
A Theoretical Study: The Impact of Cloning Failed Test Cases on the Effectiveness
of Fault Localization*

Yichao Gao
School of Automation Science and

Electrical Engineering
Beihang University

Beijing, China
gaoyichao2@gmail.com

Zhenyu Zhang, Long Zhang
Institute of Software

Chinese Academy of Sciences
Beijing, China

zhangzy@ios.ac.cn, zlong@ios.ac.cn

Cheng Gong, Zheng Zheng +

School of Automation Science and
Electrical Engineering

Beihang University
Beijing, China

zhengz@buaa.edu.cn

Abstract—Statistical fault localization techniques analyze the
dynamic program information provided by executing a large
number of test cases to predict fault positions in faulty
programs. Related studies show that the extent of imbalance
between the number of passed test cases and that of failed test
cases may reduce the effectiveness of such techniques, while
failed test cases can frequently be less than passed test cases in
practice. In this study, we propose a strategy to generate
balanced test suite by cloning the failed test cases for suitable
number of times to catch up with the number of passed test
cases. We further give an analysis to show that by carrying out
the cloning the effectiveness of two representative fault
localization techniques can be improved under certain
conditions and impaired at no time.

Keywords- Software debugging; fault localization; class
imbalance

I. INTRODUCTION

In the process of software development, it is very hard to
thoroughly avoid the appearance of software defects in final
releases. As a result, a large number of software developers
have been working to improve the quality and reliability of
software. Manual debugging is helpful in finding out faults
in the early stage of software developing activities. However,
with the rapid development and the spread of software, the
scale and complexity of software have increased
dramatically. At the same time, the problems caused by
software faults grow even more quickly, and the efficacy and
efficiency of manual debugging are no longer applicable.

In the realistic software testing process, to find faults in a
program is usually a time-consuming and labor-intensive
work. Software developers have been committed to the
automated or semi-automated fault localization method.
Many fault localization methods have been proposed, of
which one class, having considerable accuracy and the ease
to apply, the spectrum-based fault localization, has attracted
extensive attentions [1-8]. This class of techniques obtains
the execution information by executing a large number of
test cases, and uses correlation algorithms to estimate the
extent of suspiciousness of each executable program unit. All
the suspicious program units are ranked into a list
accordingly, in a manner to facilitate the locating of faults in
a faulty program.

So far there is no spectra-based fault localization
algorithm, which can perfectly satisfy real-life requirements
in software development practice or has been extensively

adopted by industry. One reason is that such fault
localization algorithms rely on huge information of both
passed and failed executions to provide sufficient data for
statistical analysis and in practice, to obtain a small amount
of the failed cases may usually require executing a large
number of executions. Secondly, in the software debugging
and repairing process, when faults are disclosed and fixed
continuously, it becomes more and more difficult to locate
the remaining faults effectively, efficiently, and accurately.
Thirdly, the accurate positioning of the hidden faults usually
tends to be a hard job, as hidden faults often cause few
software failures. How to accurately locate software faults
with few failed execution information becomes an urgent
task in the research of automated software debugging.

Existing studies showed that many existing statistical
fault localization techniques ignored the organizational
structure of the test suites. In the literature [9], the authors
referred the proportion of the failed and the passed sets of
test cases as test case category ratio. For different such ratios,
they conducted in-depth research with experiments to show
that spectrum-based fault localization techniques tend to
exhibit better localization capability with a more balanced
test suite, that is, having identical number of passed and
failed test cases, as input. However, how to construct a
balanced test suite is unknown.

From a theoretical point of view, this paper proposes to
clone the failed test cases to construct a balanced test suite,
and analyzes the impact of such a method when applied to
different fault localization techniques. The main contribution
of this paper includes (1) to propose a strategy to construct a
balanced test suite, and (2) to analyze its impact on different
fault localization techniques.

The paper is organized as follows. Section 2 describes
the related work. Section 3 gives the cloning strategy to
construct a balanced test suite and analyzes its impact on
representative fault localization techniques, starting from the
theoretical point of view. Section 4 summarizes and gives the
future work.

II. RELATED WORK

According to the IEEE 729-1983 standard, software
defects are existing errors, fault, and other problems, in the
software product development or maintenance process. A
fault localization task is to locate the root cause of software
defects in source code. At present, software fault location
technologies include slicing-based fault localization, model-

2013 13th International Conference on Quality Software

978-0-7695-5039-8/13 $26.00 © 2013 IEEE

DOI 10.1109/QSIC.2013.23

288

based fault localization, spectrum-based fault localization,
and so on. Among them, the spectrum-based fault
localization forms an extremely big family [1][4][6][8].

Spectrum-based fault localization techniques are
influenced by the characteristics of test suite, say the extent
of class balance for passed and failed test cases, which is
expressed by the ratio of the number of failed test cases and
that of passed test cases in a test suite [9]. In recent years, the
test suite reduction techniques, paid much extensive attention
by relevant researchers, attempt in a sense of higher fault
localization accuracy to reduce the size of test suite. Hao et
al. [10] and related studies have suggested that it can
effectively improve the efficiency of fault localization
algorithms, by cutting similar test cases and reducing
information redundancy. The literature [11] also comes to
similar conclusions. However, there are related studies that
reached contrary conclusions. In the literature [12], with ten
test suite reduction methods, by comparing four fault
localization techniques, Jones et al. concluded that current
test suite reduction techniques can reduce the efficiency of
fault localization techniques.

Gong et al. [9] empirically showed that a test suite
containing approximately identical numbers of passed and
failed test cases can mostly favor existing fault localization
techniques. This paper targets at giving analytical study to
consolidate this point.

III. OUR METHOD AND ANALYSIS

In this section, we firstly outline the problems of class
imbalance of test suite briefly, and after that give the cloning
strategy, which construct a test suite with balanced class ratio
by cloning the failed test cases. Finally, we select two
representative fault localization techniques, Jaccard and
Wong2, and give an analytical study on the impact of the
cloning strategy on their fault localization effectiveness.

A. Problem Setings
Given a program Q, a software testing process starts with

a given test suite W, the test cases in which are categorized
into two groups, passed set and failed set, according to
whether the execution of Q over that test case produces an
expected output. Here, we use P to represent the size of
passed test cases, and let F represent the size of failed test
cases. Using the coverage information of Q with respect to
each passed or failed test case as input, a fault localization
technique is expected to predict the suspicious statement that
relates to program faults.

It is known that failed test cases are often less than
passed test cases (denoted as F<<P in this paper) in real-life
scenario [9]. And previous studies showed that many fault
localization techniques manifest low fault localization
effectiveness with such imbalanced class ratio (F<<P). A
straightforward idea is to construct a test suite with balanced
class ratio. To know the impact of such a balanced test suite
on fault localization, we in this paper propose a simplest
solution as follows.

[Cloning Strategy] In the development process of
software testing, software developers proposed a lot of
cloning strategy. We chose the strategy—cloning entire

failed test cases. Cloning the failed test cases for ���� � �
times, so that the synthesized test suite contains P passed test
cases and �	 (
P) failed test cases, where �	 represents the
number of failed test cases after cloning

Our research question in this paper is as follows.
[Research Problem] Will a fault localization technique

benefit from the above cloning strategy, in terms of fault
localization effectiveness?

In the next section, we will visit two representative fault
localization techniques and give analytical investigation. The
analysis in this paper is based on the following assumptions.
(1) The program execution over each failed test case always
exercises the faulty statement. (2) The target faulty program
contains only one faulty statement.

B. Definitions
The rest of the paper uses the following symbols:

� The symbol � represents a statement.
� The symbol � represents the faulty statement.
� The symbol
��� denotes the number of failed test cases

that exercise the statement �.
� The symbol
��� denotes the number of failed test cases

that do not exercise the statement �.
� The symbol
��� denotes the number of passed test

cases that exercise the statement �.
� The symbol
��� denotes the number of passed test

cases that do not exercise the statement �.
� The symbol �� denotes the rank of the statement � in

the generated ranked list, which is got by sorting all the
statements in order of their calculated suspiciousness
score. Here, ��� � �� denotes that the rank of the
statement � is higher than that of the faulty statement � . ��� � ��� denotes that the rank of the statement � is
equal to that of the faulty statement t.��� � ���denotes
that the rank of the statement � is lower than that of the
faulty statement t.

To ease the presentation, we define the following terms.
� �� denotes the set of statements which suspiciousness

scores are greater than that of the faulty statement t.
� �� denotes the set of statements which suspiciousness

scores are equal to that of the faulty statement t.
� �� denotes the set of statements which suspiciousness

scores are less than that of the faulty statement t.

C. Theoretical analysis
In this section, we select two representative and simplest

fault localization techniques, Jaccard and Wong2, as
examples to analyze the impact of applying our cloning
strategy to improve fault localization effectiveness of fault
localization techniques. In addition, some other techniques
are also suitable for the strategy, such as Ochiai, Tarantula,
Wong1, CBI etc.
The Jaccard algorithm

The suspiciousness formula of Jaccard is as follows:�
��
�� �! � "#$%"#$% &"'$% &"#(% � "#$%�&"'(%
We next construct the function T to compare the

suspiciousness of a statement i and the faulty statement t.

289

) � �
��
�� �! � �
��
�� �!� � "#$%�&"#(% � "#$*�&"#(* � "#$%�&"#(% � ��&"#(*
We let
��� =x [0, F],
��� =y [0, P], and
��� =z [0, P],

where x and F are variables, and y and z are constants. So,) � +�&, � ��&- � � +.�!&+-.�, �&,! �&-!
We define the following term to simplify our discussion.

f(x, F) =�� / � �! 0 /1 � �2 (3.1)
After applying the cloning strategy, the test suite is

changed, and we can apply the formula Jaccard(i) to re-
calculate T. This time, we use T' to stand for the new value
of T after applying the cloning strategy. The value of y and z
are not changed, while x and F are changed to /	 � �/3 �	 ��� in T'. We assume the size of failed test suite after cloning
is c ���������	
��
�	��	�����������������	��)	 � 4+4�&, 0 4�4�&- � 454� +.�!&+-.�,6 4�&,! 4�&-!

We define the following term to simplify our discussion.
g(x, F) =cF(x-F)+xz-Fy (3.2)

To know which set of SA, SF or SB statement i belongs to,
we follow three rules. 1) If f(x,F)<0 => �� � �� , the
statement � belongs �� set. 2) If f(x,F)=0 => �� � �� , the
statement � belongs �� set. 3) if f(x,F)>0, �� � �� , the
statement � belongs �� set. So we have the following two
judgments.

a) When xz-Fy<0, from formula (3.1), we know that
f(x,F)<0 => �� � ��; according to formula(3.2), we know that
g(x,F)<0 => �� � ��. So we can safely conclude that before
cloning, the statement � belongs to set ��, and after cloning,
it still belongs to set ��.

b) When xz-Fy=0, our analysis consists of two parts.
i) If x=F, from formula (3.1), we know that f(x,F)=0 => �� � ��; according to formula (3.2), we know that g(x,F)=0 => �� � �� . So we can safely conclude that before the cloning

action, the statement � belongs to set ��, and after that, it still
belongs to set ��.

ii) If x<F, from formula (3.1), we know that f(x,F)<0 => �� � ��; according to formula (3.2), we know that g(x,F)<0 => �� � �� . So we can safely conclude that before the cloning
action, the statement � belongs to set ��, and after the copy, it
still belongs to set ��.

c) When xz-Fy>0, our analysis consists of two parts.
i) If x=F, from formula (3.1), we know that f(x,F)>0

=> �� � �� ; according to formula (3.2), we know that
g(x,F)>0 => �� � ��. So we can safely conclude that before
the cloning action, the statement � belongs to set �� , and
after that, it still belongs to set ��.

ii) If x<F, according to formula (3.1), we know that,��
78�9 �: /3 �! ; <�� �=���� ; ���= >: /3 �! � � / � �! 0 /1 � �2 ; <? /3 �! � �� / � �! 0 /1 � �2� � ��= ? /3 �! � <
It means before cloning, the statement i belongs to set ���@A���, and after cloning belongs to set ��

��
78�B9 �: /3 �! � <� �� � �� � ���= >: /3 �! � � / � �! 0 /1 � �2 � <? /3 �! � �� / � �! 0 /1 � �2� � �
�=

CDE
DF�: � � � � +-.�,� �.+!!�? /3 �! � < �� �� � ���: � � +-.�,� �.+!!��? /3 �! � <� �� � �� � ���: � � +-.�,� �.+!!��? /3 �! � <� �� � �� � ��

It means, before cloning, the statement i belongs to set ��,
and after cloning belongs to set ��3 �� or ��.

In summary, under the following certain conditions, the
effectiveness of Jaccard can be improved by applying the
cloning strategy.

1) Gi(i�t), {i|
���
��� � �
��� � < ���i|
��� � � ���i|��H
��� � �I 0
���
��� � �
��� � <}. This conditions means
there exist certain such kind of statements that belong to set �� before cloning and belong to set �� after cloning.

2) Gi(i t),{i |
���
��� � �
��� � <} {i |
��� � � }

{i |�� � "#$% "#(* .�"#(%� �."#$% ! � � }. This conditions means there exist

certain such kind of statements that belong to set �� before
cloning and belong to set �� after cloning.
The Wong2 algorithm

The suspiciousness formula of Wong2 is as follows:JKL?B �! �
��� �
���
We next construct the function T to compare the

suspiciousness of a statement � and the faulty statement �.) � JKL?B �! � JKL?B �!�
��� �
��� �
��� �
��� ! �
��� �
��� � H� �
��� I
We let
��� =x [0, F],
��� =y [0, P] and
��� =z [0, P],

where x and F are the variables, and y and z are constants) � / � 2 � � 0 1 (3.3)
After applying the cloning strategy, the test suite is

changed, and we can apply the formula Wong2(i) to re-
calculate T. This time, we use T' to stand for the new value
of T after applying the cloning strategy. The value of y and z
are not changed, while x and F are changed to /	 � �/3 �	 ��� in T'. We assume the size of failed test suite after cloning
is c ���������	
��
�that of before and get�)	 � �/ � 2 � �� � � / � �! � 2 0 1 (3.4)

To know which set of SA, SF or SB statement i belongs to,
we follow three rules. 1) If T'<0 => �� � ��, the statement �
belongs �� set. 2) If T'=0 => �� � ��, the statement � belongs �� set. 3) If T'>0, �� � ��, the statement � belongs �� set. So
we have the following two judgments.

a) When x=F, from the formula (3.3) and the formula
(3.4), we can get:

M�:�) � <� �� �)	 � <��:�) � <� �� �)	 � <�:�) � <� �� �)	 � <
It means the category the statement i belonging to before

and after applying the cloning strategy is unchanged.
b) When x<F, our analysis consists of two parts.

i) If ��� => �� ; �� , from the formula (3.3) and the
formula (3.4), we know that

290

�=�>�)��� � / � � 0 1 � 2 ; <�)	 � � / � �! � 2 0 1��� � � ��= ���)	 � <�
It means before cloning, the statement i belongs to set ���@A���, and after cloning belongs to set ��.
ii) If T>0 => �� � ��, according to the formula (3.3) and

the formula (3.4),we know that,

N�)� � / � � 0 1 � 2 ; <�)	 � � / � �! � 2 0 1��������� � � �! / � �! 0 / � � 0 1 � 2� � �

�=
CDE
DF�: � � � � 2 � 1/ � �!���)	 � <� �� � �� � ����: � � 2 � 1/ � �!�����)	 � <� �� � �� � ���: � � 2 � 1/ � �!�����)	 � <� �� � �� � ��

It means before cloning, the statement i belongs to set ��, and after cloning belongs to set ��3 �� or ��.
In summary, under the following certain conditions, the

effectiveness of Wong2 can be improved by applying the
cloning strategy.

1) Gi(i�t), {i|
��� � ����i|�
��� � � 0
��� �
��� � < }.
This conditions means there exist certain such kind of
statements that belong to set OP before cloning and belong to
set OQ after cloning.

2) Gi(i t), {i|
��� � �0
��� �
��� � <} {i|
��� � �}

{i|�� � "#(% ."#(*"#$% .� }. This conditions means there exist certain

such kind of statements that belong to set �� before cloning
and belong to set �� after cloning.

D. Summary
From the theoretical analysis in section 3, we draw the

following conclusions. (1) By applying the cloning strategy
on the Jaccard and Wong2 algorithms, their fault localization
effectiveness can be improved under certain conditions. (2)
By applying the cloning strategy on the Jaccard and Wong2
algorithms, their effectiveness will never be impaired.

IV. CONCLUSION

The effectiveness of spectrum-based fault localization
techniques can be affected by the number of passed and
failed test cases. Previous studies shown that a balanced test
suite, which means containing approximately identical
number of passed test cases and failed test cases, can mostly
increase the fault localization effectiveness of such
techniques.

In this paper, we propose a cloning strategy to produce a
balanced test suite and from a theoretical perspective,
analyze the impact of such a cloning strategy on two
representative techniques Jaccard and Wong2. We show that
applying the cloning strategy on the two techniques will
improve, or preserve at least, their fault localization
effectiveness.

If a fault is in a non-executable statement (such as the
case of a code omission fault), to reflect the effectiveness of

a technique, we follow previous studies (such as [13]) to
mark the directly infected statement or an adjacent
executable statement as the fault position, and apply the
above metrics [14]. For simple fault programs, we have
already proved this conclusion in theory, so there is no need
for experimental verification.

The work in this paper will be improved in two steps. (i)
The similar process of analysis will be conducted on similar
formulas by using other cloning strategy. (ii) The similar
process of analysis will be conducted under the multi-fault
assumption

ACKNOWLEDGMENT

This research is supported in part by a grant from the
National Science and Technology Major Project of the
Ministry of Science and Technology of China (Grant No.
2012ZX01039-004) and grants from the Natural Science
Foundation of China (project no. 61003027).

REFERENCES
[1] J. Jones and M. Harrold, “Empirical Evaluation Of The Tarantula

Automatic Fault-Localization Technique”. Proc. International
Conference on Automated Software Engineering (ASE 2005), St.
Louis, Missouri, USA, 2005, pp. 273-282.

[2] R. Abreu, P. Zoeteweij and V. Gemund, “An Evaluation Of Similarity
Coefficients For Software Fault Localization”. Proc. Pacific Rim
International Symposium on Dependable Computing, Riverside, USA,
2006, pp. 39-46.

[3] W. Eric, T. Wei, Y. Qi and L. Zhao, “A Crosstab-Based Statistical
Method For Effective Fault Localization”. Proc International
Conference on Software Testing (ICST 2008), Lillehammer, Norway,
2008, pp. 42-51.

[4] B. Liblit, M. Naik, X. Zheng, A. Aiken and M. I. Jordan, “Scalable
Statistical Bug Isolation”. Proc. ACM SIGPLAN Conference on
Programming Language Design and Implementation, Chicago, IL,
USA, 2005, pp. 15-26.

[5] L. Naish, J. L. Hua and K. Ramamohanarao, “A Model For Spectra-
Based Software Diagnosis”. ACM Transactions on Software
Engineering and Methodology, 2011, 20(3): 11.

[6] Z. Zhang, W. K. Chan, T. H. Tse, Y. T. Yu and P. Hu, “Non-
Parametric Statistical Fault Localization”. Journal of Systems and
Software, 2011, 84(6), pp. 885-905.

[7] K. J. Baah, A. Podgurski and M. Harrold, “Causal Inference For
Statistical Fault Localization”. Proc. International Symposium on
Software Testing and Analysis, Trento, Italy, 2010, pp. 73-83.

[8] V. Debroy and W. Eric, “Insights On Fault Interference For Programs
With Multiple Bugs”. Proc. International Symposium on Software
Reliability Engineering, Mysuru, India, 2009, pp. 165-174.

[9] C. Gong, Z. Zheng, W. Li, P. Hao, “Effects of class imbalance in test
suites: an empirical study of spectrum-based fault localization”. Proc.
International Computer Software and Applications Conference
(COMSAC 2012), Izmir, Turkey, 2012, pp. 470-475.

[10] D. Hao, Y. Pan, L. Zhang, W. Zhao, H. Mei and J. Sun, “A
Similarity-aware Approach to Testing Based Fault Localization”.Proc.
International Conference on Software Engineering (ICSE 2005). St.
Louis, Missouri, USA. 2005, pp. 291-294.

[11]B. Benoit, F. Franck and Y. Traon, “Improving Test Suites for
Efficient Fault Localization”. Proc. International Conference on
Software Engineering (ICSE 2006), Shanghai, China.2006, pp.82-92.

[12]Y. Yu, J. Jones and M. Harrold, “An Empirical Study of the Effects of
Test-Suite Reduction on Fault Localization”. Proc. International
Conference on Software Engineering (ICSE 2008). Leipzig, Germany,
2008, pp. 201-211.

[13] D. Jeffrey, N. Gupta, and R. Gupta, “Fault localization using value
replacement”. Proc. International Symposium on Software Testing
and Analysis (ISSTA 2008), New York, USA. 2008, pp. 167–178.

[14] Z. Zhang, W. K Chan, T. H. Tse, B. Jang and X. Wang, “Capturing
Propagation of Infected Program States”. Proc. European software
engineering conference (ESEC/FSE'09), New York, USA, 2009, pp.
24–28.

291

