
203

PAFL: Fault Localization via Noise Reduction on Coverage Vector

Lei Zhao Zhenyu Zhang
Computer School of State Key Laboratory of Computer Science,

Institute of Software, Chinese Academy of Sciences

Aerospace Information Security and Trust Computing
Computer School of

Abstract—Coverage-based fault localization techniques assess
the extent of how much a program entity relates to faults by
contrasting the execution spectra of passed executions and
failed executions. However, previous studies show that
different test cases may generate similar or identical coverage
information in program execution, which makes the execution
spectra of program entities indistinguishable to one another,
thus involves noise and decreases the effectiveness of existing
techniques. In this paper, we use the concept of coverage vector
to model program coverage in execution, compare coverage
vectors to capture the similarity among test cases, reduce noise
by removing similar coverage vector to refine the execution
spectra, and based on them assess the suspicious basic blocks
being related to fault. We thus narrow down the search region
and facilitate fault localization. The empirical evaluation using
Siemens programs and realistic UNIX utilities shows that our
technique effectively addresses the problem caused by similar
test cases and outperforms existing representative techniques.

Keywords-fault localization; execution path; noise reduction

I. I
Coverage-based fault localization (CBFL) techniques

have been proposed to support software debugging [8][11]
[13]. By contrasting the coverage statistics of program
entities (such as statements, blocks and predicates) between
passed executions and failed executions, CBFL techniques
can locate the program entities which exercising are strongly
correlated to the program execution failures observed.
Previous studies showed that CBFL techniques are effective
in locating faults [8][13].

Since test cases may not always be generated to satisfy
some coverage criteria, and there is no guarantee that the test
suite reduction task is always conducted, it is common that
different executions may cover similar and even identical
execution paths [4]. Similar coverage information makes the
execution spectra of program entities indistinguishable in
passed and failed executions and thus decreases the
effectiveness of previous fault localization techniques or
even makes them lose effect, especially when coincidental
correctness occurs [5]. For example, suppose a faulty
statement is exercised in the program execution of all passed
and all failed executions, it is hard to pinpoint it by
contrasting its execution spectra in passed and failed
executions. Such a case may have a high chance to happen in
real life programs (e.g., a faulty statement may exist in the

main method of a program and must be exercised by all the
executions). Previous study also shows that execution
similarity and coincidental correctness occurs frequently in
realistic programs [12].

In this paper, we propose to use the concept of coverage
vector to count the distinct execution paths, to capture the
happening of execution simila
failing rate of each coverage vector as the ratio of the
number of failed executions covering it to the number of all
executions covering it. For each basic block, we then
calculate two numbers, the number of coverage vectors
exercising that basic block and covered by failed executions,
and the number of coverage vectors either exercising that

ratio of the former to the latter as the suspiciousness score of
 all the basic blocks in the

descending order of thus calculated suspiciousness scores. In
case of a tie, which means two or more blocks sharing
identical suspiciousness scores, we try to use the average
failing rate of coverage vectors exercising a block to further
determine the order of the blocks.

to evaluate our technique, and compare it with five
representative techniques, namely, Tarantula [7], Jaccard [1],
SBI [13], SAFL [4], and ICST10 [10]. The empirical results
show that our technique is pr
programs. Further analysis show that our technique is
promising to alleviate the impact of execution similarity.

The contributions of this
propose to use the concept of coverage vector to count the
distinct execution paths, and make use of it to estimate the
occurring of similarities from the coverage information. (ii)

is empirically evaluated to be promising in locating fault,
especially in case of high execution similarity.

In this section, we use an example to demonstrate
previous techniques and motivate our approach.

The code excerpt in Figure 1 finds the middle value in
three given numbers. A fault exists in statement s2, which
accesses the variable x instead of z

indicates that a statement is exercised in the program

204

execution with respect to a test case. The execution results (P
for pass and F for fail) are shown in table header.

SBI [13], SAFL [4], and ICST10 [10] to locate fault
(statement s2) in this example. For example, Tarantula
assigns suspiciousness score 0.50 to statement s2, and finally
needs to examine 66% of all code to locate the fault. The
results of Jaccard, SBI, SAFL, and ICST10 can be similarly
explained. Unfortunately, none of them can locate the fault
with somehow affordable code examining efforts (e.g., less
than 50%). This is because that the faulty statement (s2)
happen to be exercised in all passed and failed executions, so
that they are indistinguishable
other hand, Statements s4 and s6 are given higher
suspiciousness scores than statements s8 and s10 because the
former happen to be exercised in relatively more failed
executions than the latter. Note that statements s4 and s6 are
exercised in one failed execution (t5) and one passed
execution (t6), while statements s8 and s10 are exercised in
one failed execution (t1) and three passed executions (t2, t3,
and t4). Among the two passed test cases (t5 and t6), which
exercise the former (statements s4 and s6), 50% of them are

the latter (statements s8 and s10) are failed ones. As a result,
statements s4 and s6 are given higher suspiciousness scores
because of such imbalance.

Execution similarity may frequently occur in realistic

the imbalance observed in previous paragraph. To measure
the execution similarity, we design to use the coverage
information. In addition, we also measure the execution
similarity to estimate the occurring of coincidental
correctness in passed executions and manage to alleviate the
impact of coincidental correctness to execution spectra of
statements.

From Figure 1, we observe that there are in total two
distinct paths covered by the six test cases [2], which are
denoted as p1 = b1, b2, b4, b10 and p2 = b1, b3, b7, b10 . After
that, we adopt SBI’s formula to estimate

the failing rate of a path, which means the probability of an
execution (covering that path) revealing a failure. Note that,
here we use a path, rather than a statement, as the program
entity in the formula. Since p1 is covered by one failed test
case and three passed test cases, the failing rate of p1 is 0.25.
Similarly, the failing rate of p2 is 0.5. A path with a positive
failing rate means that the corresponding execution can
reveal failures. A path with failing rate zero means that the

Jaccard’s formula to calculate the
suspiciousness score for each block. Here, failed(b) means
the number of distinct paths, which have positive failing
rates and exercise block b; passed(b) means the number of
distinct paths, which have failing rates of zero and exercise
block b; totalfailed means the number of distinct paths,
which have positive failing rates. Thus, the suspiciousness
score of block b1 is calculated as . As a result, we
finally take 33% code examining effort to locate the fault.

The above example has interestingly demonstrated that
previous techniques may not be effective in a common case,
while our approach has the potential to address it. In the next
section, we will elaborate on our model.

In this section, we introduce the problem settings, give
definitions, and elaborate on our model PAFL.

A. Definitions

describe the concept of “distinct path” used in Section II.
[Definition I] An original coverage vector ocvi = b1,

b2, ..., bn (bj {0, 1} for j = 1, 2, ..., n) of program execution
P(ti) is a tuple. We use ocvi(bj) to retrieve the j-th element in
the tuple, where ocvi(bj) = 1 means the basic block bj is
exercised in the execution, ocvi(bj) = 0 means bi is not
exercised in the execution. For the coverage vector ocvi with
respect to execution P(ti), we also say P(ti) covers ocvi.

In Figure 1, there are six original coverage vectors. The
coverage vector with respect to test case t1 is ocv1 = 1, 0, 0,

B
lo

ck
s

Statements
Test cases Previous techniques Distinct paths

t1 t2 t3 t4 t5 t6 Tarantula Jaccard SBI SAFL ICST10 p1 p2

F P P P F P score rank score rankscorerank scorerankscorerank t1 t2,t3,t4 t5 t6 score rank

b1

s1
0.50 4 0.33 4 0.50 4 0.81 6 0.50 4 0.50 2s2

s3
b2 s4 0.67 2 0.33 4 0.67 2 1 5 0.67 2 0.33 6
b3 s5
b4 s6 0.67 2 0.33 4 0.67 2 1 5 0.67 2 0.33 6
b5 s7
b6 s8 0.40 6 0.20 6 0.40 6 1 5 0.40 6 0.33 6
b7 s9
b8 s10 0.40 6 0.20 6 0.40 6 1 5 0.40 6 0.33 6
b9 s11
b10 s12 0.50 4 0.33 4 0.50 4 1 5 0.50 4 0.50 2

Code examining effort to locate fault: 66% 66% 66% 100% 66% 33%
Figure 1. Motivating example – the program Mid

205

0, 0, 1, 0, 1, 0, 1 . Apparently, an original coverage vector
can be covered by many different executions (even by both
some passed executions and some failed executions). So let
us move to Definition II.

[Definition II] The distinct coverage vector set CV =
{cv1, cv2, ..., cvp} is the distinct set (with no repeating
elements) of all original coverage vectors ocvi with respect
to the program execution P(ti) of each test case ti. Each
element cvi CV is called a coverage vector. Similarly, we
use cvi(bj) to retrieve the j-th element in the tuple of cvi.

By such definition, we know that we have cvi cvj for
any two coverage vectors cvi and cvj (1 i < j p). In Figure
1, there are two coverage vectors, namely, cv1 = 1, 0, 0, 0, 0,
1, 0, 1, 0, 1 and cv2 = 1, 1, 0, 1, 0, 0, 0, 0, 0, 1 .

B. Failing Rate of Coverage Vector
Since a coverage vector may be covered by both passed

executions and failed executions, we are also interested in
the ratio of failed executions that covers the coverage vector

the term failing rate of a coverage vector to denote such a
ratio, which is calculated using equation (1).

(1)

In equation (1), failed (cvi) and passed (cvi) respectively
refer to the number of failed and passed executions that
cover cvi. They are calculated using equation (2) and (3).

 (2)
(3)

Here, we adopt the formula of SBI in equation (1)
because it gives a best estimation to the probability of an
exercised program entity causing a failure [14].

For a coverage vector cvi with (cvi) greater than zero, it
indicates that cvi is covered by at least one failed execution,
and it is also denoted as a failed coverage vector. For a
coverage vector cvi with (cvi) equals to zero, it indicates that
cvi is covered by no failed execution, and it is also denoted as
a passed coverage vector.

According to equation (1), the failing rates of cv1 and cv2
are (cv1) = 0.25 and (cv2) = 0.50, respectively. Both of
them are failed coverage vectors.

C. Suspiciousness Scores of Blocks
After we have identified all the coverage vectors, we also

need to calculate suspiciousness scores for basic blocks.
Inspired by previous study [6], we employ the Jaccard
similarity coefficient to evaluate the suspiciousness scores
for basic blocks, by contrasting the execution spectra of basic
blocks on the coverage vector level. In this paper, we use the
term susp(bi) to denote such suspiciousness score of basic
block bi, which is calculated using equation (4).

(4)

The numerator represents the number of failed coverage
vectors that cover bi, the denominator represents the number
of coverage vectors that are either failed coverage vectors or
cover bi. Here, we adopt the similarity coefficient Jaccard
because it has mature mathematical basis. Further, it has

been used in previous techniques and empirically shown
effective in locating faults in programs [1].

Equation (4) estimates the extent of how much a basic
block is related to faults. The greater the value, the more the
basic block will be related to fault. According to equation (4),
we can recall the motivating example in Section II and revisit
the suspiciousness scores calculated in Section II. The
suspiciousness scores for b1 is calculated as .

D. Tie breaking
After all the blocks are sorted according to their

suspiciousness of relating to fault and form a list,
programming may search along the generated list for the
fault. Particularly, when some basic blocks have identical
suspiciousness scores, we use equation (5) to break tie.

(5)

Equation (5) calculates the average failing rate of the
coverage vectors that exercising basic block bi. The rational
is that for two basic blocks having identical probability of
causing failure, we deem the one whose appearance in a path
has higher chance to reveal a failure as more related to faults.

For example, in Figure 1, basic blocks b1 and b10 form a

 so that the tie still cannot be break and thus b1 and b10
are evaluated as a whole. Finally, we need to examine 33%
of all code to locate the fault.

A. Experiments Setup
In this paper, we use the 7 Siemens programs and 3

several faulty versions (downloaded from the SIR repository
[3]). They have been used in previous studies [9][13][14].

the experiments.
In our experiment, we select techniques Tarantula [7],

Jaccard [1], SBI [13], SAFL [4], and ICST10 [10] to
compare with. Tarantula is an old technique and has a lot of
variants [7][13]. Jaccard is evaluated very effective in

Table 1. Statistics of subjects

Subjects # of faulty
versions

of
test cases Description

print_tokens 7 4130 lexical analyzer
print_tokens2 10 4115 lexical analyzer
replace 32 5542 pattern replacement
schedule 9 2650 priority scheduler
schedule2 10 2650 priority scheduler
tcas 40 1578 altitude separation
tot_info 23 1054 information measure
flex 56 567 lexical parser
grep 21 809 text processor
gzip 18 213 compressor

in total 226

206

previous studies [10][14]. SBI is the statement-level version
of CBI [9], while the latter is a classic predicate-level
technique. SAFL and ICST10 investigate execution
similarity to reduce the noise from coincidental correctness
and relates to them.

B. Effectiveness on Subject Programs
To know the overall effectiveness of the studied

techniques, we take the average of the 10 programs to show
in Figure 2. In Figure 2, the x-coordinates mean the
percentage of code examined in each faulty version; the y-
coordinates show the percentage of faulty versions, in which,
faults can be located within the code examining effort
specified by the x-coordinates.

From Figure 2, we observe that at most checkpoints
(except the 50% checkpoint), PAFL is more effective than,
or at least comparable to, the other techniques. For example,
on average, by examining up to 5% of all the code in faulty
versions, PAFL can locate faults in 34% of all faulty
versions, Jaccard can locate 33%, Tarantula can locate 23%,
SBI can locate 22%, SAFL can locate 6%, and ICST10 can
locate 26%. It shows that PAFL has an overall better
effectiveness than the other techniques studied.

Table 2 shows the mean effectiveness of these
techniques on each program. Limited by the space, we
cannot show results of the minimum, maximum, and
standard deviation measurements. This table shows that for
these programs, PAFL is often, but not always, the best
among the four techniques.

In this paper, we demonstrate that frequently occurred
execution similarity may affect the effectiveness of existing
fault localization techniques and propose PAFL to alleviate

coverage vector to count distinct execution paths, and
calculate failing rate for each coverage vector, thus refine the
executions spectra to reduce noise. The empirical study
shows that our technique outperforms five previous

also shows that our technique is particularly effectiveness to
alleviate the impact of execution similarity and coincidental

correctness. The future work is to investigate the impact of
test case selection to PAFL and adapt PAFL to locate faults
in multi-fault programs.

This work is supported by the National Natural Science
Foundation of China (nos. 60970114, 61003027, 61073006)
and the Scholarship Award for Excellent Doctoral Student
granted by Chinese Ministry of Education.

REFERENCES

spectrum-based fault localization. In Proc. of Testing: Academic and
Industrial Conference, Practice and Research Techniques.

Efficient Fault Localization. In Proc. of ICSE’06.
[3] H. Do, S. G. Elbaum, and G. Rothermel. Supporting controlled

experimentation with testing techniques: an infrastructure and its
potential impact. Empirical Software Engineering, 2005.

awareness in testing-basedfault localization. JASE, 2008.
[5] R. M. Hierons. Avoiding coincidental correctness in boundary value

analysis. TOSEM., 2006.
[6] P. Jaccard. Étude comparative de la distribution florale dans une

portion des Alpes et des Jura. Bulletin del la Socit Vaudoise des
Sciences Naturelles 37.

[7] J. A. Jones and M. J. Harrold. Visualization of test informationto
assistfault localization. In Proc. of ICSE’02.

[8] J. A. Jones and M. J. Harrold. Empirical evaluation of the tarantula
automaticfault-localization technique. In Proc. of ASE’05.

[9] B. Liblit, A. Aiken, A. Zheng, and M. I. Jordan. Bug isolation via
remote program sampling. In Proc. of PLDI’03.

Correctness to Enhance Fault-Localization. In Proc. of ICST’10.
nd M. J. Harrold. Lightweightfault

localization using multiple coverage types. In Proc. of ICSE’09.

coincidental correctness: re ne code coverage with context pattern to
improve fault localization. In Proc. of ICSE’09.

effects of test-suite reduction on fault localization. In Proc. of
ICSE’08.

propagation of infected program states. In Proc. of FSE/ESEC’09.

Table 2. Mean effectiveness on individual programs

Subjects PAFL Jaccard Tarantula SBI SAFL ICST10

print_tokens 72% 74% 77% 77% 84% 74%
print_tokens2 22% 24% 25% 25% 55% 24%
replace 24% 21% 24% 24% 37% 21%
schedule 23% 24% 25% 25% 53% 24%
schedule2 85% 85% 85% 85% 82% 84%
tcas 54% 56% 58% 58% 66% 51%
tot_info 37% 43% 47% 47% 64% 43%
flex 27% 27% 30% 32% 45% 30%
grep 21% 21% 23% 26% 34% 23%
gzip 12% 12% 14% 15% 18% 14%

Figure 2. Overall effectiveness

0 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
0

20%

40%

60%

80%

100%

% of code examined

%
 o

f f
au

lts
 lo

ca
te

d

PAFL
Jaccard
Tarantula
SBI
SAFL
ICST10

