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Abstract—Background. Slice-based cohesion metrics leverage program slices with respect to the output variables of a module to

quantify the strength of functional relatedness of the elements within the module. Although slice-based cohesion metrics have been

proposed for many years, few empirical studies have been conducted to examine their actual usefulness in predicting fault-proneness.

Objective. We aim to provide an in-depth understanding of the ability of slice-based cohesion metrics in effort-aware post-release

fault-proneness prediction, i.e. their effectiveness in helping practitioners find post-release faults when taking into account the effort

needed to test or inspect the code.Method. We use the most commonly used code and process metrics, including size, structural

complexity, Halstead’s software science, and code churn metrics, as the baseline metrics. First, we employ principal component

analysis to analyze the relationships between slice-based cohesion metrics and the baseline metrics. Then, we use univariate

prediction models to investigate the correlations between slice-based cohesion metrics and post-release fault-proneness. Finally, we

build multivariate prediction models to examine the effectiveness of slice-based cohesion metrics in effort-aware post-release

fault-proneness prediction when used alone or used together with the baseline code and process metrics. Results. Based on

open-source software systems, our results show that: 1) slice-based cohesion metrics are not redundant with respect to the baseline

code and process metrics; 2) most slice-based cohesion metrics are significantly negatively related to post-release fault-proneness;

3) slice-based cohesion metrics in general do not outperform the baseline metrics when predicting post-release fault-proneness; and

4) when used with the baseline metrics together, however, slice-based cohesion metrics can produce a statistically significant and

practically important improvement of the effectiveness in effort-aware post-release fault-proneness prediction. Conclusion. Slice-based

cohesion metrics are complementary to the most commonly used code and process metrics and are of practical value in the context of

effort-aware post-release fault-proneness prediction.

Index Terms—Cohesion, metrics, slice-based, fault-proneness, prediction, effort-aware
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1 INTRODUCTION

COHESION refers to the relatedness of the elements
within a module [1], [2]. A highly cohesive module is

one in which all elements work together towards a single
function. Highly cohesive modules are desirable in a system
as they are easier to develop, maintain, and reuse, and
hence are less fault-prone [1], [2]. For software developers,
it is expected to automatically identify low cohesive mod-
ules targeted for software quality enhancement. However,

cohesion is a subjective concept and hence is difficult to use
in practice [14]. In order to attack this problem, program
slicing is applied to develop quantitative cohesion metrics,
as it provides a means of accurately quantifying the interac-
tions between the elements within a module [12]. In the last
three decades, many slice-based cohesion metrics have
been developed to quantify the degree of cohesion in a
module at the function level of granularity [3], [4], [5], [6],
[7], [8], [9], [10]. For a given function, the computation of
a slice-based cohesion metric consists of the following two
steps. At the first step, a program reduction technology
called program slicing is employed to obtain the set of pro-
gram statements (i.e. program slice) that may affect each
output variable of the function [9], [11]. The output varia-
bles include the function return value, modified global
variables, modified reference parameters, and variables
printed or other outputs by the function [12]. At the second
step, cohesion is computed by leveraging the commonality
among the slices with respect to different output variables.
Previous studies showed that slice-based cohesion metrics
provided an excellent quantitative measure of cohesion [3],
[13], [14]. Hence, there is a reason to believe that they
should be useful predictors for fault-proneness. However,
few empirical studies have so far been conducted to exam-
ine the actual usefulness of slice-based cohesion metrics
for predicting fault-proneness, especially compared with
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the most commonly used code and process metrics [5], [15],
[16], [17], [18].

In this paper, we perform a thorough empirical investi-
gation into the ability of slice-based cohesion metrics in the
context of effort-aware post-release fault-proneness predic-
tion, i.e. their effectiveness in helping practitioners find
post-release faults when taking into account the effort
needed to test or inspect the code [35]. In our study, we use
the most commonly used code and process metrics, includ-
ing size, structural complexity, Halstead’s software science,
and code churn metrics, as the baseline metrics. We first
employ principal component analysis (PCA) to analyze the
relationships between slice-based cohesion metrics and the
baseline code and process metrics. Then, we build univari-
ate prediction models to investigate the correlations bet-
ween slice-based cohesion metrics and post-release fault-
proneness. Finally, we build multivariate prediction models
to examine the effectiveness of slice-based cohesion metrics
in effort-aware post-release fault-proneness prediction
when used alone or used together with the baseline code
and process metrics. In order to obtain comprehensive per-
formance evaluations, we evaluate the effectiveness of
effort-aware post-release fault-proneness prediction under
the following three prediction settings: cross-validation,
across-version prediction, and across-project prediction.
More specifically, cross-validation is performed within the
same version of a project, i.e. predicting faults in one subset
using a model trained on the other complementary subsets.
Across-version prediction uses a model trained on earlier
versions to predict faults in later versions within the same
project, while across-project prediction uses a model trained
on one project to predict faults in another project. The sub-
ject projects in our study consist of five well-known open-
source C projects: Bash, Gcc-core, Gimp, Subversion, and
Vim. We use a mature commercial tool called Understand1

to collect the baseline code and process metrics and use a
powerful source code analysis tool called Frama-C to collect
slice-based cohesion metrics [57]. Based on the data col-
lected from these five projects, we attempt to answer the fol-
lowing four research questions:

� RQ1. Are slice-based cohesion metrics redundant
with respect to the most commonly used code and
process metrics?

� RQ2. Are slice-based cohesion metrics statistically sig-
nificantly correlated to post-release fault-proneness?

� RQ3. Are slice-based cohesion metrics more effective
than the most commonly used code and process
metrics in effort-aware post-release fault-proneness
prediction?

� RQ4. When used together with the most commonly
used code and process metrics, can slice-based cohe-
sionmetrics significantly improve the effectiveness of
effort-aware post-release fault-proneness prediction?

The purpose of RQ1 and RQ2 investigates whether slice-
based cohesion metrics are potentially useful post-release
fault-proneness predictors. The purpose of RQ3 and RQ4
investigates whether slice-based cohesion metrics can lead
to significant improvements in effort-aware post-release

fault-proneness prediction. These research questions are
critically important to both software researchers and practi-
tioners, as they help to answer whether slice-based cohesion
metrics are of practical value in view of the extra cost
involved in data collection. However, little is currently
known on this subject. Our study attempts to fill this gap by
a comprehensive investigation into the actual usefulness of
slice-based cohesion metrics in the context of effort-aware
post-release fault-proneness prediction.

The contributions of this paper are listed as follows. First,
we compare slice-based cohesion metrics with the most
commonly used code and process metrics including size,
structural complexity, Halstead’s software science metrics,
and code churn metrics. The results show that slice-based
cohesion metrics measure essentially different quality infor-
mation than the baseline code and process metrics measure.
This indicates that slice-based cohesion metrics are not
redundant with respect to the most commonly used code
and process metrics. Second, we validate the correlations
between slice-based cohesion metrics and fault-proneness.
The results show that most slice-based cohesion metrics are
statistically related to fault-proneness in an expected direc-
tion. Third, we analyze the effectiveness of slice-based cohe-
sion metrics in effort-aware post-release fault-proneness
prediction compared with the most commonly used code
and process metrics. The results, somewhat surprisingly,
show that slice-based cohesion metrics in general do not
outperform the most commonly used code and process met-
rics. Fourth, we investigate whether the combination of
slice-based cohesion metrics with the most commonly used
code and process metrics provide better results in predict-
ing fault-proneness. The results show that the inclusion of
slice-based cohesion metrics can produce a statistically sig-
nificant improvement of the effectiveness in effort-aware
post-release fault-proneness prediction under any of the
three prediction settings. In particular, in the ranking sce-
nario, when testing or inspecting 20 percent of the code of a
system, slice-based cohesion metrics lead to a moderate to
large improvement (Cliff’s d: 0.33-1.00), regardless of which
prediction setting is considered. In the classification sce-
nario, they lead to a moderate to large improvement (Cliff’s
d: 0.31-0.77) in most systems under cross-validation and
lead to a large improvement (Cliff’s d: 0.55-0.72) under
across-version prediction. In summary, these results reveal
that the improvement is practically important for practi-
tioners, which is worth the relatively high time cost for col-
lecting slice-based cohesion metrics. In other words, for
practitioners, slice-based cohesion metrics are of practical
value in the context of effort-aware post-release fault-prone-
ness prediction. Our study provides valuable data in an
important area for which otherwise there is limited experi-
mental data available.

The rest of this paper is organized as follows. Section 2
introduces slice-based cohesion metrics and the most com-
monly used code and process metrics that we will investi-
gate. Section 3 gives the research hypotheses on slice-based
cohesion metrics, introduces the investigated dependent
and independent variables, presents the employed model-
ing technique, and describes the data analysis methods.
Section 4 describes the experimental setup in our study,
including the data sources and the method we used to1. www.scitools.com
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collect the experimental data sets. Section 5 reports in detail
the experimental results. Section 6 examines the threats to
validity of our study. Section 7 discusses the related work.
Section 8 concludes the paper and outlines directions for
future work.

2 THE METRICS

In this section, we first describe slice-based cohesion met-
rics investigated in this study. Then, we describe the
most commonly used code and process metrics that will
be compared against when analyzing the actual useful-
ness of slice-based cohesion metrics in effort-aware post-
release fault-proneness prediction.

2.1 Slice-Based Cohesion Metrics

The origin of slice-based cohesion metrics can be traced
back to Weiser, who used backward slicing to describe the
concepts of coverage, overlap, and tightness [9], [19]. A back-
ward slice of a module at statement nwith respect to variable
v is the sequence of all statements and predicates that might
affect the value of v at n [9], [19]. For a given module, Weiser
first sliced on every variable where it occurred in the mod-
ule. Then, Weiser computed Coverage as the ratio of average
slice size to program size, Overlap as the average ratio of
non-unique to unique statements in each slice, and Tightness
as the percentage of statements common in all slices. As
stated by Ott and Bieman [10], however, Weiser “did not
identify actual software attributes these metrics might
meaningfully measure”, although such metrics were helpful
for observing the structuring of a module.

Longworth [7] demonstrated that Coverage, a modified
definition of Overlap (i.e. the average ratio of the size of non-
unique statements to slice size), and Tightness could be used
as cohesion metrics of a module. In particular, Longworth
sliced on every variable once at the end point of the module
to obtain end slices (i.e. backward slices computed from the
end of a module) and then used them to compute these met-
rics. Later, Ott and Thuss [3] improved the behavior of slice-
based cohesion metrics through the use of metric slices on
output variables. A metric slice takes into account both the
uses and used by data relationships [3]. More specifically, a
metric slice with respect to variable v is the union of the
backward slice with respect to v at the end point of the mod-
ule and the forward slice computed from the definitions of v
in the backward slice. A forward slice of a module at state-
ment n with respect to variable v is the sequence of all state-
ments and predicates that might be affected by the value of
v at n. Ott and Thuss argued that the purpose of executing a
module was indicated by its output variables, including
function return values, modified global variables, printed
variables, and modified reference parameters. Furthermore,
the slices on the output variables of a module capture the
specific computations for the tasks that the module per-
forms. Therefore, we could use the relationships among the
slices on output variables to investigate whether the mod-
ule’s tasks are related, i.e. whether the module is cohesive.
They redefined Overlap as the average ratio of the slice inter-
action size to slice size and added MinCoverage and MaxCo-
verage to the metrics suite. MinCoverage and MaxCoverage
are respectively the ratio of the size of the smallest slice to
the module size and the ratio of the size of the largest slice

to the module size. Consequently, the slice-based cohesion
metrics suite proposed by Ott and Thuss consists of five
metrics: Coverage, Overlap, Tightness, MinCoverage, and Max-
Coverage. Note that these metrics are computed at the state-
ment level, i.e. statements are the basic unit of metric slices.
Ott and Bieman [20] refined the concept of metric slices to
use data tokens (i.e. the definitions of and references to vari-
ables and constants) rather than statements as the basic unit
of which slices are composed of. They called such slices data
slices. More specifically, a data slice for a variable v is the
sequence of all data tokens in the statements that comprise
the metric slice of v. This leads to five slice-based data-
token-level cohesion metrics.

Bieman and Ott [4] used data slices to develop three cohe-
sion metrics: SFC (strong functional cohesion), WFC (weak
functional cohesion), and A (Adhesiveness). They defined
the slice abstraction of a module as the set of data slices with
respect to its output variables. In particular, a data token is
called a “glue token” if it lies on more than one data slices,
and is called a “super-glue token” if it lies on all data slices in
the slice abstraction. As such, SFC is defined as the ratio of
the number of super-glue tokens to the total number of data
tokens in themodule.WFC is defined as the ratio of the num-
ber of glue tokens to the total number of data tokens in the
module. A is defined as the average adhesiveness for all the
data tokens in the module. The adhesiveness of a data token
is the relative number of slices that it glues together. If a data
token is a glue token, its adhesiveness is the ratio of the num-
ber of slices that it appears in to the total number of slices.
Otherwise, its adhesiveness is zero. Indeed, SFC is equiva-
lent to the data-token-level Tightnessmetric and A is equiva-
lent to the data-token-level Coverage metric proposed by Ott
and Bieman [20].

Counsell et al. [5] proposed a cohesion metric called nor-
malized Hamming distance (NHD) based on the concept of
slice occurrence matrix. For a given module, the slice occur-
rence matrix has columns indexed by its output variables
and rows indexed by its statements. The (i, j)th entry of the
matrix has a value of 1 if the ith statement is in the end slice
with respect to the jth output variable and otherwise 0. In
this matrix, each row is called a slice occurrence vector.
NHD is defined as the ratio of the total actual slice agree-
ment between rows to the total possible agreement between
rows in the matrix. The slice agreement between two rows
is the number of places in which the slice occurrence vectors
of the two rows are equal.

Dallal [8] used a data-token-level slice occurrence matrix
to develop a cohesion metric called similarity-based func-
tional cohesion metric (SBFC). For a given module, the data-
token-level slice occurrence matrix has columns indexed by
its output variables and rows indexed by its data tokens.
The (i, j)th entry of the matrix has a value of 1 if the ith data
token is in the end slice with respect to the jth output vari-
able and otherwise 0. SBFC is defined as the average degree
of the normalized similarity between columns. The normal-
ized similarity between a pair of columns is the ratio of the
number of entries where both columns have a value of 1 to
the total number of rows in the matrix.

Table 1 summarizes the formal definitions, descriptions,
and sources of the slice-based cohesion metrics that will be
investigated in this study. In this table, for a given module
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M, Vo denotes the set of its output variables, length(M)
denotes its size, SA(M) denotes its slice abstraction, and
tokens(M) denotes the set of its data tokens. SLi is the slice
obtained for vi 2 Vo and SLint (called “cohesive section” by
Harman et al. [6]) is the intersection of SLi over all vi 2 Vo.
In particular, G(SA(M)) and SG(SA(M)) are respectively
the set of glue tokens and the set of super-glue tokens. In
the definition of NHD, k is the number of statements, l is the
number of output variables, and ci is the number of 1s in
the jth column of the statement-level slice occurrence
matrix. In the definition of SBFC, xi is the number of 1s in
the i-th row of the data-token-level slice occurrence matrix.

Note that all the slice-based cohesion metrics can be com-
puted at the statement or data-token level, although some of
them are originally defined at either the statement level or
the data-token level. The data-token level is at a finer granu-
larity than the statement level since a statement might con-
tain a number of data tokens. We next use an example
function fun shown in Table 2 to illustrate the computations
of the slice-based cohesion metrics at the data-token level.
In Table 2: (1) the first column lists the statement number
(excluding non-executable statements such as blank state-
ments, “{“, and “}”); (2) the second column lists the code of
the example function; (3) the third to fifth columns respec-
tively list the end slices for the largest, smallest, and range
variables; (4) the sixth to eighth columns respectively list

the forward slices from the definitions of the largest,
smallest, and range variables in the backward slices; and (5)
the ninth to eleventh columns list the metric slices for the
largest, smallest, and range variables. Here, a vertical bar
“ j ” in the last nine columns denotes that the indicated state-
ment is part of the corresponding slice for the named output
variable. This example function determines the smallest, the
largest, and the range of an array, which is a modified ver-
sion of the example module used by Longworth [7]. For this
example, Vo consists of largest, smallest, and range. The for-
mer two variables are the modified reference parameters
and the latter is the function return value. Table 3 shows the
data-token level slice occurrence matrix of the fun function
under end slices and metric slices, where Ti indicates the ith
data token for T in the function.

Table 4 shows the computations of twenty data-token-
level slice-based cohesion metrics. In this table, the second
to eleventh rows show the computations for end-slice-based
cohesion metrics and the 12th to 21st rows show the compu-
tations for metric-slice-based cohesion metrics. As can be
seen, end-slice-based metrics indicate with typical values
around 0.5 or 0.6, while metric-slice-based metrics indicate
with typical values around 0.7 or 0.8. In particular, for
each cohesion metric (except MaxCoverage), the metric-slice-
based version has a considerably larger value than the cor-
responding end-slice-based version. When looking at the

TABLE 1
Definitions of Slice-Based Cohesion Metrics

Metric Definition Description Source

Coverage Coverage ¼ 1
Voj j

P V0j j
i¼1

SLij j
length Mð Þ

The extent to which the slices cover the module (measured
as the ratio of the mean slice size to the module size)

[3], [20]

MaxCoverage MaxCoverage ¼ 1
length Mð Þmaxi SLij j The extent to which the largest slice covers the module

(measured as the ratio of the size of the largest slice to the
module size)

MinCoverage MinCoverage ¼ 1
length Mð Þmini SLij j The extent to which the smallest slice covers the module

(measured as the ratio of the size of the smallest slice to the
module size)

Overlap Overlap ¼ 1
Voj j

P V0j j
i¼1

SLintj j
SLij j

The extent to which slices are interdependent (measured as
the average ratio of the size of the “cohesive section” to the
size of each slice)

Tightness Tightness ¼ SLintj j
length Mð Þ The extent to which all the slices in the module belong

together (measured as the ratio of the size of the “cohesive
section” to the module size)

SFC SFC ¼ SG SA Mð Þð Þj j
tokens Mð Þj j

The extent to which all the slices in the module belong
together (measured as the ratio of the number of super-glue
tokens to the total number of data tokens of the module)

[4]

WFC WFC ¼ G SA Mð Þð Þj j
tokens Mð Þj j

The extent to which the slices in the module belong together
(measured as the ratio of the number of glue tokens to the
total number of data tokens of the module)

A
A ¼

P
t2G SA Mð Þð Þ slices containing t

tokens Mð Þj j� SA Mð Þj j
The extent to which the glue tokens in the module are adhe-
sive (measured as the ratio of the amount of the adhesive-
ness to the total possible adhesiveness)

NHD NHD ¼ 1� 2
lk k�1ð Þ

Pl
j¼1 cj k� cj

� �
The extent to which the statements in the slices are the same
(measured as the ratio of the total slice agreement between
rows to the total possible agreement between rows in the
statement-level slice occurrence matrix of the module)

[5]

SBFC
SBFC ¼

1 if Voj j ¼ 1P tokens Mð Þj j
t¼1

xi xi�1ð Þ
tokens Mð Þj j� Voj j� Voj j�1ð Þ otherwise

(
The extent to which the slices are similar (measured as
the average degree of the normalized similarity between
columns in the data-token-level slice occurrence matrix of
the module)

[8]
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example function fun shown in Table 2, we find that, except
an unnecessary initialization statement (statement 8 in
Table 2: range ¼ 0;), all the rest statements are all related to
the computation of the final outputs. In other words, intui-
tively, this function has a high cohesion. In this sense, when
measuring its cohesion, it appears that metric-slice-based
cohesion metrics are more accurate than end-slice-based
cohesion metrics.

As mentioned above, Coverage, MaxCoverage, MinCover-
age, Overlap, Tightness, SFC,WFC, and A are originally based
on metric slices [4], [6], [13], [15], [16], [17], [18], [21]. How-
ever, NHD and SBFC are originally based on end slices. In
this study, we will use metric slices to compute all the cohe-
sion metrics. In particular, we will use metric-slice-based
cohesion metrics at the data-token level to investigate the
actual usefulness of slice-based cohesion metrics in effort-
aware post-release fault-proneness prediction. The reason
for choosing the data-token level rather than the statement
level is that the former is at a finer granularity. Previous
studies suggested that software metrics at a finer granularity
would accordingly have a higher discriminative power and
hence may be more useful for fault-proneness prediction
[62], [63]. Note that, at the data-token level, SFC is equiva-
lent to Tightness and A is equivalent to Coverage. Therefore,
in the subsequent analysis, only the following eight metric-
slice-based cohesion metrics will be examined: Coverage,

MaxCoverage, MinCoverage, Overlap, Tightness, WFC, NHD,
and SBFC. During our analysis, a function is regarded as a
module and the output variables of a function consist of the
function return value, modified global variables, modified
reference parameters, and standard outputs by the function.

2.2 The Most Commonly Used Code and Process
Metrics

In this study, we employ the most commonly used code and
process metrics as the baseline metrics to analyze the actual
usefulness of slice-based cohesion metrics in effort-aware
post-release fault-proneness prediction. As shown in Table 5,
the baseline code and process metrics cover 16 product met-
rics and three process metrics. These 16 product metrics con-
sist of 1 size metric, 11 structural complexity metrics, and
4 software science metrics. The size metric SLOC simply
counts the non-blank non-commentary source lines of code
(SLOC) in a function. There is a common belief that a func-
tion with a larger size tends to be more fault-prone [22], [23],
[24], [25]. The structural complexity metrics, including the
well-known McCabe’s Cyclomatic complexity metrics,
assume that a function with complex control flow structure
is likely to be fault-prone [26], [27], [28], [29]. The Halstead’s
software science metrics estimate reading complexity based
on the counts of operators and operands, in which a function
hard to read is assumed to be fault-prone [30]. Note that we

TABLE 2
End Slice Profile and Metric Slice Profile for Function Fun

Line Code End slice Forward slice Metric slice

largest smallest range largest smallest range largest smallest range

int fun(

1 int A[] j j j j j j
2 int size, j j j j j j
3 int �largest, j j j j
4 int �smallest) j j j j j j

{

5 int i; j j j j j j
6 int range; j j

7 i ¼ 1; j j j j j j
8 range ¼ 0;

9 �smallest ¼ A[0]; j j j j j j j
10 �largest ¼ �smallest; j j j j j j j

11 while(i < size) { j j j j j j
12 if(�smallest > A[i]) j j j j j
13 �smallest ¼ A[i]; j j j j j

14 if(�largest < A[i]) j j j j j j j
15 �largest ¼ A[i]; j j j j j j j

16 iþþ; j j j j j j
}

17 range ¼ �largest - �smallest; j j j j j j j
18 return range; j j j j j j j

}

Data tokens included in the end slice for the variable smallest are indicated by the underline.
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do not include the other Halstead’s software science metrics
such as N, n, V, D, and E [30]. The reason is that these met-
rics are fully based on n1, n2, N1, and N2 (for example
n ¼ n1þ n2). Consequently, they are highly correlated with
n1, n2, N1, and N2. When building multivariate prediction
models, highly correlated predictors will lead to a high mul-
ticollinearity and hence might lead to inaccurate coefficient
estimates [61]. Therefore, our study only takes into account
n1, n2, N1, and N2. The process metrics consist of three rela-
tive code churn metrics, i.e. the normalized number of
added, deleted, and modified source lines of code. These
code churn metrics assume that a function with more added,
deleted, or modified code would have a higher possibility of
being fault-prone.

The reasons for choosing these baseline code and process
metrics in this study are three-fold. First, they are widely
used product and process metrics in both industry and
academic research [22], [23], [24], [25], [26], [27], [28], [29],
[50], [52], [54], [55], [64]. Second, they can be automatically
and cheaply collected from source code even for very large
software systems. Third, many studies show that they are
useful indicators for fault-proneness prediction [26], [27],
[28], [50], [52], [54], [55], [64]. In the context of effort-aware
post-release fault-proneness prediction, we believe that

slice-based cohesion metrics are of practical value only if:
(1) they have a significantly better fault-proneness predic-
tion ability than the baseline code and process metrics; or
(2) they can significantly improve the performance of fault-
proneness prediction when used together with the baseline
code and process metrics. This is especially true when con-
sidering the expenses for collecting slice-based cohesion
metrics. As Meyers and Binkley stated [13], slicing techni-
ques and tools are now mature enough to allow an intensive
empirical investigation. In our study, we use Frama-C, a
well-known open-source static analysis tool for C programs
[57], to collect slice-based cohesion metrics. Frama-C pro-
vides scalable and sound software analyses for C programs,
thus allowing accurate collection of slice-based cohesion
metrics on industrial-size systems [57].

3 RESEARCH METHODOLOGY

In this section, we first give the research hypotheses relating
slice-based cohesion metrics to the most commonly used
code and process metrics and to fault-proneness. Then, we
describe the investigated dependent and independent
variables, the employed modeling technique, and the data
analysis methods.

3.1 Research Hypotheses

The first research question (RQ1) of this study investigates
whether slice-based cohesion metrics are redundant when
compared with the most commonly used code and process
metrics. It is widely believed that software quality cannot
be measured using only a single dimension [29]. As stated
in Section 2.2, the most commonly used code and process
metrics measure software quality from size, control flow
structure, and cognitive psychology perspectives. However,
slice-based cohesion metrics measure software quality from
the perspective of cohesion, which are based on control-/
data-flow dependence information among statements. Our
conjecture is that, given the nature of the information and
counting mechanism employed by slice-based cohesion
metrics, they should capture different underlying dimen-
sions of software quality than the most commonly used
code and process metrics capture. From this reasoning, we
set up the following null hypothesis H10 and alternative
hypothesis H1A for RQ1:

H10. Slice-based cohesion metrics do not capture additional
dimensions of software quality compared with the most
commonly used code and process metrics.

H1A. Slice-based cohesion metrics capture additional dimensions
of software quality compared with the most commonly used
code and process metrics.

The second research question (RQ2) of this study investi-
gates whether slice-based cohesion metrics are statistically
related to post-release fault-proneness. In the software
engineering literature, there is a common belief that low
cohesion indicates an inappropriate design [1], [2]. Conse-
quently, a function with low cohesion is more likely to be
fault-prone than a function with high cohesion [1], [2]. From
Section 2.1, we can see that slice-based cohesion metrics
leverage the commonality among the slices with respect
to different output variables of a function to quantify its
cohesion. Existing studies showed that they provided an

TABLE 3
Data-Token Level Slice Occurrence Matrix with Respect

to End Slice Profile and Metric Slice Profile

End slice Metric slice

Line Token largest smallest range largest smallest range

1 A1 1 1 1 1 1 1
2 size1 1 1 1 1 1 1
3 largest1 1 0 1 1 0 1
4 smallest1 1 1 1 1 1 1
5 i1 1 1 1 1 1 1
6 range1 0 0 1 0 0 1
7 i2 1 1 1 1 1 1
7 11 1 1 1 1 1 1
8 range2 0 0 0 0 0 0
8 01 0 0 0 0 0 0
9 smallest2 1 1 1 1 1 1
9 A2 1 1 1 1 1 1
9 02 1 1 1 1 1 1
10 largest2 1 0 1 1 1 1
10 smallest3 1 0 1 1 1 1
11 i3 1 1 1 1 1 1
11 size2 1 1 1 1 1 1
12 smallest4 0 1 1 0 1 1
12 A3 0 1 1 0 1 1
12 i4 0 1 1 0 1 1
13 smallest5 0 1 1 0 1 1
13 A4 0 1 1 0 1 1
13 i5 0 1 1 0 1 1
14 largest3 1 0 1 1 1 1
14 A5 1 0 1 1 1 1
14 i6 1 0 1 1 1 1
15 largest4 1 0 1 1 1 1
15 A6 1 0 1 1 1 1
15 i7 1 0 1 1 1 1
16 i8 1 1 1 1 1 1
17 range3 0 0 1 1 1 1
17 largest5 0 0 1 1 1 1
17 smallest6 0 0 1 1 1 1
18 range4 0 0 1 1 1 1
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excellent quantitative measure of function cohesion [5], [13].
In particular, for each of the investigated slice-based cohe-
sion metrics, a large value indicates a high cohesion. From
this reasoning, we set up the following null hypothesis H20
and alternative hypothesis H2A for RQ2:

H20. There is no significant correlation between slice-based cohe-
sion metrics and post-release fault-proneness.

H2A. There is a significant correlation between slice-based cohe-
sion metrics and post-release fault-proneness.

The third research question (RQ3) of this study investigates
whether slice-based cohesion metrics predict post-release

fault-prone functions more accurately than the most com-
monly used code and process metrics do. From Table 5, we
can see that the most commonly used code and process met-
rics are based on either simple syntactic information or con-
trol flow structure information among statements in a
function. In contrast, slice-based cohesion metrics make
use of the semantic dependence information among the state-
ments in a function. In other words, they are based on pro-
gram behaviors as captured by program slices. In this sense,
slice-based cohesionmetrics provide a higher level quantifica-
tion of software quality than the most commonly used code
and process metrics. Consequently, it is reasonable to expect

TABLE 4
Example Metrics Computations at the Data-Token Level

Type Metric Computation Value

End slice Coverage ¼ 1/3 � (21/34 þ 18/34 þ 32/34) ¼ 0.696
MaxCoverage ¼ 32/34 ¼ 0.941
MinCoverage ¼ 18/34 ¼ 0.529
Overlap ¼ 1/3 � (12/21 þ 12/18 þ 12/32) ¼ 0.538
Tightness ¼ 12/34 ¼ 0.353
SFC ¼ 12/34 ¼ 0.353
WFC ¼ 27/34 ¼ 0.794
A ¼ (21 þ 18 þ 32)/(3 � 34) ¼ 0.696
SBFC ¼ (12 � 3 � 2 þ 15 � 2 � 1)/(34 � 3 � 2) ¼ 0.500
NHD ¼ 1�2/(3 � 34 � 33) � (21 � 13 þ 18 � 16 þ 32 � 2) ¼ 0.629

Metric slice Coverage ¼ 1/3 � (25/34 þ 30/34 þ 32/34) ¼ 0.853
MaxCoverage ¼ 32/34 ¼ 0.941
MinCoverage ¼ 25/34 ¼ 0.735
Overlap ¼ 1/3 � (24/25 þ 24/30 þ 24/32) ¼ 0.837
Tightness ¼ 24/34 ¼ 0.706
SFC ¼ 24/34 ¼ 0.706
WFC ¼ 31/34 ¼ 0.912
A ¼ (25 þ 30 þ 32)/(3 � 34) ¼ 0.853
SBFC ¼ (24 � 3 � 2 þ 7 � 2 � 1)/(34 � 3 � 2) ¼ 0.775
NHD ¼ 1�2/(3 � 34 � 33) � (25 � 9 þ 30 � 4 þ 32 � 2) ¼ 0.757

TABLE 5
The Most Commonly Used Code and Process Metrics (i.e. the Baseline Metrics in This Study)

Category Characteristic Metric Description

Product Size SLOC Source lines of code in a function (excluding blank lines and
comment lines)

Structural
complexity

FANIN Number of calling functions plus global variables read
FANOUT Number of calling functions plus global variables set
NPATH Number of possible paths, not counting abnormal exits or

gotos
Cyclomatic Cyclomatic complexity
CyclomaticModified Modified cyclomatic complexity
CyclomaticStrict Strict cyclomatic complexity
Essential Essential complexity
Knots Measure of overlapping jumps
Nesting Maximum nesting level of control constructs
MaxEssentialKnots Maximum Knots after structured programming constructs

have been removed
MinEssentialKnots Minimum Knots after structured programming constructs

have been removed

Software
science

n1 Total number of distinct operators of a function
n2 Total number of distinct operands of a function
N1 Total number of operators of a function
N2 Total number of operands of a function

Process Code churn Added Added source lines of code, normalized by function size
Deleted Deleted source lines of code, normalized by function size
Modified Modified source lines of code, normalized by function size
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that slice-based cohesion metrics are more closely related to
fault-proneness than the most commonly used code and pro-
cess metrics. From this expectation, we set up the following
null hypothesisH30 and alternative hypothesisH3A for RQ3:

H30. Slice-based cohesion metrics are not more effective in effort-
aware post-release fault-proneness prediction than the most
commonly used code and process metrics.

H3A. Slice-based cohesion metrics are more effective in effort-
aware post-release fault-proneness prediction than the most
commonly used code and process metrics.

The fourth research question (RQ4) of this study investi-
gates whether the model built with slice-based cohesion
metrics and the most commonly used code and process met-
rics together has a better ability to predict post-release fault-
proneness than the model built with the most commonly
used code and process metrics alone. This issue is indeed
raised by the null hypothesis H10. If the null hypothesis H10
is rejected, it means that slice-based cohesion metrics cap-
ture different underlying dimensions of software quality
that are not captured by the most commonly used code and
process metrics. In this case, we will naturally conjecture
that combining slice-based cohesion metrics with the most
commonly used code and process metrics should give
a more complete indication of software quality. Conse-
quently, the combination of slice-based cohesion metrics
with the most commonly used code and process metrics
will form a better indicator of post-release fault-proneness
than the combination of the most commonly used code and
process metrics alone. From this reasoning, we set up the
following null hypothesis H40 and alternative hypothesis
H4A for RQ4:

H40. The combination of slice-based cohesion metrics with the
most commonly used code and process metrics are not more
effective in effort-aware post-release fault-proneness predic-
tion than the combination of the most commonly used code
and process metrics.

H4A. The combination of slice-based cohesion metrics with the
most commonly used code and process metrics are more
effective in effort-aware post-release fault-proneness predic-
tion than the combination of the most commonly used code
and process metrics.

3.2 Variable Description

The dependent variable in this study is a binary variable Y
that can take on only one of two different values. In the
following, let the values be 0 and 1. Here, Y ¼ 1 represents
that the corresponding function has at least one post-release
faults and Y ¼ 0 represents that the corresponding function
has no post-release fault. In this paper, we use a modeling
technique called logistic regression (described in Section 3.3)
to predict the probability of Y ¼ 1. The probability of Y ¼ 1
indeed indicates post-release fault-proneness, i.e. the extent
of a function being post-release faulty. As stated by Nagap-
pan et al. [66], for the users, only post-release failures
matter. It is hence essential to predict post-release fault-
proneness of functions in a system in practice, as it enables
developers to take focused preventive actions to improve
quality in a cost-effective way. Indeed, much effort has been
devoted to post-release fault-proneness prediction [27], [34],
[36], [42], [54], [60], [64], [65], [66].

The independent variables in this study consist of two
categories of metrics: (i) the most commonly used 19
code and process metrics, and (ii) eight slice-based cohe-
sion metrics. All these metrics are collected at the func-
tion level. The objective of this study is to empirically
investigate the actual usefulness of slice-based cohesion
metrics in the context of effort-aware post-release fault-
proneness prediction, especially when compared with the
most commonly used code and process metrics. With
these independent variables, we are able to test the four
null hypotheses described in Section 3.1.

3.3 Modeling Technique

Logistic regression is a standard statistical modeling tech-
nique in which the dependent variable can take two differ-
ent values [28]. It is suitable for building fault-proneness
prediction models because the functions under consi-
deration are divided into two categories: faulty and not-
faulty. Let PrðY ¼ 1jX1; X2; . . . ; XnÞ represent the probabil-
ity that the dependent variable Y ¼ 1 given the independent
variables X1, X2,. . ., and Xn (i.e. the metrics in this study).
Then, a multivariate logistic regression model assumes that
PrðY ¼ 1jX1; X2 . . . ; XnÞ is related to X1; X2; . . . ; Xn by the
following equation:

PrðY ¼ 1jX1; X2; . . .XnÞ ¼ eaþb1X1þb2X2þ...bnXn

1þ eaþb1X1þb2X2þ...bnXn
;

where a and bis are the regression coefficients and can be
estimated through the maximization of a log-likelihood.
Odds ratio is the most commonly used measure to quantify
the magnitude of the correlation between the independent
and dependent variables in a logistic regression model. For
a given independent variable Xi, the odds that Y ¼ 1 at
Xi ¼ x denotes the ratio of the probability that Y ¼ 1 to the
probability that Y ¼ 1 atXi ¼ x, i.e.

OddsðY ¼ 1jXi ¼ xÞ ¼ PrðY ¼ 1j . . . ; Xi ¼ x; . . .Þ
1� PrðY ¼ 1j . . . ; Xi ¼ x; . . .Þ :

In this study, similar to [33], we use DOR, the odds
ratio associated with one standard deviation increase, to
provide an intuitive insight into the impact of the indepen-
dent variableXi:

DORðXiÞ ¼ OddsðY ¼ 1jXi ¼ xþ siÞ
OddsðY ¼ 1jXi ¼ xÞ ¼ ebisi ;

where bi and si are respectively the regression coefficient
and the standard deviation of the variable Xi. DORðXiÞ
can be used to compare the relative magnitude of the effects
of different independent variables, as the same unit is used
[42].DORðXiÞ > 1 indicates that the independent variable is
positively associated with dependent variable. DORðXiÞ ¼ 1
indicates that there is no such correlation. DORðXiÞ < 1
indicates that there is a negative correlation. The univariate
logistic regression model is a special case of the multivariate
logistic regression model, where there is only one indepen-
dent variable.
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3.4 Data Analysis Method

In the following, we describe the data analysis method for
testing the four null research hypotheses.

3.4.1 Principal Component Analysis for RQ1

In order to answer RQ1, we use principal component analysis
to determine whether slice-based cohesion metrics capture
different underlying dimensions of software quality than the
most commonly used code and process metrics. PCA is a
powerful statistical technique used to identify the underlying,
orthogonal dimensions that explain the relations among the
independent variables in a data set. These dimensions are
called principal components (PCs), which are linear combina-
tions of the standardized independent variables. In our study,
for each data set, we use the following method to determine
the corresponding number of PCs. First, the stopping criterion
for PCA is that all the eigenvalues for each new component
are greater than zero. Second, we apply the varimax rotation
to PCs to make the mapping of the independent variables to
components clearer where the variables have either a very
low or a very high loading. This helps identify the variables
that are strongly correlated and indeed measure the same
property, though theymay purport to capture different prop-
erties. Third, after obtaining the rotated component matrix,
we map each independent variable to the component having
the maximum loading. Fourth, we only retain the compo-
nents to which at least one independent variable is mapped.
In our context, the null hypothesisH10 corresponding to RQ1
will be rejectedwhen the result of PCA shows that slice-based
cohesionmetrics define new PCs of their own comparedwith
themost commonly used code and processmetrics.

3.4.2 Univariate Logistic Regression Analysis for RQ2

In order to answer RQ2, we use univariate logistic regres-
sion to examine whether each slice-based cohesion metric is
negatively related to post-release fault-proneness at the sig-
nificant level a of 0.10. From a scientific perspective, it is
often suggested to work at the a level 0.05 or 0.01. However,
the choice of a particular level of significance is ultimately a
subjective decision and other levels such as a ¼ 0:10 are
also common [51]. In this paper, the minimum significance
level for rejecting a null hypothesis is set at a ¼ 0:10, as we
are aggressively interested in revealing unclosed correla-
tions between metrics and fault-proneness. When perform-
ing univariate analysis, we employ the Cook’s distance to
identify influential observations. For an observation, its
Cook’s distance is a measure of how far apart the regression
coefficients are with and without this observation included.
If an observation has a Cook’s distance equal to or larger
than 1, it is regarded as an influential observation and is
hence excluded for the analysis [32]. Furthermore, for each
metric, we use DOR, the odds ratio associated with one
standard deviation increase in the metric, to quantify its
effect on fault-proneness [33]. This allows us to compare the
relative magnitude of the effects of individual metrics on
post-release fault-proneness. Note that previous studies
reported that module size (i.e. function size in this study)
might have a potential confounding effect on the relation-
ships between software metrics and fault-proneness [43],
[53]. In other words, module size may falsely obscure or
accentuate the true correlations between software metrics

and fault-proneness. Therefore, there is a need to remove
the potentially confounding effect of module size in order
to understand the essence that a metric measures [53].
In this study, we first apply the linear regression method
proposed by Zhou et al. [53] to remove the potentially con-
founding effect of function size. After that, we use univari-
ate logistic regression to examine the correlations between
the cleaned metrics and fault-proneness. For each metric,
the null hypothesis H20 corresponding to RQ2 will be
rejected if the result of univariate logistic regression is statis-
tically significant at the significant level of 0.10.

3.4.3 Multivariate Logistic Regression Analysis for RQ3

and RQ4

In order to answer RQ3 andRQ4,we perform a stepwise vari-
able selection procedure to build three types of multivariate
logistic regression models: (1) the “B” model (using only the
most commonly used code and process metrics); (2) the “S”
model (using only slice-based cohesion metrics); and (3) the
“BþS” model (using all the metrics). As suggested by Zhou
et al. [53], before building the multivariate logistic regression
models, we remove the confounding effect of function size
(measured by SLOC). In addition, many metrics used in this
study are defined similarly with each other. For example,
CyclomaticModified and CyclomaticStrict are the revised Cyclo-
matic complexity versions. These highly correlated predictors
may lead to a high multicollinearity and hence inaccurate
coefficient estimates in a logistic regression model [61]. Vari-
ance inflation factor (VIF) is a widely used indicator of multi-
collinearity. In this study, we use the recommended cut-off
value 10 to deal with multicollinearity in a regression model
[59]. If an independent variable has a VIF value larger than
10, it will be removed from the multivariate regression
model. More specifically, we use the following algorithm
BUILD-MODEL to build the multivariate logistic regression
models. As can be seen, when building a multivariate model,
our algorithm takes into account: (1) the confounding effect
of function size; (2) the multicollinearity among the indepen-
dent variables; and (3) the influential observations.

Algorithm 1. BUILD-MODEL

Input dataset D(X: set of independent variables, Y: dependent
variable)
Step
1: Remove the confounding effect of function size from each

independent variable in X for D. [53]
2: Use the backward stepwise variable selection method to

build the logistic regression modelM on D.
3: Calculate the variance inflation factors for all independent

variables in the modelM.
4: If all the VIFs are less than or equal to 10, goto step 6; other-

wise, goto step 5.
5: Remove the variable xi with the largest VIF from X, and goto

step 2.
6: Calculate the Cook’s distance for all the observations in D. If

the maximum Cook’s distance is less than or equal to 1, then
goto step 8; otherwise, goto step 7.

7: Update D by removing the observations whose Cook’s dis-
tances are equal to or larger than 1. Goto step 2.

8: Return the modelM.
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After building the above models, we compare the predic-
tion effectiveness of the following two pairs of models: “S”
vs. “B” and “BþS” versus “B”. To obtain an adequate and
realistic comparison, we use the prediction effectiveness
data generated from the following three methods:

� Cross-validation. Cross-validation is performed within
the same version of a project, i.e. predicting faults in
one subset using amodel trained on the other comple-
mentary subsets. In our study, for a given project, we
use 30 times three-fold cross-validation to evaluate the
effectiveness of the prediction models. More specifi-
cally, at each three-fold cross-validation, we randomly
divide the data set into three parts of approximately
equal size. Each part is used to compute the effective-
ness for the prediction models built on the remainder
of the data set. The entire process is then repeated
30 times to alleviate possible sampling bias in random
splits. Consequently, each model has 30� 3 ¼ 90 pre-
diction effectiveness values. Note that we choose to
perform three-fold cross validation rather than 10-fold
cross-validation due to the small percentage of post-
release faulty functions in the data sets.

� Across-version prediction. Across-version prediction
uses a model trained on earlier versions to predict
faults in later versions within the same project. There
are two kinds of approaches for the across-version
prediction [50]. The first approach is next-version
prediction, i.e. building a prediction model on a ver-
sion i and then only applying the model to predict
faults in the next version iþ 1 of the same project.
The second approach is follow-up-version predic-
tion, i.e. building a prediction model on a version i
and then applying the model to predict faults in any
follow-up version j (i.e. j > i) of the same project. In
our study, we adopt both approaches. If a project has
m versions, the first approach will produce m� 1
prediction effectiveness values for each model, while
the second approach will produce m� ðm� 1Þ=2
prediction effectiveness values for each model.

� Across-project prediction. Across-project prediction
uses a model trained on one project to predict faults
in another project [50]. Given n projects, this predic-
tion method will produce n � (n - 1) prediction effec-
tiveness values for each model.

In each of the above-mentioned three prediction settings,
all models use the same training data and the same testing
data. Based on these setups, we employ the Wilcoxon
signed-rank test to examine whether two models have a sig-
nificant difference on the prediction effectiveness. In
particular, we use the Benjamini-Hochberg (BH) corrected
p-values to examine whether a difference is significant at
the significance level of 0.10. The null hypothesis H30 corre-
sponding to RQ3 will be rejected when the comparison
shows that the “S” model outperforms the “B” model and
the difference is significant. The null hypothesis H40 corre-
sponding to RQ4 will be rejected when the comparison
shows that the “BþS” model outperforms the “B” model
and the difference is significant. Furthermore, we use the
Cliff’s d, which is used for median comparison, to examine
whether the magnitude of the difference between the

prediction performances of two models are important from
the viewpoint of practical application [34]. By convention,
the magnitude of the difference is considered either trivial
(jdj < 0:147), small (0.147-0.33), moderate (0.33-0.474), or
large (> 0.474) [58].

We test the null HypothesesH30 andH40 in the following
two typical application scenarios: ranking and classification.
In the ranking scenario, functions are ranked in order from
the most to the least predicted relative risk. With this rank-
ing list in hand, software practitioners can simply select as
many high-risk functions targeted for software quality
enhancement as available resources will allow. In the classi-
fication scenario, functions are first classified into two cate-
gories in terms of their predicted relative risk: high-risk and
low-risk. After that, those functions classified as high-risk
are targeted for software quality enhancement. In both sce-
narios, we take into account the effort to test or inspect those
functions predicted as high-risk when evaluating the pre-
diction effectiveness of a model. Following previous work
[34], we use the source lines of code in a function f as a
proxy to estimate the effort required to test or inspect the
function. In particular, we define the relative risk of the
function f as RðfÞ ¼ Pr=SLOCðfÞ, where Pr is the probabil-
ity of the function f being faulty predicted using the logistic
regression model. In other words, R(f) can be regarded as
the predicted fault-proneness per SLOC. In the context of
effort-aware fault-proneness prediction, prior studies used
defect density [35, [36], [37], i.e. #Error(f) / SLOC(f), as the
dependent variable to build the prediction model. In this
study, we first use the binary dependent variable to build
the logistic regression model and then use R(f) to estimate
the relative risk of a given function f. Next, we describe the
effort-aware prediction performance indicators used in this
study for ranking and classification.

(1) Effort-aware ranking performance evaluation. We use the
cost-effectiveness measure CE proposed by Arisholm et al.
[34] to evaluate the effort-aware ranking effectiveness of a
fault-proneness prediction model. The CE measure is based
on the concept of the “SLOC-based” Alberg diagram. In this
diagram, the x-axis is the cumulative percentage of SLOC of
the functions selected from the function ranking and the y-
axis is the cumulative percentage of post-release faults found
in the selected functions. Consequently, each fault-prone-
ness predictionmodel corresponds to a curve in the diagram.
Fig. 1 is an example “SLOC-based” Alberg diagram showing
the ranking performance of a predictionmodelm (in our con-
text, the prediction modelm could be the “B” model, the “S”
model, and the “BþS” model). To compute CE, we also con-
sider two additional curves, which respectively correspond
to “random” model and “optimal” model. In the “random”
model, functions are randomly selected to test or inspect. In
the “optimal” model, functions are sorted in decreasing
order according to their actual post-release fault densities.
Based on this diagram, the effort-aware ranking effective-
ness of the predictionmodel m is defined as follows [34]:

CEpðmÞ ¼ AreapðmÞ �Areapðrandom modelÞ
Areapðoptimal modelÞ �Areapðrandom modelÞ :

Here, Areap(m) is the area under the curve corresponding
to model m for a given top p� 100% percentage of SLOC.
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The cut-off value p varies between 0 and 1, depending on the
amount of available resource for testing or inspecting func-
tions. Indeed, CEpðmÞ is the normalized “average recall” of
faults in relation to the optimalmodel and the randommodel
over the interval from 0 percent SLOC to p� 100%SLOC.
The range of CEpðmÞ is [�1, 1] and a larger value means a
better ranking effectiveness. In the literature, CEpðmÞ has
been considered as an effective way to measure the ranking
performance of fault-proneness predictionmodels [38].

(2) Effort-aware classification performance evaluation.We use
the SLOC testing or inspection reduction measure ER (effort
reduction, originally called “LIR”) proposed by Shin et al.
[39] to evaluate the effort-aware classification effectiveness
of a post-release fault-proneness prediction model. The ER
measure calculates the proportion of the reduced source
lines of code to test or inspect by using a classification
model compared with random selection to achieve the same
recall of faults. To simplify the presentation, we assume that
the system under analysis consists of n functions. Let si be
the SLOC of function i and fi be the number of post-release
faults in function i, 1 � i � n. For a given prediction model
m, let pi be 1 if function i is predicted as high-risk by the
model and 0 otherwise, 1 � i � n. In the classification sce-
nario, only those functions predicted to be high-risk will be
tested or inspected for software quality enhancement. In
this context, the effort-aware classification effectiveness of
the prediction model m can be formally defined as follows:

ERðmÞ ¼ EffortðrandomÞ � EffortðmÞ
EffortðrandomÞ :

Here, Effort(m) is the ratio of the total SLOC in those pre-
dicted high-risk functions to the total SLOC in the system, i.e.

EffortðmÞ ¼
Xn
i�1

si � pi

�Xn
i�1

si:

Effort(random) is the proportion of SLOC to test or inspect to
the total SLOC in the system that a random selection model
needs to achieve the same recall of post-release faults as the
prediction model m, i.e.

EffortðrandomÞ ¼
Xn
i¼1

fi � pi

�Xn
i¼1

fi:

Before computing ER, we need to know the classification
threshold for the prediction model m. In the literature,

there are two popular methods to determine the classi-
fication threshold on a training set. The first method is
called balanced-pf-pd (BPP) method. This method employs
the ROC curve corresponding to m to determine the classi-
fication threshold. In the ROC curve, probability of detec-
tion (pd) is plotted against probability of false alarm (pf)
[40]. Intuitively, the closer a point in the ROC curve is to
the perfect classification point (0, 1), the better the model
predicts. In this context, the “balance” metric

balance ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0� pfÞ2 þ ð1� pdÞ2

q � ffiffiffi
2

p

can be used to evaluate the degree of balance between pf
and pd [40]. For a given training data set, BPP chooses the
threshold having the maximum “balance”. The second
method is balanced-classification-error (BCE) method.
Unlike BPP, BCE chooses the threshold to roughly equalize
two classification error rates: false positive rate and false
negative rate. As stated by Schein et al. [41], such an
approach has the effect of giving more weight to errors from
false positives in imbalanced data sets. This is especially
important for fault data, as they are typically imbalanced
(i.e. most functions have no faults). For the simplicity of pre-
sentation, the effort reduction metrics under the BPP and
BCE thresholds are respectively called “ER-BPP” and “ER-
BCE”. Our study will use “ER-BPP” and “ER-BCE” to evalu-
ate the effort-aware classification effectiveness of a predic-
tion model. However, it may be not adequate to use these
two thresholds for model evaluation, as there are many
other possible thresholds. In practice, it is possible that a
model is good under the BPP and BCE thresholds but is
poor under the other thresholds. Consequently, for software
practitioners, it may be misleading to use the “ER-BPP” and
“ER-BCE” metrics to select the best classification model
from a number of alternatives. In this paper, we use an addi-
tional metric “ER-AVG” proposed by Zhou et al. [53] to alle-
viate this problem. For a given model, the “ER-AVG” metric
is the average effort reduction of the model over all possible
thresholds on the test data set. Therefore, the “ER-AVG”
metric is indeed independent from specific thresholds. Con-
sequently, it can provide a complete picture of the classifica-
tion performance.

4 EXPERIMENTAL SETUP

In this section, we first introduce the projects used in our
study and the method for collecting the data. Then, we give
a brief description of the distribution of the metrics in the
data sets.

4.1 Studied Projects

We use five well-known open-source projects to investigate
the actual usefulness of slice-based cohesionmetrics in effort-
aware post-release fault-proneness prediction: Bash, Gcc-
core, Gimp, Subversion, and Vim. Of these projects, Bash,
Gcc-core, and Gimp are GNU projects, while Subversion is
an Apache project. More specifically, Bash is a command
language interpreter, Gcc-core is a famous GNU compiler
collection, Gimp is a GNU image manipulation program,
Subversion is a well-known open-source version control sys-
tem, and Vim is an advanced text editor distributed with

Fig. 1. SLOC-based Alberg diagram.
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most UNIX systems.We choose these five projects as the sub-
jects of our study for the following reasons: (1) their patch
files or bug-fixing release versions are publicly available,
thus allowing us to collect post-release fault data at the func-
tion level; (2) they can be successfully analyzed by the value
analysis plug-in in the code analysis tool Frama-C [57], thus
enabling us to collect slice-based cohesion metrics; (3) they
have moderate percentage post-release faulty functions
which is suitable for our experiments; and (4) they are non-
trivial software belonging to different problemdomains.

In our study, we collect the data for Bash 3.0, Gcc-core
3.4.0, Gimp 2.0.0, Subversion 1.2.0, andVim 6.2.We use these
five systems to evaluate the prediction effectiveness of post-
release fault-proneness prediction models under the cross-
validation and across-project prediction methods. It is easy
to know that, under the across-project prediction method,
each prediction model will produce 5� ð5� 1Þ ¼ 20 predic-
tion effectiveness values. Furthermore, we collect the data
for Bash 3.1, 3.2, 4.0, 4.1, 4.2, and 4.3. Note that, Bash 4.3,
released on 26 February 2014, is the latest version of the Bash
system till now.We use Bash 3.0, Bash 3.1, Bash 3.2, Bash 4.0,
Bash 4.1, Bash 4.2, and Bash 4.3 to evaluate the prediction
effectiveness of post-release fault-proneness predictionmod-
els under the across-version prediction method. Under the
first across-version prediction approach (i.e. next-version
prediction), each prediction model will produce 7� 1 ¼ 6
prediction effectiveness values. However, under the second
across-version prediction approach (i.e. follow-up-version
prediction), each prediction model will produce 7� ð7� 1Þ=
2 ¼ 21 prediction effectiveness values.

4.2 Data Collection

We collected the data from the above-mentioned five proj-
ects. Each data point of a data set corresponds to one C func-
tion and consists of: 1) 16 product metrics (1 size metric þ 11
structural complexity metrics þ 4 Halstead’s software sci-
ence metrics); 2) three process metrics (i.e. code churn met-
rics); 3) eight slice-based cohesion metrics; and 4) the
faulty/not-faulty labels of the functions after release. We
obtained the data by the following steps:

� Step 1: Collect the baseline product metrics for each func-
tion using the tool “Understand”. For each system, we
first generated an Understand database using the
program-understanding tool “Understand”.2 This

database stored information about entities (such as
functions and variables) and references (such as func-
tion call and variable references). Then, we collected
the most commonly used 16 product metrics for each
function of a system.

� Step 2: Collect the baseline process metrics for each function.
For each project, we used the tool “Understand” to
generate two Understand databases: one for the inves-
tigated version and another for the previously released
version. After that, we collected the three code churn
metrics by using the commonly used diff algorithm
[56] to compare the functions appearing in these two
databases. In this study, the blank line and comments
in those functions are not counted when computing
the code churnmetrics. The last two columns inTable 6
show for each project the previously released version
used for computing the code churnmetrics.

� Step 3: Determine the faulty or not-faulty labels for each
function after release. On the one hand, the project web-
sites for Bash3 and Vim4 publish a number of patch
files for fixing bugs reported after release. Each patch
file not only describes the problem reported but also
gives the patch to fix the corresponding problem. By
analyzing these patches, we were able to determine
which functions needed to be changed for fixing the
problem. If a function had code changes by these
patches, it will bemarked as a faulty function and oth-
erwise not-faulty. On the other hand, Gcc-3.4.6,5 Gimp
2.0.6,6 and Subversion 1.2.37 are the latest bug-fixing
releases to Gcc-core 3.4.0, Gimp 2.0.0, and Subversion
1.2.0, respectively. These bug-fixing releases did not
add any new features to the corresponding systems,
thus enabling us to determine which functions had
code changes for fixing bugs. If a function had code
changes in the latest bug-fixing releases, it will be
marked as a faulty function. Otherwise, the function is
a not-faulty function. This is one of the most com-
monly usedways to determine faulty functions [31].

� Step 4: Compute slice-based cohesion metrics for each
function using the tool “Frama-C”. We use intra-

TABLE 6
Studied Projects and Version Information

Subject release Previous release

Common functions
before preprocessing

Common functions
after preprocessing

System Version Release date KSLOC #function #faulty function #function #faulty function Version Release date

Bash 3.0 03–08–2004 55 1476 43 1403 40 2.05b 17–07–2002
Gcc-core 3.4.0 18–04–2004 411 6139 219 6066 210 3.3 14–05–2003
Gimp 2.0.0 23–03–2004 434 12110 469 11521 447 1.3.0 13–11–2001
Subversion 1.2.0 23–05–2005 181 2350 30 2003 29 1.1.0 29–09–2004
Vim 6.2 01–07–2003 123 2400 407 2342 398 6.1 24–03–2002

2. http://www.scitools.com

3. http://ftp.gnu.org/gnu/bash
4. http://ftp.vim.org/pub/vim/patches
5. http://gcc.gnu.org/releases.html
6. http://www.gimpusers.com/forums/gimp-user/1786-

announce-gimp-2-0-6
7. http://subversion.apache.org/docs/release-notes/1.2.html
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procedural slicing to compute slice-based cohesion
metrics for each function. In other words, metric sli-
ces are computed within a single function. In our
study, calls to other functions are handled conserva-
tively. More specifically, we developed two Frama-C
plug-ins named INFER CONtract (INFERCON) and
SLIce-Based COhesion Metrics (SLIBCOM) to com-
pute slice-based cohesion metrics for each function.
The INFERCONplugin is used to infer the contract for
a called function conservatively. For a function, if it
has a return value, INFERCON assumes that the
returned value is data-dependent on all the arguments
passed to the function. For any pointer argument p in
the function, INFERCON assumes that the value
pointed by pwill be changed at the end of the function
and hence p is data-dependent on all the arguments
passed to the function. In addition, INFERCON
assumes that any function is a terminating function.
The SLIBCOM plugin is used to collect slice-based
cohesionmetrics for each function in each system. The
SLIBCOMplug-inwas based on the INFERCONplug-
in and the other four plug-ins provided by Frama-C,
namely “Value analysis”, “Outputs”, “Slicing”, and
“Impact analysis”. For each function m in the system,
INFERCON first inferred contracts for the functions
called by m. Next, SLIBCOM employed the “Value
analysis” plug-in to perform the value analysis in a
context-insensitiveway by using the inferred contracts
for the called functions. Then, based on the results
from the value analysis, SLIBCOM used the
“Outputs” plug-in to obtain the output variables of m.
After that, SLIBCOM leveraged the “Slicing” plug-in
to obtain the end slices for each output variable. Based
on those end slices, SLIBCOMused the “Impact analy-
sis” plug-in to obtain the corresponding “forward
slices” and then combined them to obtain the metric
slices for each output variable. Finally, SLIBCOMused
the metric-slice information to calculate slice-based
cohesion metrics for the function m. Note that, the
cohesion metric value of a function was set to unde-
fined if either of the following two conditions was sat-
isfied: (1) the execution time for the value analysis was
very long; (2) the “Outputs” plug-in did not find any
output variable. The reason for the former case is
unknown. In our study, we terminated the value anal-
ysis when the execution time was longer than 30 min.
The latter case occurred when the function under
analysis did not return anything and had no side
effect as well. In this case, the “Outputs” plug-in was
unable to identify any output variable for the function
under analysis.

Table 6 summarizes the projects studied in this study
(the time cost for collecting the slice-based cohesion metrics
is shown in Table 12 in Appendix A, which can be found on
the Computer Society Digital Library at http://doi.ieeecom-
putersociety.org/10.1109/TSE.2014.2370048). The second to
the fourth columns are the version number, the release date,
and the total source lines of code of the subject release,
respectively. The fifth and the sixth columns are respec-
tively the total number of functions and the total number of
faulty functions that can be identified by both Understand

and Frama-C. The seventh and the eighth columns are
respectively the total number of functions and the total
number of faulty functions after removing the functions
that have an “undefined” metric value. As can be seen, for
each system, faulty functions detected during the post-
release phase concentrated in a very small number of func-
tions (only around 1.234�16.994 percent of all functions). In
all the subsequent analyses (in Section 5), we use only the
pre-processed data sets. The last two columns respectively
provide the version number and the release date for the pre-
vious releases. The previous releases are used for comput-
ing the code churn metrics for each system (described in
Step 2 in Section 4.2). We choose these previous five versions
as the baseline versions to compute code churn metrics, as
they all are the first previous minor versions for each sys-
tem. We can find that, on average, the previous release is
released 17 months before the subject version is released.

4.3 Data Distribution

Table 7 presents the descriptive statistics for each data set.
Columns “25”, “50”, and “75” percent state for each metric
the first quartile, the median value, and the third quartile,
respectively. From Table 7, we have the following observa-
tions. First, for the code metrics, we can see that Gcc-core
3.4.0 has the largest function size, the highest Cyclomatic
complexity, and the maximum depth of nesting. This indi-
cates that this compiler collection has a more complex control
flow than the other systems. Second, for the process metrics,
we can see that the functions in Gcc-core 3.4.0 undergo more
code changes. This is probably because the Gcc 3.4.0 has
many improvements in the Cþþ frontend.8 Third, for the
slice-based cohesion metrics, we can see that Vim 6.2 in gen-
eral has a smaller cohesion value than the other systems. In
other words, its functions are less cohesive than the functions
in the other four systems. From Table 6, we observe that, of
the five systems, Vim 6.2 has the largest percentage of faulty
functions. One possible explanation is that lower cohesive
functions aremore likely to be faulty functions. This is consis-
tent with our intuition. Fourth, for most metrics, there are
large differences between the lower 25th percentile, the
median, and the 75th percentile, thus showing strong varia-
tions across functions.

All of themetrics havemore than five observations that are
nonzero, and hence, are considered for further analysis [33].

5 EXPERIMENTAL RESULTS

In this section, we elaborate on the experimental results for
slice-based cohesion metrics. In Section 5.1, we present the
results from examining their redundancy with the most
commonly used code and process metrics (RQ1). In Sec-
tion 5.2, we give the results from examining their correla-
tions with post-release fault-proneness (RQ2). In Section 5.3,
we show the results from examining their ability for predict-
ing post-release fault-proneness compared with the most
commonly used code and process metrics (RQ3). In Section
5.4, we report the results from examining the usefulness of
their combination with the most commonly used code and

8. http://www.gnu.org/software/gcc/gcc-3.4/changes.html
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process metrics in effort-aware post-release fault-proneness
prediction (RQ4).

5.1 RQ1: Are Slice-Based Cohesion Metrics
Redundant with Respect to the Most Commonly
Used Code and Process Metrics?

We use the results from principal component analysis to
answer RQ1. Table 8 summarizes the rotated components
from PCA for each data set (the detailed information
are shown in Tables 13, 14, 15, 16, and 17 in Appendix B,
available in the online supplemental material). In Table 8,
the first and second columns are respectively the system
name and the PC name. The third to fifth columns report
the eigenvalue, the percentage of variance explained by
each rotated component, and the cumulative percentage of
variance explained, respectively. The sixth column shows
which metrics are clustered into each PC. The last column
marks the PCs consisting of only slice-based cohesion
metrics. In particular, slice-based cohesion metrics are
shown in bold face.

From Table 8, we can see that the metrics (the most com-
monly used code and process metrics and the slice-based
cohesion metrics) are clustered into ten to thirteen distinct
orthogonal components, which describe around 91�95 per-
cent of the variance in the data. Furthermore, we have the
following observations:

� The most commonly used code and process metrics
are distributed in seven to 10 components, which
describe around 72 percent of the variance in the

data. Of the code metrics, SLOC, most cyclomatic
complexity metrics and Halstead’s software science
metrics fall in the same component (PC1). This indi-
cates that cyclomatic complexity metrics and
Halstead’s software science metrics essentially mea-
sure the size dimension. Knots, MaxEssentialKnots,
and MinEssentialKnots fall in a component (PC3) dif-
ferent from most of the other code metrics (that
mainly go in PC1), and the same happens for FANIN
and for NPATH. In particular, code churn metrics
defines new PCs of their own compared with code
metrics, indicating that process metrics and code
metrics measure different information.

� Slice-based cohesion metrics are distributed in three
distinct orthogonal components, which describe
around 28 percent of the variance in the data. As
can be seen, most slice-based cohesion metrics fall
in the same component (PC2). It is interesting that
NHD always defines a PC of its own, regardless of
which data set is considered. This indicates that
NHD is different from the other slice-based cohe-
sion metrics. This is also true for MaxCoverage to a
limited extent.

The core observation from Table 8 is that there is no over-
lap between all the PCs by the most commonly used code
and process metrics and all the PCs by slice-based cohesion
metrics. In other words, slice-based cohesion metrics indeed
define the PCs of their own compared with the most com-
monly used code and process metrics. Therefore, our PCA
analysis results, from five different data sets, consistently

TABLE 7
Description Statistics for Each Data Set

Metric

Bash 3.0 Gcc-core 3.4.0 Gimp 2.0.0 Subversion 1.2.0 Vim 6.2

25% 50% 75% 25% 50% 75% 25% 50% 75% 25% 50% 75% 25% 50% 75%

SLOC 8 14 26 10 18 39 9 17 31 10 16 31 9.25 17 38
FANIN 3 4 7 5 9 15 3 5 9 5 7 11.5 4 7 12
FANOUT 2 3 6 2 4 9 3 5 10 3 5 9 2 4 9
NPATH 1 3 7 2 4 18 1 2 5 1 3 8 2 4 16
Cyclomatic 1 3 6 2 4 9 1 2 4 1 4 9 2 3 8
CyclomaticModified 1 3 6 2 4 8 1 2 4 1 4 9 2 3 8
CyclomaticStrict 1 3 8 2 5 12 1 2 5 1 4 10 2 4 10
Essential 1 1 3 1 1 4 1 1 1 1 3 7 1 1 4
Knots 0 0 3 0 1 5 0 0 1 0 2 8 0 1 4
Nesting 0 1 2 1 2 3 0 1 2 0 2 3 1 1 3
MaxEssentialKnots 0 0 1.5 0 0 3 0 0 0 0 2 7 0 0 3
MinEssentialKnots 0 0 1 0 0 3 0 0 0 0 2 7 0 0 3

n1 8 12 17 9 14 20 8 10 14 10 13 17 9 14 21
n2 7 12 21 11 18 32 11 18 30 12 19 32 10 17 32
N1 18 37 75 25 51.5 114 19 39 81 25 47 93.5 21 46 114
N2 13 25 53 19 40 88 17 33 70 19 36 71.5 16 36 85

Added 0 0 0 0 0 0.067 0 0.176 0.882 0 0 0.039 0 0 0
Deleted 0 0 0 0.667 0.867 1 0 0 0.819 0 0 0.833 0 0 0
Modified 0 0 0 0 0.037 0.111 0 0 0 0 0 0 0 0 0

Coverage 0.500 0.773 1 0.583 0.840 1 0.644 0.838 1 0.667 0.812 1 0.496 0.737 1
MaxCoverage 0.667 0.928 1 0.778 0.961 1 0.850 0.965 1 0.875 0.977 1 0.727 0.936 1
MinCoverage 0.286 0.679 1 0.350 0.765 1 0.380 0.721 1 0.378 0.667 1 0.222 0.605 1
Overlap 0.494 0.963 1 0.623 0.971 1 0.672 0.946 1 0.639 0.873 1 0.454 0.905 1
Tightness 0.182 0.653 1 0.281 0.750 1 0.350 0.710 1 0.353 0.652 1 0.143 0.571 1
WFC 0.481 0.847 1 0.590 0.895 1 0.692 0.917 1 0.729 0.889 1 0.454 0.813 1
SBFC 0.356 0.903 1 0.469 0.892 1 0.520 0.817 1 0.539 0.739 1 0.290 0.754 1
NHD 0.602 0.758 1 0.644 0.798 1 0.644 0.778 1 0.640 0.756 1 0.619 0.757 1
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TABLE 8
Results of Principal Component Analysis

Sys. PC Eigen value %Var. %Cum Var. Clustered metrics

Bash 3.0 PC1 8.160 0.302 0.302 SLOC þ FANOUT þ Cyclomatic þ CyclomaticModified þ CyclomaticStrict þ n1 þ n2

þN1þN2

PC2 6.201 0.230 0.532 Coverage þMinCoverage þOverlapþ Tightness þWFC þ SBFC
p

PC3 3.397 0.126 0.658 Essential þ Knots þMaxEssentialKnots þMinEssentialKnots

PC4 1.078 0.040 0.698 Modified

PC5 1.008 0.037 0.735 FANIN

PC6 1.007 0.037 0.772 Deleted

PC7 1.005 0.037 0.809 Added

PC8 0.998 0.037 0.846 NPATH

PC9 0.767 0.028 0.875 MaxCoverage
p

PC10 0.669 0.025 0.900 Nesting

PC11 0.590 0.022 0.921 NHD
p

Gcc-core 3.4.0 PC1 7.990 0.296 0.296 SLOC þ Cyclomatic þ CyclomaticModified þ CyclomaticStrict þ Essential þ n2 þN1 þN2

PC2 5.790 0.214 0.510 Coverage þMinCoverage þOverlap þ Tightness þWFC þ SBFC
p

PC3 3.418 0.127 0.637 Knots þMaxEssentialKnots þMinEssentialKnots

PC4 1.012 0.037 0.674 Modified

PC5 1.007 0.037 0.712 Added

PC6 1.002 0.037 0.749 Deleted

PC7 0.993 0.037 0.786 MaxCoverage
p

PC8 0.989 0.037 0.822 FANIN

PC9 0.898 0.033 0.856 NPATH

PC10 0.869 0.032 0.888 Nesting

PC11 0.677 0.025 0.913 NHD
p

PC12 0.557 0.021 0.933 n1

PC13 0.547 0.020 0.954 FANOUT

Gimp 2.0.0 PC1 6.239 0.231 0.231 SLOC þ Cyclomatic þ CyclomaticModified þ CyclomaticStrict þNesting þ n1 þN1 þN2

PC2 5.004 0.185 0.416 Coverage þMinCoverage þOverlap þ Tightness þ SBFC
p

PC3 3.068 0.114 0.530 Knots þMaxEssentialKnots þMinEssentialKnots

PC4 1.879 0.070 0.600 MaxCoverage þWFC
p

PC5 1.704 0.063 0.663 Modified

PC6 1.604 0.059 0.722 FANOUT þ n2

PC7 1.014 0.038 0.760 NPATH

PC8 1.008 0.037 0.797 FANIN

PC9 1.003 0.037 0.834 Added

PC10 1.001 0.037 0.871 Deleted

PC11 0.547 0.020 0.892 NHD
p

PC12 0.486 0.018 0.910 Essential

Subversion 1.2.0 PC1 8.179 0.303 0.303 SLOC þ FANOUT þ Cyclomatic þ CyclomaticModified þ CyclomaticStrict þ Essential

þ n2 þN1 þN2

PC2 4.674 0.173 0.476 MinCoverage þOverlap þ Tightness þ SBFC
p

PC3 3.064 0.113 0.590 Knots þMaxEssentialKnots þMinEssentialKnots

PC4 2.570 0.095 0.685 Coverage þMaxCoverage þWFC
p

PC5 1.007 0.037 0.722 Deleted

PC6 1.006 0.037 0.759 NPATH

PC7 1.005 0.037 0.797 Added

PC8 1.005 0.037 0.834 Modified

PC9 1.001 0.037 0.871 FANIN

PC10 0.616 0.023 0.894 n1

PC11 0.521 0.019 0.913 Nesting

PC12 0.376 0.014 0.927 NHD
p

Vim 6.2 PC1 9.253 0.343 0.343 SLOC þ FANOUT þNPATH þ Cyclomatic þ CyclomaticModified þ CyclomaticStrict

þ Essential þ n1 þ n2 þN1 þN2

PC2 6.037 0.224 0.566 Coverage þMinCoverage þOverlap þ Tightness þWFC þ SBFC
p

PC3 3.295 0.122 0.688 Knots þMaxEssentialKnots þMinEssentialKnots

PC4 1.031 0.038 0.727 Modified

PC5 1.016 0.038 0.764 Nesting

PC6 1.013 0.038 0.802 Added

PC7 1.000 0.037 0.839 Deleted

PC8 0.978 0.036 0.875 FANIN

PC9 0.906 0.034 0.909 MaxCoverage
p

PC10 0.587 0.022 0.930 NHD
p
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reject the null hypothesis H10 corresponding to RQ1: “Slice-
based cohesion metrics do not capture additional dimen-
sions of software quality compared with the most com-
monly used code and process metrics”. In other words, our
results are in favor of the alternative hypothesis H1A, i.e.
there is a strong evidence that slice-based cohesion metrics
are not redundant with respect to the most commonly used
code and process metrics.

5.2 RQ2: Are Slice-Based Cohesion Metrics
Statistically Significantly Correlated to
Post-Release Fault-Proneness?

Weuse the results from univariate logistic regression analysis
to answer RQ2. Tables 9 and 10 respectively report the results
of univariate logistic regression analysis for individual slice-
based cohesion metrics before and after removing the con-
founding effect of function size measured by SLOC. The col-
umn “Metric” shows the independent variable used for the
corresponding univariate logistic regression model. The col-
umns “Coeff.”, “p-value”, and “DOR” state for each model
the estimated regression coefficient, the statistical signifi-
cance of the coefficient from Z test, and the odds ratio associ-
atedwith one standard deviation increase, respectively. Since
there are 27 metrics, the total number of statistical Z tests on
each data set is 27. Becausemultiple tests on the same data set
may result in spurious statistically significant results, we use
the Benjamini-Hochberg correction of p-values to control for
false discovery [47]. In other words, all p-values reported in
Tables 9 and 10 have been adjusted using the Benjamini-

Hochberg method. In particular, those p-values greater than
the a ¼ 0:10 significance level aremarked in gray.

From Table 9, we can see that most of the investigated
baseline code and process metrics are significantly positively
related to post-release fault-proneness. This indicates that
functions with a high code and process complexity tend to
be post-release fault-prone. Furthermore, we observe that
almost all the slice-based cohesion metrics have a significant
correlation with post-release fault-proneness. This is true
especially for Gcc-core 3.4.0, Gimp 2.0.0, and Vim 6.2. Over-
all, most slice-based cohesion metrics are significantly
related to post-release fault-proneness negatively, thus sup-
porting the intuition that functions with a low cohesion tend
to be fault-prone. According to DOR, Tightness and MinCo-
verage have the strongest impact on post-release fault-prone-
ness. However, the results shown in Table 9 do not reflect the
true correlations of the investigatedmetricswith post-release
fault-proneness, as the potentially confounding effect of
function size is not taken into account [53].

Table 10 summarizes the univariate analysis results after
removing the confounding effect of function size. As can be
seen, for all the data sets except Bash 3.0, more than half of
the baseline code and process metrics are significantly
related to post-release fault-proneness. Even for Bash 3.0,
there are still five significant code metrics. These results
suggest that the characteristics captured by these baseline
code and process metrics are indeed different from function
size and can be used as post-release fault-proneness indica-
tors. More importantly, we can see that, after removing the

TABLE 9
Results of Univariate Logistic Regression Analysis Before Removing the Potentially Confounding Effect of Function Size

Metric Bash 3.0 Gcc-core 3.4.0 Gimp 2.0.0 Subversion 1.2.0 Vim 6.2

Coeff. p-value DOR Coeff. p-value DOR Coeff. p-value DOR Coeff. p-value DOR Coeff. p-value DOR

SLOC 0.008 0.035 1.262 0.010 <0.001 1.716 0.011 <0.001 1.416 0.013 <0.001 1.461 0.020 <0.001 4.399

FANIN 0.003 0.843 1.039 0.011 <0.001 1.215 0.004 0.135 1.053 0.001 0.939 1.012 0.044 <0.001 1.710
FANOUT 0.038 0.055 1.244 0.071 <0.001 1.798 0.064 <0.001 1.641 0.083 <0.001 1.723 0.118 <0.001 3.452
NPATH <0.001 0.797 <0.001 <0.001 <0.001 1.250 <0.001 0.993 1.000 <0.001 0.939 <0.001 <0.001 0.030 3.683
Cyclomatic 0.028 0.035 1.261 0.028 <0.001 1.538 0.043 <0.001 1.277 0.036 0.001 1.421 0.092 <0.001 5.285
CyclomaticModified 0.033 0.034 1.279 0.045 <0.001 1.675 0.053 <0.001 1.294 0.038 0.001 1.433 0.101 <0.001 4.415
CyclomaticStrict 0.018 0.039 1.241 0.021 <0.001 1.646 0.038 <0.001 1.289 0.033 0.001 1.430 0.065 <0.001 5.030
Essential �0.001 0.992 0.998 0.048 <0.001 1.405 0.033 0.028 1.079 0.039 0.001 1.401 0.131 <0.001 2.904
Knots �0.003 0.869 0.959 0.007 <0.001 1.377 0.001 0.767 1.018 0.013 0.015 1.250 0.057 <0.001 6132.536
Nesting 0.313 0.034 1.517 0.313 <0.001 1.669 0.288 <0.001 1.420 0.497 <0.001 2.068 0.515 <0.001 2.456
MaxEssentialKnots �0.013 0.740 0.840 0.008 <0.001 1.374 <0.001 0.993 0.998 0.013 0.016 1.244 0.051 <0.001 2482.538
MinEssentialKnots �0.014 0.740 0.822 0.007 <0.001 1.368 <0.001 0.992 0.995 0.013 0.016 1.243 0.052 <0.001 3015.089

n1 0.049 0.035 1.404 0.099 <0.001 2.065 0.074 <0.001 1.551 0.119 <0.001 1.847 0.137 <0.001 3.123
n2 0.014 0.038 1.279 0.021 <0.001 1.767 0.020 <0.001 1.553 0.019 <0.001 1.474 0.038 <0.001 4.270
N1 0.002 0.035 1.268 0.003 <0.001 1.726 0.002 <0.001 1.309 0.005 <0.001 1.524 0.006 <0.001 4.711
N2 0.003 0.035 1.257 0.004 <0.001 1.733 0.003 <0.001 1.326 0.004 0.001 1.373 0.009 <0.001 4.426

Added 0.596 0.108 1.175 0.393 <0.001 1.183 0.471 <0.001 1.268 1.845 <0.001 1.842 0.546 0.001 1.172
Deleted 0.272 0.045 1.191 0.155 0.017 1.105 0.005 0.831 1.013 0.483 0.141 1.258 1.049 <0.001 2.011
Modified �1.590 0.845 0.793 �6.409 <0.001 0.004 �0.035 0.853 0.984 �0.228 0.767 0.876 �0.064 0.633 0.950

Coverage �1.183 0.055 0.726 �1.395 <0.001 0.702 �0.910 <0.001 0.820 �1.854 0.043 0.703 �1.944 <0.001 0.589
MaxCoverage �0.598 0.455 0.868 �0.570 0.058 0.885 1.049 0.001 1.209 �0.658 0.636 0.907 �0.966 <0.001 0.806
MinCoverage �1.363 0.034 0.619 �1.536 <0.001 0.590 �1.932 <0.001 0.532 �1.781 0.005 0.570 �1.952 <0.001 0.486
Overlap �1.067 0.034 0.682 �1.421 <0.001 0.622 �1.927 <0.001 0.573 �1.753 0.004 0.627 �1.458 <0.001 0.596
Tightness �1.255 0.034 0.613 �1.384 <0.001 0.599 �1.745 <0.001 0.551 �1.793 0.004 0.559 �1.682 <0.001 0.513
WFC �0.760 0.134 0.781 �0.096 0.677 0.972 0.896 <0.001 1.250 0.346 0.767 1.075 �0.436 0.009 0.868
SBFC �1.112 0.034 0.666 �1.142 <0.001 0.682 �1.113 <0.001 0.732 �1.703 0.023 0.658 �1.435 <0.001 0.590
NHD �2.495 0.034 0.622 �1.829 <0.001 0.728 �1.028 <0.001 0.839 �4.757 0.001 0.453 �2.737 <0.001 0.610

All p-values have been adjusted using the Benjamini-Hochberg method.
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confounding effect of function size, most slice-based cohe-
sion metrics are still significantly related to fault-proneness.
Overall, our univariate logistic regression analysis results,
from five different data sets, reject the null hypothesis H20
corresponding to RQ2: “Slice-based cohesion metrics do not
have a significant correlation with post-release fault-
proneness.” In other words, our results are in favor of the
alternative hypothesis H2A, i.e. slice-based cohesion metrics
are in general significantly related to the occurrence of post-
release faults in functions.

5.3 RQ3: Are Slice-Based Cohesion Metrics More
Effective than the Most Commonly Used Code
and Process Metrics in Effort-Aware
Post-Release Fault-Proneness Prediction?

In order to answer RQ3, we first use the procedure described
in Section 3.4.3 to build the “S” model and the “B” model on
each data set. Table 11 summarizes the “B” and “S” models
for each data set. The first column indicates the data set and
the second column is the type of the model. The third to
fourth columns show the number of (excluded) influential
observations and the maximum VIF among the independent
variables in each model, respectively. The remaining col-
umns, starting from the fifth column, show the selected inde-
pendent variables. Below each variable name, we present the
corresponding coefficient and p-value. Then, we compare the
prediction effectiveness of the “S” and “B” models with
respect to both ranking and classification under cross-valida-
tion, across-version prediction, and across-project prediction.

5.3.1 Cross-Validation

Fig. 2 employs the box-plot to describe the distributions of
the CEs at different cut-off values and the ER-BPPs/ER-
BCEs/ER-AVGs obtained from 30 times three-fold cross-
validation for the “B” model and the “S” model. For each
model, the box-plot shows the median (the horizontal line
within the box), the 25th and 75th percentiles (the lower
and upper sides of the box) as well as the mean performance
value (the small rectangle inside the box). In practice, practi-
tioners are more interested in the ranking performance of a
prediction model at the top fraction. Therefore, we report
the CE performances at p ¼ 0:1 and 0.2 for each model. In
addition, we report the CE performance at p ¼ 1:0 in order
to provide a more complete picture of the ranking perfor-
mance for each model.

From Fig. 2, we have the following observations:

� Ranking performance. For Bash 3.0, the “S” model has
a slightly larger median CE than the “B” model.
The BH corrected p-value in the Wilcoxon signed-
rank test is not significant for both CE0.1 and CE1.0

but is significant for CE0.2. The effect sizes (i.e. the
magnitudes of the difference between the “S”
model and the “B” model) are trivial or small in
terms of the Cliff’s d (0:046 � jdj � 0:115). For Gcc-
core 3.4.0 and Vim 6.2, the “S” model has a signifi-
cantly lower median CE than the “B” model (the
BH corrected p-values < 0.001). The effect sizes
are moderate or large in terms of the Cliff’s d

TABLE 10
Results of Univariate Logistic Regression Analysis After Removing the Potentially Confounding Effect of Function Size

Metric Bash 3.0 Gcc-core 3.4.0 Gimp 2.0.0 Subversion 1.2.0 Vim 6.2

Coeff. p-value DOR Coeff. p-value DOR Coeff. p-value DOR Coeff. p-value DOR Coeff. p-value DOR

SLOC 0.008 0.064 1.262 0.010 <0.001 1.716 0.011 <0.001 1.416 0.013 <0.001 1.461 0.020 <0.001 4.399

FANIN �0.006 0.842 0.940 0.002 0.518 1.039 �0.006 0.351 0.914 �0.002 0.892 0.962 0.009 0.047 1.100
FANOUT 0.015 0.771 1.059 0.041 <0.001 1.270 0.071 <0.001 1.489 0.112 <0.001 1.777 0.063 <0.001 1.418
NPATH <0.001 0.428 0.866 <0.001 0.047 1.101 <0.001 <0.001 0.319 <0.001 <0.001 0.027 <0.001 0.012 0.851
Cyclomatic 0.033 0.672 1.097 �0.059 <0.001 0.705 �0.043 0.012 0.869 0.043 0.037 1.343 �0.016 0.255 0.926
CyclomaticModified 0.087 0.100 1.255 0.021 0.135 1.103 �0.008 0.715 0.977 0.045 0.035 1.353 0.020 0.240 1.066
CyclomaticStrict 0.005 0.873 1.025 0.004 0.572 1.037 �0.016 0.331 0.941 0.041 0.035 1.371 <0.001 0.984 0.999
Essential �0.155 0.059 0.708 �0.056 <0.001 0.760 �0.239 <0.001 0.622 0.040 0.054 1.300 �0.072 <0.001 0.760
Knots �0.060 0.012 0.509 �0.007 <0.001 0.128 �0.068 <0.001 0.235 �0.002 0.868 0.947 �0.020 <0.001 0.213
Nesting 0.286 0.103 1.325 �0.110 0.054 0.862 �0.003 0.955 0.997 0.491 0.005 1.848 0.265 <0.001 1.411
MaxEssentialKnots �0.060 0.012 0.504 �0.007 <0.001 0.129 �0.092 <0.001 0.206 �0.002 0.864 0.935 �0.021 <0.001 0.200
MinEssentialKnots �0.062 0.012 0.494 �0.007 <0.001 0.129 �0.092 <0.001 0.203 �0.003 0.864 0.932 �0.021 <0.001 0.202

n1 0.026 0.652 1.128 �0.018 0.172 0.906 0.027 0.028 1.118 0.114 0.016 1.639 0.099 <0.001 1.805
n2 0.006 0.771 1.057 0.013 0.012 1.171 0.049 <0.001 1.637 0.055 0.001 1.803 0.022 <0.001 1.450
N1 0.003 0.561 1.094 0.003 0.087 1.103 <0.001 0.702 1.018 0.011 <0.001 1.820 0.002 0.027 1.114
N2 0.003 0.672 1.080 0.004 0.006 1.166 0.001 0.144 1.043 0.016 0.002 1.543 0.002 0.025 1.119

Added 0.603 0.158 1.178 0.393 0.001 1.183 0.486 <0.001 1.277 1.809 <0.001 1.818 0.494 0.004 1.154
Deleted 0.229 0.173 1.151 0.064 0.497 1.042 �0.001 0.955 0.997 0.216 0.722 1.104 0.550 <0.001 1.415
Modified �0.935 0.815 0.872 0.105 0.318 1.046 0.010 0.955 1.005 �0.120 0.864 0.932 �0.020 0.840 0.984

Coverage �0.972 0.173 0.771 �0.881 0.002 0.801 �0.435 0.067 0.911 �1.396 0.171 0.770 �1.215 <0.001 0.722
MaxCoverage �0.597 0.561 0.868 �0.711 0.025 0.859 1.413 <0.001 1.290 �0.397 0.864 0.943 �0.901 <0.001 0.817
MinCoverage �1.124 0.064 0.683 �0.773 <0.001 0.771 �1.458 <0.001 0.636 �1.375 0.037 0.655 �1.031 <0.001 0.696
Overlap �0.902 0.080 0.730 �0.920 <0.001 0.738 �1.587 <0.001 0.650 �1.460 0.035 0.684 �0.743 <0.001 0.777
Tightness �1.042 0.064 0.674 �0.727 <0.001 0.767 �1.282 <0.001 0.659 �1.391 0.035 0.645 �0.895 <0.001 0.712
WFC �0.770 0.173 0.779 �0.252 0.300 0.927 0.967 <0.001 1.272 0.470 0.769 1.104 �0.506 0.003 0.849
SBFC �0.924 0.080 0.719 �0.643 0.002 0.808 �0.714 <0.001 0.822 �1.324 0.100 0.726 �0.859 <0.001 0.734
NHD �2.060 0.064 0.680 �0.745 0.087 0.880 �0.512 0.103 0.917 �3.581 0.015 0.562 �1.585 <0.001 0.754

All p-values have been adjusted using the Benjamini-Hochberg method.

YANG ET AL.: ARE SLICE-BASED COHESION METRICS ACTUALLY USEFUL IN EFFORT-AWARE POST-RELEASE FAULT-PRONENESS... 347



T
A
B
L
E
1
1

T
h
e
“B
”,
“S
”,
a
n
d
“B
þS

”
M
o
d
e
ls
fo
r
E
a
c
h
D
a
ta

S
e
t

S
y
s.

M
o
d
el

k
V
IF

B
as
h
3.
0

B
0

1.
09

4
C
o
n
st
an

t
N
es
ti
n
g

M
ax

E
ss
en

ti
al
K
n
o
ts

A
d
d
ed

�4
.2
81

0.
36

2
�0

.0
74

0.
74

8

<
0.
00

1
0.
00

7
<
0.
00

1
0.
02

9

S
0

5.
69

8
C
o
n
st
an

t
C
o
v
er
ag

e
M
in
C
o
v
er
ag

e
N
H
D

�2
.1
98

3.
04

7
�2

.4
21

�2
.5
89

0.
00

2
0.
06

0
0.
01

6
0.
05

6

B
þS

0
2.
54

8
C
o
n
st
an

t
N
es
ti
n
g

M
ax

E
ss
en

ti
al
K
n
o
ts

n
2

A
d
d
ed

M
o
d
ifi
ed

N
H
D

�2
.4
83

0.
32

2
�0

.0
83

�0
.0
35

0.
86

8
0.
53

6
�2

.2
36

0.
00

1
0.
02

6
<
0.
00

1
0.
08

7
0.
01

6
0.
03

0
0.
02

1

G
cc
-c
o
re

3.
4.
0

B
0

2.
41
8

C
o
n
st
an

t
S
L
O
C

F
A
N
O
U
T

C
y
cl
o
m
at
ic

C
y
cl
o
m
at
ic
S
tr
ic
t

E
ss
en

ti
al

M
ax

E
ss
en

ti
al
K
n
o
ts

n
2

N
1

A
d
d
ed

M
o
d
ifi
ed

�4
.6
23

0.
01

1
0.
04

4
�0

.0
29

0.
01

3
0.
03

2
�0

.0
01

0.
01

1
�0

.0
02

0.
59

7
0.
20

0

<
0.
00

1
<
0.
00

1
<
0.
00

1
0.
01

9
0.
07

3
0.
01

9
0.
00

2
0.
02

2
0.
07

7
<
0.
00

1
0.
01

1

S
0

5.
58

6
C
o
n
st
an

t
C
o
v
er
ag

e
O
v
er
la
p

W
F
C

�2
.5
80

�1
.6
35

�0
.7
17

1.
38

4

<
0.
00

1
0.
00

9
0.
00

6
0.
00

2

B
þS

0
3.
03
1

C
o
n
st
an

t
S
L
O
C

F
A
N
O
U
T

C
y
cl
o
m
at
ic

C
y
cl
o
m
at
ic
S
tr
ic
t

E
ss
en

ti
al

M
ax

E
ss
en

ti
al
K
n
o
ts

n
2

N
1

A
d
d
ed

M
o
d
ifi
ed

M
ax

C
o
v
er
ag

e
O
v
er
la
p

W
F
C

�3
.5
68

0.
01

1
0.
02

8
�0

.0
31

0.
01

5
0.
03

5
�0

.0
01

0.
01

1
�0

.0
02

0.
60

2
0.
20

0
�1

.0
49

�0
.9
29

0.
75

2

<
0.
00

1
<
0.
00

1
0.
00

5
0.
01

4
0.
04

4
0.
01

0.
00

5
0.
03

4
0.
07

2
<
0.
00

1
0.
01

3
0.
05

6
<
0.
00

1
0.
08

4

G
im

p
2.
0.
0

B
1

3.
61

2
C
o
n
st
an

t
S
L
O
C

F
A
N
IN

F
A
N
O
U
T

N
P
A
T
H

C
y
cl
o
m
at
ic
M
o
d
ifi
ed

M
in
E
ss
en

ti
al
K
n
o
ts

n
1

n
2

N
1

A
d
d
ed

�4
.7
06

0.
00

9
�0

.0
18

0.
03

2
�4

.9
49

E
-0
9

0.
05

2
�0

.0
52

0.
04

4
0.
02

8
�0

.0
05

0.
36

2

<
0.
00

1
<
0.
00

1
0.
01

0
<
0.
00

1
0.
05

8
<
0.
00

1
0.
00

1
<
0.
00

1
<
0.
00

1
<
0.
00

1
<
0.
00

1

S
0

7.
73

8
C
o
n
st
an

t
M
ax

C
o
v
er
ag

e
M
in
C
o
v
er
ag

e
O
v
er
la
p

W
F
C

�5
.0
26

1.
57

0
�3

.2
01

0.
86

5
2.
23

6

<
0.
00

1
0.
00

2
<
0.
00

1
0.
04

3
<
0.
00

1

B
þS

1
7.
90

6
C
o
n
st
an

t
S
L
O
C

F
A
N
IN

C
y
cl
o
m
at
ic

M
in
E
ss
en

ti
al
K
n
o
ts

n
1

n
2

N
1

A
d
d
ed

M
ax

C
o
v
er
ag

e
M
in
C
o
v
er
ag

e
O
v
er
la
p

W
F
C

�6
.6
06

0.
01

1
�0

.0
13

0.
04

0
�0

.0
39

0.
03

5
0.
02

8
�0

.0
04

0.
35

3
1.
75

5
�3

.0
99

1.
23

0
1.
93

4

<
0.
00

1
<
0.
00

1
0.
07

7
0.
00

1
0.
00

5
0.
00

3
<
0.
00

1
<
0.
00

1
<
0.
00

1
0.
00

1
<
0.
00

1
0.
00

4
<
0.
00

1

S
u
b
v
er
si
o
n
1.
2.
0

B
0

1.
49

5
C
o
n
st
an

t
F
A
N
O
U
T

N
P
A
T
H

N
es
ti
n
g

A
d
d
ed

�5
.8
54

0.
06

6
�9

.3
70

E
-0
8

0.
33

9
1.
28

2

<
0.
00

1
0.
03

7
0.
04

1
0.
03

7
<
0.
00

1

S
0

2.
10

7
C
o
n
st
an

t
W

F
C

N
H
D

�2
.6
16

7.
63

1
�1

0.
49

6

0.
03

8
<
0.
00

1
<
0.
00

1

B
þS

0
2.
68

2
C
o
n
st
an

t
S
L
O
C

A
d
d
ed

W
F
C

N
H
D

�2
.5
23

0.
01

3
1.
18

3
7.
43

0
�1

1.
49

7

0.
06

1
<
0.
00

1
<
0.
00

1
<
0.
00

1
<
0.
00

1

V
im

6.
2

B
0

1.
23
8

C
o
n
st
an

t
S
L
O
C

F
A
N
O
U
T

C
y
cl
o
m
at
ic
S
tr
ic
t

n
1

M
o
d
ifi
ed

�3
.6
84

0.
01

6
0.
06

1
0.
04

2
0.
08

3
0.
18

6

<
0.
00

1
<
0.
00

1
<
0.
00

1
<
0.
00

1
<
0.
00

1
0.
00

9

S
0

C
o
n
st
an

t
C
o
v
er
ag

e
O
v
er
la
p

W
F
C

S
B
F
C

�0
.8
15

�2
.4
02

0.
66

2
1.
90

5
�1

.2
96

<
0.
00

1
<
0.
00

1
0.
05

<
0.
00

1
0.
00

2

B
þS

0
1.
54
8

C
o
n
st
an

t
S
L
O
C

F
A
N
O
U
T

C
y
cl
o
m
at
ic
S
tr
ic
t

E
ss
en

ti
al

n
1

M
o
d
ifi
ed

M
ax

C
o
v
er
ag

e
N
H
D

�2
.4
02

0.
01

6
0.
04

7
0.
05

5
�0

.0
38

0.
08

2
0.
17

7
�0

.5
83

�0
.9
91

<
0.
00

1
<
0.
00

1
<
0.
00

1
<
0.
00

1
0.
02

4
<
0.
00

1
0.
01

3
0.
08

6
0.
04

5

348 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 4, APRIL 2015



(0:516 � jdj � 0:842). In particular, for Vim 6.2, we
can see that the median CE0.1 is around zero, indi-
cating a performance similar to the random model.
For Subversion 1.2.0, the “S” model is similar to
the “B” model from the viewpoint of practical
application (0:126 � jdj � 0:236). For Gimp 2.0.0,
the “S” model is considerably better than the “B”
model for the CE at p ¼ 0:1 and p ¼ 0:2. However,
they are similar at p ¼ 1 (the BH corrected p-value
is 0.688, j d j ¼ 0.213). The core observation is that,
from the viewpoint of practical application, the
“S” model has a similar or worse ranking perfor-
mance than the “B” model in most systems.

� Classification performance. For Bash 3.0, the “S” model
has a higher median ER-BPP, a similar median ER-
BCE, and a lower median ER-AVG compared with
the “B” model. The BH corrected p-value in the

Wilcoxon signed-rank test is significant for ER-BPP
but is not significant for both ER-BCE and ER-AVG.
The effect sizes are trivial or small in terms of the
Cliff’s d (0:046 � jdj � 0:281). For Gcc-core 3.4.0, the
“S” model has a significantly lower median ER-BPP/
ER-BCE/ER-AVG (the BH corrected p-values <
0.001). The effect sizes are large in terms of the Cliff’s
d (0:573 � jdj � 0:604). The results from Vim 6.2 are
similar to those from Gcc-core 3.4.0. For subversion
1.2.0, the “S” model is not significantly different from
the “B” model, regardless of whether ER-BPP, ER-
BCE, or ER-AVG is considered. Again, for Gimp 2.0.0,
the “S” model is considerably better than the “B”
model. The core observation from ER-AVG is that,
from the viewpoint of practical application, the “S”
model has a similar or worse classification perfor-
mance than the “B”model inmost systems.

Fig. 2. Ranking/Classification performance comparison under cross-validation: the “B” model versus the “S” model.
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Overall, the above observations suggest that the “S”
model does not outperform the “B” model in effort-aware
post-release fault-proneness prediction under the cross-vali-
dation evaluation in most systems.

5.3.2 Across-Version Prediction

Fig. 3 employs the box-plot to describe the distributions of
the CEs at different cut-off values and the ER-BPPs/ER-
BCEs/ER-AVGs obtained from across-version prediction
for the “B” model and the “S” model for Bash. More specifi-
cally, the upper and lower parts respectively report the per-
formance of post-release fault-proneness prediction models
under next-version prediction and the performance under
follow-up-version prediction.

From Fig. 3, we have the following observations:

� Ranking performance. Under the next-version predic-
tion, the “S” model has a larger median CE than the
“B” model. However, their difference is not statisti-
cally significant. The BH corrected p-value in the
Wilcoxon signed-rank test is larger than 0.620. Under
the follow-up-version prediction, the difference
between the “S” model and the “B” model is smaller
(compared with next-version prediction). Again,
their difference is not statistically significant (the BH
corrected p-values > 0.740). The core observation is
that the “S” model does not have a significantly bet-
ter ranking performance than the “B” model.

� Classification performance. Under the next-version pre-
diction, the “S” model has a similar median ER-BPP/
ER-BCE and a larger median ER-AVG compared

with the “B” model. The BH corrected p-values
(>0.98) in the Wilcoxon signed-rank test show that
there is no statistically significant difference between
the “S” model and the “B” model. Under the follow-
up-version prediction, the “S” model has a similar
median ER-BPP/ER-BCE/ER-AVG. Again, their dif-
ference is not statistically significant according to the
BH corrected p-values (>0.720). The core observa-
tion is that the “S” model does not have a signifi-
cantly better classification performance than the “B”
model.

Overall, the above observations suggest that the “S”
model does not outperform the “B” model in effort-aware
post-release fault-proneness prediction under the across-
version evaluation.

5.3.3 Across-Project Prediction

Fig. 4 employs the box-plot to describe the distributions of
the CEs at different cut-off values and the ER-BPPs/ER-
BCEs/ER-AVGs obtained from across-project prediction for
the “B” model and the “S” model. The five subject systems
are Bash 3.0, Gcc-core 3.4.0, Gimp 2.0.0, Subversion 1.2.0,
and Vim 6.2.

From Fig. 4, we have the following observations:

� Ranking performance. At p ¼ 0:1, the “S” model has a
median CE close to zero, thus indicating a ranking
performance similar to that of the random model.
The “B” model has a higher median CE compared
with the “S” model. The BH corrected p-value
(0.475) in the Wilcoxon signed-rank test shows that

Fig. 3. Ranking/Classification performance comparison under across-version prediction: the “B” model versus the “S” model on the continuous
versions of the Bash system.

Fig. 4. Ranking/Classification performance comparison under across-project prediction: the “B” model vs. the “S” model on the five data sets.
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there is no statistically significant difference between
the “S” model and the “B” model. This conclusion
also holds for CE0.2. At p ¼ 1:0, the “S” model is bet-
ter than the “B” model (the BH corrected p-value <
0.05, jdj ¼ 0:320). The core observation is that, from
the viewpoint of practical application, the “S” model
is not superior to the “B” model when ranking post-
release fault-prone functions.

� Classification performance. The “S” model has a higher
median ER-BPP/ER-BCE than the “B” model. For
both ER-BPP and ER-BCE, the BH corrected p-values
are significant in the Wilcoxon signed-rank test.
However, for ER-AVG, the BH corrected p-value
(0.622) is not significant and the effect size is trivial
(jdj ¼ 0:045). Therefore, the core observation is that,
from the viewpoint of practical application, the “S”
model is not superior to the “B” model when classi-
fying post-release fault-prone functions.

Overall, the above observations suggest that the “S”
model does not outperform the “B” model in effort-aware
post-release fault-proneness prediction under the across-
project evaluation.

Combining the results from Sections 5.3.1, 5.3.2, and
5.3.3, we do not have enough evidence to support that the
“S” models are superior to the “B” models in the ranking
and classification scenarios. Therefore, multivariate logistic
regression analyses, from five different data sets, fail to
reject the null hypothesis H30 corresponding to RQ3: “Slice-
based cohesion metrics are not more effective in effort-
aware post-release fault-proneness prediction than the most
commonly used code and process metrics”. This conclusion
contrasts with the general expectation that slice-based cohe-
sion metrics should have a stronger predictive ability as
they make use of semantic dependence information. One
possible explanation for this is that the most commonly
used code and process metrics explain significantly more
variations in the data than slice-based cohesion metrics
(72 versus 28 percent, as shown in the PCA results in
Section 5.1), thus having a better predictive ability.

5.4 RQ4: When Used Together with the Most
Commonly Used Code and Process Metrics, Can
Slice-Based Cohesion Metrics Significantly
Improve the Effectiveness of Effort-Aware
Post-Release Fault-Proneness Prediction?

In order to answer RQ4, we first use the procedure
described in Section 3.4.3 to build the “BþS” model and the
“B” model on each data set (Table 11 shows the parameters
for each model, including the selected metrics, the regres-
sion coefficients, and the corresponding p-values). Then, we
compare the prediction effectiveness of the “BþS” and “B”
models with respect to both ranking and classification under
cross-validation, across-version prediction, and across-
project prediction.

5.4.1 Cross-Validation

Fig. 5 employs the box-plot to describe the distributions of
the CEs at different cut-off values and the ER-BPPs/ER-
BCEs/ER-AVGs obtained from 30 times three-fold cross-
validation for the “B” model and the “BþS” model. Similar

to Section 5.3.1, we report the CE performances at p ¼ 0:1,
0.2, and 1.0 for each model.

From Fig. 5, we have the following observations:

� Ranking performance. For all systems, the “BþS”
model has a larger median CE than the “B” model.
For CE0.1 in Vim 6.2, the BH corrected p-value is sig-
nificant (0.081) in the Wilcoxon signed-rank test. For
all the other cases, the BH corrected p-values are
very significant (<0.001). For Bash 3.0, Gimp 2.0.0,
and Subversion 1.2.0, the effect sizes are moderate to
large in terms of the Cliff’s d (0:433 � jdj � 1). For
Gcc-core 3.4.0, the effect size is large (jdj ¼ 0:482) for
CE0.1 and is moderate (jdj ¼ 0:366) for CE0.2. For
CE0.2 and CE1.0 in Vim 6.2, the effect sizes are large
in terms of the Cliff’s d (0:426 � jdj � 0:456). The core
observation is that, from the viewpoint of practical
application, the “BþS” model has a substantially bet-
ter ranking performance than the “B” model.

� Classification performance. For all systems except Gcc-
core 3.4.0, the “BþS” model has a higher median ER-
BPP/ER-BCE/ER-AVG than the “B” model. The BH
corrected p-values in the Wilcoxon signed-rank
test are very significant (< 0.006). For ER-BPP, the
effect sizes (0:581 � jdj � 0:781) are large on Bash 3.0,
Gimp 2.0.0, and Vim 6.2 and the effect size is moder-
ate on Subversion 1.2.0 (jdj ¼ 0:311). For ER-BCE, the
effect sizes (0:455 � jdj � 0:490) are moderate to large
on Bash 3.0 and Vim 6.2. For ER-AVG, the effect sizes
are moderate to large in terms of the Cliff’s d

(0:421 � jdj � 0:772) on Bash 3.0, Gimp 2.0.0, and
Subversion 1.2.0. For Gcc-core 3.4.0, the effect size of
ER-AVG is around moderate (jdj ¼ 0:308). The core
observation is that the “BþS” model has a better clas-
sification performance than the “B” model.

Overall, the above observations suggest that the “BþS”
model outperforms the “B” model in effort-aware post-
release fault-proneness prediction under the cross-valida-
tion evaluation.

5.4.2 Across-Version Prediction

Fig. 6 employs the box-plot to describe the distributions of
the CEs at different cut-off values and the ER-BPPs/ER-
BCEs/ER-AVGs obtained from across-version prediction for
the “BþS”model and the “B”model for Bash. The upper and
lower parts respectively report the performance under next-
version prediction and under follow-up-version prediction.

From Fig. 6, we have the following observations:

� Ranking performance. Under the next-version predic-
tion, the “BþS” model has a larger median CE than
the “B” model. The BH corrected p-values in the Wil-
coxon signed-rank test are smaller than 0.10, thus indi-
cating significant differences. In particular, the effect
sizes are large (0:611 � jdj � 0:778), regardless of
whether CE0.1, CE0.2, or CE1.0 is considered. Under the
follow-up-version prediction, the “BþS” model also
has a largermedianCE than the “B”model. According
to the BH corrected p-values (<0.001), there is a very
significant difference. The effect sizes are large for
CE0.1 and CE0.2 (0:587 � jdj � 0:692). The core
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Fig. 6. Ranking/Classification performance comparison under across-version prediction: the “B” model versus the “BþS” model on the continuous
versions of the Bash system.

Fig. 5. Ranking/Classification performance comparison under cross-validation: the “B” model versus the “BþS” model.
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observation is that the “BþS” model has a substan-
tially better ranking performance than the “B”model.

� Classification performance. Under the next-version pre-
diction, the “BþS” model has a higher median ER-
BPP/ER-BCE/ER-AVG than the “B” model. The BH
corrected p-values (<0.07) show that there is a statis-
tically significant difference. The effect sizes are large
(0:444 � jdj � 0:722), regardless of whether ER-BPP,
ER-BCE, or ER-AVG is considered. Under the fol-
low-up-version prediction, the “BþS” model also
has a higher classification performance value. The
BH corrected p-values (<0.002) show that there is a
very significant difference. The effect sizes are mod-
erate to large in terms of the Cliff’s d (0:438 � jdj �
0:551) for ER-BPP/ER-AVG. The core observation is
that the “BþS” model has a substantially better clas-
sification performance than the “B” model.

Overall, the above observations suggest that the “BþS”
model outperforms the “B” model in effort-aware post-
release fault-proneness prediction under the across-version
evaluation. In addition, from Fig. 6, we also have the follow-
ing two interesting observations. First, the “B” model has a
median CE0.1/CE0.2 close to zero and a negative median ER-
AVG. This indicates that the “B” model is not better than
the random model under across-version prediction. How-
ever, the “BþS” model is much better than the random
model. Second, for a given model, the next-version predic-
tion in general produces a better performance than the fol-
low-up-version prediction. This suggests that, in practice,
we should use the data from the latest versions (rather than
the out-of-date versions) of a system to build a post-release
fault-proneness prediction model.

5.4.3 Across-Project Prediction

Fig. 7 employs the box-plot to describe the distributions of
the CEs at different cut-off values and the ER-BPPs/ER-
BCEs/ER-AVGs obtained from across-project prediction for
the “B” and “BþS” models.

From Fig. 7, we have the following observations:

� Ranking performance. The “BþS” model has a higher
median CE than the “B” model. For CE0.1 and CE0.2,
the BH corrected p-values show that there is a statis-
tically significant difference. In particular, the effect
sizes are almost moderate in terms of the Cliff’s d

(0:320 � jdj � 0:325). The core observation is that,
from the viewpoint of practical application, the
“BþS” model is superior to the “B” model when
ranking post-release fault-prone functions.

� Classification performance. The “BþS” model has a
higher median ER-BPP/ER-BCE/ER-AVG than the

“B” model. The BH corrected p-values (< 0.07) show
that there is a statistically significant difference. For
ER-BPP, the effect size is moderate (jdj ¼ 0:362). For
ER-BCE/ER-AVG, the effect sizes are small (0:235 �
jdj � 0:248). The core observation is that the “BþS”
model is superior to the “B” model when classifying
post-release fault-prone functions.

Overall, the above observations suggest that the “BþS”
model outperforms the “B” model in effort-aware post-
release fault-proneness prediction under the across-project
evaluation.

Combining the results from Sections 5.4.1, 5.4.2, and 5.4.3,
we have a strong evidence to support that the “BþS” models
are superior to the “B” models in the ranking and classifica-
tion scenarios. Therefore, multivariate logistic regression
analyses, from five different data sets, reject the null hypoth-
esis H40 corresponding to RQ4: “The combination of slice-
based cohesion metrics with the most commonly used code
and process metrics are not more effective in effort-aware
post-release fault-proneness prediction than the combina-
tion of the most commonly used code and process metrics”.
In other words, our results are in favor of the alternative
hypothesis H4A, i.e. the combination of slice-based cohesion
metricswith themost commonly used code and processmet-
rics lead to a more effective effort-aware post-release fault-
proneness prediction. This conclusion is consistent with
intuition as the experimental results in Section 5.1 show that
slice-based cohesion metrics are complementary to the most
commonly used code and process metrics. As such, using
slice-based cohesion metrics and the most commonly used
code and process metrics together should provide a better
ability to predict post-release fault-proneness.

6 THREATS TO VALIDITY

In this section, we analyze the most important threats to the
construct, internal, and external validity of our study. Con-
struct validity is the degree to which the variables used in a
study accurately measure the concept they purport to mea-
sure. Internal validity is the degree to which conclusions
can be drawn about the causal effect of independent varia-
bles on the dependent variables. External validity is the
degree to which the findings of a study can be generalized
to data not used in that particular study.

6.1 Construct Validity

The dependent variable used in this study is a binary vari-
able that represents the detection or non-detection of a post-
release fault in a function. For each investigated system, we
collected this information by contrasting the latest patch
version or the latest bug-fixing version. Each patch version

Fig. 7. Ranking/Classification performance comparison under across-project prediction: the “B” model versus the “BþS” model for the five data sets.
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or bug-fixing version added no new features to the corre-
sponding system. In this sense, the fault data were reliable.
Thus, the construct validity of the dependent variable in
our study is considered acceptable.

The independent variables used in this study are the
most commonly used code and process metrics and slice-
based cohesion metrics. On the one hand, we leveraged
Understand, a mature commercial tool, to collect the most
commonly used code and process metrics. This tool has
been used to collect the metric data in many previous stud-
ies [42], [44], [48], [49]. On the other hand, we developed
two plug-ins called INFERCON and SLIBCOM based on
Frama-C, a powerful and extensible framework for the anal-
ysis of industrial-size C programs, to compute slice-based
cohesion metrics. We took two measures to ensure that
slice-based cohesion metrics were correctly calculated. First,
we used INFERCON and SLIBCOM to collect the metric
data for a number of functions (developed by ourselves) in
which different control flows and data flows were imple-
mented. We found that INFERCON and SLIBCOM always
produced correct results in our test. Second, we randomly
examined a small number of (about 50 functions in each sys-
tem) C functions in Bash 3.0, Gcc-core 3.4.0, Gimp 2.0.0,
Subversion 1.2.0, and Vim 6.2 and found that the metric
data produced by INFERCON and SLIBCOM were reliable.
Therefore, the construct validity of the independent varia-
bles in our study is also satisfactory.

6.2 Internal Validity

There are four threats to the internal validity of our study.
The first threat is the unknown effect of the exclusion of the
functions that have an “undefined” value. In our study, a
number of functions were assigned an “undefined” metric
value when they cannot be analyzed within 30 min or have
no output variables reported by Frama-C. These functions
were excluded before we conducted the subsequent analy-
ses. However, this exclusion should not have a large influ-
ence on our conclusions, as only a small percentage of
functions were excluded for the five subject systems.

The second threat to the internal validity of our study is
the unknown effect of the deviation of the independent vari-
ables from the normal distribution. In our study, we used
the raw data to build the logistic regression models when
investigating RQ3 and RQ4. In other words, we did not take
into account whether the independent variables follow a
normal distribution. The reason is that, in logistic regres-
sion, there is no assumption related to normal distribution.
However, previous studies suggested applying the log
transformation to the independent variables to make them
close to a normal distribution, as it might lead to a better
model [40]. To eliminate this threat, we applied the log
transformation and rerun the analyses. We found that the
conclusions for RQ3 and RQ4 did not change before and
after the log transformation.

The third threat to the internal validity of our study is the
unknown effect of the method to define the relative risk of a
function. In our study, for each function, we use the ratio of
the predicted value by a na€ıve logistic regression model to
its SLOC as the relative risk of the function. However, in the
literature, most studies use the predicted value by the na€ıve
logistic regression model as the relative risk of a function.

To eliminate this threat, we used the predicted value by the
na€ıve logistic regression model as the relative risk and rerun
the analyses for RQ3 and RQ4. We found that the results
were largely identical.

The fourth threat to the internal validity of our study is
the unknown effect of the actual development process
of the code. In our study, we use post-release faults to exam-
ine the usefulness of slice-based cohesion metrics in fault-
proneness prediction when investigating RQ2, RQ3 and
RQ4. It is possible that some functions have no post-release
faults simply because they undergo more rigorous quality-
assurance procedures (e.g., inspections, walkthroughs, and
testing). In other words, the actual development process
may have a confounding effect on our findings. However,
we believe that this confounding effect should not have a
substantial influence, as similar findings are obtained from
different systems in our study. Nonetheless, this threat
needs to be eliminated by controlled experiments in the
future work.

6.3 External Validity

The most important threat to the external validity of this
study is that our findings may not be generalized to other
systems. In our experiments, we use five long-lived and
widely used software systems, including a command lan-
guage interpreter, a compiler collection, an image manipula-
tion program, an open-source version control system, and
an advanced text editor, as the subject systems. The experi-
mental results drawn from these subject systems, which
belong to different application domains, are quite consistent.
Furthermore, the data sets collected from these systems are
large enough to draw statistically meaningful conclusions.
We believe that our study makes a significant contribution
to the software engineering body of empirical knowledge
about the usefulness of slice-based cohesion metrics. None-
theless, we do not claim that our findings can be generalized
to all systems, as the subject systems under study might not
be representative of systems in general. To mitigate this
threat, we hope that other researchers will replicate our
study across a wide variety of systems in the future.

7 RELATED WORK

Although slice-based cohesion metrics have been proposed
for many years, to date little work has been performed to
empirically relate them to code quality. Meyers and Binkley
[13], [18] conducted a large-scale empirical study of five
statement-level slice-based cohesion metrics, including Cov-
erage, MaxCoverage, MinCoverage, Tightness and Overlap.
They analyzed the relations between slice-based cohesion
metrics and code size metrics and found that slice-based
cohesion metrics provided a unique view of a program. This
finding is consistent with one of our findings that slice-based
cohesion metrics capture additional dimensions of software
quality compared with the most commonly used code and
process metrics. From two longitudinal studies, Meyers and
Binkley found that slice-based cohesion metrics were able to
quantify the deterioration of a program as it evolved. They
also provided the baseline values for slice-based cohesion
metrics, which can be used to focus the attention of reengin-
eering effort. However, they did not relate slice-based
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cohesion metrics to fault-proneness. Another major differ-
ence between their study and our study is the definition of
the output variables of a function. In their study, the output
variables of a function consist of function return value and
modified global variables. In our study, in addition to func-
tion return value and modified global variables, the output
variables of a function also include modified reference
parameters and standard outputs.

Black et al. [15] empirically investigated the ability of two
statement-level slice-based cohesion metrics, Tightness and
Overlap, to distinguish between faulty and not-faulty func-
tions. In their study, they combined the nineteen versions of a
small program called Barcode to obtain a single data set. In
particular, Black et al. extracted the fault datamanually using
the online report logs of Barcode but did not explicitly men-
tion whether they were pre-release or post-release faults.
Their results showed that not-faulty functions tended to have
higher Tightness and Overlap values compared with faulty
functions. The difference between faulty and not-faulty func-
tions for Tightness was significant at the significance level of
0.05, while the difference for Overlap was significant at the
significance level of 0.10. This indicated that Tightness had a
stronger correlation with fault-proneness. This finding is
somewhat consistent with our univariate logistic regression
analysis result in Section 5.2. In our study, we found that
Tightness and Overlap were both significantly related to
fault-proneness and furthermore Tightness had a stronger
correlation with fault-proneness (as indicated by DOR).
Black et al. [17] had planned to test the hypotheses relat-
ing three statement-level slice-based cohesion metrics
(Tightness, Overlap, and Coverage) and fault-proneness.
However, they failed to do this due to lack of data. Com-
pared with their work, we performed an in-depth and
comprehensive study on the relationships between slice-
based cohesion metrics and post-release fault-proneness.

Dallal [8] proposed a data-token-level slice-based cohe-
sion metric called SBFC. He used six very small programs
developed by students to examine the correlations between
SBFC and the other three data-token-level metrics (SFC,
WFC, and A). He found that there was a strong correlation
between SBFC and these metrics and hence concluded that
SBFC provided a useful alternative to them. However, the
actual usefulness of SBFC for predicting fault-proneness
was not examined. Counsell et al. [5] proposed a novel
statement-level slice-based cohesion metric called NHD and
compared it with the statement-level Tightness/Overlap.
Based on Barcode, they found that NHD had a lower corre-
lation to module size (measured by SLOC) compared with
Tightness and Overlap. Again, the actual usefulness of NHD
for predicting fault-proneness was not examined. In our
study, we used univariate logistic regression to relate
SBFC/NHD to post-release fault-proneness. Our results
showed that data-token-level SBFC and NHD were signifi-
cantly related to post-release fault-proneness.

8 CONCLUSION AND FUTURE WORK

In this paper, we empirically examine the actual usefulness
of slice-based cohesion metrics in the context of effort-aware
post-release fault-proneness prediction. Our findings from
industrial-size systems show that they are not redundant to

a set of the most commonly used code and process metrics.
Consistent with the general expectation, we find that most
of them are significantly negatively related to post-release
fault-proneness. Contrary to the general expectation, we
find that they do not outperform the most commonly used
code and process metrics when predicting post-release
fault-proneness for both ranking and classification in most
systems. However, we find that the combination of slice-
based cohesion metrics and the most commonly used code
and process metrics produces more effective models for
the prediction of post-release fault-proneness than the com-
bination of the most commonly used code and process met-
rics alone. These results provide valuable data for better
understanding slice-based cohesion metrics and for guiding
the development of better post-release fault-proneness
prediction models in practice.

Our study only investigates the actual usefulness of slice-
based cohesion metrics for procedural systems. In the last
decade, object-orientation has been the dominant program-
ming paradigm. In particular, many slice-based cohesion
metrics for classes have been proposed [10], [46]. However,
little is currently known on whether they are of practical
value for predicting post-release fault-prone classes. In the
future, an interesting work is hence to extend our current
study to object-oriented systems.
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