programs because up to now, there is yet 
not an automatic and practical mutation system for this task.  

For the BPEL program of the SupplyChain and 
SmartShelf, 13 and 20 faults are generated, respectively. 

C. Generating Test Suites  
To apply the above fault localization techniques to BPEL 
programs, test suites (including “passed” test cases and 
“failed” test cases) are required. For this task, the scenario-
oriented testing approach proposed in our previous work [10] 
is employed. 

We first generate a set of test scenarios for the two 
BPEL programs with respect to a given coverage criteria. 
Each test scenario corresponds to a sequence of statement 
blocks. For a specific test scenario, we derive 20 test cases 
which can be used as inputs to drive the execution of the test 
scenario. As a result, we derive a test suite of 40 test cases 
for the SupplyChain. For the SmartShelf, we generate 10 
test cases for each test scenario and finally derive a test suite 
of 120 test cases.  

D. Adapting Tarantula to Locate Faults 
We then execute tests. For each test case, we record its 
actual output of a mutant and compare it with the expected 
one, which corresponds to the output of the original BPEL 
program for the same test case. 

If the actual output is the same as the expected one, this 
test case is said to be a “passed” test case; it is said to be a 
“failed” test case. For each fault, we apply the proposed 
method to figure out the most suspicious statement block. If 
it contains the actual fault, the fault localization is successful; 
otherwise, it failed. 

Finally, we use the average fault localization success 
rate to measure the effectiveness of Tarantula. 

E. Results and Discussions 
The evaluation results of Tarantula are summarized in Table 
I and II, respectively. Note that No refers to fault number; 
NE refers to “Number of test cases whose output is the same 
as the expected”; NNE refers to “Number of test cases whose 
output is different from the expected”; MSSB refers to “Most 
Suspicious Statement Block”; PPS refers to “fault’s Possible 
Position Set”; and LF refers to “whether Locate the Fault” 
TABLE I.  EVALUATION RESULTS OF OF TARANTULA FOR SUPPLYCHAIN 

No NE NNE MSSB PPS LF 
1 20 20 5-8 {4, 5} Y 
2 30 10 5-8 {4, 5} Y 
3 30 10 5-8 {4, 5} Y 
4 30 10 5-8 {4, 5} Y 
5 30 10 5-8 {4, 5} Y 
6 39 1 9-10 {4, 9} Y 
7 21 19 5-8 {4, 5} Y 
8 20 20 5-8 {4, 5} Y 
9 29 11 5-8 {4, 5} Y 

10 31 9 9-10 {4, 9} Y 
11 20 20 9-10 {4, 9} Y 
12 30 10 5-8 {4, 5} Y 
13 30 10 9-10 {4, 9} Y 
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(“Y” means success, while “N” means failure). 
From Tables I and II, we have the following observations. 

• For the BPEL programs of SupplyChain, Tarantula can 
successfully locate all the 13 faults. The correctness 
percentage of fault localization is 100%. For the 
SmartShelf, it can successfully locate 16 of 20 faults. The 
correctness percentage of fault localization is 80%. 

• The effectiveness of the Tarantula technique varies when 
used to locate faults in two BPEL programs.  This is 
because the BPEL program of SupplyChain is simpler 
and faults are clustered at some locations, while the 
BPEL program of SmartShelf is rather complex and the 
faults are scattered in a widen code region. 

F. Summary 
Through this empirical study, on one hand we validated the 
feasibility of the proposed methodology and the BPEL fault 
localization guideline; on the other hand we adapt a popular 
traditional fault localization technique Tarantula to locate the 
integration-level faults in BPEL programs, and show that it is 
effective.  

V. CONCLUSIONS AND FUTURE WORK 
How to effectively locate the representative integration-

level faults in BPEL programs is inadequately studied. In this 
paper, we have proposed a BPEL fault localization 
guidelines and demonstrate how to adapt a popular fault 
localization technique in this domain.  

We also have conducted an empirical study, and 
successfully validate the feasibility of the proposed 
methodology and the effectiveness of the fault localization 
technique when adapted to debug BPEL programs.  

In our future work, we plan to involve more BPEL 
subject programs and more types of faults by means of 
mutation operators to evaluate the effectiveness of more fault 
localization techniques. Further, we will integrate with our 
previous work [12] to locate faults in BPEL programs from 
user feedback or failure reports. 
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TABLE II.  EVALUATION RESULTS OF TARANTULA FOR SMARTSHELF 
No NE NNE MSSB PPS LF 
1 4 116 13-25 {12, 13} Y 
2 116 4 21-24 {16, 21} N 
3 4 116 13-25 {12, 13} Y 
4 36 84 13-25 {12, 13} Y 
5 84 36 26-27 {12, 26} Y 
6 44 76 17-20 {16, 17} Y 
7 116 4 21-24 {16, 21} Y 
8 40 80 13-25 {12, 13} N 
9 76 44 17-20 {16, 17} Y 
10 84 36 21-24 {16, 21} Y 
11 0 120 1-48 {1, 2} N 
12 6 114 40-45 {39, 40} Y 
13 114 6 46-47 {39, 46} Y 
14 0 120 1-48 {1, 2} N 
15 54 66 40-45 {39, 40} Y 
16 66 54 46-47 {39, 46} Y 
17 80 40 21-24 {16, 21} Y 
18 80 40 26-27 {12, 26} Y 
19 60 60 35-36 {30, 35} Y 
20 60 60 46-47 {39, 46} Y 
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