
Title Software debugging through dynamic analysis of
program structures

Author(s) Zhang, Zhenyu; 张震宇

Citation

Issue Date 2010

URL http://hdl.handle.net/10722/61073

Rights unrestricted

Abstract of thesis entitled

Software Debugging

through Dynamic Analysis

of Program Structures
Submitted by

Zhang, Zhenyu

for the degree of Doctor of Philosophy

at The University of Hong Kong

in May 2010

Software covers every corner of our lives, so do software faults. Currently,

a popular approach in fault localization compares program feature spectra in

passed execution and failed executions, and aims at predicting program elements

that are close to the faults, by locating program elements whose exercising have

strong correlation with program failures. In this thesis, we focus on the so-called

statistical fault-localization techniques, investigate four topics, and present the

results of our investigations to tackle four related problems.

First, we address the problem that strong correlations may not necessarily be

the root cause of the observed failures. We model the propagation traffic through

every edge and proportionally apportion the probability of a block being faulty

to its directly connected blocks, resulting in a set of homogenous equations in

which the probabilities of individual blocks being faulty after propagation of

infected program states are the unknown and can be solved. Empirical studies

on real-life medium-size programs show that this technique is more effective

than state-of-the-art techniques.

Second, we notice that even we can trace the propagation, we may not com-

pute the program feature spectra accurately. On the contrary, distinguishing dif-

ferent short-circuit evaluations that are coarsely written as single program state-

ments may improve existing series of predicate-based fault-localization tech-

niques. We conduct an empirical study which shows that differentiating such

short-circuit evaluations of individual program predicates incurs relatively little

performance overhead and significantly improves existing such techniques.

Third, in order to identify the locations of the faults, debuggers may require

many additional passed executions to be produced after the first failure has been

detected; while modern software often provides an error reporting process for

users to feedback the failure information to developers. Our approach opens a

new door to perform fault localization solely with failed executions. We use

the execution counts of statements to categorize the executions, and calculate

the failing rate for each category. We treat every tuple 〈execution count, failing
rate〉 as a point in two-dimensional space, perform linear regression on them,
and eliminate the dependences on passed executions via a signal-to-noise ratio

manner. Empirical study shows that this technique is effective.

Fourth, we also focus on the correctness of method used to compare program

feature spectra. Many previous studies overlook the statistical distributions of

the spectra, on which their parametric techniques fully rely. We have argued

and empirically verified that assuming a specific distribution of feature spectra

of dynamic program statistics is problematic. We empirically validate that the

use of standard non-parametric hypothesis testing methods can achieve better

effectiveness than state-of-the-art predicate-based fault-localization techniques.

In conclusion, this thesis contributes to software debugging by developing a

family of effective statistical fault-localization techniques. They are particularly

useful when (a) the exercising of faulty statements are not strongly corrected to

failures, (b) a program has many compound predicates, (c) passed executions are

unavailable, or (d) the distribution profile of the program spectra is not available.

[482 words]

Software Debugging

through Dynamic Analysis

of Program Structures

by

Zhang, Zhenyu

A thesis submitted in partial fulfillment of the requirements for

the Degree of Doctor of Philosophy

at The University of Hong Kong.

May, 2010

Declaration

I declare that the thesis entitled “Software Debugging through Dynamic Analy-

sis of Program Structures” represents my own work, except where due acknowl-

edgement is made, and that it has not been previously included in a thesis, dis-

sertation or report submitted to this University or to any other institution for a

degree, diploma, or other qualification.

Signed ...

Zhang, Zhenyu

May 2010

i

ii

Acknowledgements

My thanks go to my supervisors Prof. T. H. Tse and Dr. W. K. Chan, who give

me invaluable support, help, and guidance during my Ph.D. studying period. My

thanks also go to Prof. T. Y. Chen, Dr. S. C. Cheung, and Dr. Y. T. Yu, for their

help to me on finishing collaborated papers.

I want to thank Bo Jiang of The University of Hong Kong for his hard work

on setting up the experiment environment. At the same time, I want to thank

Lijun Mei of The University of Hong Kong for his help on proofreading many

of my paper drafts. I also need to thank Peifeng Hu for encouraging me in my

first year of Ph.D. studying. Peifeng Hu graduated from The University of Hong

Kong in the year 2006 and is now working in China Merchant Bank, Hong Kong.

I would like to thank Fan Liang of The University of Hong Kong for conducting

some validation experiment. My thanks are also given to XinmingWang of Hong

Kong University of Science and Technology for sharing data and experimental

tools with me.

My thesis work is supported in part by the General Research Fund of the Re-

search Grants Council of Hong Kong (project nos. 111107, 123207, 716507, and

717308) and the Australian Research Council (project number DP0984760).

iii

iv

My Publications

During my Ph.D. studying period, I have the following publications (listed in

reverse chronological order).

1. “Fault localization through evaluation sequences” [123], in Journal of Sys-

tems and Software (JSS) 83(2): 174-187 (2010), coauthored with Bo Jiang,

W. K. Chan, T. H. Tse, and Xinming Wang.

2. “Modeling and testing of cloud applications” [29], in Proceedings of 2009

IEEE Asia-Pacific Services Computing Conference (APSCC 2009), coau-

thored with W. K. Chan, and Lijun Mei.

3. “Adaptive random test case prioritization” [66], in Proceedings of the 24rd

IEEE/ACM International Conference on Automated Software Engineer-

ing (ASE 2009), coauthored with Bo Jiang, W. K. Chan and T. H. Tse.

4. “Capturing propagation of infected program states” [120], in Proceedings

of the 7th joint meeting of the European Software Engineering Conference

(ESEC) and the ACM SIGSOFT Symposium on the Foundations of Soft-

ware Engineering (FSE 2009), coauthored with W. K. Chan, T. H. Tse, Bo

Jiang, and Xinming Wang.

5. “How well do test case prioritization techniques support statistical fault

localization” [67], in Proceedings of the 33rd Annual IEEE International

Computer Software and Applications Conference (COMPSAC 2009), coau-

thored with Bo Jiang, T. H. Tse, and T. Y. Chen. (best paper award)

6. “More tales of clouds: software engineering research issues from the cloud

application perspective” [82], short paper, in Proceedings of the 33rd An-

nual IEEE International Computer Software and Applications Conference

(COMPSAC 2009), coauthored with Lijun Mei and W. K. Chan.

v

7. “Test case prioritization for regression testing of service-oriented business

applications” [83], in Proceedings of the 18th International World Wide

Web Conference (WWW 2009), coauthored with Lijun Mei, W. K. Chan,

and T. H. Tse. (best paper nominee)

8. “Where to adapt dynamic service compositions” [65], poster track, in Pro-

ceedings of the 18th International World Wide Web Conference (WWW

2009), coauthored with Bo Jiang, W. K. Chan, and T. H. Tse.

9. “Taming coincidental correctness: coverage refinement with context pat-

terns to improve fault localization” [106], in Proceedings of the 31st In-

ternational Conference on Software Engineering (ICSE 2009), coauthored

with Xinming Wang, S.C. Cheung, and W. K. Chan.

10. “Is non-parametric hypothesis testing model robust for statistical fault lo-

calization?” [119], Journal of Information and Software Technology (IST),

coauthored with W. K. Chan, T. H. Tse, Peifeng Hu, and Xinming Wang.

11. “Experimental study to compare the use of metamorphic testing and as-

sertion checking” [118], Journal of Software (JoS), coauthored with W. K.

Chan, T. H. Tse, and Peifeng Hu.

12. “Fault localization with non-parametric program behavior model” [62],

in Proceedings of the 8th International Conference on Quality Software

(QSIC 2008), coauthored with Peifeng Hu, W. K. Chan, and T. H. Tse.

13. “Resource prioritization of code optimization techniques for program syn-

thesis of wireless sensor network applications” [121], Journal of Systems

and Software (JSS) 82(9): 1376-1387 (2009), coauthored withW. K. Chan,

T. H. Tse, Heng Lu, and Lijun Mei. (accepted on Aug 2008)

14. “Debugging through evaluation sequences: a controlled experimental study”

[122], in Proceedings of 32nd Annual IEEE International Computer Soft-

ware and Applications Conference (COMPSAC 2008), coauthored with

Bo Jiang, W. K. Chan, and T. H. Tse. (best paper award)

15. “Synthesizing component-based WSN applications via automatic combi-

nation of code optimization techniques” [117], in Proceedings of the 7th

International Conference on Quality Software (QSIC 2007), coauthored

with W. K. Chan and T. H. Tse.

vi

16. “Towards the testing of power-aware software applications for wireless

sensor networks” [20], in Proceedings of the 12th International Confer-

ence on Reliable Software Technologies (Ada-Europe 2007), coauthored

with W. K. Chan, T.Y. Chen, S.C. Cheung, and T. H. Tse.

17. “An empirical comparison between direct and indirect test result check-

ing approaches” [61], in Proceedings of the Third International Workshop

on Software Quality Assurance (SOQUA 2006), in conjunction with the

14th ACM SIGSOFT Symposium on Foundations of Software Engineer-

ing, coauthored with Peifeng Hu, W. K. Chan, and T. H. Tse.

vii

viii

Contents

Declaration i

Acknowledgements iii

Contents viii

List of Figures xiii

List of Tables xv

1 Introduction 1

1.1 Software Debugging . 1

1.2 Fault Localization . 1

1.3 Statistical Fault-localization Techniques 2

1.4 Representative Statistical Fault-localization Techniques 3

1.5 Scope of the Thesis . 5

1.6 Contributions of the Thesis . 8

1.7 Organization of the Thesis . 9

2 Literature Review 11

2.1 Program representation . 11

2.1.1 Control flow graph . 11

2.1.2 Profiling . 12

2.2 Fault-localization techniques 12

2.2.1 Statement-level techniques 12

2.2.2 Block-level techniques 13

2.2.3 Branch-level techniques 13

2.2.4 Path-level techniques 14

2.2.5 Multi-level techniques 14

2.2.6 Other kinds of fault-localization work 14

ix

2.3 Fault Repair . 15

2.4 Test Case Prioritization in Regression Testing 16

2.5 Oracle Problem in Regression Testing 16

2.5.1 Assertion checking . 17

2.5.2 Metamorphic testing 17

2.5.3 Other kinds of methods to alleviate Oracle problem . . . 18

2.6 Summary . 19

3 CP: Capturing Propagation of Infected Program States 21

3.1 Background . 21

3.2 Motivation . 22

3.3 Our Fault-Localization Model 25

3.3.1 Problem Settings . 25

3.3.2 Preliminaries . 26

3.3.3 Our Model – CP . 26

3.4 Experimental Evaluation . 34

3.4.1 Subject Programs . 34

3.4.2 Peer Techniques . 35

3.4.3 Experimental Setup . 35

3.4.4 Effectiveness Metrics 35

3.4.5 Experiment Environment and Related Issues 36

3.4.6 Results and Analysis 36

3.4.7 Threats to Validity . 45

3.5 Summary . 46

4 DES: Statistical Fault-localization Technique at the Level of Evalua-

tion Sequence 47

4.1 Background . 47

4.2 Motivation . 48

4.3 Our Fault-localization Model 50

4.4 Research Questions . 53

4.5 Experimental Evaluation . 54

4.5.1 Subject Programs . 54

4.5.2 Experimental Setup . 55

4.5.3 Effectiveness Metrics 56

4.5.4 Results and Analysis 57

4.5.5 Discussion . 67

4.5.6 Threats to Validity . 71

4.6 Summary . 72

x

5 Slope: Statistical Fault Localization via Failure-causing Test Cases

Only 73

5.1 Background . 73

5.2 Motivation . 74

5.3 Our Fault-localization Model 77

5.3.1 Problem Settings . 77

5.3.2 Our Observation . 77

5.3.3 Our Model – Slope . 78

5.3.4 Dealing with Exceptance Cases 83

5.4 Empirical Evaluation . 84

5.4.1 Subject Programs . 84

5.4.2 Peer Techniques . 84

5.4.3 Experimental Setup . 86

5.4.4 Effectiveness Metrics 88

5.4.5 Results and Analysis 88

5.4.6 Threats to Validity . 96

5.5 Summary . 97

6 Non-parametric Hypothesis TestingMethod used in Predicate-based

Statistical Fault-localization Techniques 99

6.1 Background . 99

6.2 Motivation . 102

6.3 Our Fault-localization Framework 106

6.3.1 Preliminaries . 106

6.3.2 Problem Settings . 107

6.3.3 Our Framework . 108

6.4 Research Questions . 108

6.5 Experimental Evaluation . 111

6.5.1 Subject Programs . 111

6.5.2 Peer Techniques and Peer Methods 114

6.5.3 Effectiveness Metrics 114

6.5.4 Experimental Setup . 118

6.5.5 Results and Analysis 119

6.5.6 Threats to Validity . 139

6.6 Summary . 141

7 Further Discussion 143

7.1 Tie-breaking Strategy . 143

7.2 Adaptation of our Technique 143

xi

7.3 Fault Fix after Fault Localization 144

7.4 Oracle Problem before Fault Localization 144

7.4.1 Background . 144

7.4.2 Research Questions . 147

7.4.3 Experiment . 148

7.4.4 Summary . 164

8 Conclusion 165

Bibliography 169

xii

List of Figures

1.1 Excerpt from faulty version “v1” of program “tot info” 4

3.1 Motivating example . 23

3.2 Overall effectiveness comparison 38

3.3 Effectiveness on individual programs 41

3.4 Excerpts from multi-fault program 44

4.1 Code excerpts from versions v0 and v8 of print tokens. 49

4.2 Comparisons of distributions of evaluation biases for evaluation

sequences es1, es2, es3, and es4 (x-axis: evaluation bias; y-axis:

no. of test cases). 51

4.3 Comparisons of distributions of evaluation biases for evaluation

sequences es5 and the whole predicate (x-axis: evaluation bias;

y-axis: no. of test cases). 52

4.4 Comparisons of DES-enabled techniques with base techniques

on all programs. 58

4.5 Comparisons of DES-enabled techniques with base techniques

on print tokens and print tokens2 programs. 59

4.6 Comparisons of DES-enabled techniques with base techniques

on replace program. 59

4.7 Comparisons of DES-enabled techniques with base techniques

on schedule and schedule2 programs. 60

4.8 Comparisons of DES-enabled techniques with base techniques

on tcas program. 60

4.9 Comparisons of DES-enabled techniques with base techniques

on tot info program. 61

4.10 Comparisons of DES-enabled techniques with base techniques

on flex program. 61

4.11 Comparisons of DES-enabled techniques with base techniques

on grep program. 62

xiii

4.12 Comparisons of DES-enabled techniques with base techniques

on gzip program. 62

4.13 Comparisons of DES-enabled techniques with base techniques

on sed program. 63

4.14 Code excerpts from versions v0 and v9 of print tokens2. 67

4.15 Code excerpts from versions v0 and v8 of tot info. 68

4.16 Code excerpts from versions v0 and v8 of tot info. 68

5.1 Faulty version v10 of replace 75

5.2 Failing rate vs. execution count 75

5.3 Framework of our model . 79

5.4 Overall results on all faulty versions 89

5.5 Effectiveness difference on all faulty versions 92

5.6 Faulty version v28 of tcas . 96

6.1 Excerpt from faulty version “v1” of program “tot info” 103

6.2 Distributions of evaluation biases for predicates P1 to P4 104

6.3 Distributions of evaluation biases for predicates P5 to P7 105

6.4 Illustration for normality test 117

6.5 Illustration of Pearson Correlation test 118

6.6 Overall effectiveness comparisons 120

6.7 Effect of test suite size (lower the curve, better the technique) . . 121

6.8 Time spend of each techniques on different programs 123

6.9 Effectiveness comparisons on print tokens & print tokens2 . . . 124

6.10 Effectiveness comparisons on replace 125

6.11 Effectiveness comparisons on schedule & schedule2 125

6.12 Effectiveness comparisons on tcas 126

6.13 Effectiveness comparisons on tot info 126

6.14 Results of normality test for predicates 130

6.15 Results of normality test for the most fault-relevant predicates . 134

6.16 Effect of normality on fault-localization techniques 138

7.1 Experiences of subjects in object-oriented design, Java, testing,

and assertions . 151

7.2 Box-and-whisker plots of time costs for applying MT and asser-

tion checking . 158

xiv

List of Tables

3.1 Statistics of subject programs 34

3.2 Statistics of effectiveness . 42

3.3 Statistics of differences in effectiveness 43

4.1 Evaluation sequences of code fragments. 49

4.2 Statistics of subject programs. 56

4.3 Statistics on relative improvements in effectiveness. 64

4.4 p-values of U-tests on Siemens programs and UNIX programs. . 65

4.5 Timing statistics in the experiment. 71

5.1 Statistics of subject programs 85

5.2 Statistics of individual results on 186 single-fault versions 93

5.3 Statistics of individual results on 20 multi-fault versions 93

5.4 Results on Pearson correlation test to compare the effectiveness

of techniques . 94

5.5 Results of t-test hypothesis testing to compare the effectiveness

of techniques . 95

6.1 Techniques we are interested in 109

6.2 Statistics of Siemens suite . 112

6.3 Important fault types for C programs 113

6.4 The p-value results of hypothesis “technique X has significant

improvements on technique Y” 128

6.5 Student’s t-test on different threshold for H1 132

6.6 Comparison of statistics of predicates with statistics of the most

fault-relevant predicates . 135

6.7 Student’s t-test on different threshold for H2 136

7.1 Statistics of target programs 149

7.2 Categories of mutation operators 150

7.3 Number of single-fault programs by mutation operator category 152

xv

7.4 Number of metamorphic relations and assertions 154

7.5 Normalized standard derivations 154

7.6 Mutation detection ratios for metamorphic testing and assertion

checking . 156

7.7 Statistics of time costs for applying MT and assertion checking . 157

7.8 Mutation detection ratios for MR with and without faulty meta-

morphic relation implementation 159

7.9 Examples of metamorphic relations for program Boyer 161

xvi

Dedicated to my family

xvii

xviii

Chapter 1

Introduction

This chapter introduces the concepts and conventions in software debugging,

fault localization, and statistical fault localization, and then presents the scope

of this thesis. After that, this chapter summarizes the main contributions of the

thesis and highlights its organization for ease of reference.

1.1 Software Debugging

While software develops and evolves fast, software failures are hard to avoid.

Software faults are due to mistakes made during the implementation phase. Soft-

ware debugging is the process of removing faults in programs. While it is a

crucial activity, it is time-consuming and takes up a substantial portion of the

effort [103] as well as a significant amount of the resources [68] in a typical

software project. During software testing, programs may exhibit abnormal be-

haviors known as failures. To eliminate such abnormal behaviors, debuggers

need to locate the fault, then repair the fault and perform regression testing to

verify the result [103]. Compared with fault repair and regression testing, fault

localization is the most important task in software debugging [68].

1.2 Fault Localization

Fault localization is recognized as the hardest, most tedious, and most time-

consuming task in software debugging [103]. Generally speaking, fault local-

ization is to identify faults that cause abnormal behaviors in a program. Using

an effective fault-localization technique to assist debuggers to find bugs is a long-

standing means to alleviate the problem. Traditionally, debuggers iteratively and

1

Chapter 1

repeatedly set breakpoints, insert assertions, execute the program over inputs,

monitor the program states, and identify suspicious program elements [62].

1.3 Statistical Fault-localization Techniques

We first give a few preliminaries to support statistical fault localization. In this

thesis, we use a failed execution to denote a program execution that reveals a

failure. We use a passed execution to denote a program execution that reveals

no failure. A passed test case is one that shows no failure, and a failure-causing

test case is one identified to have detected a failure [120].

To escape from the previous time-consuming and error-prone manual fault-

localization process, automatic fault-localization techniques [68][70][74][75][76]

[77] have been invented. A commonly used tactic in such techniques is to apply

a statistical approach to correlate program failures with program entities (such

as statements or predicates). They compare the program feature spectra (such as

coverage information of statements or predicates) in failed executions and passed

executions, and find suspicious program elements to facilitate the identification

of faults. Since such an approach uses dynamic program execution information,

the corresponding techniques are categorized as “dynamic analysis” [120]. (The

counterpart is “static analysis”, which analyzes programs statically.) These tech-

niques narrow down on suspicious regions of fault-relevant program elements by

finding those elements whose executions correlate with program failures. For ex-

ample, ideally, if a statement is always exercised in failed executions and never

exercised in passed executions, it has a high probability to be related to fault. In

previous work, such techniques have been empirically validated to be promis-

ing [76][77].

A key insight is based on the assumption that certain dynamic feature of pro-

gram entities is more sensitive to the difference between the set of failed execu-

tions and the set of all (or passed) executions. Thus, there are two key elements

underlying the successful applications of such class of dynamic analysis tech-

niques. First, a technique should use a feature (or a set of features) to measure

the sensitivity (that is, how much a program element is estimated to be related to

faults in a program). Second, the technique should have a function to compare

sensitivity values. The function essentially ranks sensitivity values in a total or-

der. For example, techniques such as [75][76] produce a real number value to

represent sensitivity, and sort these values in ascending or descending order. By

mapping the relative order of the sensitivity values back to the associated pro-

gram entities, such a technique can produce a ranked list of program entities

2

Chapter 1

accordingly. We note that the relative magnitudes of sensitivity values are used

when ranking the program entities. Note also that the relative magnitudes of sen-

sitivity values rather than their absolute values are used because the value ranges

can be unbounded in general [120]. Since these kinds of fault-localization tech-

niques often make use of statistical methods, e.g., correlation test and hypothesis

test, to investigate statistical information (program execution information over a

suite of test cases), we also call them “statistical fault-localization techniques”.

1.4 Representative Statistical Fault-localization Tech-

niques

Control flow graphs [6] have been designed to model program structures. In

a control flow graph, the branch transitions (happening, say, at an “if”-switch)

of program executions are represented by edges, while the statements between

two adjacent edges and sequentially executed as a whole or skipped as a whole

(such as the statements in the true branch of an “if”-statement) are represented

by blocks. Control flow blocks are connected to one another by control flow

edges. Such a control flow graph can be used to capture dynamic information of

program execution, e.g., the execution path of a program over a given test case.

Many common statistical fault-localization techniques [4][35][68][96][106][112]

can be deemed to use control flow elements at different levels to perform fault

localization.

Some existing popular techniques use statements as fault location indicators

in order to investigate the fault-suspiciousness of every statement, i.e., howmuch

it is related to a fault. They regard statements as program entities, count the

number of times a program entity is exercised in a program execution, and use

such execution counts as dynamic features. We will refer to them as statement-

level statistical fault-localization techniques. Tarantula [68], Jaccard [1], and

Ochiai [1] are examples of such techniques.

Branch-level statistical fault-localization techniques [96] considers branches

as program entities, and uses the frequencies of branch (i.e., how many times

branches are exercised in a program execution) as dynamic features. One exam-

ple of such techniques is “br” in [96].

At the same time, many previous studies [75][76][77] have found that the

frequencies of branch transition through a control flow edge correlate to how

much that edge is related to faults in a program. One strategy is to use the tran-

sition through control flow edges (e.g., branch statements and return statements)

as predicates, then use such predicates as program entities, and the execution

3

Chapter 1

Program : tot info.c [62]

P1: if (rdf ≤ 0 ‖ cdf ≤ 0) {
info = -3.0;

goto ret3;

}
...

P2: for (i = 0; i < r; ++i) {
double sum = 0.0;

P3: for (j = 0; j < c; ++j) {
long k = x(i,j);

P4: if (k < 0L){
info = -2.0;

E1: /*goto ret1;*/

}
sum += (double)k;

}
N += xi[i] = sum;

}
P5: if (N ≤ 0.0) {

info = -1.0;

goto ret1;

}
P6: for (j = 0; j < c; ++j) {

double sum = 0.0;

P7: for (i = 0; i < r; ++i)
sum += (double)x(i,j);

xj[j] = sum;

}
...

ret1:

Figure 1.1: Excerpt from faulty version “v1” of program “tot info”

4

Chapter 1

counts and execution results as the dynamic features. Here, a program predicate

(or simply predicate) about some property of execution at a program location

may be evaluated to a certain truth value. For example, we may regard the con-

dition “rdf≤0 || cdf≤0” of the branch statement “P1: if(rdf≤0 || cdf≤0)” in
Figure 1.1 as a predicate. If this branch statement is exercised in the program

execution and the condition is evaluated to be true (e.g., the value of variable

“rdf” is less than zero), we say the corresponding predicate is evaluated to be

true with respect to that execution. If this branch statement is exercised in the

program execution and the condition is evaluated to be false, we say the corre-

sponding predicate is evaluated to be false with respect to that execution. If this

branch statement is not exercised and the condition is not evaluated, we say the

predicate is not evaluated with respect to that execution. Some existing statistical

fault-localization techniques [62][74][75][76][77][119][122][123] locate suspi-

cious program predicates related to faults by contrasting the behaviors of the

program predicates (e.g., decisions of branch statements) in passed executions

and failed executions.

Based on these kinds of predicate-level techniques, path-level techniques [35]

have been developed. Such techniques isolate bugs by finding paths that corre-

late with failure. Their results indicate that “path profiles can help isolate bugs

more precisely by providing more information about the context in which bugs

occur” [35].

1.5 Scope of the Thesis

In this thesis, we present investigations of four important topics in statistical

fault-localization.

1. We notice that an infected program state triggered by a fault may prop-

agate a long way before the program execution finally causes a failure.

The execution of such a faulty statement has a relatively weak correlation

with program failures. Since many existing statistical fault-localization

techniques locate program positions whose executions correlate directly

with program failures, they are not effective to locate such faults. To ad-

dress this kind of fault, we present in this thesis a technique known as

CP [120], which captures the propagation of infected program states. CP

also uses a control flow graph (CFG) to describe a given program. It mod-

els a program execution as an edge profile [5], which indicates the edges

of the CFG that have been traversed during the execution, and quantifies

5

Chapter 1

every change of program state over an edge with the number of traver-

sals of the edge. It then computes a pair of mean edge profiles [120]: a

mean pass profile for all the sampled passed executions, and a mean failed

profile for all the sampled failed executions. They abstractly capture the

central tendency of the program states in a passed execution and that in

a failed execution, respectively. For each edge, CP contrasts such a state

abstraction in the mean pass profile with that in the mean failed profile

to assess the fault suspiciousness of the edge. To track how much every

basic block [5] contributes to the observed program failures, CP sets up

a system of linear algebraic equations to express the propagation of the

suspiciousness scores of a basic block to its predecessor block(s) via di-

rectly connected control flow edges — for each edge, it splits a fraction

of the suspiciousness score to be propagated to a predecessor basic block.

CP always constructs homogeneous equations and ensures that the number

of equations is the same as the number of variables. Such a constructed

equation set is easily solvable by standard mathematics techniques such as

Gaussian elimination and least square method [125]. By solving the set

of equations, CP obtains the suspiciousness score for each basic block. It

finally ranks the basic blocks in descending order of their suspiciousness

scores, and assigns a rank for each statement accordingly.

2. During experimental evaluation, we notice that peer predicate-level fault-

localization techniques are not as effective as other statement-level tech-

niques. We then continue to investigate the factors that have impact on

the effectiveness of predicate-level fault-localization techniques. These

techniques find fault-relevant predicates in a program by contrasting the

statistics of the evaluation results for individual predicates between passed

executions and failed executions. However, short-circuit evaluations may

occur when evaluating compound Boolean expressions in program exe-

cutions. Treating predicates as atomic units ignores this fact, masking

out various types of useful statistics on dynamic program behavior. We

therefore develop a finer-grained technique, known as DES [122][123],

that considers the impact of short-circuit evaluations. We use the concept

of evaluation sequence to capture the details of evaluating a compound

Boolean expression, and collect the evaluation biases in terms of evalu-

ation sequences. Our intent is to investigate the performance overhead

and effectiveness improvements of such a finer-grained statistical fault-

localization technique.

3. We further present a novel statement-level statistical fault-localization tech-

6

Chapter 1

nique, Slope, which can work in the absence of passed executions. Such

a technique greatly save the effort of generating or exercising passed test

cases. It also enables fault localization in environments where passed ex-

ecutions are not ready or unavailable, such as a debugging request driven

by bug reports. In detail, executing a faulty statement (such as a state-

ment having a boundary-checking fault) once may not sufficiently lead to

a failure. However, we have the following observation based on real-life

debugging experience. “The more frequently a fault has been exercised

in an execution, the more likely will the fault affect the program behav-

ior and, thus, the higher will be the chance that the program execution

results in a failure.” Based on this experience, we propose our technique,

known as Slope, to address this problem. It uses the trend of chances on

each applicable statement to estimate the fault suspiciousness of that state-

ment. Slope is summarized as follows: It collects the execution count of

every statement in each execution, where the execution count of a state-

ment is the number of times that the statement has been exercised in an

execution. It then uses the execution count as the criterion to categorize

the executions into subgroups. Slope calculates the failing rate in each

subgroup, and treats every tuple failing rate, execution count as a point

in two-dimensional space. It lines up these points using linear regression,

and treats the slope of the obtained line as the desirable signal and fitting

error as the noise of the signal to construct the ranking formula by means

of a signal-to-noise ratio, which is also known as the inverse of coeffi-

cient of variation [95]. It makes use of the dimensionless property of the

signal-to-noise ratio, with the help of further approximation, to make our

model independent of passed executions. Based on the model, we develop

a novel statistical fault-localization technique, which has two ranking for-

mulas sharing the same underlying principle but applicable to two different

scenarios (that is, the “pass and fail” scenario and the “fail only” scenario).

The former relates to traditional statistical fault-localization environment

where both passed and failed executions are available. The latter stands

for a fault-localization environment where only failed executions are avail-

able.

4. Generally, to apply their models, many statistical fault-localization tech-

niques [74][75][76][77] set up presumptions that feature spectra exhibit

specific distributions. Using an unmatched model to describe the realistic

feature spectra may result in low effectiveness for these techniques. We

use standard non-parametric hypothesis testing methods instead. In our

7

Chapter 1

previous work [60, 62], we have empirically shown that the use of a non-

parametric hypothesis testing method can improve the effectiveness of ex-

isting techniques. In this thesis, we would like to find the root cause of im-

provement by contrasting the effectiveness of fault-localization techniques

using different non-parametric or parametric hypothesis testing methods

with the effectiveness of existing self-proposed parametric hypothesis test-

ing models.

We have conducted controlled experiments to validate the effectiveness of

the above four kinds of fault-localization techniques. The empirical results show

that both Slope and CP are effective. On the other hand, the finer-grained (at level

of evaluation sequence) statistical fault-localization technique DES significantly

improves existing techniques while incurring relatively little overhead. More-

over, a statistical fault-localization technique using standard non-parametric hy-

pothesis testing methods is extremely valid and robust.

Since a test suite is part of the input of statistical fault localization, in the

follow-up discussion section, we further investigate and compare the effective-

ness of the use of metamorphic testing [60] and assertion checking [60] to alle-

viate the oracle problem [33] in software testing.

1.6 Contributions of the Thesis

The following summarizes the major contributions of the thesis. Further details

will be given in the relevant chapters that follow.

1. We propose two novel statistical fault-localization techniques, which are

evaluated as effective by controlled experiments using realistic medium-

sized real-life subject programs and representative peer techniques for

comparison.

2. We conduct the first study to investigate the impact of short-circuit evalu-

ation of compound Boolean expressions on the effectiveness of statistical

fault-localization techniques.

3. We present the first investigations on the normality nature of the pro-

gram execution spectra and the short-circuit evaluation rule, which high-

light some threats to the construct validity of existing predicate-level fault-

localization techniques.

4. We propose a newmetrics, P-score, to measure the effectiveness of predicate-

level fault-localization techniques.

8

Chapter 1

5. We conduct the first controlled experiment to compare metamorphic test-

ing and assertion checking, which are two methods used to alleviate the

oracle problem in software testing. It also empirically provides a tradeoff

guide when choosing between metamorphic testing and assertion check-

ing.

1.7 Organization of the Thesis

This thesis is organized as follows: In Chapter 2, we discuss related work and

give a literature review. In Chapter 3, we propose a steady and efficient propagation-

based statistical fault-localization technique known as CP. In Chapter 4, we in-

vestigate whether a finer-grained concept — evaluation sequences — of pred-

icates is significant for improving the effectiveness of predicate-based statisti-

cal fault localization. In Chapter 5, we introduce our fault-localization work,

Slope, to explain how we may solely use failed executions to locate fault. In

Chapter 6, we extend our previous work by applying different non-parametric

hypothesis testing methods and standard parametric hypothesis testing methods

to our fault-localization framework in a controlled experiment. In Chapter 7,

we discuss related issues and report the results of a controlled experiment that

compares two methods used to alleviate the oracle problem. Finally, Chapter 8

concludes the thesis.

9

Chapter 1

10

Chapter 2

Literature Review

This chapter lists work related to this thesis and discusses their relations with it.

2.1 Program representation

2.1.1 Control flow graph

Control flow graph [6] is designed to describe program structure. In a control

flow graph, the branch transitions (e.g., a branch transition happens at an “if”-

switch) of program execution are represented as edges, the statements between

two adjacent edges and sequentially executed as a whole or skipped as a whole

(e.g., the statements in the true block of an “if”-statement) are represented as

basic blocks. Control flow blocks are connected to one another by control flow

edges.

Given program M, a control flow graph (CFG) [6] can be denoted as,

G(M) = 〈E, B〉.

Here E = {e1, e2, . . . , em} is a set of the control flow edges of M, and B =
{b1, b2, . . . , bn} is a set of the basic blocks of M.

Such a control flow graph can be used to analyze the program behavior or

structure [120]. It can be also used to capture dynamic information of pro-

gram execution (e.g., the execution path with respect to the program execution

over a given test case) and a lot of common statistical fault-localization tech-

niques [4][35][68][96][106][112] can be regarded to use control flow elements

of different levels to perform fault localization.

11

Chapter 2

2.1.2 Profiling

Profiling techniques are useful to collect structured execution information of pro-

gram, such as a control flow graph. It can be used to support instrumentation

work in fault-localization techniques [120]. Profiling techniques have been de-

veloped for years. For example, Bond et al. [15] propose hybrid instrumentation

and sampling approach for continuous path and edge profiling. Ball et al. in

their work [7] compare edge profiling and path profiling and conclude that edge

profiling is in most cases enough to select hot path instead of using path profil-

ing.

2.2 Fault-localization techniques

Many various techniques [4][35][68][96][106][109][112] have been proposed to

support software debugging. For example, Wong et al. [109] propose a code

coverage-based fault-localization technique, which uses a utility function to cal-

ibrate the contribution of each passed execution when calculating the fault rel-

evance of executed statements. These techniques usually contrast the program

spectra information [64] (such as execution statistics) between passed executions

and failed executions to compute the fault suspiciousness [112] of individual pro-

gram entities (such as statements [68], branches [96], and predicates [75]), and

construct a list of program entities in descending order of their fault suspicious-

ness. Developers may then follow the suggested list to locate faults. Empirical

studies [4][68][75][76] show that these techniques can be effective in guiding

programmers to examine code and locate faults.

2.2.1 Statement-level techniques

Harrold et al. [57] list nine classes of program spectra, such as path count, data-

dependency count, and execution trace. Among them, the execution trace spec-

trum is most widely used in debugging. Tarantula [68] is a statement-level sta-

tistical fault-localization technique. In their work Tarantula, Jones et al. [68][70]

rank each statement according to suspiciousness, which is a function of the per-

centages of failed and passed test cases that execute the statement. They further

use Tarantula to explore ways of classifying test cases to enable several test engi-

neers to debug a faulty program in parallel [69]. There are many other statement-

level fault-localization techniques, for example, Jaccard [1] and Ochiai [1]. The

difference among them and Tarantula is that they use different ranking formulas

12

Chapter 2

and do not have tie-break strategy. Yu et al. [112] further summarize several

other statement-based fault-localization techniques.

2.2.2 Block-level techniques

When statements have identical execution statistics and Tarantula cannot dis-

tinguish them, it involves additional strategy to break ties [112]. For exam-

ple, blocks contain statements that will be sequentially executed as a whole or

skipped as a whole. These statements always have the same execution count dur-

ing program executions. They are statistically indistinguishable since these kinds

of techniques rely on execution counts to determine the fault-suspiciousness of

statements. We name such techniques block-level statistical fault-localization

techniques. Baudry et al. [8] define a dynamic basic block as the set of state-

ments executed by the same test cases in a test suite. They use a bacteriologic

approach to remove test cases while maximizing the number of dynamic basic

blocks, and use the algorithm in [70] to rank the statements. They manage to use

fewer test cases than Tarantula for the same fault-localization results.

2.2.3 Branch-level techniques

At the same time, many previous studies [75][76][77] have found that the fre-

quencies of branch transition through a control flow edge correlate to how much

that edge is related to faults in program. One strategy is to use the transition

through control flow edges (e.g., branch statements and return statements) as

predicates, use such predicates as program entities, and the execution counts

and execution results as the dynamic features. If a branch statement is exer-

cised in the program execution and this condition is evaluated to be true, we

say the corresponding predicate is evaluated to be true, with respect to that ex-

ecution. If this branch statement is exercised in the program execution and this

condition is evaluated to be false, we say the corresponding predicate is evalu-

ated to be false, with respect to that execution. If this branch statement is not

exercised and this condition is not evaluated, we say the predicate is not evalu-

ated, with respect to that execution. Some previous statistical fault-localization

techniques [62][74][75][76][77] locate the suspicious program predicates that

relate to faults by contrasting the behavior of program predicates (e.g., decisions

of branch statements), in passed executions and failed executions. The SOBER

approach [76] proposes to contrast the differences between a set of evaluation

biases due to passed test cases and that due to failure-causing ones for every

predicate in the program. It hypothesizes that, the greater is the difference be-

13

Chapter 2

tween such a pair of sets of evaluation biases, the higher will be the chance that

the corresponding predicate is fault-relevant. Liblit et al. [75] propose a sparse

sampling approach CBI to collect the statistics of predicates for statistical fault

localization. By sampling selected predicates, rather than all predicates or state-

ments, this strategy reduces the overhead in collecting debugging information.

It also reduces the need to disclose the execution details of all statements when

remote sampling is conducted (for the purpose of remote support rather than on-

site support [74][75]). Hence, it lowers the risk of information leakage, which

is a security concern. The CBI approach [74][75] proposes a heuristic that mea-

sures the increase in probability that a predicate is evaluated to be true in a set

of failure-causing test cases, compared to the whole set of (passed and failure-

causing) test cases. They further adapt CBI to exploit the execution statistics

of compound Boolean expressions constructed from program predicates to fa-

cilitate statistical debugging [4]. CBI is also adapted to the statement level in

previous work [112].

2.2.4 Path-level techniques

Based on these kinds of predicate-level techniques, path-level techniques [35][38]

are developed. Chilimbi et al. [35] extend CBI by using path profiling to locate

faults. Such a technique isolates bugs by finding paths that correlate with failure.

Previous results indicate that “path profiles can help isolate bugs more precisely

by providing more information about the context in which bugs occur” [35].

2.2.5 Multi-level techniques

Similar to and inspired by statement-level techniques, Santelices et al. [96] in-

vestigate the effectiveness of using different program entities (statements, edges,

and DU-pairs) to locate faults. They show that the integrated results of using dif-

ferent program entities may be better than the use of any single kind of program

entity.

2.2.6 Other kinds of fault-localization work

Besides the above coverage-based fault-localization techniques [106], there are

also fault-localization techniques, such as [64], that make use of both coverage

information and detailed data flow information. They collect all possible values

of program variables, iteratively replace the value of each program variable, cal-

culate the probability that such a replacement converts a failure-causing test case

14

Chapter 2

to a passed test case, and estimate the suspiciousness of statements accordingly.

Delta Debugging [36][114] isolates failure-inducing input elements, pro-

duces cause-effect chains, and locates the faults through the analysis of pro-

gram state changes during a failed execution against a passed one. It isolates

the relevant variables and values by systematically reducing the state differences

between a failed execution and a passed one.

Renieris and Reiss [90] find the difference in execution traces between a

failed execution and its Nearest Neighbor passed execution to be effective for de-

bugging. Statements with unsymmetrical differences between failed and passed

executions are regarded as faulty statements. Another contribution of this work

is its proposed effectiveness metrics t-score, which is also used in this thesis to

evaluate the effectiveness of some fault-localization techniques.

Program slicing [107] is a code-based technique. It is widely used in debug-

ging [100][116]. Gupta et al. [56] propose a forward dynamic slicing approach to

narrow down slices. They further integrate the forward approach with standard

dynamic slicing approaches [115].

Model checking is a verification method that accepts temporal logic formulas

or other modeling languages. Griesmayer et al. [54] use model checking to

locate faults. Beginning with given specification, a model checker delivers a

counterexample, which reports the suspicious program states and helps locate

fault. By searching the error traces, expressions that repair the original program

can be constructed.

Some research studies such as failure report analysis [88][104] classify fail-

ures based on failed executions. However, they do not address the problem of

solely using failed executions to locate faults (which is part of our contribution

in this thesis). Besides, Ko and Myers in their work [71] discuss another man-

ner of fault localization rather than outputting a suspicious statement list [72].

Locating multiple faults simultaneously is also a research direction [124].

2.3 Fault Repair

There also exist automatic fault repairing techniques. For example, Sinha et

al. [96] “handle runtime exceptions that involve a flow of an incorrect value

that finally leads to the exception” [96]. It traces back from a statement where

an exception occurred, and then combines dynamic information and static data-

flow analysis to identify the fault. It also identifies those statements causing the

same exception in program execution of other test cases, and finally makes use

of such information to repair the fault.

15

Chapter 2

Predicate switching [115] alters a predicate’s decision at execution time to

change the original control flow of a faulty program over the failure-causing

test case, aiming to find a key predicate that triggers the faulty program to give

correct output. It then searches from this switched predicate to locate a fault

through backward and forward slicing. Making use of slicing technique, Jeffrey

et al. propose Value Replacement [64] for fault localization. It collects all pos-

sible values from all executions of a test suite, and then replaces the value of

each variable occurrence in the faulty program by each of these collected values

systematically to determine whether such a replacement can produce the correct

output. Since Value Replacement uses both coverage information and variable

values, we do not regard it as a peer technique for comparison. These two studies

can be deemed to repair a special kind of faults.

2.4 Test Case Prioritization in Regression Testing

Our work [67] also investigates how test case prioritization techniques have im-

pact on the effectiveness of fault localization. In regression test phase, test case

prioritization techniques [41][43][46][48][49][50][51][52][92][93][94] are com-

monly used to prioritize the test cases and gain a fast speed of revealing failures.

Do and Rothermel in their work [45] use sensitivity analysis to determine the

dominant factor of their model, and propose two new models based on the result.

We assess these models empirically on data obtained by using regression testing

techniques on several non-trivial software systems. However, such work is out

of the scope of this thesis. Do et al. [42][44] investigate the use of mutation

faults in regression testing.

In our work [67], we investigate the impact of those test case prioritization

techniques (used in regression testing) on the effect of fault-localization tech-

niques (used in fault localization), and report the practical issue of using these

test case prioritization techniques (fault localization in a continuous integration

environment).

2.5 Oracle Problem in Regression Testing

Oracle problem affects the quality of test suite, which is the input of statistical

fault localization. Many approaches have been proposed to alleviate the test ora-

cle problem. Rather than checking the test output directly, they usually propose

to construct various types of oracle variant to verify the correctness of the pro-

gram under test. Chapman [30] suggested that a previous version of a program

16

Chapter 2

could be used to verify the correctness of the current version. It is now a popu-

lar practice in regression testing. However, using this approach, testers need to

identify whether the test case is applicable to the previous version.

2.5.1 Assertion checking

Assertion checking [87] is a method to verify the execution results of programs.

An assertion, which is usually embedded directly in the source code of the pro-

gram under test, is a Boolean expression that verifies whether the execution of a

test case satisfies some necessary properties for correct implementation. Asser-

tions are supported by many programming languages and are easy to implement.

It has been incorporated in the Microsoft .Net platform.

Assertion checking has been widely used in testing. For example, state in-

variants [11][58], represented by assertions, can be used to check the stated-

based behaviors of a system. Briand et al. [17] investigate the effectiveness of

using state-invariant assertions as oracles and compared it with the results using

precise oracles for object-oriented programs. It is shown that state-invariant as-

sertions are effective in detecting state-related errors. Since our target programs

are also object-oriented programs, we have chosen assertion checking as the al-

ternative testing strategy in our experimental comparison. Assertion checking

is also popular in unit testing framework such as JUnit, in which verification of

the program states or outputs of a test case can be done during or after the test

execution.

2.5.2 Metamorphic testing

There have been various case studies in applying Metamorphic Testing [20][21]

[24][25][31][33][55][62][101] to different types of programs, ranging from con-

ventional programs and object-oriented programs, to pervasive programs and

web services. Chen et al. [31] report on the testing of programs for solving

partial differential equations. They [32] further investigate the integration of

metamorphic testing with fault-based testing and global symbolic evaluation.

Gotlieb and Botella [55] develop an automated framework to check against a

class of metamorphic relations. In previous studies, metamorphic approach is

also applied to unit testing [101] and integration testing [21] of context-sensitive

middleware-based applications. Chan and others [24][25] also develop a meta-

morphic approach to online testing of service-oriented software applications.

The improvement on the binary classification approach to alleviate the test oracle

problem for graphics-intensive applications has been investigated in [26][27][28].

17

Chapter 2

Beydeda [10] proposes to use metamorphic testing as a means to improve the

testability of program components. Wu [110] observes that follow-up test cases

can be initial test cases of the next round, and thus, proposes to apply MT itera-

tively to utilize metamorphic relations more economically. Chan et al. [27][28]

propose a methodology to integrate MT with the pattern classification technique.

Murphy [85] explores the application of metamorphic testing to support field

testing. Throughout these studies, both the testing and the evaluation of exper-

imental results were conducted by the researchers themselves. There is a need

for systematic empirical research on how well MT can be applied in practical

and yet generic situations and how effective MT is compared with other testing

strategies.

2.5.3 Other kinds of methods to alleviate Oracle problem

Some researchers have proposed to prepare test specifications, either manually

or automatically, to alleviate the test oracle problem. Memon et al. [84] assume

that a test specification of internal object interactions was available and used it to

identify non-conformance of the execution traces. This type of approach is com-

mon in conformance testing for telecommunication protocols. Sun et al. [98]

propose a similar approach to testing the harnesses of applications. Last and

colleagues [73][102] train pattern classifiers to learn the casual input-output re-

lationships of a legacy system. They then use the classifiers as test oracles. Chan

et al. [26] further investigate the feasibility of using pattern classification tech-

niques when the test outputs cannot be accurately determined. Podgurski and

colleagues [53][88] classify failure reports into categories via classifiers, and

then refine the classification with the aim to extract more information to help

testers diagnose program failures. Bowring et al. [16] use a progressive ap-

proach to train a classifier to ease the test oracle problem in regression testing.

Chan et al. [23] use classifiers to identify different types of behaviors related to

the synchronization failures of objects in a multimedia application.

Weyuker [108] suggests checking whether some identity relations would

be preserved by the program under test. This notion of equivalence has been

well-adopted in practice. Blum and others [3][12] propose a program checker,

which is an algorithm for checking the output of computation for numerical pro-

grams. Their theory has been subsequently extended into the theory of self-

testing/correcting [13]. Xie and Memon [111] study different types of oracle for

graphic user interface (GUI) testing. Binder [11] discusses four categories and

eighteen oracle patterns in object-oriented program testing.

18

Chapter 2

2.6 Summary

In this chapter, we list out much work related to this thesis, including fault-

localization techniques, fault repair, oracle problem, test case prioritization, con-

trol flow graph, and profiling techniques.

We also investigate program synthesize for resource-stringent WSN appli-

cations [117][121]. Based on different program structures, they use heuristic

to search for proper combination of code optimization techniques [89], to meet

resource criteria.

Besides, our work [66] investigates the use of adaptive random testing in

regression testing. Another work [83] investigates the test case prioritization

techniques applied on Service-Oriented Business Applications.

19

Chapter 2

20

21

Chapter 3

Capturing Propagation of Infected
Program States

We notice that many previous statement-level statistical fault-localization
techniques work by locating program statements which execution correlate to
program failures. Since an infected program state triggered by a faulty
statement may propagate during program execution, and goes a long way
before a failure is finally caused. The execution of such a faulty statement
does not strongly correlate to program failures and previous statement-level
fault-localization techniques are not effective on locating it.

In this chapter, we first give some necessary background, and then use a
motivating example to demonstrate such a case and how we address it. After
that, we elaborate on our model – CP [120], which captures the propagation of
infected program states to locate faults, and then use empirical study to
validate the effectiveness of our technique.

3.1 Background

During program execution, a fault in a program statement may infect a
program state, and yet the execution may further propagate the infected
program states [36][104] a long way before it may finally manifest failures
[106]. Moreover, even if every failed execution may execute a particular
statement, this statement is not necessarily the root cause of the failure (that is,
the fault that directly leads to the failure) [36].

Suppose, for instance that a particular statement S on a branch B always
sets up a null pointer variable. Suppose further that this pointer variable will
not be used in any execution to invoke any function, until another faraway (in
the sense of control dependence [6] or data dependence) statement S' on a
branch B' has been reached, which will crash the program. If S is also
exercised in many other executions that do not show any failure, S or its

Chapter 3

22

directly connected branches cannot effectively be pinpointed as suspicious. In
this scenario, existing statistical fault-localization techniques such as Tarantula
[68] or SBI [112] will rank S' as more suspicious than S. Indeed, in the above
scenario, exercising B' that determines the execution of S' always leads to a
failure [112]. Thus, the branch technique proposed in [112], for example, will
rank B' as more suspicious than B, which in fact is directly connected to the
first statement S. The use of data flow analysis may reveal the usage of the
null pointer and help evaluate the suspiciousness of S, S', B, and B'. However,
data flow profiling is expensive [64][96].

A way out is to abstract a concrete program state as a control flow branch,
and abstract the propagation of fault suspiciousness of these concrete program
states by a “transfer function” of the fault suspiciousness of one branch or
statement to other branches or statements. On one hand, existing techniques
work at the individual program entity level and assess the fault suspiciousness
of program entities separately. On the other hand, the transfer of fault
suspiciousness of one program entity to another will change the fault
suspiciousness of the latter. In the presence of loops, finding a stable
propagation is non-trivial. Moreover, even if a stable propagation can be found,
a direct implementation of such a propagation-based technique may indicate
that the technique requires many rounds of iterations, which unfortunately are
computationally expensive.

3.2 Motivation

Figure 3.1 shows a code excerpt from the faulty version v2 of the program
schedule (from SIR [40]). The code excerpt manages a process queue. It first
calculates the index of a target process, and then moves the target process
among priority queues. We seed an extra “+1” operation fault into statement
s2 in Figure 3.1. It may cause the program to select an incorrect operation for
subsequent processing, which will lead to a failure.

This code excerpt contains two “if” statements (s1 and s5), which divide
the code excerpt into three basic blocks Figure 3.1 (namely, b1, b2, and b3).
The basic block b1 contains only one statement s1. The result of evaluating
“block_queue” in s1 determines whether the statements s2 to s8 are skipped.
The basic blocks b2 contains statements s2, s3, s4, and s5. The basic block b3

contains statements s6, s7, and s8. We also depict the code excerpt as a control
flow graph (CFG) in Figure 3.1. In this CFG, each rectangular box represents
a basic block and each arrow represents a control flow edge that connects two
basic blocks. For example, e2 indicates that the decision in s1 has been
evaluated to be true in an execution, so it transits from b1 to b2. Since the fault
lies in b2, we use a weighted border to highlight the rectangular box b2. Note

Chapter 3

23

that we add a dummy block b4 (as a dashed rectangular box) and an edge e6
(as a dashed arrow) to make this CFG more comprehensible.

Statement Basic block Control flow graph
if (block_queue) { s1 b1

Control Flow Graph (CFG) for the
code excerpt on the left:

b2

b3

e3 b1 e2

e5 e4

b4

e1

e6
(We add a dummy block b4
containing statement s9, and an
edge e6 to make a complete CFG.)

 count = block_queue–>mem_count + 1; s2
b2

(fault)

 n = (int) (count*ratio); s3
 proc = find_nth(block_queue, n); s4
 if (proc) { s5
 block_queue = del_ele(block_queue, proc); s6 b3

(block
whose

execution
leads to
failure)

 prio = proc–>priority; s7

 prio_queue[prio] =
 append_ele(prio_queue[prio], proc);

s8

 } }
// next basic block

s9 b4

susp.: suspiciousness of a statement/edge in relation to a fault
rank: ranking of a statement/edge in the generated list

Basic block
Test case Tarantula SBI Jaccard Branch CP

t1 t2 t3 t4 t5 t6 t7 susp. rank susp. rank susp. rank susp. rank susp. rank
b1 ● ● ● ● ● ● ● 0.50 9 0.29 9 0.29 9 0.71 9 0.11 9

 ● ● ● ● 0.71 7 0.50 7 0.50 7 0.71 9 1.11 4
b2

(fault)
● ● ● ● 0.71 7 0.50 7 0.50 7 0.71 9 1.11 4
● ● ● ● 0.71 7 0.50 7 0.50 7 0.71 9 1.11 4

 ● ● ● ● 0.71 7 0.50 7 0.50 7 0.71 9 1.11 4
b3

(block
whose

execution
leads to
failure)

 ● 1.00 3 1.00 3 0.50 7 0.71 9 1.00 7
 ● 1.00 3 1.00 3 0.50 7 0.71 9 1.00 7

● 1.00 3 1.00 3 0.50 7 0.71 9 1.00 7

b4 ● ● ● ● ● ● ● 0.50 9 0.29 9 0.29 9 0.71 9 0.11 9

Edge

e1 ● ● ● ● ● ● ● 0.53 0.00
e2 ● ● ● ● 0.71 0.43
e3 ● ● ● 0.00 –1.00
e4 ● 0.71 1.00
e5 ● ● ● 0.41 0.11
e6 ● N/A 1.00

Pass/fail P P F P P F P
% of code examined according to

the ranking of statements
78% 78% 78% 100% 44%

Ranking order of basic blocks b3 before b2
b2 and b3 have
the same rank

b2 before b3

Figure 3.1 Motivating example

Chapter 3

24

We examine the program logic, and observe that many failures are caused
by the execution of b2 followed by b3, rather than merely executing b2
without executing b3. Even if b2 is executed and results in some infected
program state, skipping b3 will not alter the priority queue, and thus the effect
of the fault at s2 is less likely to be observed through subsequent program
execution. On the other hand, executing b2 followed by b3 means that an
infected program state (such as incorrect values for the variables count, n, or
proc) at b2 is successfully propagated to b3 through the edge e4. Since
previous studies suggest the comparison of execution statistics to assess the
suspiciousness scores of statements, they will be more likely to result in a
wrong decision ― b3 will appear to be more suspicious than b2. The follow-
ing serves as an illustration.

In this example, we use seven test cases (dubbed t1 to t7). Their statement
and edge execution details are shown in Figure 3.1. A cell with the “●”
notation indicates that the corresponding statement is exercised (or an edge is
traversed) in the corresponding test execution. For instance, let us take the first
test case t1 (a successful one, referred to as “passed”). During its execution,
the basic blocks b1, b2, and b4 are exercised; moreover, the control flow edges
e1, e2, and e5 are traversed. Other test cases can be interpreted similarly. The
passed/fail status of each test case is shown in the “Pass/Fail status” row. We
apply Tarantula [68], Jaccard [1], and SBI 1 [112] to compute the
suspiciousness score of every statement, and rank statements in descending
order of their scores. Presuming that the programmer may check each
statement according to their ranks until reaching the fault [68][112], we thus
compute the effort of code examination to locate this fault [68][112]. We show
their effectiveness in the “susp.” and “rank” columns, and the row “% of code
examined according to the ranking of statements” of Figure 3.1. We observe
that b3, rather than b2, is deemed to be the most suspicious basic block if we
apply Tarantula or SBI. When applying Jaccard, b2 and b3 are equally
deemed to be the most suspicious basic blocks. As a result, the fault cannot be
effectively located by any of these techniques. To locate the fault, each
examined technique needs to examine 78% of the code.

Intuitively, the execution of b3 may lead to a failure, and yet it is not the
fault. On the other hand, b2 contains the fault, but its execution does not lead
to a failure as often as b3. Since existing techniques find the suspicious
program entities that correlate to failures, they give higher ranks to those
statements (such as b3) whose executions frequently lead to failures, but give
lower ranks to those statements (such as b2) whose executions less often lead

1 In this thesis, we use the term SBI to denote Yu et al.’s approach [112] of applying
Liblit et al.’s work CBI [75] at statement level. At the same time, we still keep the
term CBI when referring to the original technique in [75].

Chapter 3

25

to failures. If we always separately assess the fault suspiciousness of
individual statements (such as b2 and b3) and ignore their relations, this
problem may hardly be solved.

Since executing an edge can be regarded as executing both the two basic
blocks connected by the edge, do edge-oriented techniques somehow capture
the relationships among statements and perform effectively on this example?
We follow [96] to adopt br, an edge-oriented technique (which we will refer to
as Branch in this thesis) to work on this example. Branch assesses the suspi-
ciousness scores of control flow edges (say, e1 and e2), and then associate
their suspiciousness scores with statements that are directly connected (in
sense of incoming edges or outgoing edges). Branch first ranks e2 and e4 as
the most suspicious edges (both having a suspiciousness score of 0.71). In a
program execution, traversing e2 means to enter the true branch of s1 followed
by executing b2, and traversing e4 means having executed b2 and will
continue to execute b3. We observe that executing b2 generates infected
program states (on variables count, n, and proc), which propagate to b3
through e4. We further observe that these two highly ranked edges precisely
pinpoint the fault location. When associating edges to statements, the rules in
Branch only propagate the edge suspiciousness to those statements within the
same block as the conditional statement for the edge. However, a fault may be
several blocks away from the edge and the loop construct may even feedback
a faulty program state. For this example, Branch assigns identical
suspiciousness scores to all statements and they cannot be distinguished from
one another. As a result, 100% code examination effort is needed to locate the
fault. Since the core of Branch is built on top of Ochiai [1], we have
iteratively replaced this core part of Branch by Tarantula, Jaccard, and SBI.
However, the fault-localization effectiveness results are still unsatisfactory
(100% code to be examined). In practice, the propagation of infected program
states may take a long way, such as a sequence of edges, before it may finally
result in failures. We need a means to transfer over the edges information
about infected program states and failures.

3.3 Our Fault-localization Model

3.3.1 Problem Settings

Let P be a faulty program, T = {t1, t2, …, tu} be a set of test cases associated
with passed executions, and T' = {t'1, t'2, …, t'v} be a set of test cases that are
associated with failed executions. In the motivating example, for instance, P is
version v2 of schedule, T = {t1, t2, t4, t5, t7}, and T' = {t3, t6}.

Chapter 3

26

Similar to existing work (such as [68]), the technique assesses the fault
suspiciousness of each statement of P and can also produce a list of statements
of P in descending order of the suspiciousness scores.

3.3.2 Preliminaries

We use G(P) = B, E to denote the control flow graph (CFG) [5][7] of the
program P, where B = {b1, b2, …, bn} is the set of basic blocks (blocks for
short) of P, and E = {e1, e2, …, em} is the set of control flow edges (edges for
short) of P, in which each edge ei goes from one block to another (possibly the
same block) in B. Thus, we sometimes write ei as edg(bi1, bi2) to denote an
edge going from bi1 to bi2; this edge ei is called the incoming edge of bi2 and
the outgoing edge of bi1. The block bi2 is a successor block of bi1, and the
block bi1 is a predecessor block of bi2. We further use the notation edg(*, bj)
and edg(bj, *) to represent the set of incoming edges and the set of outgoing
edges of bj, respectively. In Figure 3.1, for instance, edges e4 and e5 are the
outgoing edges of block b2, and block b3 is a successor block of b2 with
respect to edge e4; edg(b3, *) = {e6} is the set of outgoing edges of block
b3, and edg(*, b3) = {e4} is the set of incoming edges of block b3.

An edge is said to have been covered by a program execution if it is
traversed at least once. For every program execution of P, whether an edge is
covered in E can be represented by an edge profile. Suppose tk is a test case.
We denote the edge profile for tk by P(tk) = (e1, tk), (e2, tk), …, (em, tk), in
which (ei, tk) means whether the edge ei is covered in the corresponding
program execution of tk. In particular, (ei, tk) = 1 if ei is covered by the
execution, whereas (ei, tk) = 0 if ei is not covered. Take the motivating
example in Section 3.2 for illustration. The edge profile for test case t1 is
P(t1) = (e1, t1), (e2, t1), (e3, t1), (e4, t1), (e5, t1), (e6, t1)
= 1, 1, 0, 0, 1, 0.

3.3.3 Our Model -- CP

We introduce our fault-localization model in this section.
A program execution passing through an edge indicates that the related

program states have propagated via the edge. Therefore, we abstractly model a
program state in a program execution as whether the edge has been covered by
the program execution, and contrast the edge profiles in passed executions to
those of failed executions to Capture the suspicious Propagation of program
states abstractly. We name our model as CP.

Chapter 3

27

CP first uses equation (3.1) to calculate the mean edge profile for the
corresponding edge profiles of all passed executions, and another mean edge
profile for those of all failed executions. Such mean edge profiles represent the
central tendencies of the program states in the passed executions and failed
executions, respectively. CP contrasts the two mean edge profiles to assess the
suspiciousness of every edge. The formula to compute the suspiciousness
score is given in equation (3.2) and explained with the aid of equation (3.3).

During a program execution, a block may propagate program states to
adjacent blocks via edges connecting to that block. We then use equation (3.4)
to calculate the ratio of the propagation via each edge, and use such a ratio to
determine the fraction of the suspiciousness score of a block propagating to a
predecessor block via that edge. We use backward propagation to align with
the idea of backtracking from a failure to the root cause. For each block, CP
uses a linear algebraic equation to express its suspiciousness score by
summing up such fractions of suspiciousness scores of successor blocks of the
given block. Such an equation is constructed using equation (3.5) or (3.6),
depending on whether the block is a normal or exit block. By solving the set of
equations (by Gaussian elimination), we obtain the suspiciousness score for
each block involved.

As presented later, CP ranks all blocks in descending order of their
suspiciousness scores, then assigns a rank to each statement, and produces a
ranked list of statements by sorting them in descending order of their
suspiciousness scores.

Calculating the Edge Suspiciousness Score

In Section 3.2, we have shown that edges can provide useful correlation
information for failures. However, the size of T may be very different from
that of T'. To compare the sets of edge profiles for T with those for T', we
propose to compare their arithmetic means (that is, central tendencies).

If an edge is never traversed in any execution, it is irrelevant to the
observed failures. There is no need to compute the propagation of suspicious
program states through that edge. We thus exclude them from our calculation
model in Sections 3.3.1 and 3.3.2.

 In our model, we use the notation P√= √(e1), √(e2), …, √(em) to denote
the mean edge profile for T, and P× = ×(e1), ×(e2), …, ×(em) for T', where
√(ei) and ×(ei) for i = 1 to m are calculated by:

 ሺ݁௜ሻ ൌ
1
ݑ

෍ ሾθሺ݁௜, ௞ሻሿݐ
௧ೖ ்א

; ൈሺ݁௜ሻ ൌ
1
ݒ

෍ ሾθሺ݁௜, ᇱݐ
௞ሻሿ

௧ᇲ
ೖ ᇲ்א

. (3.1)

Chapter 3

28

Note that the variables u and v in equation (3.1) represent the total
numbers of passed and failure-causing test cases, respectively. Intuitively,
√(ei) and ×(ei) stand for the probabilities of an edge being exercised in a
passed execution and failed execution, respectively, over the given test set. For
example, ×(e4) = ((e4, t3) + (e4, t6)) / 2 = (1 + 0) / 2 = 0.5 and,
similarly, √(e4) = 0.

Edge Suspiciousness Calculation

We calculate the suspiciousness score of any given edge ei using the equation

∆ሺ݁௜ሻ ൌ
ൈሺ݁௜ሻ െ ሺ݁௜ሻ

ൈሺ݁௜ሻ ൅ ሺ݁௜ሻ
, (3.2)

which contrasts the difference between the two mean edge profiles. Intuitively,
θ∆(ei) models the (normalized) difference between the probability of ei being
traversed in an average passed execution and the probability of an average
failed execution. When θ∆(ei) is positive, it reflects that the probability of edge
ei being covered in P× is larger than that in P√. Since such an edge is more
frequently exercised in failed executions than in passed executions, it may be
more likely to be related to a fault. When θ∆(ei) = 0, the edge ei has identical
probabilities of being covered in P× and P√. Such an edge is deemed to be less
likely to be related to a fault than an edge having a positive suspiciousness
score. When θ∆(ei) is negative, it means that ei is less frequently executed in P×
than in P√.

In short, for an edge ei, the higher the values of θ∆(ei), the more suspicious
the edge ei is deemed to be, and the more suspicious the propagation of
program states via ei is deemed to be.

To understand why equation (3.2) is useful for ranking edges according to
their suspiciousness, let Prob(ei) denote the (unknown) probability that the
propagation of infected program states via ei will cause a failure. The best
estimation for this probability is given as

ሺ݁௜ሻܾ݋ݎܲ ൌ
ݒ ڄ ൈሺ݁௜ሻ

ݒ ڄ ൈሺ݁௜ሻ ൅ ݑ ڄ ሺ݁௜ሻ
. (3.3)

The proof is given as follows.

Proof 3.1:

Chapter 3

29

Let Prob(ei) be the probability that the propagation of infected program states
via ei causes a failure.

Let T = {t1, t2, …, tu} be a set of test cases associated with passed
executions, and T' = {t'1, t'2, …, t'v} be a set of test cases associated with failed
executions. Let (ei, tk) denote whether the edge ei is covered in the
corresponding program execution of tk. We would like to estimate the value of
Prob(ei) from the subsets T1 = {tk | θ(ei, tk) = 1}  T and T2 = {t’k | θ(ei, t’k) = 1}
 T’ because the executions in these two subsets correlates with the traversal
of ei. The expected number of failed executions in the sample set of T1  T2 is
Prob(ei) × |T1  T2|. This estimate is unbiased.

To maximize the value of Prob(ei), we set the expected number of failed
executions in the sample set to be equal to the actual number of failed
executions. That is, we set Prob(ei) × |T1  T2| = |T1|. We then solve for
Prob(ei) and obtain equation (3.3). The details of the proof are straightforward.
 

Moreover, no matter whether equation (3.2) or (3.3) is chosen to estimate
the fault relevance of edges, sorting edges in descending order of the results
always generates the same edge sequence (except tie cases). In other words,
we can also determine the order of the suspiciousness of the edges through
equation (3.3), or determine the probability that an edge causes a failure by
using equation (3.2). The proof is given as follows.

Proof 3.2:

We need an auxiliary function for the proof. We define a sign function such
that sgn[x] = −1 if x < 0, sgn[x] = 0 if x = 0, and sgn[x] = 1 if x > 0.

Suppose ei and ej are two edges in E satisfying the conditions (i) ×(ei)  0
 √(ei)  0 and (ii) ×(ej)  0  √(ej)  0. We make use of the sign function to
express their relative ranking order with respect to equation (3.3) as
ሺ݁௜ሻܾ݋ݎܲൣܖ܏ܛ െ ൫ܾ݋ݎܲ ௝݁൯൧. Similarly, we express their relative ranking order
with respect to equation (3.2) as ൣܖ܏ܛθ୼ሺ݁௜ሻ െ θ୼൫ ௝݁൯൧.

Case 1 (×(ei) = 0). By equation (3.3), ܾܲ݋ݎሺ݁௜ሻ = 0. Also by equation

൫ܾ݋ݎܲ ,(3.3) ௝݁൯ =
௩ൈ൫௘ೕ൯

௩ൈ൫௘ೕ൯ା௨൫௘ೕ൯
൒ 0. Hence, ܾ݋ݎܲൣܖ܏ܛሺ݁௜ሻ െ ൫ܾ݋ݎܲ ௝݁൯൧ ൌ

െൣܖ܏ܛൈ൫ ௝݁൯൧. Similarly, by equation (3.2), ൣܖ܏ܛθ୼ሺ݁௜ሻ െ θ୼൫ ௝݁൯൧ ൌ
െൣܖ܏ܛൈ൫ ௝݁൯൧. Thus, ܾ݋ݎܲൣܖ܏ܛሺ݁௜ሻ െ ൫ܾ݋ݎܲ ௝݁൯൧ ൌ θ୼ሺ݁௜ሻൣܖ܏ܛ െ θ୼൫ ௝݁൯൧.

Case 2 (√(ei) = 0). Similarly to the proof of case 1, we have
ሺ݁௜ሻܾ݋ݎܲൣܖ܏ܛ െ ൫ܾ݋ݎܲ ௝݁൯൧ ൌ θ୼ሺ݁௜ሻൣܖ܏ܛ െ θ୼൫ ௝݁൯൧.

Chapter 3

30

Case 3 (×(ei) ≠ 0  √(ei)  0  (×(ej = 0) or √(ej) = 0)). Similarly to
case (1), ܾ݋ݎܲൣܖ܏ܛሺ݁௜ሻ െ ൫ܾ݋ݎܲ ௝݁൯൧ ൌ θ୼ሺ݁௜ሻൣܖ܏ܛ െ θ୼൫ ௝݁൯൧.

Case 4 (×(ei)  0  √(ei)  0  ×(ej)  0  √(ej)  0). We first discuss

the value of ܖ܏ܛ ቈ
ൈሺ௘೔ሻ

ሺ௘೔ሻ
െ

ൈ൫௘ೕ൯

൫௘ೕ൯
቉. Since none of ×(ei), √(ei), ×(ej), and √(ej)

is 0, each of them should be a positive number. Suppose a, b, and c are any
positive numbers, and d is any number. We have

ܖ܏ܛ ቈ
ൈሺ௘೔ሻ

ሺ௘೔ሻ
െ

ൈ൫௘ೕ൯

൫௘ೕ൯
቉ ൌ െܖ܏ܛ ቈ

ሺ௘೔ሻ

ൈሺ௘೔ሻ
െ

൫௘ೕ൯

ൈ൫௘ೕ൯
቉ ൌ െܖ܏ܛ ቈܾ ሺ௘೔ሻ

ൈሺ௘೔ሻ
൅ ܽ െ

ܾ
൫௘ೕ൯

ൈ൫௘ೕ൯
െ ܽ൨ ൌ െܖ܏ܛ ቈ

௔ൈሺ௘೔ሻା௕ሺ௘೔ሻ

ൈሺ௘೔ሻ
െ

௔ൈ൫௘ೕ൯ା௕൫௘ೕ൯

ൈ൫௘ೕ൯
቉ ൌ

ܖ܏ܛ ቈ
ൈሺ௘೔ሻ

௔ൈሺ௘೔ሻା௕ሺ௘೔ሻ
െ

ൈ൫௘ೕ൯

௔ൈ൫௘ೕ൯ା௕൫௘ೕ൯
቉ ൌ ܖ܏ܛ ቈܿ ൈሺ௘೔ሻ

௔ൈሺ௘೔ሻା௕ሺ௘೔ሻ
െ ݀ െ

ܿ
ൈ൫௘ೕ൯

௔ൈ൫௘ೕ൯ାୠ൫௘ೕ൯
൅ ݀൨ ൌ

ܖ܏ܛ ቎
௖ൈሺ௘೔ሻିௗቆ௔ൈሺ௘೔ሻା௕ሺ௘೔ሻቇ

௔ൈሺ௘೔ሻା௕ሺ௘೔ሻ
െ

௖ൈ൫௘ೕ൯ିௗቆ௔ൈ൫௘ೕ൯ା௕൫௘ೕ൯ቇ

௔ൈ൫௘ೕ൯ା௕൫௘ೕ൯
቏.

By setting a = u, b = v, c = u, and d = 0, we have ܖ܏ܛ ቈ
ൈሺ௘೔ሻ

ሺ௘೔ሻ
െ

ൈ൫௘ೕ൯

൫௘ೕ൯
቉ ൌ

ሺ݁௜ሻܾ݋ݎܲൣܖ܏ܛ െ ൫ܾ݋ݎܲ ௝݁൯൧. Similarly, by setting a = 1, b = 1, c = 2, and d = 1,

we have ܖ܏ܛ ቈ
ൈሺ௘೔ሻ

ሺ௘೔ሻ
െ

ൈ൫௘ೕ൯

൫௘ೕ൯
቉ ൌ θ୼ሺ݁௜ሻൣܖ܏ܛ െ θ୼൫ ௝݁൯൧. Hence, we obtain

ሺ݁௜ሻܾ݋ݎܲൣܖ܏ܛ െ ൫ܾ݋ݎܲ ௝݁൯൧ ൌ θ୼ሺ݁௜ሻൣܖ܏ܛ െ θ୼൫ ௝݁൯൧.
Hence, the relative ranking order of any two edges computed by equation

(3.2) is the same as that computed by equation (3.3). 

We will adopt equation (3.2) rather than equation (3.3) because the value

range of equation (3.2), which is from −1 to 1 and symmetric with respect to 0,
favors follow-up computation. For example, equation (3.3) always generates
positive values. However, summing up positive operands always generates an
operation result that is greater than each operand, and hence there may not be
a solution for the constructed equation set.

On the other hand, by adopting equation (3.2), the calculated “probability”
may have positive, negative, or zero values. Here, the absolute value of such a
calculated “probability” value has no intuitive physical meaning of probability.
In fact, we only reference these values to determine the relative order of two
statements being related to faults.

Chapter 3

31

Take the motivating example as an illustration. Prob(e1) = (2 ൈ 1.00) / (2
ൈ 1.00 + 5 ൈ 1.00) = 0.29. Similarly, Prob(e2) = 0.50, Prob(e3) = 0.00,
Prob(e4) = 1.00, Prob(e5) = 0.33, and Prob(e6) = 1.00. Furthermore, θ∆(e1)
= (1.00 – 1.00) / (1.00 + 1.00) = 0.00. Similarly, θ∆(e2) = 0.43, θ∆(e3) =
−1.00, θ∆(e4) = 1.00, θ∆(e5) = 0.11, and θ∆(e6) = 1.00. By sorting e1 to e6
in descending order of their values using equation (3.2), we obtain {e4, e6},
e2, e5, e1, e3, where e4 and e6 form a tie case. Based on the two most
suspicious edges (e4 and e6), we can focus our attention to trace from b2 to
b3 via e4, and then to b4 via e6. However, one still does not know how to
rank the fault suspiciousness of the blocks (other than examining all three
blocks at the same time). In the next section, we will show how we use the
concept of propagation to determine the suspiciousness score of each block.

Solving Block Suspiciousness Score

By contrasting the mean edge profiles of the passed executions and the failed
executions, we have computed the suspiciousness of edges in the last section.
In this section, we further associate edges with blocks, and assess fault
suspiciousness score of every block. To ease our reference, we use the
notation BR(bj) to represent the suspiciousness score of a block bj.

Let us first discuss how a program execution transits from one block to
another. After executing a block bj, the execution may transfer control to one
of its successor blocks. Suppose bk is a successor block of bj. The program
states of bj may be propagated to bk via the edge edg(bj, bk). Rather than
expensively tracking the dynamic program state propagation from bj to bk, we
approximate the expected number of infected program states of bj observed at
bk as the fraction of the suspiciousness score of bj from that of bk. This strategy
aligns with our expectation that we only want to observe failures from control
flow information (e.g., edge frequencies) rather than data-flow information
(e.g., variable values).

Constructing an Equation Set

To determine the fraction mentioned above, we compute the sum of
suspiciousness scores of the incoming edges of bk, and compute the ratio of
propagation via the edge edg(bj, bk) as the ratio of the suspiciousness score of
this particular edg(bj, bk) over the total suspiciousness score for all edges. The
formula to determine this ratio is as follows. In this equation, if the result of
the denominator happens to be zero, we use the result of the numerator as the
result of the right part.

Chapter 3

32

ܹ൫ ௝ܾ, ܾ௞൯ ൌ
θ∆൫edgሺ ௝ܾ, ܾ௞ሻ൯

෍ ൣθ∆ሺedgሺכ, ܾ௞ሻሻ൧
׊ ୣୢ୥ሺכ,௕ೖሻ

(3.4)

W(bj, bk) models the portion of the contribution of edg(bj, bk) with respect to
the total contribution by all incoming edges of bk. Intuitively, it represents the
ratio of the observed suspicious program states at bk that may be prorogated
from bj.

The fraction of the suspiciousness score that bk contributes to bj is,
therefore, the product of this ratio and the suspiciousness score of bk (that is,
BR(bk) × W(bj, bk)).

In general, a block bj may have any number of successor blocks. Hence,
we sum up such a fraction from every successor block of bj to give BR(bj), the
suspiciousness score of bj, thus:

൫ܴܤ ௝ܾ൯ ൌ ෍ ሺܾ௞ሻܴܤൣ ڄ ܹሺ ௝ܾ, ܾ௞ሻ൧
୥ሺ௕ೕ,௕ೖሻୢୣ ׊

 (3.5)

Let us take the motivating example for illustration: b2 has two outgoing
edges connecting to two successor blocks b3 and b4, respectively. Its
suspiciousness score BR(b2) is, therefore, calculated as BR(b3) · W(b2, b3) +
BR(b4) · W(b2, b4). The propagation rate W(b2, b4) is calculated as (b2, b4)
= θ∆(e5) / (θ∆(e3) + θ∆(e5) + θ∆(e6)) = 0.11 / (−1.00 + 0.11 + 1.00) = 1. The
propagation rate W(b2, b3) is calculated as θ∆(e4) / θ∆(e4) = 1.00 / 1.00 = 1.

Handling Exception Cases

We normally calculate the suspiciousness score of a block via its successor
blocks. Let us consider an exception case where a block may have no
successor. For a block containing, say, a return, break, or exit() function call,
or for a block that crashes, the program execution may leave the block, or
cease any further branch transitions after executing the block. In our model, if
a block is found not to transit the control to other successor blocks in the same
CFG (as in the case of a return statement or callback function), we call it an
exit block. Since exit blocks have no successor block, we do not apply
equation (3.5) to calculate its suspiciousness score. Instead, we use the
equation

Chapter 3

33

൫ܴܤ ௝ܾ൯ ൌ ෍ ൣθ∆൫edgሺכ, ௝ܾሻ൯൧
׊ ୣୢ୥ሺכ,௕ೕሻ

, (3.6)

which sums the suspiciousness scores of all the incoming edges to calculate
the suspiciousness score of the exit block. Consider the motivating example
again. There is no successor for b4 in the CFG in Figure 3.1. Hence, BR(b4) =
θ∆(e3) + θ∆(e5) + θ∆(e6) = −1.00 + 0.11 + 1.00 = 0.11. (We should add that
there are alternative ways to model the suspiciousness score for an exit block,
such as using the formulas for block-level statistical fault-localization
techniques.)

We have constructed an equation of BR(bj) for every block bj (including
exit blocks). In other words, we have set up an equation set containing n
homogenous equations (one for each block) and n variables as the left-hand
side of each equation (one for each suspiciousness score of that block). In such
a case, the equation set satisfies a necessary condition of being solvable by
existing efficient algorithms for solving equation sets (such as Gaussian elimi-
nation [125], which we also adopt in the experiment in Section 3.4). In the
motivating example, we can set up an equation set {BR(b4) = 0.11, BR(b3) =
9 × BR(b4), BR(b2) = BR(b4) + BR(b3), BR(b1) = −9 × BR(b4) + BR(b2)}.
We can solve it to give BR(b4) = 0.11, BR(b3) = 1.00, BR(b2) = 1.11, and
BR(b1) = 0.11.

An exception is the case of self-looping block without leaving edge, which
may make the equation set inconsistent. Such a case maps to the endless loop
in program executions. If an equation set comes with inconsistent equations,
we use linear least square approach to find a least square solution [125] for the
inconsistent equation set.

Synthesizing a Ranked List of Statements

After obtaining the suspiciousness score for every block, we further group
those statements not in any block (such as global assignment statements) into a
new block, and give it a lower suspiciousness score than that of any other
ranked block. We also merge those blocks having identical suspiciousness
scores, and produce a ranked list of blocks in descending order of their suspi-
ciousness scores. All the non-executable statements and statements that are not
exercised by any given executions are consolidated into one block, which is
appended to the end of the ranked list and given the lowest suspiciousness
score. Finally, one may assign ranks for statements. Following previous work
[68], the rank of a statement is assigned as the sum of total number of

Chapter 3

34

statements in its belonging block and the total number of statements in the
blocks prior to its belonging block. The CP column of Figure 3.1 shows the
ranks of statements by our method, which only needs 44% code examination
effort to locate a fault.

Complexity

The space and time complexity of our technique is analyzed as follows.
With the same problem settings (u passed executions, v failed executions, n
blocks, and m edges), the space complexity is mainly determined by the space
needed to maintain the mean edge profiles for the passed executions and the
failed executions, and the suspiciousness scores for edges, which are O(um),
O(vm), and O(m), respectively. Therefore the space complexity of our tech-
nique is O(um + vm). The time complexity is determined by the time used to
solve the set of equations. Since Gaussian elimination is adopted, the time
complexity of our technique will be O(n3).

3.4 Experimental Evaluation

3.4.1 Subject Programs

We use four UNIX programs, namely, flex, grep, gzip, and sed, as subject
programs. They are real-life medium-sized programs, and have been adopted
to evaluate other techniques (as in [64][106][115]). We downloaded the
programs (including all versions and associated test suites) from SIR [40] on
January 10, 2008. Each subject program has multiple (sequentially labeled)
versions. Table 3.1 shows the real-life program versions, numbers of lines of
statements (LOC), numbers of applicable faulty versions, and the sizes of the
test pools. Take the program flex as an example. The real-life versions include
flex-2.4.7 to flex-2.5.4, and have 8571 to 10124 lines of statements. 21 single-
fault versions are used in the experiment. All these faulty versions share a test

Table 3.1: Statistics of Subject programs

Real-life
versions

Program
description

LOC
No. of single-
fault versions

No. of test
cases

flex 2.4.7–2.5.4 lexical parser 857110124 21 567
grep 2.2–2.4.2 text processor 80539089 17 809
gzip 1.1.2–1.3 compressor 40815159 55 217
sed 1.18–3.02 text processor 47569289 17 370

Chapter 3

35

suite that consists of 567 test cases. Following [52], we apply the whole test
suite as inputs to individual programs.

3.4.2 Peer Techniques

In our experiment, we select five representative peer techniques to compare
with our technique. Tarantula [70] and Jaccard [1] are two statement-level
techniques. They are often chosen as alternatives for comparison in other
evaluations of fault-localization techniques. CBI [75] and SOBER [77] are
predicate-level techniques. Since they make use of predicates (such as branch
decisions) to locate suspicious program positions, which are related to the
edge concept in our technique, we decide to compare these techniques with
ours. Note that CBI originally proposed to use random sampling to collect
predicate statistics to reduce overhead. In our evaluation on CBI, we sample
all the predicates (as in [77]) via gcov. In Yu et al.’s work [112], CBI is
modified to become a statement-level technique (SBI [112]), and we also
include SBI for comparison with our technique. Note that a tie-breaking
strategy is included in Tarantula as stated in [112]. CP uses no tie-breaking
strategy in our experiment.

3.4.3 Experimental Setup

Following the documentation of SIR [40] and previous experiments
[52][68][75][76], we exclude any single-fault version whose faults cannot be
revealed by any test case. This is because both our technique and the peer
techniques used in the experiment [1][75][76][77] require the existence of
failed executions. Moreover, we also exclude any single-fault version that fails
for more than 20% of the test cases [40][52]. Besides, as Jones et al. have done
in [68], we exclude those faulty versions that are not supported by our
experimental environment and instrumentation tool (we use the Sun Studio
C++ compiler and gcov to collect edge profile information on program
versions). All the remaining 110 single-fault versions are used in the
controlled experiment (see Table 3.1).

3.4.4 Effectiveness Metrics

Each of Tarantula, SBI, Jaccard, and CP produces a ranked list of all
statements. For every technique, we check all the statements in ascending
order of their ranks in the ordered list, until a faulty statement is found. The
percentage of statements examined (with respect to all statements) is returned
as the effectiveness of that technique. This metric is also used in previous

Chapter 3

36

studies [64][112]. We note also that statements having the same rank are
examined as a group.

CBI and SOBER generate ranked lists of predicates. To the best of our
knowledge, the metric T-score [90] is used to evaluate their effectiveness in
previous studies [76][77]. T-score uses a program dependence graph to
calculate the distance among statements. Starting from some top elements in a
ranked list of predicates, T-score conducts breadth-first search among the
statements to locate a fault. The search terminates when it encounters any
faulty statement, and the percentage of statements examined (with respect to
all statements) is returned as the effectiveness of that technique [90]. Since it
is reported in [76] that the “top-5 T-score” strategy gives the highest
performance for CBI and SOBER, we follow suit to choose the top-5
predicates and report the top-5 T-score results as their effectiveness in our
experiment.

If a fault is in a non-executable statement (such as the case of a code
omission fault), dynamic execution information cannot help locate the fault
directly. To reflect the effectiveness of a technique, we follow previous studies
(such as [64]) to mark the directly infected statement or an adjacent
executable statement as the fault position, and apply the above metrics.

3.4.5 Experiment Environment and Issues

The experiment is carried out in a Dell PowerEdge 1950 server (4-core Xeon
5355 2.66GHz processors, 8GB physical memory, and 400GB hard disk)
serving a Solaris UNIX with the kernel version Generic_120012-14. Our
framework is compiled using Sun C++ 5.8.

When applying our technique, an exceptional case is that the denominator
in equation (3.4) may be zero. For every occurrence of a zero denominator in
the experiment, the tool automatically replaces it by a small constant. 10−10 is
chosen as the constant, which is less than any intermediate computing result
by many degrees of magnitude. We have varied this constant from to 10−11 to
10−9 and compared the effectiveness results of CP, and confirmed that the
results are the same.

In the experiment, the time needed to generate a ranked list for one faulty
version is always less than 1 second. The mean time spent for one faulty
version is about 0.455 seconds.

3.4.6 Results and Analysis

In this section, we compare our technique with Tarantula, SBI, Jaccard, CBI,
and SOBER, and report their effectiveness on the 110 single-fault program

Chapter 3

37

versions. In the following subsections, the data related to “Tarantula”, “SBI”,
“Jaccard”, “CBI”, and “SOBER” are worked out using the techniques
described in the papers [112], [112], [35], [1], and [76], respectively. The data
related to “CP” are worked out using our technique. For every plot in Figure
3.2 and Figure 3.3, we use the same set of x-axis labels and legends.

(a) overall results in full range of [0%, 100%]

(b) overall results in zoom-in range of [0%, 20%]

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

%
 o

f
fa

u
lt

 lo
ca

te
d

% of code examined

CP

Tarantula

SBI

Jaccard

CBI

SOBER

0%

20%

40%

60%

80%

100%

0% 5% 10% 15% 20%

%
 o

f
fa

u
lt

 lo
ca

te
d

% of code examined

CP

Tarantula

SBI

Jaccard

CBI

SOBER

Chapter 3

38

Overall Results

To evaluate the overall effectiveness of a technique, we first take the average
of the effectiveness results on the four subject programs. The results are
shown in Figure 3.2. In the plot in Figure 3.2(a), the x-axis means the
percentage of code that needs to be examined in order to locate the fault
(according to the effectiveness metrics). We also refer to it as the code
examination effort in this thesis. The y-axis means the mean percentage of
faults located. Take the curve for CP in Figure 3.2(a) for illustration. On
average, CP can locate 48.24% of all faults by examining up to 5% of the code
in each faulty version. The curves of Tarantula, Jaccard, CBI, SBI, and
SOBER can be interpreted similarly. Note that the effectiveness of Tarantula,
SBI, and Jaccard are very close, and hence their curves in Figure 3.2 and
Figure 3.3 almost completely overlap.

Figure 3.2(a) gives the overall effectiveness of CP, Tarantula, SBI,
Jaccard, CBI, and SOBER. Each of the six curves starts at the point (0%, 0%)
and finally reaches the point (100%, 100%). Obviously, it reflects the fact that
no fault can be located when examining 0% of the code, while all the faults
can be located when examining 100%. We observe from the figure that CP
can locate more faults than CBI and SOBER in the range from 1% to 99% of

(c) weighted overall results in range of [0%, 20%]
Figure 3.2: Overall effectiveness comparison

0%

20%

40%

60%

80%

100%

0% 5% 10% 15% 20%

w
ei

gh
te

d
 %

 o
f

fa
u

lt
 lo

ca
te

d

% of code examined

CP

Tarantula

SBI

Jaccard

CBI

SOBER

Chapter 3

39

the code affordable to be examined. Moreover, the figure also shows that CP
can locate more faults than Tarantula, SBI, and Jaccard almost in the entire
range of the first one third (from 2% to 33%) of the code examination effort.

When comparing the mean effectiveness, although one cannot
meaningfully conclude the results from outliner segments (such as those data
points beyond three standard deviations), previous studies such as [76] once
reported the results on the first 20% code examination range. Therefore, we
further zoom in (to the range of [0%, 20%]) as shown in Figure 3.2(b).

The figure shows that, if only 1% of the code is affordable to be examined,
Tarantula, SBI, and Jaccard can locate 31.99% of all faults, CP can locate
24.50%, CBI can locate 8.54%, while SOBER cannot locate any fault. If 2% of
the code is affordable to be examined, encouragingly, CP not only catches up
with Tarantula, SBI, and Jaccard, but also exceeds them a lot. For example,
CP, Tarantula, SBI, Jaccard, CBI, and SOBER locate 41.55%, 33.18%,
32.45%, 32.90%, 11.48%, and 0.00% of the faults in all faulty versions,
respectively. In the remaining range (from 2% to 20%) in Figure 3.2(b), CP
always locates more faults than the peer techniques. For example, when
examining 8%, 9%, and 10% of the code, CP locates 55.31%, 57.86%, and
57.86% of the faults, respectively; Tarantula locates 38.75%, 40.67%, and
42.03% of the faults; SBI locates 38.75%, 40.67%, and 42.49%; and Jaccard
locates 38.46%, 40.39%, and 41.75%. In summary, by examining up to 20%
of the code, CP can be more effective than the peer techniques.

In previous studies, a weighted average method has also been used [35].
For example, Chilimbi et al. [35] uses the total number of faults located in all
programs as the y-axis (in the sense of Figure 3.2(b)), rather than the average
percentage of faults located. To enable reader to compare previously published
results with ours, we follow [35] to present such a plot as Figure 3.2(c). From
this figure, we observe that if 2% to 16% of the code is examined, CP
performs better than the other five techniques. However, Tarantula, SBI, and
Jaccard catch up with CP gradually. The range (21% to 99%) is not shown in
this, and yet we do observe that the effectiveness of CP, Tarantula, SBI, and
Jaccard are very similar. More detailed statistical comparisons can be found in
later sections.

Overall, the experiment shows that CP can be effective. At the same time,
it also shows that CP can be further improved.

Results on Individual Subject Programs

Chapter 3

40

(a) flex

(b) grep

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

%
 o

f
fa

u
lt

s
lo

ca
te

d

% of code examined

CP (our paper)

Tarantula [23]

SBI [23]

Jaccard [1]

CBI [17]

SOBER [18]

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

%
 o

f
fa

u
lt

s
lo

ca
te

d

% of code examined

CP (our paper)

Tarantula [23]

SBI [23]

Jaccard [1]

CBI [17]

SOBER [18]

Chapter 3

41

(c) gzip

(d) sed

Figure 3.3: Effectiveness on individual programs.

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

%
 o

f
fa

u
lt

 lo
ca

te
d

% of code examined

CP (our paper)

Tarantula [23]

SBI [23]

Jaccard [1]

CBI [17]

SOBER [18]

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

%
 o

f
fa

u
lt

 lo
ca

te
d

% of code examined

CP

Tarantula

SBI

Jaccard

CBI

SOBER

Chapter 3

42

We further compare the effectiveness of CP against the peer techniques on
each subject program. Figure 3.3 shows the corresponding results on the
programs flex, grep, gzip, and sed, respectively. Take the curve for SBI in
Figure 3.3(a) for illustration. Like Figure 3.2(a), the x-axis means the
percentage of code examined, and the y-axis means the percentage of faults
located by SBI within the given code examination effort (specified by the
respective value on the x-axis). The curves for CP, Tarantula, Jaccard, CBI,
and SOBER can be interpreted similarly.

The four plots in Figure 3.3 give the overall effectiveness of CP, Tarantula,
SBI, Jaccard, CBI, and SOBER on each subject program. If 5% of the code has
been examined, CP can locate faults in 47.61%, 52.94%, 21.81%, and 70.58%
of the faulty versions of the programs flex, grep, gzip, and sed, respectively.
On the other hand, Tarantula can locate 52.38%, 0.00%, 18.18%, and 70.58%
of the faults, respectively; SBI can locate 52.38%, 0.00%, 20.00%, and
70.58%; Jaccard can locate 52.38%, 0.00%, 21.81%, and 70.58%; CBI can
locate 9.52%, 29.41%, 0.00%, and 35.29%; and SOBER can locate 0.00%,
5.88%, 0.00%, and 0.00%. The other points on the curves can be interpreted
similarly.

Similarly, let us discuss the first 20% of the code examination range. For
flex and gzip, we observe that CP performs better than CBI or SOBER, and
performs comparably with Tarantula, SBI and Jaccard. For grep and sed, CP
locates more faults than Tarantula, SBI, Jaccard, CBI, and SOBER within the
first 20% code examination range. In summary, CP performs outstandingly in
this range.

Statistics Analysis on Individual Faulty Versions

In this section, we further use popular statistics metrics to compare different
techniques. Table 3.2 lists out the minimum (min), maximum (max), median,
mean, and standard derivation (stdev) of the effectiveness of these techniques,
on the 110 single-fault versions. The effectiveness of each technique is
evaluated using the same metric as in the previous section; therefore, the

Table 3.2: Statistics of effectiveness

 CP Tarantula SBI Jaccard CBI SOBER

min 0.01% 0.01% 0.01% 0.01% 0.26% 2.97%
max 93.55% 97.50% 97.50% 97.50% 100.00% 100.00%

median 11.67% 12.86% 12.48% 12.48% 40.74% 42.84%
mean 17.98% 19.63% 19.74% 19.26% 40.55% 42.96%
stdev 20.92% 22.47% 22.63% 22.39% 27.89% 23.98%

Chapter 3

43

smaller the magnitude, the better is the effectiveness. We observe that in each
row, CP gives the best (smallest) value among the six techniques, which
further strengthens our belief that CP can be effective on locating faults.

To further find the relative merits on individual versions, we compute the
difference in effectiveness between CP and each peer technique, and the
results are shown in Table 3.3. Take the cell in column “CP−Tarantula” and
row “< −5%” as an example It shows that, for 42 (38.18%) of the 110 faulty
versions, the code examination effort of using CP to locate a fault is less than
that of Tarantula by more than 5%. Similarly, for the row “> 5%”, only 27
(24.54%) of the 110 versions, the code examination effort of CP is greater
than that of Tarantula by more than 5%. For 41 (37.27%) of the faulty
versions, the effectiveness between CP and Tarantula cannot be distinguished
at the 5% significance level.

We therefore deem that, at the 5% significance level, the probability of CP
performing better than Tarantula on these subject programs is higher than that
of Tarantula performing better than CP. We further vary the significance level
from 5% to 1% and 10% to produce the complete table. The experimental
result shows that the probability of CP performing better than its peer
technique is consistently higher than that for the other way round.

Discussions of Multi-fault Programs

In this section, we use a real-life multi-fault program to validate the
effectiveness of CP. Our objective here is to study CP rather than comparing
CP with peer techniques.

Version v3 of flex has the largest number of feasible faults (9 in total) and
flex is the largest subject program in the entire experiment. Therefore, we
enable all the nine faults of this version to simulate a 9-fault program. Part of
the code excerpt is shown in Figure 3.4. After enabling all nine feasible faults,

Table 3.3: Statistics of differences in effectiveness

Difference (percentage difference)

CP−Tarantula CP−SBI CP−Jaccard CP−CBI CP−SOBER
 < −1% 47 (42.72%) 48 (43.63%) 46 (41.81%) 86 (78.18%) 95 (86.36%)

−1% to 1% 19 (17.27%) 18 (16.36%) 19 (17.27%) 6 (5.45%) 2 (1.81%)
> 1% 44 (40.00%) 44 (40.00%) 45 (40.90%) 18 (16.36%) 13 (11.81%)

 < −5% 42 (38.18%) 41 (37.27%) 40 (36.36%) 80 (72.72%) 91 (82.72%)
−5% to 5% 41 (37.27%) 43 (39.09%) 42 (38.18%) 16 (14.54%) 7 (6.36%)

> 5% 27 (24.54%) 26 (23.63%) 28 (25.45%) 14 (12.72%) 12 (10.90%)
 < −10% 31 (28.18%) 31 (28.18%) 30 (27.27%) 71 (64.54%) 82 (74.54%)

−10% to 10% 60 (54.54%) 60 (54.54%) 60 (54.54%) 28 (25.45%) 18 (16.36%)
> 10% 19 (17.27%) 19 (17.27%) 20 (18.18%) 11 (10.00%) 10 (9.09%)

Chapter 3

44

we execute the test pool in the 9-fault program. It results in 136 failed
executions and 431 passed executions.

We apply CP to this 9-fault program, and locate the first fault in line 3369
after examining 0.11% of the code. This fault is on an incorrect logical
operator. By analyzing the faulty Boolean expression, we find that the fault is
enabled only if the decision of the Boolean expression is true. As such, this
edge (namely, the true decision made in line 3369) rightly reveals failures due
to the fault, and CP locates this fault effectively. We simulate the fixing of this
fault by reverting the statement to the original version. We rerun all the test
cases, and find that failed executions have been reduced to 123. We re-apply
CP and locate the second fault in line 620 after examining 1.21% of the code.
The fault is an incorrect assignment of the variable yy_chk. In this version, the
first statement that uses the variable yy_chk is in line 985; it is the root cause
of failures. We manually examine the corresponding CFG between the block
(dubbed ba) containing the statement in line 620 and the block (dubbed bb)
containing the statement in line 985. There are many blocks and edges. We
observe that, since none of them uses or redefines yy_chk, the infected
program state of ba has successfully been propagated to bb along the edges.
Finally, even though the statement that outputs the failure is far away from the
fault position, CP successfully locates the fault. According to previous studies
[47], both of these two faults frequently occur in C programs. CP seems to be
effective in locating certain popular faults, although more experiments are
required to confirm this conjecture.

For space reason, we do not describe the remaining faults in detail. The
next six faults are located in lines 1030, 1361, 1549, 3398, 2835, and 11058,
respectively. The code examination efforts for locating them are 1.12%, 8.50%,
7.25%, 21.19%, 13.82%, and 88.2%, respectively. The last fault, which results
in 6 failures among 567 test cases, is found in line 12193. It is an incorrect

620

985

3369

11825

12193

do_yywrap = …; // Fault F_AA_4
…
if (! do_yywrap)
…
if ((need_backing_up && ! nultrans) …) // Fault F_AA_3
…
static yyconst short int yy_chk[2775] = { …
 836, 836, 599, … // Fault F_AA_2 …
}
…
while (yy_chk […] != …)

Figure 3.4: Excerpts from multi-fault program.

Chapter 3

45

static variable definition. Since this fault is seeded in a global definition
statement and the compiler tool gcov fails to log its execution, we mark its
directly affected statement (say, line 12193) as the fault position. However,
CP needs to examine 93.55% of the code to locate this fault. We scrutinize the
case and find it to be a coincidence. For 7 out of 567 test cases that do not
reveal failures, this branch statement is never covered. For the 6 test cases that
reveal failures and the remaining 560 passed test cases, both the true branch
and the false branch are covered. For more than 90% of the cases, the number
of times that each branch is covered is very close to each other (with less than
5% difference). It is hard for CP to distinguish these two edges. We view that
this practical scenario provides a hint for further improving CP, even though
the current experiment shows that CP is promising.

3.4.7 Threats to Validity

Construct Validity

We used gcov to implement our tool in which coverage profiling is completely
conducted. The generation of the equation set by the tool is relatively
straightforward. The equations are solved using a standard Gaussian
elimination implementation. We have implemented the peer techniques
ourselves and checked that the implemented algorithms adhere strictly to those
published in the literature. We have also conducted trial runs on toy programs
with limited test cases to assure the implementations of CP and other peer
techniques.

Internal Validity

Currently, we follow [76][77] to use T-score when evaluating CBI and
SOBER. Some researchers have reported limitations in T-score (see [36], for
example). A P-score has been proposed in [119] and may be considered for
future studies.

CP, Tarantula, SBI, and Jaccard produce ranked lists of statements, while
CBI and SOBER generate ranked list of predicates. Consequently, the
experiment has used two effectiveness metrics to report the results of different
techniques. It is unsuitable to compare CP on a par with CBI and SOBER. In
this connection, the comparison and the discussion of CP in relation to CBI
and SOBER should be interpreted carefully.

Chapter 3

46

External Validity

We use flex, grep, gzip, and sed as well as their associated test suites to
evaluate our technique. These programs are real-life programs with realistic
sizes, and they have been used in previous studies [64][106][115]. It is
certainly desirable to evaluate CP further on other real-life subject programs
and scenarios.

3.5 Summary

Existing coverage-based fault-localization approaches use the statistics of test
case executions to serve this purpose. They focus on individual program
entities, generate a ranked list of their suspiciousness, but ignore the structural
relationships among statements. Furthermore, an infected program state
triggered by a fault may propagate a long way before it finally causes a failure.
Previous techniques, which find program elements whose execution strongly
correlates to failure, are not effective to locate this kind of fault.

In this chapter, we have assessed the suspiciousness scores of edges, and
set up a set of linear algebraic equations over the suspiciousness scores of
basic blocks and statements, which abstractly models the propagation of
suspicious program states through control flow edges in a back-tracking
manner. Such equation sets is efficiently solved by standard mathematical
techniques such as Gaussian elimination and least square method. The
empirical results on comparing existing techniques with ours showed that our
technique can be effective.

The main contribution of this chapter is twofold. (i) To the best of our
knowledge, the work is the first that integrates the propagation of program
states to statistical fault-localization techniques. (ii) We conduct the first study
that use four real-life medium-sized programs flex, grep, gzip, and sed to
sufficiently evaluate five representative techniques, namely Tarantula, SBI,
Jaccard, CBI, and SOBER. The empirical results show our method promising.

On the other hand, our work highlights the problem of propagation of
infected program states among control flow graph. Intuitively, the long-way
propagation of infected program states may increase the difficulty of software
debugging. Enhancing the program structure to shorten the potential
propagation trace of infected program states may be a suggestion to future
programming. However, limited by our knowledge, there is no research thread
or related publication in current software debugging researches.

Chapter 4

DES: Statistical Fault-localization

Technique at the Level of

Evaluation Sequence

In the previous chapter, our experiment studies show that our technique CP is ef-

fective. At the same time, we notice that the effectiveness of previous represen-

tative techniques (e.g., CBI and SOBER) are not as effective as other statement-

level techniques. Therefore, we look into the details of those techniques and

make improvements on them.

In this chapter, we first introduce predicate-level fault-localization techniques

and our observation of the impact of short-circuit rule on predicate-level fault-

localization techniques. After that, we use a motivating example to show how

we make use of the evaluation sequence information to perform fault localiza-

tion at evaluation sequence level. After that, we propose research questions to

validate our idea and conduct controlled experiment to answer them.

This chapter is based on our previous work [122], which has been selected

for a best paper award in the 32nd Annual International Computer Software and

Applications Conference (COMPSAC 2008). Part of this chapter is also based

on the journal extension [123] of that paper.

4.1 Background

A typical program contains numerous predicates in branch statements such as if-

and while-statements. (Some programming languages like C further allow predi-

cates on assignment statements.) These predicates are in the form of Boolean ex-

pressions, such as “*j <= 1 || src[*i+1] == ’\0’”, which may comprise

47

Chapter 4

further conditions, such as “*j <= 1” and “src[*i+1] == ’\0’”. When eval-

uating a Boolean expression, the “evaluation sequence” structure maintains the

execution information of its conditions. In the same example, if the former con-

dition is evaluated as false, the latter condition will continue to be evaluated.

In the case the latter condition is evaluated as true, we use evaluation sequence

〈false, true〉 to express the sequence of evaluating conditions. On the other hand,
if the former condition is evaluated as true, the evaluating to the latter condition

is short-circuited since solely evaluating the former condition has determined

the value of this Boolean expression. In such a case, we use evaluation sequence

〈true,⊥〉 to express the sequence of evaluating these conditions. Note that the
symbol “⊥” means the evaluating to a corresponding condition is short-circuited.

Predicate-level statistical fault-localization techniques, however, need to sum-

marize the execution statistics of individual predicates. A compound predicate

may be executed in one way or the other owing to short-circuit evaluations over

different sub-terms of the predicate. The execution statistics of a compound

predicate is, therefore, the summary of a collection of lower-tier evaluations over

different sub-terms [122][123]. Will differentiating such lower-tier evaluations

improves the effectiveness of predicate-level fault-localization techniques?

Since a predicate can be semantically modeled as a Boolean expression, the

resultant values of a Boolean expression may be calculated from different eval-

uation sequences or from the whole predicate as one unit. If we ignore the in-

formation on evaluation sequences, we may be masking out useful statistics for

effective fault localization.

4.2 Motivation

This section shows a motivating study. It enables readers to have a feeling of

how the distribution of evaluation biases [77] at the evaluation sequence level

can be used to pinpoint a fault-relevant predicate, which also happens to be a

faulty predicate in this example.

The upper part of Figure 4.1 shows a code fragment excerpted from the orig-

inal version (version v0) of print tokens2 from the Siemens suite of programs

[40]. We have labeled the three individual conditions as C1, C2, and C3, respec-

tively. The lower part of the same figure shows the code fragment excerpted

from a faulty version (version v8) of the Siemens suite, where a fault has been

seeded into the predicate by adding an extra condition “ch == ’\t’”. We have

labeled this condition as C4.

Because of the effect of short-circuit rules of the C language on Boolean ex-

48

Chapter 4

/* Original Version v0 */

if(

C1
︷ ︸︸ ︷

ch == ’ ’ ||

C2
︷ ︸︸ ︷

ch == ’\n’ ||

C3
︷ ︸︸ ︷

ch == 59)

return(true);

/* Faulty Version v8 */

if(

C1
︷ ︸︸ ︷

ch == ’ ’ ||

C2
︷ ︸︸ ︷

ch == ’\n’ ||

C3
︷ ︸︸ ︷

ch == 59 ||

C4
︷ ︸︸ ︷

ch == ’\t’)
return(true);

Figure 4.1: Code excerpts from versions v0 and v8 of print tokens.

Evaluation
C1 C2 C3 C4 v0 v8 v0 = v8?

sequence

es1 true ⊥ ⊥ ⊥ true true yes

es2 false true ⊥ ⊥ true true yes

es3 false false true ⊥ true true yes

es4 false false false true
false

true no

es5 false false false false false yes

Table 4.1: Evaluation sequences of code fragments.

pressions, a condition in a Boolean expression may be evaluated to be true or

false, or may not be evaluated at all (⊥). Furthermore, in terms of evaluations,
the conditions on a Boolean expression can be seen as an ordered sequence. In

most cases, when a preceding condition in an evaluation sequence is not eval-

uated, by the short-circuit rule, no succeeding condition in the evaluation se-

quence will be evaluated.

For the faulty Boolean expression in the fragment shown in Figure 4.1, there

are five legitimate evaluation sequences es1 to es5, as shown in Table 4.1. The

columns under the individual conditions C1 to C4 represent the evaluation out-

comes of the respective conditions based on the short-circuit rules of the pro-

gramming language. In the column entitled v0, it shows the respective resultant

values of the predicate in the original version of the program. In this column,

the last two grids are merged because the two evaluation sequences (es4 and es5)

make no difference in the original program. The column entitled v8 shows the

respective resultant values in the faulty program. The rightmost column shows

whether the original and faulty predicates give the same values.

To gain an idea of whether short-circuit rules can be useful for fault local-

ization, we have run an initial experiment. We apply the whole test pool for

49

Chapter 4

the program from the Software-artifact Infrastructure Repository (SIR) [40], and

record the counts of each of the five evaluation sequences for each test case.

Definition 4.2.1 (Evaluation Bias [77]). Let nt be the number of times that a

predicate P has been evaluated to be true in an execution, and n f the number of

times that it has been evaluated to be false in the same execution. π(P) = nt
nt+n f

is called evaluation bias of predicate P in this particular execution.

Following [76], we use the formula nt
nt+n f

to calculate the evaluation bi-

ases (Definition 4.2.1) for the set of passed test cases, and those for the set of

failure-causing test cases. The results are shown as the histograms in Figures 4.2

and 4.3. The distribution of evaluation biases over passed test cases and that over

failure-causing test cases are shown side by side for comparison. Figures 4.2(a)

to 4.2(d) are the comparative distributions of the five evaluation sequences. Fig-

ures 4.3(b) and 4.3(c) are the comparative distributions for the whole predicate

(when evaluated to be true and when evaluated to be false, respectively), as used

in [76].

From the histograms in Figures 4.2 and 4.3, we observe that the distribution

of evaluation biases for es4 on passed test cases is drastically different from that

of the failure-causing ones. Indeed, it is the most different one among all pairs

of histograms shown in the figures. We also observe from Table 4.1 that the fault

in the code fragment can only be revealed when es4 is used, and the fault does

not affect the values in the other alternatives.

Our initial study indicates that it may be feasible to use evaluation sequences

to identify a faulty predicate more accurately. When a fault is not on the predi-

cate, most predicate-based techniques facilitate fault localization by ranking the

predicates in order of their relations to the fault. In such a case, our technique

also works by finding the fault-relevant predicates rather than the actual faulty

statement. However, it is still uncertain how much the use of evaluation se-

quences will be beneficial to fault localization. We will formulate our research

questions in the next section and then investigate them experimentally in Sec-

tion 4.5.

4.3 Our Fault-localization Model

As we are interested in studying the impact of short-circuit evaluations and eval-

uation sequences for statistical fault localization, we need a method to incor-

porate the fine-grained view into a base technique. Intuitively, this will provide

execution statistics that may help statistical fault-localization techniques identify

the locations of faults more accurately.

50

Chapter 4

(a) Results of evaluation sequence es1

(b) Results of evaluation sequence es2

(c) Results of evaluation sequence es3

(d) Results of evaluation sequence es4

Figure 4.2: Comparisons of distributions of evaluation biases for evaluation se-

quences es1, es2, es3, and es4 (x-axis: evaluation bias; y-axis: no. of test cases).

We note that a base technique, such as SOBER or CBI, conducts sampling

of the predicates in a subject program to collect run-time execution statistics,

and ranks the fault relevance of the predicates. To assess the effectiveness of the

selected set of predicates to locate faults, researchers may use the t-score [90]

metric to determine the percentage of code examined in order to discover the

51

Chapter 4

(a) Results of evaluation sequence es5

(b) Results when whole predicate is false

(c) Results when whole predicate is true

Figure 4.3: Comparisons of distributions of evaluation biases for evaluation se-

quences es5 and the whole predicate (x-axis: evaluation bias; y-axis: no. of test

cases).

fault. As such, given a set of predicates applicable to a base technique, we iden-

tify all the potential evaluation sequences for each of the predicates. We then

insert probes at the predicate locations to collect the evaluation outcomes of

atomic conditions in these predicates. Based on the evaluation outcomes of the

atomic conditions, we can determine the evaluation sequence that takes place for

every predicate. For each individual evaluation sequence, we count the number

of times it is executed with respect to every test case. By treating each eval-

uation sequence as a distinct (fine-grained) predicate in the base technique, the

ranking approach in the base technique can be adopted to rank these fine-grained

predicates.

On the other hand, from the developers’ viewpoint, it may be more conve-

nient to recognize (through their eyeballs) the occurrence of an original predicate

52

Chapter 4

from the code, rather than an evaluation sequence of the predicate. Hence, it is

to the benefit of developers to map the ranked evaluation sequences to their re-

spective predicates and thus the corresponding statements.

Some measures need to be taken in the above mapping procedure. Differ-

ent evaluation sequences may receive different ranks. A simple mapping may

thus result in a situation where a predicate occurs more than once in a rank-

ing list. We choose to use the highest rank of all evaluation sequences for

each individual predicate as the final rank of that predicate. This strategy also

aligns with the basic idea of predicate ranking in SOBER and CBI. We refer to

the fine-grained approach as Debugging through Evaluation Sequences (DES).

Let us take the motivating example in Section 4.2 as an illustration. In previ-

ous predicate-based approaches such as SOBER [77], the Boolean expression

“ch == ’ ’ || ch == ’\n’ || ch == 59 || ch == ’\t’” is used as one predi-
cate. When the result of the Boolean expression is true or false, previous tech-

niques evaluate the predicate as true or false, respectively, and records its eval-

uation biases accordingly. In our approach, we form a finer-grained viewpoint

and investigate four atomic Boolean expressions “ch == ’ ’”, “ch == ’\n’”,
“ch== 59”, and “ch== ’\t’” as shown in Table 4.1. The evaluation sequence
es2, for instance, shows the case where “ch == ’ ’” is evaluated to be false,

“ch== ’\n’” is evaluated to be true, and the evaluations of the other two atomic
Boolean expressions “ch == 59” and “ch == ’\t’” are short-circuited. Each
time the Boolean expression is evaluated, it must fall into one (and only one) of

the evaluation sequences es1 to es5. We regard the “falling into” or “not falling

into” each evaluation sequence by the Boolean expression as a kind of predi-

cate for that evaluation sequence. For example, if the evaluation of the Boolean

expression falls into the evaluation sequence es2, we regard the corresponding

predicate with respect to es2 as evaluated to be true; and if the evaluation of the

Boolean expression falls into another evaluation sequence, we regard the cor-

responding predicate with respect to es2 as evaluated to be false. We record

the evaluation biases for this kind of predicate accordingly, and adapt previous

techniques to work on the evaluation sequence level.

4.4 Research Questions

In this section, we will discuss the research questions to be addressed. We refer

to a predicate-based statistical fault-localization technique as a base technique,

and refer to the use of evaluation sequences in predicate execution counts as the

fine-grained version of the base technique.

53

Chapter 4

RQ1: In relation to the base technique, is the use of evaluation sequences for

statistical fault localization effective?

RQ2: If the answer to RQ1 is true, is the effectiveness of using evaluation se-

quences significantly better than the base technique?

RQ3: Do the execution statistics of different evaluation sequences of the same

predicate differ significantly?

4.5 Experimental Evaluation

This section presents a controlled experiment and its results and analyses.

4.5.1 Subject Programs

In this study, we choose the Siemens suite programs as well as four UNIX utility

programs to conduct our experiment.

The Siemens programs were originally created to support research on data-

flow and control-flow test adequacy [63]. Our version of the Siemens programs

is obtained from the Software-artifact Infrastructure Repository (SIR) [40] at

http://sir.unl.edu. The Siemens suite consists of seven programs as shown in

Table 4.2. A number of faulty versions are attached to each program. In our

experiment, if any faulty version comes with no failure-causing cases, we do not

include it in the experiment, since the base techniques [75][76] require failure-

causing test cases. We use a UNIX tool, gcov, to collect the execution statistics

needed for computation. Six faulty versions that cannot be processed by gcov

are excluded. As a result, we use 126 faulty versions in total.

Since the Siemens programs are of small sizes and the faults are seeded man-

ually, we also use medium-sized real-life UNIX utility programs with real and

seeded faults as further subjects to strengthen the external validity of our experi-

ment. These programs, also from SIR, include flex, grep, gzip, and sed as shown

in Table 4.2. Each of these programs has one or more versions and each version

contains dozens of single faults. We create one faulty program for each single

fault, apply the same strategy above to exclude problematic ones, and use a total

of 110 faulty versions as target programs.

Each of the Siemens and UNIX programs is equipped with a test pool. Ac-

cording to the authors’ original intention, the test pool simulates a representative

subset of the input domain of the program, so that test suites should be drawn

54

Chapter 4

from such a test pool [40]. In the experiment, we follow the work of [76] to in-

put the whole test pool to every technique to rank predicates or their evaluation

sequences.

Table 4.2 shows the statistics of the subject programs and test pools that we

use. The data with respect to each subject program, including the executable

lines of code (column “LOC”), the number of faulty versions (column “# of Ver-

sions”), the size of the test pool (column “# of Cases”), the number of Boolean

expressions (column “# of Bools”), the average percentage of Boolean expres-

sion statements with respect to all statements (column “% of Boo”), and the

average percentage of compound Boolean expression statements with respect

to all Boolean expression statements (column “% of Com”), are obtained from

SIR [40] as at January 10, 2008. Since the subject programs print tokens and

print tokens2 have similar structures and functionality, and each has only a few

faulty versions (which cannot give meaningful statistics), we show their com-

bined results in the figure. (By the same token, the combined results of schedule

and schedule2 are shown in Figure 4.7.) For instance, there are 10 faulty ver-

sions for the print tokens2 program. Their sizes vary from 350 to 354 LoC, and

their test pool contains 4115 test cases. On average, 5.4% of the Boolean expres-

sion statements in these faulty versions contain compound Boolean expressions.

Other rows can be interpreted similarly. We note that many faults in these faulty

versions do not occur in predicates.

We observe from the column “% of Com” that, in each subject program,

the percentage of predicates having more than one atomic condition is low.

This makes the research questions even more interesting: We would like to see

whether such a low percentage would affect the performance of a base technique

to a large extent.

4.5.2 Experimental Setup

In this section, we describe the setup of the controlled experiment. Using our

tool, we produce a set of instrumented versions of the subject programs, includ-

ing both the original and faulty versions. Based on the instrumentation log as

well as the coverage files created by gcov, we calculate the execution counts

for the evaluation sequences, and finally rank the Boolean expression statements

according to the description presented in Section 4.4. We also calculate the num-

ber of faults successfully identified through the examined percentage of code at

different t-scores (see Section 4.4).

The experiment is carried out on a DELL PowerEdge 1950 server with two

4-core Xeon 5355 (2.66Hz) processors, 8GB physical memory and 400GB hard

55

Chapter 4

Program LOC
of # of # of % of % of

Versions Cases Bools Bools Compounds

print tokens
341–354 17 4130 81 23.7 1.7

(2 programs)

replace 508–515 31 5542 66 12.9 2.0

schedule
261–294 14 2710 43 16.4 1.0

(2 programs)

tcas 133–137 41 1608 11 8.1 2.4

tot info 272–274 23 1052 46 16.8 5.6

Average 310 18 3115 55 16.9 3.0

flex (2.4.7–2.5.4) 8571–10124 21 567 969 10.3 5.5

grep (2.2–2.4.2) 8053–9089 17 809 930 10.9 14.1

gzip (1.1.2–1.3) 4081–5159 55 217 591 12.7 11.6

sed (1.18–3.02) 4756–9289 17 370 552 7.8 11.6

Average 7390 28 491 761 10.4 10.7

Legion:

LOC: executable lines of code.

of Versions: no. of faulty versions.

of Cases: no. of test cases in the test pool.

of Bools: average no. of Boolean expressions.

% of Bools: average percentage of Boolean expression statements

with respect to all statements.

% of Compounds: average percentage of compound Boolean expressions

with respect to all Boolean expressions.

Table 4.2: Statistics of subject programs.

disk equipped, serving Solaris UNIX with the kernel version of Generic 120012-

14.

Our experimental platform is constructed using the tools of flex++ 2.5.31, bi-

son++ 1.21.9-1, CC 5.8, bash 3.00.16(1)-release (i386-pc-solaris2.10), and sloc-

count 2.26.

4.5.3 Effectiveness Metrics

Effectiveness metrics are widely used to facilitate comparisons among differ-

ent approaches. Renieris and Reiss [90] propose a metric (t-score) for measur-

ing their fault-localization technique. The method is also adopted by Cleve and

56

Chapter 4

Zeller [36] and Liu et al. [76] to evaluate other fault-localization techniques.

For ease of comparison with previous work, we also use the t-score met-

ric to evaluate the fine-grained evaluation sequence approach in relation to the

corresponding base techniques. We select two base techniques for study, namely

SOBER [76] and CBI [75], because they are representative predicate-based fault-

localization techniques. Both of them take Boolean expressions in conditional

statements and loops as predicates and generate a ranked list showing, in de-

scending order, how much each of these predicates is estimated to be related

to a fault. Both techniques have been evaluated in a previous study [77] using

the t-score metric [90] and compared with other fault-localization techniques.

Follow-up studies such as [4] have been derived from these techniques. Since

the follow-up work is based on the same framework and hence similar in nature,

we will only use the base versions to investigate whether we may improve on

them using our approach. If our approach may indeed improve on the two base

techniques, their derived versions should also benefit.

In brief, the t-score metric takes a program P, its marked faulty statements

S, and a sequence of most suspected faulty statements S′ as inputs, and pro-

duces a value V as output. The procedure to compute the t-score is as follows:

(i) Generate a Program Dependence Graph (PDG) G for P. (ii) Using the de-

pendence relations in the PDG as a measure of distance among statements, do

a breadth-first search starting with the statements in S′, until some statement in

S is reached. (iii) Return the percentage of searched statements (with respect to

the total number of statements in P) as the valueV . If the original S′ consists of k

most suspicious faulty statements, the final result is known as the top-k t-scores.

This measure is useful in assessing objectively the quality of proposed rank-

ing lists of fault-relevant predicates and the performance of fault-localization

techniques. Since the evaluation sequence approach is built on top of base tech-

niques (such as SOBER and CBI), we also use t-scores to compare different

approaches in our controlled experiment to answer the research questions.

4.5.4 Results and Analysis

In this section, we present the experimental results, compare the relative im-

provements in effectiveness of the integrated approach with respect to the base

techniques, and address the research questions one by one.

57

Chapter 4

90%

100%

50%

60%

70%

80%

a
u

lt
s

lo
ca

te
d

10%

20%

30%

40%

%
 o

f
fa

DES_SOBER

SOBER
0%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
% of code examined

(a) SOBER on all programs

90%

100%

50%

60%

70%

80%

a
u

lt
s

lo
ca

te
d

10%

20%

30%

40%

%
 o

f
fa

DES_CBI

CBI
0%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
% of code examined

(b) CBI on all programs

Figure 4.4: Comparisons of DES-enabled techniques with base techniques on all

programs.

Overall results of DES-enabled techniques

Figure 4.4(a) compares the results by SOBER and DES-enabled SOBER on all

11 programs, and Figure 4.4(b) compares those by CBI and DES-enabled CBI

on the same programs. For ease of discussion, we refer to DES-enabled SOBER

as DES SOBER, and DES-enabled CBI as DES CBI.

The x-axis of each plot in these two figures shows the t-scores, each of which

represent the percentage of statements of the respective faulty program version

to be examined. The y-axis is the percentage of faults located within the given

code-examination range. According to [76], the use of the top 5 predicates in

the ranked list will produce the best results for both SOBER and CBI. For a fair

comparison with previous work, we also adopt the use of the top 5 predicates in

the controlled experiment. In the remaining parts of this chapter, therefore, we

will always compare the top-5 t-scores for DES SOBER and DES CBI against

those for SOBER and CBI.

We observe from Figure 4.4(a) that DES SOBER consistently achieves bet-

ter average fault-localization results (that is, more faults for the same percentage

of examined code) than SOBER. For example, when examining 10 percent of

the code, DES SOBER can find about 5% more faults than SOBER. As the

percentage of examined code increases, however, the difference shrinks. This is

understandable because, when an increasing amount of code has been examined,

the difference between marginal increases of located faults will naturally be di-

minished. When all the faults are located or all the statements are examined, the

two curves will attain the same percentage of located faults. We also observe

from Figure 4.4(b) that DES CBI also outperforms CBI. When examining 10

58

Chapter 4

90%

100%

50%

60%

70%

80%

a
u

lt
s

lo
ca

te
d

10%

20%

30%

40%

%
 o

f
fa

DES_SOBER

SOBER
0%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
% of code examined

(a) SOBER on print tokens and print tokens2

programs

90%

100%

50%

60%

70%

80%

a
u

lt
s

lo
ca

te
d

10%

20%

30%

40%

%
 o

f
fa

DES_CBI

CBI
0%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
% of code examined

(b) CBI on print tokens and print tokens2 pro-

grams

Figure 4.5: Comparisons of DES-enabled techniques with base techniques on

print tokens and print tokens2 programs.

90%

100%

50%

60%

70%

80%

a
u

lt
s

lo
ca

te
d

10%

20%

30%

40%

%
 o

f
fa

DES_SOBER

SOBER
0%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
% of code examined

(a) SOBER on replace program

90%

100%

50%

60%

70%

80%

a
u

lt
s

lo
ca

te
d

10%

20%

30%

40%

%
 o

f
fa

DES_CBI

CBI
0%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
% of code examined

(b) CBI on replace program

Figure 4.6: Comparisons of DES-enabled techniques with base techniques on

replace program.

percent of the code, DES CBI can find about 10% more faults than CBI.

Individual results of DES-enabled techniques

To further verify whether the above results generally hold for all the programs,

we examine the outcomes of each individual program, as shown in Figures 4.5

to 4.13.

Let us first focus on Figure 4.5. It shows the results of CBI, DES CBI,

SOBER, and DES SOBER on the print tokens and print tokens2 programs. For

59

Chapter 4

90%

100%

50%

60%

70%

80%

a
u

lt
s

lo
ca

te
d

10%

20%

30%

40%

%
 o

f
fa

DES_SOBER

SOBER
0%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
% of code examined

(a) SOBER on schedule and schedule2 pro-

grams

90%

100%

50%

60%

70%

80%

a
u

lt
s

lo
ca

te
d

10%

20%

30%

40%

%
 o

f
fa

DES_CBI

CBI
0%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
% of code examined

(b) CBI on schedule and schedule2 programs

Figure 4.7: Comparisons of DES-enabled techniques with base techniques on

schedule and schedule2 programs.

90%

100%

50%

60%

70%

80%

a
u

lt
s

lo
ca

te
d

10%

20%

30%

40%

%
 o

f
fa

DES_SOBER

SOBER
0%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
% of code examined

(a) SOBER on tcas program

90%

100%

50%

60%

70%

80%

a
u

lt
s

lo
ca

te
d

10%

20%

30%

40%

%
 o

f
fa

DES_CBI

CBI
0%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
% of code examined

(b) CBI on tcas program

Figure 4.8: Comparisons of DES-enabled techniques with base techniques on

tcas program.

these two programs, DES SOBER outperforms SOBER for almost the entire

code-examination range from 0 to 100 percent, except two short ranges around

10 percent and 30 percent. Similarly, DES CBI performs better than CBI almost

throughout the range from 0 to 100 percent.

Let us move on to the replace program. DES SOBER and DES CBI again

exhibit advantage over SOBER and CBI, respectively, almost throughout the

entire range from 0 to 100 percent.

For the programs schedule and schedule2, neither DES SOBER nor SOBER

shows advantage over each other. However, for the same programs, DES CBI

60

Chapter 4

90%

100%

50%

60%

70%

80%

a
u

lt
s

lo
ca

te
d

10%

20%

30%

40%

%
 o

f
fa

DES_SOBER

SOBER
0%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
% of code examined

(a) SOBER on tot info program

90%

100%

50%

60%

70%

80%

a
u

lt
s

lo
ca

te
d

10%

20%

30%

40%

%
 o

f
fa

DES_CBI

CBI
0%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
% of code examined

(b) CBI on tot info program

Figure 4.9: Comparisons of DES-enabled techniques with base techniques on

tot info program.

90%

100%

50%

60%

70%

80%

a
u

lt
s

lo
ca

te
d

10%

20%

30%

40%

%
 o

f
fa

DES_SOBER

SOBER
0%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
% of code examined

(a) SOBER on flex program

90%

100%

50%

60%

70%

80%

a
u

lt
s

lo
ca

te
d

10%

20%

30%

40%

%
 o

f
fa

DES_CBI

CBI
0%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
% of code examined

(b) CBI on flex program

Figure 4.10: Comparisons of DES-enabled techniques with base techniques on

flex program.

shows advantage over CBI throughout the range from 0 to 100 percent.

For the tcas program, DES SOBER and DES CBI obviously perform better

than SOBER and CBI, respectively, except that DES CBI is caught up by CBI

when examining more than 60% code.

For the tot info program, DES SOBER shows great advantage over SOBER

in the code-examination range from 20 to 30 percent. DES SOBER also shows

continuous and steady advantage over SOBER in the range from 50 to 90 per-

cent. In the remaining ranges, DES SOBER and SOBER perform comparably.

At the same time, DES CBI shows observable advantage over CBI.

61

Chapter 4

90%

100%

50%

60%

70%

80%

a
u

lt
s

lo
ca

te
d

10%

20%

30%

40%

%
 o

f
fa

DES_SOBER

SOBER
0%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
% of code examined

(a) SOBER on grep program

90%

100%

50%

60%

70%

80%

a
u

lt
s

lo
ca

te
d

10%

20%

30%

40%

%
 o

f
fa

DES_CBI

CBI
0%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
% of code examined

(b) CBI on grep program

Figure 4.11: Comparisons of DES-enabled techniques with base techniques on

grep program.

90%

100%

50%

60%

70%

80%

a
u

lt
s

lo
ca

te
d

10%

20%

30%

40%

%
 o

f
fa

DES_SOBER

SOBER
0%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
% of code examined

(a) SOBER on gzip program

90%

100%

50%

60%

70%

80%

a
u

lt
s

lo
ca

te
d

10%

20%

30%

40%

%
 o

f
fa

DES_CBI

CBI
0%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
% of code examined

(b) CBI on gzip program

Figure 4.12: Comparisons of DES-enabled techniques with base techniques on

gzip program.

We next move to the flex program. DES SOBER outperforms SOBER in

the code-examination range of 0 to 45 percent, after which they show com-

parable effectiveness. However, for the same program flex, neither CBI nor

DES CBI shows consistent advantage over each other. CBI is more effective

than DES CBI in the code-examination range of about 35 to 55 percent. In other

ranges, DES CBI is more effective than CBI. On average, they perform compa-

rably to each other.

For the grep program, DES CBI noticeably outperforms CBI, while there is

no obvious difference between DES SOBER and SOBER. In the first 10 percent

code-examination range, SOBER locates more faults than DES SOBER, but is

caught up when examining 10 to 20 percent of the code. For both DES SOBER

62

Chapter 4

90%

100%

50%

60%

70%

80%

a
u

lt
s

lo
ca

te
d

10%

20%

30%

40%

%
 o

f
fa

DES_SOBER

SOBER
0%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
% of code examined

(a) SOBER on sed program

90%

100%

50%

60%

70%

80%

a
u

lt
s

lo
ca

te
d

10%

20%

30%

40%

%
 o

f
fa

DES_CBI

CBI
0%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
% of code examined

(b) CBI on sed program

Figure 4.13: Comparisons of DES-enabled techniques with base techniques on

sed program.

and SOBER, all the faults in the faulty versions of grep can be located when

examining up to 40 percent of the code. In short, their effectiveness is also

comparable.

For the gzip program, both DES SOBER and DES CBI locate more faults

than SOBER and CBI, respectively, in the entire code-examination range.

The comparison results for the sed program are like those for the extsfflex

program. DES SOBER shows an observable advantage over SOBER, while nei-

ther DES CBI nor CBI shows steady advantage over each other. CBI catches

up with DES CBI only in the code-examination range of 10 to 30 percent.

DES CBI always locates more faults than CBI in other code-examination ranges.

In summary, we observe that, on average, the DES-enabled techniques are

comparable to, if not more effective than, their respective base techniques for

the programs under study.

Answering RQ1: Is DES effective?

From the results of the Siemens suite of programs (Figures 4.5 to 4.9), we have

just observed that the DES-enabled techniques are at least comparable to their

base counterparts. However, the Siemens programs are small in size. To fur-

ther generalize our findings, we have also studied the DES approach on four

UNIX utility programs. The results are similar. Since both SOBER and CBI

are deemed as effective techniques in previous studies [77], we can, therefore,

answer the first research question — the DES approach is effective.

63

Chapter 4

Program

Mean relative Stdev of relative

improvement improvement

in effectiveness in effectiveness

print tokens (2 programs) 145% 561%

replace 38% 170%

schedule (2 programs) 94% 377%

tcas 30% 221%

tot info 12% 132%

flex –3% 31%

grep 22% 96%

gzip –4% 22%

sed –10% 94%

Weighted average 24% 119%

Unweighted average 35% 189%

Table 4.3: Statistics on relative improvements in effectiveness.

Answering RQ2: Is DES better?

Our intuitive observation above, drawn from Figures 4.5 to 4.13, is that the DES

approach is comparable to, if not more effective than, the respective base fault-

localization technique. We are interested in finding out whether, on average,

there is significant advantage in using the DES-enhanced fault-localization tech-

niques over the base techniques.

To do that, we compare for each program the relative improvements in ef-

fectiveness of the DES-enabled versions with respect to the base techniques,

as shown in Table 4.3. For each program having n faulty versions, we use

Ci, DCi, Si, and DSi to represent the t-scores of CBI, DES CBI, SOBER, and

DES SOBER for the i-th faulty version. We compute (Ci−DCi)/Ci and (Si−
DSi)/Si to estimate the relative improvements in effectiveness when the respec-
tive techniques are DES-enabled. We then calculate the mean and standard de-

viation for the full set of these values (that is, {(C1−DC1)/C1, (S1−DS1)/S1,
(C2−DC2)/C2, (S2−DS2)/S2, . . . , (Cn−DCn)/Cn, (Sn−DSn)/Sn}). We note
that each mean and standard deviation are averaged over both DES SOBER and

DES CBI. From the table, we observe that in 8 programs out of 11, the mean

effectiveness of the DES-enabled techniques outperforms that of the respective

base techniques.

We also show the weighted averages and unweighted averages for these

statistical parameters. The former means averaging the statistical parameters

64

Chapter 4

Program CBI SOBER

print tokens (2 programs) 1.04×10−15 2.67×10−10

replace 2.84×10−9 1.89×10−16

schedule (2 programs) 9.80×10−11 3.00×10−3

tcas 4.17×10−10 3.90×10−15

tot info 1.79×10−13 4.86×10−8

flex 3.18×10−4 4.00×10−11

grep 2.08×10−4 9.08×10−2

gzip 1.57×10−27 4.76×10−26

sed 2.13×10−2 2.23×10−2

Table 4.4: p-values of U-tests on Siemens programs and UNIX programs.

(means or standard deviations) of each program with weights equal to the num-

ber of faulty versions of that program. The latter means directly averaging the

statistical parameters for each program. In either case, there is, on average, at

least a relative increase of 24% in effectiveness by the DES-enabled versions

with respect to base techniques SOBER and CBI. However, the effectiveness

improvements are not uniform.

Since, on average, there are effectiveness improvements from a base tech-

nique to its DES-enabled version, we want to know whether such improvements

are statistically significant. We would like to find out the answer to the following

hypothesis:

“H0: Does a technique enabled with the evaluation sequence ap-

proach have no significant difference from the base technique?”

If the answer is false, we are confident that the DES approach is significantly

different from the base fault-localization technique. Considering our previous

observation that the DES approach, on average, improves its base version, we

may then regard a DES approach as significantly more effective than its base

fault-localization technique.

We perform two-tailed Mann-Whitney U-tests to compare the DES-enabled

techniques with the corresponding base techniques with respect to every indi-

vidual subject program. The p-values for hypothesis testing on the programs are

listed in Table 4.4.

From the results, we observe that all but one of the p-values are smaller than

0.05, which indicates that the null hypothesis can be successfully rejected at the

5% significance level. (The only exception is the Mann-Whitney U-test between

DES SOBER and SOBER on grep, which has a p-value of 0.09.) In conclusion,

65

Chapter 4

the test result of our null hypothesis H0 implies that DES-enabled techniques are

significantly more effective than their base counterparts. Therefore, our answer

to RQ2 is that DES-enabled techniques are significantly more effective than their

respective counterparts. The answer to RQ2 also confirms that short-circuit eval-

uation rules do have significant positive impacts on statistical fault localization. 1

Besides, we also notice that the DES-enabled techniques are marginally less

effective than their base counterparts for the gzip and flex programs. One may

anticipate that our approach will have more improvements on the base tech-

niques for programs with higher percentages of compound Boolean expressions

(as shown in Table 4.2) than for programs with lower percentages of compound

Boolean expressions. This is because our fine-grained approach especially im-

proves the ranking accuracy for compound Boolean expressions. On the other

hand, we observe that the DES-enabled techniques perform better on small-sized

(Siemens) programs than on medium-sized (UNIX) programs. We notice that

the average percentage of compound Boolean expressions (with respect to all

expressions) in the UNIX programs is higher than that in the Siemens programs.

This unexpected discrepancy can be explained as follows: When we analyze the

faults in the Siemens and UNIX programs, we find that higher percentages of

faults in the Siemens subjects are on or close to predicate statements, whereas

only a few faults in UNIX subjects are on or close to predicate statements. For

example, 8 out of 10 faults associated with print tokens2 are on the Boolean

expressions of predicate statements, while only 4 out 17 faults associated with

version 3 of flex are on Boolean expressions of predicate statements.

Answering RQ3: Do different evaluation sequences give the same result?

To answer RQ3, we collect the execution statistics of all the evaluation sequences

for each Boolean expression in the Siemens suite of programs to calculate the

statistical differences between passed and failure-causing test cases. (Owing to

our resource limitation, we do not repeat this part of the experiment on the UNIX

subject programs.)

We perform a U-test between the evaluation biases for the sets of evaluation

sequences over the same predicate in passed and failure-causing test cases. The

results of the U-test show that, for 59.12% of the evaluation sequences, there is a

significant difference (at the 5% significance level) between the evaluation biases

of passed and failure-causing test cases. In other words, 59.12% of the evaluation

sequences are useful fault location indicators, while the remaining 40.87% are

1We are conservative about the conclusion because it is subject to external threats to validity

to generalize the results.

66

Chapter 4

/* Original Version v0 */

if(ch == ’\n’)

/* Faulty Version v9 */

if(ch == ’\n’ || ch == ’\t’)

Figure 4.14: Code excerpts from versions v0 and v9 of print tokens2.

not useful standalone fault predicators to differentiate failure-causing test cases

from passed ones.

The answer to RQ3 is that different evaluation sequences of the same predi-

cate may have different potentials for fault localization.

4.5.5 Discussion

Like existing predicate-based fault-localization techniques, our DES technique

is also developed on top of predicate evaluation. Unlike them, however, it works

at a finer granularity. All such class of techniques (including ours) use predicates

to indicate the neighborhoods in which faults may reside. The effectiveness of

these techniques generally depends on the locations of the faults and how well

predicates surround such faults. In this section, we will elaborate on why DES-

enabled techniques are more effective than the respective base techniques by

taking a closer look at two important cases in faulty programs. We will further

discuss other factors that may affect the performance of our techniques. We will

also analyze the time complexity and study the empirical performance overheads

when applying our technique.

Case 1: Fault on compound predicate

We discuss a fault on a compound predicate in the first case study. The fault

is taken from faulty version v9 of the print tokens2 program. It is in a decision

statement on line 218. The code fragments of the original version and the faulty

version are shown in Figure 4.14.

This fault is caused by adding a Boolean expression headed by an “or” op-

erator to the end of the original compound predicate. The fault will be activated

only if the original predicate is evaluated to be false and the extra Boolean ex-

pression is evaluated to be true (that is, only if the short-circuit evaluation se-

quence of the resultant expression is 〈false, true〉).
DES-enabled techniques divide test cases into two groups, namely, test cases

that exercise the evaluation sequence 〈false, true〉 (thus, triggering the fault that

67

Chapter 4

/* Original Version v0 */

ap1: return sum * exp(-x + a * log(x) - LGamma(a))

/* Faulty Version v8 */

ap1: return sum * exp(x + a * log(x) - LGamma(a))

Figure 4.15: Code excerpts from versions v0 and v8 of tot info.

cp2: for (p=line; *p != ’\0’ && isspace((int) *p); ++p)

cp3: if (rdf <= 0 || cdf <= 0)

Figure 4.16: Code excerpts from versions v0 and v8 of tot info.

leads to a program failures), and test cases that do not trigger the fault. As a

result, this evaluation sequence is ranked as highly fault-relevant and its corre-

sponding predicate is deemed to be highly related to the program failure. In our

experiment, the rank of the faulty predicate is 10 by DES SOBER and 11 by

DES CBI.

For the corresponding base techniques, however, test cases with evaluation

sequences 〈true〉 and 〈false, true〉 have been mixed up and treated as similar.
As a result, the faulty predicate is perceived by base techniques as less fault-

relevant than by DES-enabled techniques. In our experiment, the rank of the

faulty predicate is 56 by SOBER and 218 by CBI.

From this case study, we see how a fine-grained analysis technique enables

more precise fault localization.

Case 2: Fault on atomic predicate

Let us further focus on a second case, where a fault is seeded on a predicate

having an atomic Boolean expression. Specifically, we take this fault from faulty

version v8 of the tot info program. It is a computational fault seeded to an atomic

predicate on line 201, as shown in Figure 4.15. For ease of reference, we call

this predicate ap1.

The whole faulty version includes 46 predicates, only two of which contain

compound Boolean expressions. We refer to the first one (on line 57) as cp2 and

the second one (on line 308) as cp3, as listed in Figure 4.16. In this example, we

use ap1 to denote an atomic predicate, and cp2 and cp3 to denote two compound

predicates.

For each of the other 44 atomic Boolean expressions (including ap1), both

CBI and DES CBI give the same ranking score. The rationale is that the predi-

cates are atomic, and hence there is no possibility of a short-circuit evaluation.

68

Chapter 4

However, CBI gives ranks of 46 and 25 to predicates cp2 and cp3, respec-

tively, while our DES CBI technique gives ranks of 46 and 45, respectively.

This is because these two are compound predicates and CBI and DES CBI may

generate different ranking scores (and hence different ranks) for them. Finally,

the faulty predicate ap1 is ranked as 24 by CBI, and ranked as 23 by DES CBI.

Thus, DES CBI make a more correct assessment that cp2 and cp3 are less fault-

relevant than ap1, whereas CBI mistakenly gives higher suspiciousness to cp3
than ap1.

A similar phenomenon is observed for SOBER and DES SOBER. SOBER

gives ranks of 20 and 7 to predicates cp2 and cp3, respectively, while DES SOBER

gives ranks of 38 and 41, respectively. For each of the other 44 atomic predicates

(including ap1), both SOBER and DES SOBER generate the same relative rank-

ing. The faulty predicate ap1 is ranked as 22 by SOBER and 20 by DES SOBER.

Thus, DES SOBER make a more correct assessment that cp2 and cp3 are less

fault-relevant than ap1, whereas CBI mistakenly gives higher suspiciousness to

cp2 and cp3 than ap1.

In cases where faults are on atomic predicates, there may also exist other

predicates that contain compound Boolean expressions. From our previous case

study about faults on compound Boolean predicates, we know that DES-enabled

techniques may give more accurate ranking results on these compound predi-

cates than SOBER and CBI do. Thus, the noise (possible inaccurate ranking

results) from other compound predicates can be reduced. The present case study

confirms that DES-enabled techniques may produce a more accurate ranking of

predicates even if the faulty predicate is atomic.

Time complexity, actual time-cost, and other discussions

Let p1, p2, . . . , pm be the Boolean predicates of the program, and k1, k2, . . . , km
be the numbers of atomic Boolean expressions in the respective predicates. Sup-

pose the time complexity for applying a base technique to investigate one predi-

cate is Obase. The time complexity for applying a base technique to the program

will be O(Obase×m). The time complexity of the corresponding DES-enabled
technique will then be O(Obase×∑

m
i=1 ki). This is because a DES-enabled tech-

nique uses the same algorithm as the base technique, and the only difference is

that the DES-enabled technique works on evaluation sequences while the base

technique works on predicates. Thus, for each evaluation of a predicate, in the

worst case, it will evaluate all the atomic components of the predicate, and call

an invocation of the base algorithm every time.

Thus, the time complexity of applying DES on a base technique is higher

69

Chapter 4

than that of the base technique. It is easy to figure out that the increase of the

time complexity from the base technique to its DES-enable version is 1
m∑
m
i=1 ki.

This number is the average number of atomic expressions inside the Boolean

expressions in the program. We are confident that it is not a large number in

realistic programs. For instance, this number is always less than 5 in the Siemens

and UNIX programs used in our experiment.

In addition, the data structure of the evaluation sequence needs to be kept dur-

ing evaluation. What if we translate each Boolean expression into binary code

(or lower level representation) and perform a statement-level fault-localization

technique on each assembly instruction? Using such a transformation, every

atomic component in a compound Boolean expression can be considered, say, as

a complete assembly instruction, and the construction of evaluation sequences

can be avoided. However, the executions of such instruction statements are not

independent of one another, and hence separately estimating their suspicious-

ness from their execution status may not be accurate. One may further argue

to correlate a set of predicates (or statements) to improve the effectiveness of

fault identification. We argue, however, that finding such a set of predicates is

the exactly basic idea behind our approach. An evaluation sequence contains

the information of the legitimate value combinations of atomic predicates that

developers compose in the code. We believe that it is a natural and objective

criterion to find out such a set of correlating predicates in programs.

What if a technique uses the full combination of truth values of each atomic

Boolean expression, but does not consider the evaluation sequences? Suppose

b1⊕b2⊕·· ·⊕bn (where⊕ stands for a logical operator) is a compound Boolean
expression. Since each atomic Boolean expression bi may have a truth value of

either true or false, the full combination of truth values of these n atomic Boolean

expressions is a set of 2n elements. The time complexity of such a proposal will

be O(Obase×2
n), and some value combinations are very likely to be illegiti-

mate in actual program executions. Consider, for instance, a Boolean expression

“p != null && p[0] != null”. The value combination of 〈false, true〉 can-
not appear in any actual program execution owing to the short-circuit evaluation

logic in the C language. Compared with the fault indicators above, evaluation

sequences of predicates are natural, objective, and effective program entities to

extract dynamic features for fault localization.

An empirical study of the actual performances of the DES-enabled tech-

niques compared with those of the respective base techniques is listed in Ta-

ble 4.5. The actual time-cost in each step is small enough for practical applica-

bility.

70

Chapter 4

Time-cost

DES Base

Siemens UNIX Siemens/UNIX

Programs Programs Programs

Instrumentation comparable to gcc compilation time

Exe. statistics collection about 1/10 of program execution time

Statement ranking
0.1×10−3 to 16.8×10−3 to

less than 0.1 s
15.7×10−3 s 120.7×10−3 s

Locating fault using 7.0×10−6 to 18.0×10−6 to
less than 0.1 s

generated ranking list 50.0×10−6 s 823.0×10−6 s

Table 4.5: Timing statistics in the experiment.

4.5.6 Threats to Validity

We briefly summarize below the threats to validity in our controlled experiment.

Construct Validity

In this experiment, construct validity is related to the platform dependence issues

when using the Siemens suite of programs in SIR [40]. Since every program in

SIR has a fault matrix file to specify the test verdict of each test case (that is,

whether it is a passed or failure-causing test case), we also create a fault matrix

file for our test results and carefully verify each test verdict against the corre-

sponding one supplied by SIR. We observe that there are only minor differences

in test verdicts between the two fault matrix files. We have thoroughly verified

our setting, and believe that the difference is due to platform dependence issues.

Internal Validity

In this experiment, internal validity is related to the risk of having confounding

factors that affects the observed results. Following [76], in the experiment, each

technique uses all the applicable test cases to locate fault-relevant predicates in

each program. The use of a test suite with a different size may give a different re-

sult [76]. Evaluations on the impact of different test suite sizes on our technique

would be welcome. Another important factor is the correctness of our tools. In-

stead of adopting existing tools used in the literature, we have implemented our

own tools in C++ for the purpose of efficiency. To avoid errors, we have adhered

to the algorithms in the literature and implemented and tested our tools carefully.

To align with previous work, we use the t-score metric to compute the results of

this experiment. The use of other metrics may produce different results.

71

Chapter 4

Internal validity is also related to any affecting factors we may or may not

have realized. As shown in Section 4.5.4, we have listed the related statistics

and explained the reason why our technique appears to be more effective on the

small-sized subject programs than the medium-sized subject programs. There

may be other implicit factors that may affect the effectiveness of our technique

and other predicate-based techniques.

External Validity

We use the Siemens suite and four UNIX utility programs in the experiment to

verify the research questions because they are commonly used by researchers

in testing and debugging studies with a view to comparing different work more

easily. Further applications of our approach to medium-to-large-sized real-life

programs would strengthen the external validity of our work. Each of the faulty

versions in our subject programs contains one fault. Despite the competent pro-

grammer hypothesis, real-life programs may contain more than one fault. Al-

though [77] have demonstrated that predicate-based techniques can be used to

locate faults in programs that contain more than one fault, their effectiveness in

this scenario is not well discussed. We will address this threat in future work.

4.6 Summary

Following current popular trend of statistical fault localization, we have explored

a better way to measure and rank predicates with respect to fault relevance. We

observed that the fault-localization capabilities of various evaluation sequences

of the same Boolean expression are not identical. Because of short-circuit eval-

uations of Boolean expressions in program execution, different evaluation se-

quences of a predicate may produce different resultant values. This inspired us

to investigate the effectiveness of using Boolean expressions at the evaluation

sequence level for statistical fault localization. The experiment on the Siemens

programs and UNIX utility programs showed that our approach is promising.

The major contribution of this chapter is twofold. (i) We provide the first set

of experimental results regarding the effect of short-circuit evaluations on statis-

tical fault localization. (ii) We show that short-circuit evaluation has a significant

impact on the effectiveness of predicate-based fault-localization techniques.

72

73

Chapter 5

Slope: Statistical Fault
Localization via Failed Program
Executions

In the chapter before previous, we investigate how to capture the propagations
of infected program states and locate faults that cannot be effectively located
by previous existing techniques. In the previous chapter, we also investigate
how to address the issue of short-circuit evaluation rule and conduct finer-
grained fault localization to gain better effectiveness. However, we notice that
all previous techniques rely on passed executions to locate fault, and their
effectiveness is greatly reduced in environment where passed executions are
unavailable, for example, a debugging driven by bug reports.

In this chapter, we develop a technique that can work in the absence of
passed executions, to locate fault. We first introduce the background and
illustrate how previous statistical fault-localization techniques rely on both
passed and failed executions to locate fault, and then use a motivating example
to demonstrate how to locate fault with solely failed program executions. After
that, we elaborate on our model – Slope, and then use empirical study to
validate the effectiveness of our technique.

5.1 Background

To help effectively locate faults in a faulty program, the common basic idea of
many existing statistical fault-localization techniques is to estimate the fault-
suspiciousness of each statement (or other program elements) of the program
first. They compare the execution statistics on program spectra [91] between
the program's passed execution(s) and failed execution(s), and rank statements
(or other program elements) according to their fault-suspiciousness scores. For
instance, if no passed execution exercises a particular statement and yet every

Chapter 5

74

failed execution exercises it, Tarantula [68] deems the statement to be
suspicious (with a score of 1) and ranks it higher than another statement (e.g.,
with a score of 0). As such, even though failed executions or failure-causing
test cases can be directly provided by bug reports [88] or reported by user
application, following previous work (e.g., [76]), developers should find
passed executions to pair up with the failed executions to locate fault
effectively.

Such an activity can be a painstaking to developers. For example, modern
software is frequently equipped with failure-feedback bug report mechanism.
Such bug reports may contain versatile realistic failed executions [88].
Developers may require constructing their own passed executions that can be
usefully to compare with the given failed executions. Thus, fault localization
via such technique cannot effectively be conducted until passed executions are
available. It may introduce a delay to debug the programs. Worst still, the
effectiveness of such a technique depends heavily on the quality of passed
executions that may exhibit coincidental correctness [106] or the other
problems, which may hardly be known until the causing faults are located.

What if such a fault-localization model, which contrast the execution
information of passed and failed executions to locate fault, may also work
with solely failed executions? Developers can immediately apply a technique
based on such a model as long as they have obtained failed executions. It
provides developers a time window to both locate faults and generate
additional passed executions. Once passed execution has been obtained,
developers can apply them to a technique of the same model to locate faults
even more effectively. On the other hand, our experiment reported in this
thesis shows that merely using failed executions, existing techniques are
ineffective. Thus, developers may require switching between techniques
developed on top of diverse ideas between the two phases. It may overload the
minds of developers.

5.2 Motivation

Figure 5.1 shows two code fragments (with line numbers on the left) excerpted
from the faulty version. The upper one (L115L124) shows an if-structure that
evaluates a compound predicate consisting of a character checking function (at
L115) and a boundary condition (at L117). If this predicate is evaluated to be
true, the variable dest will be modified by the addstr function (at L121);
otherwise, dest will remain unchanged. The lower code fragment
(L495L502) outputs the characters in a string.

In the upper code fragment, the predicate of the if-statement is faulty
because an operand of the expected version of the predicate is missing. Figure

Chapter 5

75

5.1 also shows the missing part (L116). Note that the faulty statement is more
likely to be evaluated to be true than the expected version, so that an execution
has a higher chance of exercising L121 than the expected version. As a result,
the variable dest may contain an incorrect value. We further observe that the
predicate in the faulty statement may produce a result different from its
expected version only when the missing function call to isalnum() returns
false, which in turn depends partially on its input parameter src. It is generally
hard to predict the string content statically. The chance of producing an
incorrect decision value by the faulty statement is thus hard to know in general.
Despite the absence of further information, we postulate that the more
frequently the faulty statement has been executed, the higher will be the
chance that it produces an incorrect decision value leading to a failed
execution.

To verify the above hypothesis, we execute the faulty version over every
one of the 5542 test cases of replace provided by SIR. For every statement si,
we record its execution count ci for each program execution. For each value c
of execution count, we tally the number of program executions Ni(c) having a
count ci = c, and calculate the fraction of failed executions among the Ni(c)
executions (see Definition 5.3.1 for failing rate in Section 5.3).

L115 if ((isalnum(src[*i - 1]))

L116 /* missing code "&& (isalnum(src[*i + 1]))" */

L117 && (src[*i - 1] <= src[*i + 1]))
L118 {
L119 for (k = src[*i-1]+1; k<=src[*i+1]; k++)
L120 {
L121 junk = addstr(k, dest, j, maxset);
L122 }
L123 *i = *i + 1;
L124 }

L495 if ((m >= 0) && (lastm != m)) {
L496 putsub(lin, i, m, sub);
L497 lastm = m;
L498 }
L499 if ((m == -1) || (m == i)) {
L500 fputc(lin[i],stdout);
L501 i = i + 1;
L502 }

Figure 5.1: Faulty version v10 of replace

Chapter 5

76

For comparison purpose, we choose three other statements, namely L121,
L497, and L500 to examine. We observe from Figure 5.1 that L121 is closer to
the faulty statement in the program (in terms of the number of lines in the
source code) than either L497 or L500. Developer may find L121 suspicious
because it may modify the variable dest wrongly as the result of the faulty
statement. On the other hands, we have inspected the source code to ensure
that the fault is not related to the logic at L497 or L500.

(a) faulty statement L115 (b) L121

(c) L497 (d) L500

Figure 5.2: Failing rate vs. execution count

We then plot the failing rate against the execution count for the faulty
statement and fit the points using a curve. The result is shown in Figure 5.2(a).
Similarly, we show such plots for L121, L497, and L500 in Figure 5.2(b),
Figure 5.2(c), and Figure 5.2(d), respectively. Owing to the page limit, only
parts of the plots are shown; yet the curve in each plot does fit all the points.

We have a few observations from Figure 5.2. Overall, as the execution
count increases, the failing rate in Figure 2(a) or Figure 2(b) increases faster
than that in Figure 2(c) or Figure 2(d). It preliminarily shows that our intuition
on faulty statements holds; furthermore, fault-suspicious statements (such as
L121 in Figure 2(b)) appear to have similar properties. On the other hand, for
statements least related to a fault, their changes in failing rates with respect to
execution counts are not as steep as those of faulty statements or fault-
suspicious statements. This motivates us to estimate the fault-suspiciousness
of statements by analyzing their execution counts and failing rates. Further, we
may perform curve fitting on the points formed by the value of execution

0

0.02

0.04

0.06

0 3 6 9 12 15

fa
il

in
g

ra
te

execution count

0

0.02

0.04

0.06

0 3 6 9 12 15
fa

il
in

g
ra

te
execution count

0

0.02

0.04

0.06

0 3 6 9 12 15

fa
il

in
g

ra
te

execution count

0

0.02

0.04

0.06

0 3 6 9 12 15

fa
il

in
g

ra
te

execution count

Chapter 5

77

count and that of failing rate, and then use the first derivative of the curve
function to measure, for every statements, how steep the changes in failing
rates are. On the other hand, the fitting error means how reliable such an
analysis can be and how confident we are. Therefore, we decide to use the
signal-to-noise ratio [95] as the final ranking metric.

Although this example motivates us to develop a new fault-localization
method, we foresee potential challenges. To compare the changes in failing
rate with respect to execution count, what is the form of curve that fits the
points in [125]? If we follow this example strictly, the computation of failing
rates involves the execution counts in both passed and failed executions. How
can we finally eliminate the dependency on passed executions in our model so
that we can make our new technique also work with solely failed executions as
well? In the next section, we are going to elaborate on our model to address
the challenges.

5.3 Our Fault-localization Model

5.3.1 Problem Setting

Suppose P is a faulty program represented by a set S of statements {s1, …,
si, …, sn}. Let {t1, …, tj, …, tm} be a set of failed executions of P. Further let
{t’1, …, t’j, …, t’m} be a set of passed executions of P. We use the term Ci,j to
denote the execution count of si in tj. It means the number of times that the
statement si has been exercised in the failed execution tj.

Our aim is to develop a technique to construct a suspicious list that
contains all statements in S sorted in descending order of their suspiciousness.
To ease our presentation, we will consistently use the subscript i (including i1
or i2) to refer to a statement, and the subscript j (including j1 or j2) to refer to
an execution.

5.3.2 Our Observation

Different executions may exercise the same statement for different numbers of
times. In other words, Ci,j1 may be different from Ci,j2 for j1  j2. To facilitate
our model development, we first define the concept of failing rate as follows.

Definition 5.3.1: The failing rate Fi(c) of si calculates the fraction of failed
executions with respect to all executions (passed or failed) that each exercises
the statement si exactly c times. Thus:

Chapter 5

78

௜ሺܿሻܨ ൌ
ห൛ݐ௝หܥ௜,௝ ൌ ܿൟห

௜ܰሺܿሻ
if ௜ܰሺܿሻ ് 0; otherwise undefined.

where |{tj | Ci,j = c}| stands for the number of failed executions that each
exercises si exactly c times, and Ni(c) stands for the number of executions
(passed or failed) that each exercises si exactly c times. In particular, if no
failed execution exercises si exactly c times, the value of Fi(c) is also undefined.

Note that the value range of Fi(c) is [0, 1]. Take Figure 5.2(b) for
illustration: FL121(6) is 0.016 and FL121(3) is undefined.

In Section 5.2 we have preliminarily illustrated that the more frequently a
faulty statement has been exercised by a program execution, the more likely
will the program execution reveal a failure. Substituting the corresponding
terms in Definition 5.3.1, we obtain the following heuristics. For a faulty
statement si, the higher the value of c, the higher will be the value of the
corresponding Fi(c). We further observed in Section 5.2 that L121, which is
close to the faulty statement, also has such a trend. We deem that Fi(c) can
ideally be considered as a discrete monotonic increasing function of c if the
statement si is faulty or is close to a fault and affected by it (which we called
the statement fault-suspicious). In the next section, we will use this heuristics
to develop our technique that works in scenario where both passed and failed
executions are available. In particular, we will present how we further
eliminate Ni(c) to work out another formula that can be used in scenario where
only failed executions are available.

5.3.3 Our Model -- Slope

Our model can be explained via a three-stage process: calibration stage, fitting
stage, and an optional elimination stage. These stages are shown in Figure 5.3.
However, our technique, Slope, rely on the result of our model, rather than
this process (as shown in Figure 5.3). In the calibration stage, we calibrate the
failing rates Fi(c) to create Gi(c) for alleviating the impact of the potential
presence of multiple faults in a faulty program on the curve fitting accuracy. In
the fitting stage, we use a linear function to fit the data points of c, Gi(c), for
all available value of c. Figure 5.3 also show two scenarios. In scenario where
both passed and failed executions are available, we directly use the results of
line fitting to calculate the fault-suspiciousness score of each statement. In
scenario where only failed executions are available, we continue the
elimination stage to eliminate dependence on passed executions and make our
model applicable to scenarios where only failed executions are available. By
sorting all the statements according to their fault-suspiciousness scores, a

Chapter 5

79

ranked list of statements is constructed. Developers may then consider the
statements to look for the faults according to the positions of the statements in
the suspicious list, sorted in descending order of their fault-suspiciousness.

Calibration Stage

Let us consider for discussion a scenario in which P contains multiple faults.
Suppose a failed execution tj exercises si at least once and exercises other
statements as well. In general, if we have no further information, it is difficult
to decide whether the failure associated with tj is caused by executing si or by

Figure 5.3: Framework of our model

Chapter 5

80

executing the other statements. In an attempt to reduce the noise caused by
other faulty statements of P, let us take a look at Fi(0) first. Fi(0) stands for the
portion of failed executions that si has not been exercised, and yet failures are
observed from associated executions. These failures must be caused by fault(s)
other than that in si. Our idea is to use Fi(0) to approximate the effect of the
overall failing rate of all faulty statements except si, and use it to calibrate the
failing rate Fi(c) of si in terms of

௜ሺܿሻܩ ൌ ௜ሺܿሻܨ െ .௜ሺ0ሻܨ

The calibrated failing rate Gi(c) aims to estimate the “probability” of “an
execution, which exercises a statement si for exactly c times, leads to a
failure”.

Note that there is no guarantee Fi(0) is less than Fi(c), so the value range of
Gi(c) is [−1, 1]. Since we are interested in the trend of changing of Fi(c) with
respect to the change in c, we perform the linear transformation from Fi(c) to
Gi(c), which preserve the trend of changing and has more accurate physical
meaning. Note that if Fi(c) is undefined, Gi(c) will be also undefined. In
particular, if every execution exercises si, Fi(0) is undefined. In such a case,
we take Fi(0) = 0.

Fitting Stage

By pairing up each c and the corresponding Gi(c) such that Gi(c) is defined, we
can create a point c, Gi(c) in a two-dimensional (2D) space for si. Following
the heuristics given in Section 5.3.2, for a fault-suspicious statement si, Gi(c)
should ideally be a discrete monotonic increasing function of c. Therefore, we
propose to make use of a monotonic curve to fit these points on such a 2D
plane. The details are as follows:

We estimate, in two ways, the probability of “an execution, which
exercises si exactly c times, does not result in a failure”. First, we estimate it
as 1  Gi(c). The second way is by using the probability that each time (out of
a total of c times) of executing si does not lead to a failure. Let us denote by pi
the probability of “an execution, which exercises si for only once, leads to a
failure”. This probability can be estimated to be ሺ1 െ ௜ሻ௖ . Equating the two݌
probabilities obtained, we have

1 െ ௜ሺܿሻܩ ൌ ሺ1 െ ௜ሻ௖ (5.1)݌

Substituting c by x and Gi(c) by f(x), we observe that equation (5.1) is in
the format of ݂ሺݔሻ ൌ 1 െ ሺ1 െ ௜ሻ௫. From Taylor series [125], we know that݌

Chapter 5

81

f(x) can be approximated by a sum of terms calculated from the values of its
derivatives at a single point x0.

݂ሺݔ଴ሻ ൅ ݂ሺଵሻሺݔ଴ሻ
ݔ
1!

൅ ݂ሺଶሻሺݔ଴ሻ
ଶݔ

2!
൅ ڮ ൅ ݂ሺ௡ሻሺݔ଴ሻ

௡ݔ

݊!
൅ ሻݔ௡ሺߝ

where εn(x) is the error term [125]. We propose to use the sum of the first two
terms f (0) + f (1) (0) x to approximate the value of the function f (x) because
these two terms have captured the basic idea of our heuristics presented in
Section 5.3.2. Thus, we have:

௜ሺܿሻܩ ൎ ௜ሺ0ሻܩ ൅ ௜ܩ

ሺଵሻሺ0ሻ
ܿ
1!

 ൌ ሾ1 െ ሺ1 െ ௜ሻ଴ሿ݌ െ logሺ1 െ ௜ሻ݌ ڄ ሺ1 െ ௜ሻ଴݌ · ܿ
 ൌ െ logሺ1 െ ௜ሻ݌ · ܿ

Recalling that Gi(c) is designed to fit the points of c, Gi(c) with respect to
si, for different values of c, and we have chosen Gi(c) to be a linear function.
We may further perform linear fitting on these defined points, and use the
slope of the fitted line to find out the value of pi to stand for the fault-
suspiciousness of si.

We further recall from mathematics that, for pi1, pi2  [0, 1], pi1 > pi2
whenever – log(1 – pi1) > – log(1 – pi2); pi1 < pi2 whenever – log(1 – pi1) < –
log(1 – pi2); and pi1 = pi2 whenever – log(1 – pi1) = – log (1 – pi2). This
motivates us to define li to be – log(1 – pi) to simplify the algebra, and use the
slope of the line directly to provide information of the fault-suspiciousness of
si. Substituting – log (1 – pi) by li, we have:

௜ሺܿሻܩ ൌ ݈௜ ڄ ܿ

Note the value range of li is [–1/c, 1/c]. Since li means in geometry the
slope of a line, we name our technique as Slope.

We apply least square analysis [125] to minimize the error in line fitting.
The standard results of linear fitting are given as equations (5.2a) and (5.3). li
is the fitting result, ei (ei > 0) is the fitting error, and Di is the input domain of

݈௜ ൌ
∑ ሾߠ௖ · ஽೔א௜ሺܿሻሿ௖ܩ

∑ ሾߠ௖
ଶሿ௖א஽೔

 (5.2a)

ሚ݈
௜ ൌ ݈௜ ൈ maxሼܿ | ܿ  ௜ሽ (5.2b)ܦ

݁௜
ଶ ൌ ෍ ቂ൫ܩ௜ሺܿሻ൯

ଶ
ቃ

௖א஽೔

െ
൫∑ ሾߠ௖ · ஽೔א௜ሺܿሻሿ௖ܩ

൯
ଶ

∑ ሾߠ௖
ଶሿ௖א஽೔

 (5.3)

Chapter 5

82

c for si (that is, Di = {c | Gi(c) is defined}). After fitting the points, we further
normalize li to ሚ݈௜ in equation (5.2b). Our reason is that the execution counts of
different statements may not be the same, even though the calibrated failing
rate has already been in the range [0, 1]. (For example, L123 in Figure 5.2
may be executed much less frequently than L121.) Because li is the ratio of
Gi(c) over c, and the range of c for si is from 0 to max{c | c  Di}, where
max{c | c  Di} means the maximum value among all c in Di, we multiply li
by max{c | c  Di} to calculate the normalized value of li.

For each si, we have worked out two parameters, namely ሚ݈௜ and ei. Here ሚ݈௜
indicates the mean strength of the signal for the concerned statement being
suspicious to be faulty; and ei represents the standard deviation of the fitting
data, indicating the error of conformance when using our model to fit the data
points to a line. In our model, we intend to use ሚ݈

௜ to estimate the fault-
suspiciousness of the statement si (the higher the better), and ei to measure the
reliability of ሚ݈௜ (the lower the better). Inspired by the standard notion of signal-
to-noise ratio (which is defined as a mean over a standard deviation), we
design equation (5.4) accordingly.

ܴ1௜ ൌ
ሚ݈
௜

݁௜
 (5.4)

We further substitute ሚ݈௜ and ei by their formulas (equations (5.2b) and (5.3),
respectively) in equation (5.4) to obtain equation (5.5), and denote |{tj | Ci,j =
c}| by yc to simplify the presentation. In our technique, Slope, we use
equation (5.5) to determine the fault-suspiciousness of the statement si. For the
ease of reference, we refer to R1i in equation (5.5) as the ranking score of the
statement si. Note that the value range of R1i is [−∞, +∞]. The higher the value
of R1i, the more fault-suspicious will be the statement si.

Elimination Stage (Optionally used when Passed Executions are
Unreliable to Use or Unavailable)

ܴ1௜

ൌ
∑ ൤ܿ · ሺ

௖ݕ

௜ܰሺܿሻ െ
଴ݕ

௜ܰሺ0ሻሻ൨௖א஽೔
ൈ maxሼܿ | ܿ  ܦ௜ሽ/ ∑ ሾܿଶሿ௖א஽೔

ඨ∑ ሾܿଶሿ௖א஽೔
· ∑ ቈ൬

௖ݕ

௜ܰሺܿሻ െ
଴ݕ

௜ܰሺ0ሻ൰
ଶ

቉௖א஽೔
െ ቆ൬∑ ൤ܿ · ሺ

௖ݕ

௜ܰሺܿሻ െ
଴ݕ

௜ܰሺ0ሻሻ൨௖א஽೔
൰

ଶ

/ ∑ ሾܿଶሿ௖א஽೔
ቇ

 (5.5)

Chapter 5

83

From equation (5.5), we observe that the calculation of R1i requires Ni(c),
which in turn requires the execution counts of passed executions. When there
are only failed executions (such as in the scenario described in Section 1 to
support an earlier start of fault localization), we continue the next stage to
eliminate the parameter Ni(c) to make a formula that does not rely on passed
executions or passed test cases.

To eliminate this parameter Ni(c) from Equation (5.5), for each statement si,
we use ഥܰ௜ as the estimate of Ni(c) as follows, where ഥܰ௜ is the mean value of
Ni(c) for all c for the statements si.

ഥܰ௜ ൌ
1

|௜ܦ|
෍ ௜ܰሺܿሻ
௖א஽೔

After substituting each Ni(c) in equation (5.5) by ഥܰ௜, we obtain equation
(5.6). After simple mathematical manipulation, ഥܰ௜ can be eliminated from
equation (5.6) and we get equation (5.7). Although in previous model
development steps (e.g., Equation (5.5) and (5.6)), the computation of Ni(c)
related to passed executions, now, equation (5.7) is fully independent of any
passed execution parameter.

5.3.4 Dealing with Expectance Cases

For an executable statement si with only one sample point, it means that all
failed executions exercise that statement. In such a case, equation (5.7) cannot
be directly applied, and we assign its ranking score Ri as +∞ (or the largest
value supported by system). When the value of the denominator in equation
(5.7) is zero, the equation is undefined, in which case we assign a ranking
score of ∞ (or the largest negative value supported by system). For a
statement si with no sample point, which means si has not been exercised in

ܴ௜ ൌ
∑ ൤ܿ · ሺ

௖ݕ
ഥܰ௜

െ
଴ݕ
ഥܰ௜

ሻ൨௖א஽೔
ൈ maxሼܿ | ܿ  /௜ሽܦ ∑ ሾܿଶሿ௖א஽೔

ඨ∑ ሾܿଶሿ௖א஽೔
· ∑ ቈ൬

௖ݕ
ഥܰ௜

െ
଴ݕ
ഥܰ௜

൰
ଶ

቉௖א஽೔
െ ቆ൬∑ ൤ܿ · ሺ

௖ݕ
ഥܰ௜

െ
଴ݕ
ഥܰ௜

ሻ൨௖א஽೔
൰

ଶ
/ ∑ ሾܿଶሿ௖א஽೔

ቇ

(5.6)

ܴ௜ ൌ
∑ ሾܿ · ሺݕ௖ െ ஽೔א଴ሻሿ௖ݕ

ൈ maxሼܿ | ܿ  /௜ሽܦ ∑ ሾܿଶሿ௖א஽೔

ට∑ ሾሺݕ௖ െ ஽೔א଴ሻଶሿ௖ݕ
െ ቀ൫∑ ሾܿ · ሺݕ௖ െ ஽೔א଴ሻሿ௖ݕ

൯
ଶ

/ ∑ ሾܿଶሿ௖א஽೔
ቁ

(5.7)

Chapter 5

84

any failed executions, we always append such statements to the end of the
resultant list of statements since such statements have least possibility to be
related to faults.

The technique first sorts statements in decreasing ranking scores (R1i is
used when both passed and failed executions are available, Ri is used when
only failed executions are available) and resolves tie cases by next sorting in
decreasing order of the numerator of equation (5.7) (indicating the slope of the
linear curve). For statements in tie cases that still cannot be resolved, Slope
“assigns them a rank as the sum of the number of the tied statements and the
number of statements ranked before them” [112].

5.4 Empirical Evaluation

5.4.1 Subject Programs

We use seven Siemens programs and four UNIX tool programs as our
experiment subjects. They all have been used in previous work (such as
[76][116]) to evaluate existing fault-localization techniques. We downloaded
them from SIR [40]. There are several versions for each subject program. Each
version contains one or more faults. SIR also supplies a test pool for each
subject program.

Table 1 shows the statistics of these subject artifacts. Take flex as an
example. The real-life versions used are in the range of flex-2.4.7 to flex-
2.5.4. In total, 81 faults are associated with flex, and 18 of them are finally
chosen in our experiment. (The selection strategy will be described later.) For
these 18 faulty versions, the number of lines of executable statements of each
version is in the range of 8571 to 10124. SIR provides a test pool with 567 test
cases for flex. In total, we use 122 Siemens program faulty versions and 64
UNIX faulty versions in our single-fault experiment, and use 20 faulty
versions of UNIX programs in our multi-fault experiment because UNIX
programs have medium scales and are more applicable to seed multiple faults.

5.4.2 Peer Techniques

Chapter 5

85

We choose four techniques, namely Jaccard [1], Ochiai [1], Tarantula [68],
and SBI [112] to compare with our technique. We do not select CBI or
SOBER because in our previous studies [120], we have empirically found that
their effectiveness on the UNIX programs flex and gzip are much poorer than
those of Jaccard, Tarantula, and SBI. Moreover, the two predicate-level
techniques need to be evaluated using another metric (t-score [90]).

Tarantula [68] counts the chance that a statement in a program has been
exercised by failed executions as well as the chance that the statement has
been exercised by passed executions. It then uses the ratios of the former over
the sum of the former and the latter to estimate how much the statement is
fault-suspicious. Finally, all statements are sorted in a list according to such
computed fault-suspiciousness, and all the non-executable statements are
appended to the list. We show Tarantula’s ranking formula, RTarantula(si)
below, where m and m’ mean the number of failed executions and the number
of passed executions, respectively. failed(si) and passed(si) are the number of
failed executions and the number of passed executions, respectively, that
exercise si at least once. Tie cases are solved by sorting the statements in
descending order of confidence Conf(si) [112].

்ܴ௔௥௔௡௧௨௟௔ሺݏ௜ሻ ൌ
݂݈ܽ݅݁݀ሺݏ௜ሻ/݉

݂݈ܽ݅݁݀ሺݏ௜ሻ/݉ ൅ ௜ሻ/݉ᇱݏሺ݀݁ݏݏܽ݌

Table 5.1: Statistics of subject programs

Name of
program

Version
in real-life

of
faults

of execut-
able LOC

of applicable versions
(single-fault / multi-fault)

Size of
test pool

print_tokens unknown* 7 341-342 5 / 0 4130
print_tokens2 unknown* 10 350-354 10 / 0 4115

replace unknown* 32 508-515 30 / 0 5542
schedule unknown* 9 291-294 6 / 0 2650

schedule2 unknown* 10 261-263 8 / 0 2710
tcas unknown* 41 133-137 40 / 0 1608

tot_info unknown* 23 272-274 23 / 0 1052
flex 2.4.7-2.5.4 81 8571-10124 18 / 4 567
grep 2.2-2.4.2 57 8053-9089 17 / 6 809
gzip 1.1.2-1.3 59 4035-5159 13 / 4 217
sed 1.18-3.02 25 4756-9289 16 / 6 370

Total (single-fault / multi-fault): 186 / 20
* These real-life version numbers cannot be found in SIR.

Chapter 5

86

௜ሻݏሺ݂݊݋ܥ ൌ max ሼ ݂݈ܽ݅݁݀ሺݏ௜ሻ ݉⁄ , ௜ሻ/݉ᇱݏሺ݀݁ݏݏܽ݌ ሽ

CBI [75] aims to identify a program’s fault-relevant predicates [14]. It
computes the probability that a predicate is evaluated to be true in the set of
failed executions, and that in the whole set of executions (both passed and
failed). CBI computes the increase from the latter probability to the former
one. The predicates are sorted in descending order of such increases. To be
fair in comparing with statement-level techniques (such as Tarantula), the
predicate-level technique CBI has been adapted to the statement-level by Yu
et al. [112]. We use their adapted version SBI [112] in our experiment. The
ranking formula is as follows.

ܴௌ஻ூሺݏ௜ሻ ൌ ݂݈ܽ݅݁݀ሺݏ௜ሻ ൫݂݈ܽ݅݁݀ሺݏ௜ሻ ൅ ⁄௜ሻ൯ݏሺ݀݁ݏݏܽ݌

We further include two more techniques, Jaccard [1] and Ochiai [1]. They
are similar to Tarantula except that they use different ranking formulas and
do not use the confidence value Conf(si) to resolve tie cases. They have been
compared or evaluated in [106][112][120]. The respective ranking formulas
for Jaccard and Ochiai are as follows.

௃ܴ௔௖௖௔௥ௗሺݏ௜ሻ ൌ ݂݈ܽ݅݁݀ሺݏ௜ሻ ൫݉ ൅ ⁄௜ሻ൯ݏሺ݀݁ݏݏܽ݌
ܴை௖௛௜௔௜ሺݏ௜ሻ ൌ ݂݈ܽ݅݁݀ሺݏ௜ሻ ඥ݉ ൈ ሺ݀݁ݏݏܽ݌ሺݏ௜ሻ ൅ ݂݈ܽ݅݁݀ሺݏ௜ሻሻ⁄

These four peer techniques are used in the experiment of [112].

5.4.3 Experimental Setup

Faulty Version Selection Strategy

Each fault in each version of the subject programs is used as one faulty version
in our experiment. We view that the four UNIX tool programs have realistic
scales, so we further use them to simulate multi-fault versions. Some faults in
the same version are conflicting and cannot be enabled simultaneously. To
avoid conflicts, we exclude such faults, and use the remaining faults as the
fault pool. We randomly generate 10 two-fault versions and 10 three-fault
versions based on the fault pool. (Each two-fault version contains two faults,
and each three-fault version contains three faults.) The same generation
process and same numbers of faulty versions for two-fault and three-fault
experiment are also used in [112]. However, we use more realistic program
subjects.

In addition, with regard to a faulty version, if many test cases are failure-
causing test cases, it means that fault in such a faulty version is very easy to be

Chapter 5

87

revealed. On the other hand, if a faulty version comes with no failure-causing
test case, it may be a very hard fault. In our experiment, we exclude both the
best cases and the worst cases. In particular, we use the magic number 25
(more than 25% of all test cases are failure-causing ones) as the threshold to
determine a best case. Similar strategies are also used in previous work
[40][52][68]. (For the worst case, another reason is that our and the other peer
techniques require the existence of failed executions.)

Test Suite Generation

For each faulty version, we generate a test suite following the adequacy
strategy of statement coverage. We randomly select one pair of passed and
failure-causing test cases from the associated test pool, and then randomly add
in an unselected test case as long as it increases the cumulative statement
coverage of the generated test suite, until the created test suite achieves a
statement coverage identical to that of the test pool. A similar strategy is used
in [64].

Experiment Scenarios

In our experiment, we iterate two scenarios to evaluate the effectiveness of
those techniques. In the first scenario, we use both passed and failure-causing
test cases in the generated test suite as input to demonstrate a conventional
statistical fault-localization environment. In the second scenario, we pick out
all failure-causing test cases from the generated test suite and use them as
input to demonstrate a fault-localization environment with only bug report
provided. We denote these two scenarios as the “pass and fail” scenario and
the “fail only” scenario.

Experimental Environment

Our experiments are carried out on a Dell PowerEdge 2950 server with two
Xeon 5430 processors, serving Solaris UNIX with the kernel version of
Generic_120012-14. The version of the C++ compiler is Sun C++ 5.8.

We use gcov-3.4.3 (flags –a –b –c –f –u) to collect the execution counts
of statements. For every statement, we use all the execution count data
provided by gcov, without sampling. We also follow [68] to exclude all test
cases that produce crashed program executions (that cannot be processed by
gcov).

Chapter 5

88

5.4.4 Effectiveness Metrics

In our experiment, we examine the list until the faulty statements can be
isolated, to measure the performance of a technique. In particular, if a fault lies
in some non-executable statement (such as the case of a constant definition
fault or a statement omission fault), dynamic information does not help locate
it. To reflect the techniques’ fault-localization capability on such faults, as
previous work [64][120], we mark the directly influenced or the adjacent (to
the fault) executable statement as a (pseudo-)faulty statement, and evaluate the
effectiveness of these techniques on locating it. We check the statements in the
ranked list according to their ranks (statements with same rank are examined
as a whole), and calculate the percentage of statements examined when
reaching the first faulty statement. We define the metric as follows.

% of code examined

 ൌ
number of examined statements

total number of statements
ൈ 100%

5.4.5 Results and Analysis

Overall Results on All Programs

Figure 5.4 shows the overall results of those techniques on all 206 faulty
versions in the “pass and fail” scenario (shown in plot Figure 5.4(a)) and also
in the “fail only” scenario (shown in plot Figure 5.4(b)). In each plot, the X-
axis stands for the percentage of code examined, the Y-axis stands for the
percentage of faults located within the code examined as indicated by the X-
coordinate. Therefore, the curve in each plot shows the trend of speed of a
technique locating faults in faulty versions. Our method Slope is drawn using
the red (heavier) curve with hollow triangles showing the data points sampled
at 5%, 10%, 15% code examined points and so on. From the figure, we see
that all curves start at the 0% code examining point with 0% faults located,
and reach the 100% faults localization before going to the 100% code
examining point. It can be explained as following. First, no fault can be
located when examining no code. Second, since we include all statements
(executable or non-executable, see the metric in Section 5.4.4) when checking
and the fault must exist in executable statements (see the mark of faulty
statement in Section 5.4.4), all faults can be located without the need of
examining all statements.

Chapter 5

89

(a) Overall results in “pass and fail” scenario

(b) Overall results in “fail only” scenario

Figure 5.4: Overall results on all faulty versions

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

%
 o

f
fa

u
lt

s
lo

ca
te

d

% of code examined

Slope

Jaccard

Ochiai

Tarantula

SBI

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

%
 o

f
fa

u
lt

s
lo

ca
te

d

% of code examined

Slope Jac../Och../Tar..Jac./Och./Tar.

Chapter 5

90

We observe from Figure 5.4(a) that, in the code examined range from 10%
to 100%, the curve of Slope is above, or at least overlap with, the curves of
the peer techniques. For example, when examining up to 20% code, Slope can
locate faults in 86% (178 out of 206) faulty versions; while Jaccard, Ochiai,
Tarantula, and SBI can only locate faults in 77% (159 out of 206), 77% (159
out of 206), 79% (162 out of 206), and 77% (159 out of 206) faulty versions,
respectively. For the other code examining points, say 30%, the results can be
similarly explained. However, when examining up to 5% code, Slope is not as
effective as the others do and has space of improvements.

One can easily observe that when there is no passed execution, the ranking
formulas for Jaccard, Ochiai, and Tarantula degenerate to output same
ranked list of statements. Therefore, in Figure 5.4(b), we use a curve annotated
with “Jac./Och./Tar.” instead of showing three overlapping curves.
Additionally, we do not show the effectiveness of SBI in this scenario because
SBI’s formula gives all executed statements the same rank and does not have
any fault-localization capability in this scenario.

We observe from Figure 5.4(b) that the curve of Slope is always above, or
at least overlap, the curves of the other techniques. For example, when
examining up to 10% code, Slope can locate faults in 57% (118 out of 206)
faulty versions; while Jaccard, Ochiai, and Tarantula can only locate faults
in 37% (77 out of 206) faulty versions. The other checking points can be
similarly explained. In the first half code examining range, 0% to 50%, Slope
always locates more faults than the others do. After 50% code has been
examined, all the faults have been located. Interestingly, we observe that the
effectiveness of Slope in Figure 5.4(b) is close to that of Figure 5.4(a);
whereas the effectiveness of peer techniques shows very noticeable
degradation.

Overall, we find that Slope has a promising fault-localization capability. It
is however less effective than the peer techniques in the “pass and fail”
scenario in small code examination range. Moreover, when passed executions
are not reliable or unavailable to be used, its effectiveness does not degrade as
dramatic as the peer techniques do.

In the next section, we continue to report the statistics of individual results
on each faulty version. We further note that we originally plan to show the
plots of individual programs; however, there are 11 programs in total and each
program has two plots for the two scenarios, we do not condense them into
this thesis.

Individual Results on Each Faulty Version

To give a clear representation, we use Figure 5.5 to compare the effectiveness
of these techniques on each individual faulty version. The X-axis stands for

Chapter 5

91

the 206 faulty versions (with 186 single-fault versions and 20 multi-fault
versions). The Y-axis is the “difference of percentage of code examined” to
locate the fault indicated by X-axis. Note that, for the ease of presentation for
each curve, the 206 faulty versions are placed in the ascending order of the Y-
value of their coordinates. Take the 41st point for the curve indicated as
“Slope – Tarantula” for illustration (that is, x = 41), Slope needs to examine
0.342% of all code to locate it, while Tarantula need to examine 4.574% of
all code before reaching the fault. Therefore, the difference (in the figure) is
shown as 0.342% − 4.574% = −4.232%. Such a negative value means the
effectiveness of Slope is better than that of Tarantula. As such, each curve in
the figure indicates the difference on effectiveness between Slope and that of
the corresponding technique. Intuitively, the larger the area below X-axis of
enclosed portion by that curve and axis, the more effective is Slope than that
technique.

(a) Effectiveness difference in “pass and fail” scenario

-0.55

-0.45

-0.35

-0.25

-0.15

-0.05

0.05

0.15

0.25

1 42 83 124 165 206

d
if

fe
re

n
ce

 o
n

 %
 o

f
co

d
e

ex
am

in
ed

faulty versions

Slope - Tarantula

Slope - SBI

Slope - Jaccard

Slope - Ochiai

Chapter 5

92

In plot Figure 5.5(a), we observe that, for a majority of X values (that is,
for the same fault), the points of Jaccard, Ochiai, Tarantula and SBI are
close to one another. It means that, for the majority of the 206 faulty versions,
their effectiveness has strong correlations. We also calculate the area below
the X-axis and that above the X-axis, and find that the former is always larger
than the latter. That helps explain why Slope has an average improvement
over the other techniques. In Figure 5.5(b), we have the same observation, but
much more noticeable. For about half of the faulty versions, Slope performs
better; only for a small number of faulty versions (7 out of 206), can Jaccard,
Ochiai, and Tarantula catch up with Slope.

Statistics of Individual Results

(b) Effectiveness difference in “fail only” scenario

Figure 5.5: Effectiveness difference on all faulty versions

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

1 42 83 124 165 206

d
if

fe
re

n
ce

 o
n

 %
 o

f
co

d
e

ex
am

in
ed

faulty versions

Slope - Jac../Och../Tar..Slope - Jac./Och./Tar.

Chapter 5

93

Table 5.2 and Table 5.3 show the statistics of effectiveness for all the
experimented techniques on the 186 single-fault and 20 multi-fault faulty
versions, respectively. For the reason as stated previously, for the “fail only”
scenario, we group the effectiveness of Jaccard, Ochiai, and Tarantula into
the same column and show them in the “Jac./Och./Tar.” column. The best
technique in each row has been highlighted to ease readers to reference.
Let us first focus on the “pass and fail” scenario. In Table 5.2, let us first take
the “min” row for illustration. It means that, in the best case, Slope needs
0.007% code examination effort to locate a fault; it is comparable to the
effectiveness of Jaccard, Ochiai, Tarantula, and SBI in the best case, which
are 0.007%, 0.007%, 0.007%, and 0.010%, respectively. In the worst case
(“max” row), Slope needs 34.884% code examination effort to locate a fault;
it is better than the peer techniques. When focusing on the “mean” and “stdev”
rows, which show the average and standard deviation of code examination
effort to locate a fault, Slope is better than the peer techniques.

In the “fail only” scenario, similar observations can be found. The
statistics on the “min”, “max”, “mean”, and “stdev” parameters show that
Slope is also the most effective among the five.

Let us next move to Table 5.3, which shows the results on the 20 multi-
fault faulty versions. From the worse case line (“max” row), we observe that
Slope locates all faults when examining up to 13.751% code; while Jaccard,
Ochiai, Tarantula, and SBI need to examine much more code (requiring to

Table 5.2: Statistics of individual results on 186 sing-fault versions

“pass and fail” scenario “fail only” scenario

Slope Jaccard Ochiai Tarantula SBI Slope Jac./Och./Tar.
min 0.007% 0.007% 0.007% 0.007% 0.010% 0.007% 1.130%
max 34.884% 47.231% 47.231% 47.231% 47.231% 36.047% 47.231%

mean 8.933% 10.491% 10.421% 10.660% 10.815% 13.248% 21.776%
stdev 9.754% 13.392% 13.379% 13.494% 13.445% 12.121% 13.498%

Table 5.3: Statistics of individual results on 20 multi-fault versions

“pass and fail” scenario “fail only” scenario

Slope Jaccard Ochiai Tarantula SBI Slope Jac./Och./Tar.
min 0.008% 0.079% 0.079% 0.062% 0.606% 0.007% 1.078%
max 13.751% 38.040% 37.184% 37.500% 45.725% 13.678% 14.392%

mean 3.564% 7.764% 7.510% 3.723% 8.529% 4.004% 5.835%
stdev 3.746% 11.908% 11.634% 8.235% 11.692% 3.694% 3.476%

Chapter 5

94

examine around 40% of code) to locate the last fault. We further observe that,
in the best case (the “min” row), Slope needs to examine only 0.007% code to
locate a fault, while Jaccard, Ochiai, Tarantula, and SBI need to examine
0.079%, 0.079%, 0.062%, and 0.606% code, respectively, to locate a fault. For
the “fail only” scenario, the result of Slope is also interesting. The table
shows that our technique can, on average, locate faults by examining 4% of
code; whereas the peer techniques requires to examine 5.8%, or equivalently,
using our technique, on average, developers can examine around 100 less
statements to locate the faults.

 Given that a program having multiple faults is more common than a
program having single fault, we find that the result of Slope indicates that,
statistically, Slope can be more realistically applied to debug real-life
programs than the peer techniques.

Hypothesis Testing to Compare the Techniques

In previous sections, we have the observation that, in terms of effectiveness,
our technique Slope, on average, is better than the peer techniques. To know
whether the difference is statistically significant enough, we conduct the
Student’s t-test [125] to compare the effectiveness of Slope with those of
Jaccard, Ochiai, Tarantula, and SBI. In each of the two scenarios, we test
the null hypothesis on “the effectiveness of Slope and another technique Φ, on
the 206 versions, come from same distribution”, where Φ is replaced by one of
Jaccard, Ochiai, Tarantula, and SBI. The results are shown in Table 5.5. Let
us take the first cell for illustration. The cell, means “Slope w.r.t. Jaccard” in
the “pass and fail” scenario, and has a result of 0.033. It means that by 3.3% of
chance, the values of effectiveness for Slope and Jaccard come from same
distribution. Therefore, we may reject the null hypothesis at 5% significance
level. The table shows that all five similar null hypotheses can be rejected at
the 10% significance level and four of them can even be rejected at the 5%
significance level. In summarize, at the aforementioned significance levels and

Table 5.4: Results of Pearson correlation test to compare the
effectiveness of techniques

“pass and fail” scenario

“fail only”
scenario

Ԅ = Jaccard Ochiai Tarantula SBI Jac./Och./Tar.
Slope w.r.t. Ԅ 0.442 0.444 0.465 0.443 0.614
SBI w.r.t. Ԅ 0.970 0.970 0.983
Tarantula w.r.t. Ԅ 0.962 0.962
Jaccard w.r.t. Ԅ 1.000

Chapter 5

95

the mean effectiveness of Slope is better than the peer techniques, we
conclude that Slope is better than the other four techniques.

Case Analysis

Through case-by-case observation, we find that for 61% (125 out of 206)
faulty versions, the effectiveness difference between Slope and each of the
other techniques exceeds 5% code examination effort. On the other hand, for
only 11% (23 out of 206) faulty versions, the effectiveness difference among
Jaccard, Ochiai, Tarantula, and SBI can exceed 5%. Therefore, we want to
know whether Slope and the other techniques perform closely simply because
they just locate the same fault in a similar extent (in terms of code examination
effort). To do that, we perform the Pearson’s correlation test [125] on the
effectiveness (on the 206 faulty versions) of pairs of these techniques. The
results of correlation test are shown in Table 5.4. We observe that the
correlation of effectiveness for Jaccard, Ochiai, Tarantula, and SBI are
always above or equal to 0.962. That means their effectiveness have strong
correlations among one another. However, the correlations of Slope with
them are always less than or equal to 0.614, which is not a strong correlation.
Judging from the results, we deem that Slope works very differently from the
peer techniques to locate faults successfully.

For instance, we also use one case to illustrate their differences. In faulty
version v28 of program tcas (Figure 5.6), the fault lies on a return statement
so that the execution of any test case exercises it. Such a fault is very common
in programming [47]. Take Tarantula as illustration, such a faulty statement
has identical fault-suspiciousness score with most statements in the main
module. They are indistinguishable to either the formula or the tie breaking
strategy of Tarantula. Tarantula ranks it as the 56th element in the resultant
list and examines 32.370% code to locate it. On the other hand, the faulty
statement has larger execution count in the execution of failed executions than
in those of passed executions. Our technique Slope accurately gives high
fault-suspiciousness score to this faulty statement rather than the other
statements, and ranks it as the 6th element in the resultant statement list.
Finally, Slope examines 4.942% code and locates this fault.

Table 5.5: Results of t-test hypothesis testing to compare the effectiveness of
techniques

“pass and fail” scenario

“fail only”
scenario

Ԅ = Jaccard Ochiai Tarantula SBI Jac./Och./Tar.
Slope w.r.t. Ԅ 0.033 0.041 0.062 0.012 < 0.001

Chapter 5

96

Impact Factors on Effectiveness

We observe that Slope has better effectiveness in the “pass and fail” scenario
than in the “fail only” scenario. It is understandable because more information
(come from the passed executions) is provided in the former scenario.
However, there are some drawbacks. For example, the standard deviation in
the “pass and fail” scenario is larger than that in “fail only” scenario. One
factor could be the presence of coincidental correctness [106] related to passed
executions.

Moreover, to apply the effectiveness metric on the multi-fault programs, it
appears to locate the first fault earlier, than on the single-fault programs. This
could be due to that the chance of hitting faulty statement just increases. Thus,
the detailed analysis on the effectiveness on single-fault programs and multi-
fault programs should be handled separately.

5.4.6 Threats to Validity

Internal Validity

We have checked the correctness of our tool carefully and removed all bugs
found. We choose a Dell server running on Solaris UNIX operating system
and use the Sun Studio C++ compiler. To make the results reliable, we have
carefully checked our platform.

Construct Validity

We include four representative, existing and non-author techniques in our
experiment. However, there exist other fault-localization techniques. For
example, CT [36] uses pairs of passed and failure-causing test cases to
identify faults; SOBER [76][77] is a predicate-level fault-localization work.
Since the peer techniques used in our experiment are at statement-level and
make use of whole test suite, it appears not fair to directly compare SOBER
or CT with them.

L63 return ((Climb_Inhibit == 0) ?
 Up_Separation + NOZCROSS : Up_Separation);

 /* wrong return expression */
 // return (Climb_Inhibit ?

// Up_Separation + NOZCROSS : Up_Separation);

Figure 5.6: Faulty version v28 of tcas

Chapter 5

97

We use 11 C programs to verify the effectiveness of our model. They are
equipped with test pools. We follow [112] to create multi-fault versions and
generate test suites. However, the use of other subject programs, test suite
generation strategy, or multi-fault version generation strategy may produce
different results. Some previous work (such as [76]) ever reported that, the
larger the test suite, the better will be the effectiveness of their techniques.

External Validity

Using other metrics may produce different results. In previous work (such as
[90]), t-score is used to evaluate the effectiveness of fault-localization
techniques. However, there exist reported limitations of the use of t-score (see
[18], for example). In addition, t-score may be not suitable for evaluating
statement-level techniques. Therefore, we adopt a metric suggested by some
later work (e.g., [64][68][69][112]).

Some previous studies tend to focus on the most effective part when
evaluating a technique (e.g., the most favorable faulty versions) and ignore the
most ineffective part. In this thesis, we adopt to use the statistics parameters
(e.g., mean) to evaluate them. We believe that it is a more fair account on
evaluating the effectiveness of fault-localization techniques. Yu et al. also use
the mean metric to compare techniques [112].

5.5 Summary

In this chapter, we have proposed a new model and developed a technique
Slope with two formulas, which share the same idea (model) and can be
applied to scenarios with or without passed executions, respectively. Our
underlying model first collects the execution counts of statements and, for
each statement, calculates the fraction of failed executions with respect to all
executions having the same execution count. It then calculates the failing rate
accordingly. Considering each tuple of failing rate, execution count as a
point in two-dimensional space, the model lines up these points and uses the
slope of the line as the mean of the signal of suspiciousness and the fitting
error as the noise to the signal. This chapter has developed a formula based on
the idea of signal-to-noise ratio. Our empirical study has shown that Slope
produced promising results. After that, we continue to eliminate the
dependency on passed executions by further approximation, which make our
technique (Slope) effectively work in scenarios where passed executions have
not been available or unreliable to use.

The major contribution of this chapter is twofold. (i) A novel and effective
dynamic fault-localization technique that can work in absence of passed
executions is developed. (ii) We demonstrate a “fail only” scenario and

Chapter 5

98

present the first empirical evaluation results of this kind of technique. The
results show that this technique is empirically promising.

Chapter 6

Non-parametric Hypothesis Testing

Method used in Predicate-based

Statistical Fault-localization

Techniques

In the previous chapter, we perform a finer-grained investigation based on pre-

vious statistical predicate-level fault-localization techniques. However, we find

that all these predicate-level fault-localization techniques make an assumption

that the execution spectra of predicates form specific distributions. Since it is

common that applying a model on an unmatched distribution will generate inac-

curate result, we, in this chapter, investigate the use of different non-parametric

and parametric methods in the predicate-level fault-localization techniques.

We first recall the nature of predicate-level fault-localization techniques, and

then use a motivating example to demonstrate the need of non-parametric hy-

pothesis testing methods. After that, we raise research questions to study the

effectiveness and validity of using different non-parametric and parametric hy-

pothesis testing methods in predicate-level statistical fault localization, and then

use empirical study to answer the proposed research questions.

This chapter is partly based on our work in [119]. In this thesis, further

extension is made on the basis of that paper.

6.1 Background

Predicate-level statistical fault-localization techniques presume that, for predi-

cates near the fault position, their evaluation results (successes or failures) are

99

Chapter 6

highly correlated to the successes or failures of the program executions. Hence,

identifying effective program predicates and formulating correct and robust statis-

tic comparisons are important for such techniques.

Since these previous predicate-based techniques propose various parametric

hypothesis testing models to describe the feature spectra, to apply their self-

proposed hypothesis testing models, they set up underlying presumptions that

the program feature spectra form specific kinds of known distributions. Let us

take the two representative existing predicate-based fault-localization techniques

CBI [74][75] and SOBER [76][77] for illustration. Both of these two techniques

estimate how much each individual predicate is related to fault and accordingly

rank all the predicates to generate a suspicious list, to guide searching fault lo-

cations in faulty program. Note that a predicate may be evaluated to be true or

false, or even not evaluated, in a program execution. CBI [74][75] checks the

probability of that predicate to be evaluated true in all the failed executions and

that probability in all the executions (irrespectively of whether passed or failed).

It then measures the increase from the former to the latter, and uses such increase

to indicate how much that predicate is related to fault(s). SOBER [76][77] does

not only record whether or not a predicate is evaluated to be true or false, but

also the number of times that predicate is evaluated to be true or false, with re-

spect to a program execution. It defines evaluation bias to estimate the chance

that a predicate is evaluated to be true, with respect to a program execution. For

example, let us suppose P is a predicate and π(P) is the probability that P is eval-
uated to be true, with respect to a program execution. From the input test suite,

we use nt
nt+n f

to estimate π(P), where nt and n f are the numbers of times that P

is evaluated to be true and that number of times for false, respectively. SOBER

then makes use of Central Limit Theorem, and constructs a hypothesis test on the

existence of difference between the distributions of evaluation biases of π(P) for
passed executions and failed executions, using the mean and standard deviation

statistical parameters. It deems that the larger the difference, the more will P be

related to a fault. The aforementioned probability in CBI can be regarded as the

mean value of coverage status if we count one for a predicate being evaluated to

be true or false, with respect to a program execution, and count zero for a pred-

icate not evaluated, with respect to a program execution. Therefore, we know

that the technique of CBI belongs to a parametric fault-localization technique.

The result is that CBI does not distinguish the number of times that a particular

program element (a statement or a predicate) has been executed in an execution,

and Liu et al. [77] empirically show that such a method can be less accurate

than one in which the distributions of evaluation biases in passed executions and

failed executions are considered. On the other hand, since SOBER uses the mean

100

Chapter 6

and standard deviation statistics parameters to test the hypothesis constructed, it

uses parametric hypothesis testing method. By using the Central Limit Theo-

rem, SOBER test their desired hypothesis with the mean and standard statistical

parameters, which are generally used to describe a normal distribution.

However, our empirical study in Section 6.2 on the Siemens suite [40] shows

that the assumption of predicate spectra forming normal distribution is not well

supported by the empirical data. What is more, the spectra of most predicates

in Siemens programs vary a bit from one another and are far from having any

known distribution. Hence, a parametric or ad hoc hypothesis testing approach

based on the presumption of normal distributed feature spectra may lose its dis-

crimination capability significantly and produce non-robust results. In previ-

ous work [62][60], these motivate us to adopt a generic mathematical model

in predicate-based fault-localization approach. Based on previous predicate-

based fault-localization techniques, we proposed a hypothesis testing framework

for fault localization, and adopted a standard non-parametric hypothesis testing

method, the Mann-Whitney test, instead of previous self-proposed hypothesis

testing models, to use in this model. We conducted an empirical experiment

to show that the effectiveness of previous techniques on the Siemens programs

is observably improved. However, what is not clear is that either the improve-

ment is due to the use of a non-parametric hypothesis testing method instead

of a parametric hypothesis testing method, because non-parametric hypothesis

testing method better describe the feature spectra distribution rather than any

parametric hypothesis testing methods, or it is due to the use of a standard hy-

pothesis testing method instead of a self-proposed hypothesis testing method,

because standard hypothesis testing method are mathematically more robust and

elegant?

At the mean time, can we have more confidence on a more general result that

a non-parametric hypothesis testing model is in most cases better than a self-

proposed hypothesis testing model or a standard parametric hypothesis testing

model, when using in a fault-localization environment with feature spectra do

not form any known distribution?

In view of the above-mentioned initial study, in this chapter, we further ask a

couple of questions: Can the feature spectra of program elements be safely con-

sidered as normal distributions so that parametric fault-localization techniques

can be soundly and powerfully applied? Alternatively, to what extent can such

program spectra be regarded as normal distributions? If the answers to these

questions are negative, we further ask the following question: Can the effective-

ness of non-parametric fault-localization techniques be really decoupled from

the distribution shape of the program spectra?

101

Chapter 6

6.2 Motivation

In this section, we use a code excerpted from the faulty version “v1” of program

“tot info” from the Siemens suite [40] to motivate our work. Figure 6.1 shows

the code excerpted, where seven predicates are included, labeled as P1 to P7.

Close to predicate P4, there lies in a statement omission fault. According to the

location of the fault, predicate P5 is the directly affected predicate. The aim of

predicate-based fault-localization techniques is to find such predicates P4 or P5
that are mostly close to fault, in terms of their positions (i.e., line number) in the

code. Note that, according to previous studies [47], statement omission fault is

hard to identify, even if the execution of a failure-causing test case is traced step-

by-step. Previous studies [62][74][75][76][77][119][122][123] tell us the feature

spectra of predicates can be used as good indicator of fault location. Therefore,

for each of the predicates P1 to P7, we use two histograms [62] to show their

distributions of evaluation biases in passed executions and failed executions, re-

spectively, in Figure 6.2 and 6.3. Take the P7 plot for passed executions in 6.3 as

illustration. The left-most bar means that, for 82 passed executions, the evalua-

tion biases of P7 are in the range of [0.65, 0.66).

We have the following observations on these histograms: For each predicate

among P1, P2, P3, P6, and P7, the evaluation biases captured from passed execu-

tion and those from failed executions form similar histograms. For predicate P4
or P5, the histogram formed by evaluation biases from passed executions and that

formed by evaluation biases from failed executions have observable difference

between each other. It consolidate the underlying heuristic in previous studies

that the distribution differences of evaluation biases over passed and failed exe-

cutions can be good indicators of the fault relevance of predicates.

However, the model used to describe the feature spectra and test their sim-

ilarity should be determined with the distribution of feature spectra considered

in. We notice that the histograms in Figures 6.2 vary very much, and no one

of them can be quantified to have a known (e.g., Gaussian or normal) distribu-

tion. In our previous studies, we report that “for nearly 60% of a total of 10042

predicates, the assumption of their evaluation biases forming Gaussian distribu-

tion is rejected at the 5% significance level [62]”. As a result, we deem that, as

far as the programs under study can represent, assuming the evaluation biases

of predicates to have normal distribution is unrealistic. Take the histograms of

P5 as an example. It is obviously far from a normal distribution. If we deem its

evaluation bias to have normal distribution and calculate the statistical parameter

mean, such a value in left plot (passed executions) and that in right plot (failed

executions) are 0.101 and 0.325, respectively. Though we may intuitively draw

102

Chapter 6

Program : tot info.c [62]

P1: if (rdf ≤ 0 ‖ cdf ≤ 0) {
info = -3.0;

goto ret3;

}
...

P2: for (i = 0; i < r; ++i) {
double sum = 0.0;

P3: for (j = 0; j < c; ++j) {
long k = x(i,j);

P4: if (k < 0L){
info = -2.0;

E1: /*goto ret1;*/

}
sum += (double)k;

}
N += xi[i] = sum;

}
P5: if (N ≤ 0.0) {

info = -1.0;

goto ret1;

}
P6: for (j = 0; j < c; ++j) {

double sum = 0.0;

P7: for (i = 0; i < r; ++i)
sum += (double)x(i,j);

xj[j] = sum;

}
...

ret1:

Figure 6.1: Excerpt from faulty version “v1” of program “tot info”

103

Chapter 6

Distribution of evaluation Distribution of evaluation

bias for passed executions bias for failed executions

P1

P2

P3

P4

Figure 6.2: Distributions of evaluation biases for predicates P1 to P4

104

Chapter 6

Distribution of evaluation Distribution of evaluation

bias for passed executions bias for failed executions

P5

P6

P7

Figure 6.3: Distributions of evaluation biases for predicates P5 to P7

105

Chapter 6

a conclusion that these two numbers are not equal and there must be huge differ-

ence between them, there is no scientific support to quantify such a difference.

Besides, none of the histograms in Figures 6.2 and 6.3 resembles a normal dis-

tribution. For each predicate of every program in the Siemens suite, we have

conducted the standard Jarque-Bera test to determine whether its evaluation bias

follows a normal distribution. The results, which are given in Section 6.5.5,

show that, as far as the programs under study can represent, it is unrealistic to

assume normal distributions for the evaluation biases of predicates. On the other

hand, if we use non-parametric hypothesis testing method to compare these two

distributions, their differences are scientifically measured. This is because the

concept of non-parametric hypothesis testing methods does not rely on any pre-

sumption of distributions. To rank the predicates in their order of suspiciousness

to be fault, we only need to know the relative order of each two predicates in

terms of the differences between their “passed” histogram and their “failed” his-

togram. Therefore, we may conduct non-parametric hypothesis testing on them

and use the p-value result of such test as a measurement of suspiciousness to

compare two predicates. This is because the less the p-value result is, the more

probably the two histogram are from same population, and accordingly, the more

difference between them.

From the above observations, the assumption that the evaluation biases of

predicates form normal distributions is not well-supported by the empirical data.

Furthermore, only a small number of test cases can reveal failures in practice,

and the number of successful test cases is not large either. Because of that, in our

previous work [62], we proposed a non-parametric hypothesis testing model, and

advocated the use of a non-parametric predicate-based fault-localization tech-

nique. However, the applicability of non-parametric fault-localization technique

has not been fully investigated. Can the feature spectra of program entities be

safely considered as normal distributions so that parametric techniques can be

applied rigorously? This motivates the study in this thesis.

6.3 Our Fault-localization Framework

In this section, we explore a model for ranking fault-relevant predicates to facil-

itate locating faults in programs.

6.3.1 Preliminaries

We first revisit the notion of program predicates and evaluation biases [74][75][76][77].

106

Chapter 6

Liblit et al. [74][75] list out three types of program locations, with which a

set of predicates are associated, to sample the execution spectra, with respect to

each passed execution and each failed execution. Such program locations and

associated predicates include:

1. Branches: At each branch statement, for example, an “if” statement, a

“while” statement, CBI tracks the conditional true and false branches via

a pair of program predicates, which monitor whether the corresponding

branches have been taken. SOBER further collects the number of times

that the branches have been taken in an execution.

2. Returns: At each return statement (of a function module), six predicates

are tracked to find whether the returned value r satisfies r < 0, r ≤ 0,
r > 0, r ≥ 0, r = 0, and r 6= 0, respectively. Both CBI and SOBER collect
evaluation biases for these predicates.

3. Scalar-pairs: To track the relationship between a variable and another

variable or constant in each assignment statement, six predicates (simi-

lar to those for return statements above) are adopted by CBI. For example,

six predicates are tracked to find the Boolean relationship of x> y, x≥ y,
x< y, x≤ y, x= y, and x 6= y, for an assignment statement x := y. On the
other hand, SOBER experimentally verifies and concludes that not track-

ing these predicates will not degrade the fault-localization quality when

using the Siemens suite.

A program predicate Pmay thus be evaluated multiple times in an execution.

Each program predicate may be executed more than once in an execution. Each

evaluation will give either a true or a false value. We thus give the notion of

evaluation bias (see Definition 4.2.1 in Chapter 4) to estimate the probability of

a predicate being evaluated as true in an execution.

6.3.2 Problem Settings

We first use {P1, P2, . . . , Pm} to denote the set of predicates in a faulty program.
We further use R and R′ to denote the set of passed executions and the set of

failed executions. To differentiate the evaluation bias of a predicate in passed

executions from those in failed executions, we use Ei, j to denote the evaluation

bias of predicate pi in a passed execution r j ∈ R. Similarly, we use E
′
i,k to denote

the evaluation bias of predicate pi in a failed execution r
′
k ∈ R

′. To facilitate lo-

cating the fault, our aim is to generate a predicate list, which arranges predicates

P1, P2, . . . , Pm in descending order of how much each of them is related to fault.

107

Chapter 6

6.3.3 Our Framework

Following our previous work [62][60], we use,

R(Pi)≈ Diff
(
{Ei,1, Ei,2, . . . , Ei,|R|},{E

′
i,1, E

′
i,2, . . . , E

′
i,|R′|}

)
(6.1)

to measure the difference between the two sample sets.

As suggested by the rational of hypothesis testing methods, the p-value result

of a hypothesis testing method is the probability of getting a result as extreme

as observed, presuming the null-hypothesis. We construct the null-hypothesis

as “the two sets come from same kind of population”, and use the p-value of a

hypothesis testing method to replace the ranking function in Equation (6.1). For

the program feature spectra in failed executions and passed executions, there is

no scientific supports for the mapping of similarity of their distributions and the

magnitude of the p-value of hypothesis testing on their distributions. However,

we know that the less the p-value is, the less they are from same kind of pop-

ulation and the more difference there exist between them. Since we only need

to compare those predicates and know their relative order of suspiciousness, we

sort all the predicates according to the corresponding ranking scores computed.

Such a resultant suspicious predicate list is helpful for programmers to locate

fault in programs [74–77, 90].

6.4 Research Questions

To measure the difference between the two sample sets, a previous promising

way is to use a parametric hypothesis testing method. However, according to

standard statistics textbooks such as [78], a parametric hypothesis testing can be

meaningfully applied only if

C1: The two sample sets are independently and randomly drawn from the

source population;

C2: The scales of measurement for both sample sets have the properties of an

equal interval scale;

C3: The source population(s) can reasonably be assumed to have a known dis-

tribution.

In cases where the data from two independent samples fail to meet any of these

requirements, it is a well-known advice to use a non-parametric alternative. This

is further supported by our empirical study presented in Section 6.2, which

108

Chapter 6

Table 6.1: Techniques we are interested in

Technique Explanation Parametric or Standard or

Class Explanation Non-Parametric? Self-proposed?

TC1 aforementioned previous existing parametric self-proposed

techniques, such as CBI and

SOBER

TC2 using parametric hypothesis testing parametric standard

methods in our framework

TC3 using non-parametric hypothesis non-parametric standard

testing methods in our framework,

such as using Mann-Whitney test

shows that the underlying data populations are indeed far from a known dis-

tribution model. The robustness of non-parametric hypothesis testing also frees

us from having artificial configuration parameters.

The Mann-Whitney test is a widely used non-parametric test method. It can

be used to compare medians of two non-normal distributions. In our previous

work [62], we use the Mann-Whitney test to conduct hypothesis testing. The

P-score result of our method using the Mann-Whitney test (Mann-Whitney for

short) is the p-value of the Mann-Whitney test, which measures the difference

between the evaluation bias for all passed executions and those for all failed exe-

cutions in the Siemens suite, for a given predicate. Such results reflect howmuch

a predicate is fault-relevant. We use such p-values to sort the predicates, and

generate a list of predicates. In such a predicate list, the predicates are sorted in

descending order of how much each of them is fault-relevant. Similar procedure

is also explained in Section 6.3.2. We then apply the metrics in Equation (6.2)

to evaluate the effectiveness of fault-localization techniques. The empirical re-

sults [62][119] showed that using the Mann-Whitney test is effective. However,

does it imply that a non-parametric hypothesis testing method is more proper

than an ad hoc self-proposed hypothesis testing method in predicate-level fault

localization? To answer this question and enhance the conclusion in our previous

work [62][119], we classify the techniques under investigating into three classes

(as shown in Table 6.1) and design the following research questions.

Q1: Comparing to TC1 techniques, are TC2 techniques more effective?

Q2: Comparing to TC2 techniques, are TC3 techniques more effective?

109

Chapter 6

Q3: Comparing to TC1 techniques, are either TC2 or TC3 techniques more

effective?

The research question Q1 involves both TC1 techniques and TC2 techniques

to help make clear whether standard hypothesis testing methods perform bet-

ter than self-proposed hypothesis testing methods. The research question Q2

involves TC2 techniques and TC3 techniques to help make clear whether non-

parametric hypothesis testing methods perform better than parametric hypothesis

testing methods. The research questionQ3 enhances to answer whether standard

hypothesis testing methods, irrelevant to parametric or non-parametric, always

perform better than self-proposed hypothesis testing methods.

Further, we have another two questions to help understand some important

properties of our techniques. Research question Q4 investigates the scalability

issue of our framework; research question Q5 investigates the efficiency issue of

our framework.

Q4: With the increasing of test suite size, do T2 and T3 techniques gain more

effective fault-localization results?

Q5: Do T1, T2, and T3 techniques have comparably practical efficiencies, say

running time?

To investigate the applicability of using non-parametric hypothesis testing

model for fault localization, we further design the following research questions:

Q6: Is normal distribution common in program spectra (and evaluation biases

of predicates in particular)?

The answer to this question relates to whether it is suitable to use para-

metric hypothesis testing methods on the evaluation biases of predicates

for fault localization. If it is not common for the evaluation biases of pred-

icates be normally distributed, the assumption that the program spectra

on predicates can be regarded as normal distributions cannot be well sup-

ported. It appears not rigorous enough to use parametric hypothesis testing

methods on the evaluation biases of predicate for fault localization.

Q7: Is normal distribution common in the program spectra of the most fault-

relevant predicates (and evaluation biases in particular)?

Many fault-localization techniques (such as [62][68][70][74][75][76][77])

generate a predicate list, which arranges all the predicates in descending

order of their fault relevance. For these techniques, the most fault-relevant

110

Chapter 6

predicates play an important role, since the effectiveness of each technique

is mainly decided by the efficiency in locating such predicates in the given

predicate lists. Therefore, we also investigate the normality of the most

fault-relevant predicates. If the answer to question Q1 is no, and yet the

answer to this question is yes, the use of parametric hypothesis testing

methods in fault localization may be still acceptable.

Q8: Does the normality of evaluation biases of the most fault-relevant predi-

cates correlate with the effectiveness of a non-parametric fault-localization

technique?

If the answers to both questions Q1 and Q2 are no, it appears unsuitable

to uphold the assumption that the underlying program spectra form nor-

mal distributions. It also indicates that the use of a non-parametric fault-

localization technique such as the one proposed in our previous work [62],

is a viable choice. As such, we further investigate whether the normality

of evaluation biases of the most fault-relevant predicates correlates with

the effectiveness of a non-parametric fault-localization technique.

6.5 Experimental Evaluation

In this section, we present the experiment to answer research questions. We

first introduce the subject programs, the selected effectiveness evaluation met-

ric, and the setup of the experiment. We then report the effectiveness of our

fault-localization model, using different hypothesis testing methods, and the ef-

fectiveness of CBI and SOBER, over the Siemens suite programs. After that, we

investigate the effect of different test suite size on these fault-localization tech-

niques and report their timing issue. Finally, we discuss the threats to validity of

experiment.

6.5.1 Subject Programs

In this section, we use the seven Siemens programs, “tcas”, “tot info”, “replace”,

“print tokens”, “print tokens2”, “schedule”, and “schedule2”, to validate our

idea. Each of the programs has 7 to 41 faulty versions, each of which is seeded

with one fault. We show the number of faulty versions for them, the executable

line of code, number of test cases in the test pool, and the percentage of failure-

causing test cases among all test cases in Table 6.2. All these programs are

downloaded from the Software-artifact Infrastructure Repository (SIR [40]).

111

Chapter 6

Table 6.2: Statistics of Siemens suite

Siemens Programs
No. of Executable

Faulty Versions

No. of

LOC

No. of

Test Cases

Percentage of

Failed Test Cases

print_tokens & print_tokens2 17 341–354 4115 - 4130 1.7% - 5.4%

minimum failure rate = 0.001 print_tokens v1 /* Wrong branching around statements */

 /* case 16 : ch=get_char(…); case 25 : case 32 : token_ptr->token_id=special(next_st); */

224: case 16 : case 32 : ch=get_char(…); case 25 : token_ptr->token_id=special(next_st);

maximum failure rate = 0.125 print_tokens2 v6 /* Wrong logic or relational operands */

358: if(isdigit(*(str+i+1))) /* i+1 should be i */

median failure rate = 0.042 print_tokens2 v10 /* Wrong logic or relational operands */

380: { while (*(str /* str should be str+i */)!='\0')

replace 32 508–515 5542 2.0%

minimum failure rate = 0.0001 replace v15 /* Wrong logic or relational operands */

241: result = i + 1; /* i+1 should be i */

maximum failure rate = 0.035 replace v19 /* Missing assignment */

514: /* result = */ getline(line, MAXSTR, &result);

median failure rate = 0.006 replace v14 /* Missing OR-term/AND-term */

370: if ((lin[*i] != NEWLINE) /* && (!locate(lin[*i], pat, j+1)) */)

schedule & schedule2 19 261–294 2650 - 2710 2.4% - 3.2%

minimum failure rate = 0.001 schedule2 v5 /* Missing the whole if statement */

111: /* if(prio < 1) return(BADPRIO); */

maximum failure rate = 0.116 schedule v7 /* Missing the whole if statement */

210: /* if(ratio == 1.0) n--; */

median failure rate = 0.011 schedule v4 /* Wrong logic or relational operands */

207: if (count > 1) /* 1 should be 0 */ {

tcas 41 133–137 1608 2.4%

minimum failure rate = 0.001 tcas v12 /* Wrong logic or relational operators */

118: enabled = High_Confidence || /* || should be && */ (Own_Tracked_Alt_Rate <= OLEV)

&& (Cur_Vertical_Sep > MAXALTDIFF);

maximum failure rate = 0.182 tcas v27 /* Missing OR-term/AND-term */

118: enabled = High_Confidence && (Own_Tracked_Alt_Rate <= OLEV) /* &&

(Cur_Vertical_Sep > MAXALTDIFF) */;

median failure rate = 0.021 tcas v10 /* Wrong logic or relational operators */

105: return (Own_Tracked_Alt <= /* <= should be < */ Other_Tracked_Alt);

tot_info 23 272–274 1052 5.6%

minimum failure rate = 0.001 tot_info v23 /* Wrong logic or relational operands */

215: for (n = 0 /* 0 should be 1 */; n <= ITMAX; ++n)

maximum failure rate = 0.087 tot_info v7 /* Wrong logic or relational operators */

378: if (pi >= /* >= should be > */ 0.0)

median failure rate = 0.017 tot_info v2 /* Wrong logic or relational operators */

85: if (scanf(" %ld", &x(i,j)) == /* == should be != */ 0)

112

Chapter 6

Table 6.3: Important fault types for C programs

Orthogonal Detect Fault type [47]

Classification Class

Assignment (22.8%)

A1: Missing assignment (43%)

A2: Wrong/extraneous assignment (37%)

A3: Wrong assigned variable (11%)

A4: Wrong data types or conversion (7%)

Check (26.6%)

C1: Missing OR-term/AND-term (47%)

C2: Wrong logic or relational operators (32%)

C3: Missing branching around statements (20%)

Interface (7.8%)

I1: Wrong actual parameter expression (63%)

I2: Missing return (18%)

I3: Wrong return expression (14%)

Algorithm (42.7%)

G1: Missing the whole “if” statement (40%)

G2: Missing function call (26%)

G3: Wrong function call (8%)

Table 6.2 describes the statistics of subject program. Such statistical informa-

tion include number of faulty versions for each program, number of executable

statements for the faulty versions of each program, number of test cases, and

percentage of failure-causing test cases. Also, for the available faulty versions

of each program, the minimum, maximum, median failing rate [34], of those

faulty versions is reported, with their fault type and code excerpts. Take the pro-

gram tcas as an example. It has 41 faulty versions, each of which has 133 to 137

lines of executable code. There are 1608 test cases available for this program;

while 2.4% of them are failure-causing test cases. Among the 41 faulty versions,

fault in version v12 has minimum failing rate, which is 0.001. It is a fault under

the category of “Wrong logic or relational operators” fault. According to [47],

listed in Table 6.3, such a fault has a high chance to appear in realistic programs.

Also, take this fault as an example. Table 6.3 is explained as follows. According

to the Orthogonal Detect Classification Class, this fault belongs to the Check

class, which occupies 26.6% portion among all classes. In this class, the fault is

further under the category of C2: Wrong logic or relational operators. Such a

subclass occupies 47% portion of this class.

113

Chapter 6

6.5.2 Peer Techniques and Peer Methods

We use CBI and SOBER as two alternatives of TC1 techniques. We apply two

parametric hypothesis testing methods, the Student’s t-test and the F-test, and

two non-parametric hypothesis testing methods, the Mann-Whitney test and the

Wilcoxon signed-rank test, in our framework, and use them as alternatives of

TC2 techniques and TC3 techniques, respectively. The details of these fault-

localization approaches are explained as follows.

The Wilcoxon signed-rank test is a kind of non-parametric test used to com-

pare two distributions [78]. In our experiment, we adopt the second distribution

and the mean of the first distribution to conduct the Wilcoxon signed-rank test,

and use the resultant p-value of hypothesis testing to calculate P-score in Equa-

tion (6.2). Thus, our method using the Wilcoxon signed-rank test (Wilcoxon for

short) captures the difference of the evaluation bias for all passed executions and

those for all failed executions. Similar to the Mann-Whitney test, the Wilcoxon

signed-rank test is also selected as an alternative in our model.

The Student’s t-test hypothesis testing method checks hypotheses about the

fact that the means of two random variables, which are represented by two sam-

ples, are equal [78]. The F-test hypothesis testing method checks hypotheses

about the fact that the dispersions of two random variables, which are repre-

sented by two samples, are equal [78]. Since both of them work correctly under

the conditions that (i) both random variables have normal distributions and (ii)

samples are independent, they belongs to parametric hypothesis testing methods.

Though there is no evidence that these two conditions can be always satisfied in

our experiment, we directly apply these two parametric hypothesis testing meth-

ods in our experiment to investigate their effectiveness. We use their p-values as

the ranking scores in the experiment.

The other three fault-localization approaches, CBI [74][75], SOBER [77][76],

and the use of the Mann-Whitney test [62][119] have been introduced in previ-

ous sections.

6.5.3 Effectiveness Metrics

In this section, we first introduce our performance metrics, P-score, to measure

effectiveness of fault-localization techniques. Then, we introduce a statistical

normality test and discuss the use of its p-value as a metrics of normality. Finally,

we introduce the correlation relation metrics.

114

Chapter 6

Effectiveness Metrics: P-score

The metric t-score has been used in previous studies [36][76][77][90] to eval-

uate the effectiveness of predicate-based fault-localization techniques. It starts

from some top prioritized predicate statements, adopts a Breath-First Searching

manner, searches the whole space of statements, and then uses the percentage

of statements examined, before reaching any faulty statement, as the result of

effectiveness.

The t-score metrics helps measure the cost of locating a fault using a fault-

localization technique. However, some limitations have been reported on the

use of t-score in previous work [36][90]. (i) They claim that their evaluation

setup “assumes an ideal programmer who is able to distinguish defects from

non-defects at each location, and can do so at the same cost for each location

considered.” [36]. (ii) Besides, t-score assumes that the developer can follow the

control- and/or data- dependency relations among statements when searching for

faults. However, there is no evidence that it resembles the manner of debugging

in real life.

To better reflect the effectiveness of the non-parametric fault-localization

technique, we propose a novel metrics, which we call P-score, to evaluate them.

We recall that many fault-localization techniques [68][69][70][76][77] (includ-

ing the non-parametric fault-localization technique) generate a predicate list,

which contains all the predicates sorted in descending order of their degree of

fault relevance (in terms of how much each of them is deemed to be relevant to

fault). Such degree of fault relevance is measured by the ranking formula of the

technique. For postmortem analysis, we mark the predicate closest (in terms of

their positions, i.e., line number, in the code) to any fault in the program, and

use the position of the predicate in the predicate list as the indicator of the effec-

tiveness of a fault-localization technique in generating the predicate list. We call

such a predicate the most fault-relevant predicate. Suppose L is the predicate list

and P̃ is the most fault-relevant predicate. The measurement formula is given by

equation (6.2). To ease our presentation, we simply call this metrics the P-score.

P-score=
1 - based index of P̃ in L

number of predicates in L
×100% (6.2)

The metrics P-score reflects the effectiveness of a fault-localization technique.

The lower the value, the more effective will be the fault-localization technique.

For tie cases, which mean that there exist multiple most fault-relevant predicates

on the same predicate list, we count P̃ as the first one reached in L.

For example, the faulty version “v1” of program “schedule2” (from the Siemens

programs) contains 43 predicates. The fault lies in line 135; the most fault-

115

Chapter 6

relevant predicate exists in line 136. Suppose a fault-localization technique ranks

predicate P̃ = P136 at the second top position in the generated predicate L. The

P-score is calculated as
2

43
×100%≈ 4.65%.

The metric P-score uses the appearance position of the most fault-relevant

predicate in the generated predicate list as the effectiveness of that fault-localization

technique. It is expressed as Equation (6.2). The lower the value is, the more

effective the fault-localization technique is. Note that if there exists more than

one most fault-relevant predicate, in other words, if a tie case is encountered, we

count P̃ as the one having highest priority in L.

Normality Test: the Jarque-Bera Test

To measure whether the evaluation biases of a predicate form a normal distri-

bution, we adopt the standard normality test method, the Jarque-Bera test [78].

The Jarque-Bera test is used to test the null hypothesis that the given popula-

tion is from a normal distribution. The p-value of the Jarque-Bera test is used to

measure how much the evaluation biases of a predicate form a normal distribu-

tion. For example, a p-value less than 0.05 means that the null hypothesis can

be rejected at the 0.05 significance level [78]. It also means that the probabil-

ity of obtaining an observation agreeing with the null hypothesis (being normal

distribution) is less than 0.05. In general, the smaller the p-value, the more con-

fident we will be in rejecting the null hypothesis. In other words, the smaller the

p-value, the farther will be the evaluation biases of the predicate from a normal

distribution.

To help readers follow the idea of normality test, we use three different pop-

ulations to illustrate the outcomes of the Jarque-Bera test. We use histograms to

represent the distributions of these three populations. The respective histograms

are shown in Figure 6.4. We observe that, among the three populations, the left-

most one (Figure 6.4(a)) is closest to a normal distribution. The rightmost one

(Figure 6.4(c)) is farthest from a normal distribution. The central one (Figure

6.4(b)) is in between the two scenarios. The result of the p-value for the popula-

tion in Figure 6.4(a) is 0.7028. It means that we have a 70.28% probability that

the observed data in Figure 6.4(a) is from a normally distributed population. The

result of the p-value for the population in Figure 6.4(b) is 0.2439. It means that,

we have a 24.39% probability that the observed data in Figure 6.4(b) is from a

normally distributed population. The p-value result of the population in Figure

6.4(c) is 0.0940. According to the normality test results, we can determine that

the population in Figure 6.4(a) is closest to a normal distribution, followed by the

population in Figure 6.4(b), while the population in Figure 6.4(c) is farthest from

116

Chapter 6

468apperance 02 1 2 3 4 5 6 7 8 9 1 0count of a v a l u e r a n g ev a l u e r a n g e
(a) Histogram 1 (p-

value=0.7028)

468apperance 02 1 2 3 4 5 6 7 8 9 1 0count of a v a l u e r a n g ev a l u e r a n g e
(b) Histogram 2 (p-

value=0.2439)468apperance 02 1 2 3 4 5 6 7 8 9 1 0count of a v a l u e r a n g ev a l u e r a n g e
(c) Histogram 3 (p-

value=0.0940)

Figure 6.4: Illustration for normality test

a normal distribution. The results of the normality test match our expectation.

In the rest of this thesis, we will use the results of the p-value in the Jarque-

Best test as the degree of normality for predicates.

Correlation Metrics: Pearson Correlation Test

Pearson Correlation test [78] is designed to evaluate the correlation coefficient

of two populations. It is used to test the strength and direction of the linear

relationship between two populations. The result of the Pearson Correlation

test is in the range of [−1, 1]. The correlation is close to 1 in the case of an
increasing linear relationship. It is close to −1 in the case of a decreasing linear
relationship. If the two populations are independent of each other, the correlation

is close to 0.

For example, we use three sets of data to illustrate the outcomes of the Pear-

son Correlation test. The three sets are represented by the points in Figures

6.5(a), 6.5(b), and 6.5(c), respectively. For each point, the X and Y coordinates

stand for the values of the X and Y variables, respectively.

Let us first focus on the leftmost set of data (Figure 6.5(a)). The Y coordinate

conforms to a linear increasing function of the X coordinate. The Pearson Cor-

117

Chapter 6

1 0 0 01 5 0 02 0 0 0oordi nat e
05 0 0 0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0Y aco X d c o o r d i n a t eX c o o r d i n a t e
(a) Data set 1 (0.995)

1 0 0 01 5 0 02 0 0 0oordi nat e
05 0 0 0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0Y {co X ~ c o o r d i n a t eX c o o r d i n a t e
(b) Data set 2 (0.770)1 0 0 01 5 0 02 0 0 0oordi nat e

05 0 0 0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0Y �co X � c o o r d i n a t eX c o o r d i n a t e
(c) Data set 3 (0.173)

Figure 6.5: Illustration of Pearson Correlation test

relation result for this set of data is 0.995. For the rightmost set of data (Figure

6.5(c)), the X and Y coordinates do not have strong dependence relationships

between each other. The Pearson Correlation test for this set of data is 0.173.

For the set of data in Figure 6.5(b), the situation is in between the two scenarios

above. The corresponding correlation test result is 0.770. From these exam-

ples, we observe that the Pearson Correlation test is useful in determining the

correlation relationships between two populations.

6.5.4 Experimental Setup

Among the 132 programs, two of them (version “v27” of program “replace” and

version “v9” of program “schedule2”) come with no failure-causing test cases.

This is also reported in previous work [76][77]. These two versions are ex-

cluded because both our method and SOBER need the presence of both passed

and failure-causing test cases. To evaluate our method, we follow [76][77]

to use the whole test suite as input to our method and SOBER (except Sec-

tion 6.5.5 and 6.5.5). Again, following [76][77], we use branches and returns

(see Section 6.3.1) as program locations for predicates in the experiment.

118

Chapter 6

For each of the 132 faulty versions, we manually identify the faulty state-

ments by comparing the faulty version to the original version. For example, in

the faulty version “v1” of program “tot info” (Figure 6.1), statement E1 is the

faulty statement. If a fault lies in a global definition statement or it is a statement

omission fault, we mark the directly affected statements or the next adjacent

statement as the faulty statement(s).

For each of the 132 faulty versions, we manually mark the most fault-relevant

predicate in them. For 111 out of 130 of them, there is no ambiguity to identity

the most fault-relevant predicate. The most fault-relevant predicate is always

3 lines far from a faulty statement. For example, in the faulty version “v1” of

program “tot info” (Figure 6.1), predicate P4 is the most fault-relevant predi-

cate. For the rest 19 of them, faults exist in modules having no predicate, and

the most fault-relevant predicate cannot be determined. We therefore exclude

these faulty versions in our experiment. They are versions “v4”, “v5”, and “v6”

of program “print tokens”, version “v12” of program “replace”, versions “v13”,

“v14”, “v16”, “v17”, “v18”, “v19”, “v33”, “v36”, “v38”, “v7”, and “v8” of pro-

gram “tcas”, and versions “v10”, “v12”, “v21”, and “v6” of program “tot info”.

We conduct our experiment using a Dell PowerEdge 1950 server running

a Solaris UNIX with kernel version Generic 120012-14. The tools used to

build up our experimental platform include flex++ 2.5.31, bison++ 1.21.9-1, CC

5.8. The implementation of the two standard non-parametric hypothesis test-

ing methods “the Mann-Whitney test” and “the Wilcoxon signed ranked test”,

and the two standard parametric hypothesis testing methods “the Student’s t-

test” and “the F-test” are downloaded from the ALGLIB website (available at

http://www.alglib.net/).

6.5.5 Results and Analysis

In this section, we analyze the results from several dimensions.

Overall Effectiveness Comparison

Figure 6.6 shows the results of using P-score to evaluate the effectiveness of

the six techniques (Wilcoxon, Mann-Whitney, CBI, SOBER, t-test, and F-test).

It depicts the percentage of faults that can be located when a certain percent-

age of predicates are examined. The curves labeled as “Wilcoxon” and “Mann-

Whitney” show the results of Wilcoxon and the result of Mann-Whitney, respec-

tively. The curves labeled as “CBI” and “SOBER” show the results of CBI and

SOBER, respectively. The curves labeled as “t-test” and “F-test” show the re-

119

Chapter 6

90%

100%
d

Wilcoxon

Mann-Whitney

50%

60%

70%

80%

e
o

f
fa

u
lt

 l
o

ca
te

d

y

CBI

SOBER

t-test

F-test

10%

20%

30%

40%

p
er

ce
n

ta
g

e

0%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

percentage of predicate examined

Figure 6.6: Overall effectiveness comparisons

sults of t-test and the result of F-test, respectively. The target faulty versions

are the 111 faulty versions with the faulty statement(s) identified and the most

fault-relevant predicate marked out.

Let us first take the predicate examining points 10% and 20% to illustrate.

When examining up to 10% of all the predicates in the generated predicate

list, Wilcoxon and Mann-Whitney can reach the most fault-relevant predicate in

17.12% and 5.41% of all the 111 faulty versions, respectively; CBI and SOBER

can reach the most fault-relevant predicate in 9.01% and 8.11% of all the 111

faulty versions, respectively; while t-test and F-test can reach the most fault-

relevant predicate in 1.80% and 4.50% of all the 111 faulty versions, respec-

tively. When examining up to 20% of all the predicates in the generated predicate

list, Wilcoxon and Mann-Whitney can reach the most fault-relevant predicate in

36.04% and 16.22% of all the faulty versions, respectively; CBI and SOBER can

reach the most fault-relevant predicate in 17.12% and 13.51% of the 111 faulty

versions, respectively; while t-test and F-test can reach the most fault-relevant

predicate in 9.01% and 10.81% of the 111 faulty versions, respectively.

In the range of [10%, 80%], both CBI and SOBER outperform t-test and

F-test. In the range of [10%, 90%], Wilcoxon always outperforms CBI and

SOBER, while the effectiveness of Mann-Whitney is comparable to (in the range

of [10%, 40%]) or better than (in the range of [50%, 90%]) CBI and SOBER.

From this figure, we observe thatWilcoxon performs better than CBI and SOBER.

120

Chapter 6

70%

75%

60%

65%

70%
e

o
f

fa
u

lt
 l

o
ca

te
d

50%

55%

p
er

ce
n

ta
g

e

Wilcoxon Mann-Whitney

CBI SOBER

t t t F t t
45%

40 80 160 320 640 1280

percentage of predicate examined

t-test F-test

Figure 6.7: Effect of test suite size (lower the curve, better the technique)

Mann-Whitney performs better than, or if not, comparable to, CBI and SOBER;

while CBI and SOBER perform better than t-test and F-test.

Scalability Test in Terms of Test Suite Size

In this section, we study the effect of test suite size on fault-localization tech-

niques. Briefly speaking, we change the size of the test suite, monitor the ef-

fectiveness of fault-localization techniques, and plot the trend of changing of

effectiveness.

Figure 6.7 shows the effect of test suite size on fault-localization techniques.

The X-axis stands for the test suite size, which is controlled from 50 to 1000.

Limited by the effort we afforded, the suite sizes chosen are 50, 100, 150, 200,

300, 400, 500, and 1000. (In the controlled experiment, the test cases are ran-

domly selected from the test pool.) The Y-axis stands for the mean percentage of

predicates examined to locate the most fault-relevant predicate. The target pro-

grams are the 111 faulty versions with the most fault-relevant predicate marked.

The effectiveness metric used is P-score. The curves with labels are similarly

explained as in previous figures.

From Figure 6.7, we observe that, as the size of test suite increases, all the

six curves show decreasing trends. It means that the effectiveness of these fault-

localization techniques increases when inputting a test suite with larger size. We

121

Chapter 6

believe that it may be due to the statistical nature of these techniques. It is well

known that the robustness of statistical methods increase as the size of sample

set increases. Another observation is that the trend of decreasing of effective-

ness for CBI, SOBER and Mann-Whitney are slower than those of Wilcoxon,

as the size of sample set increases. At the same time, the trend of decreasing

of effectiveness for t-test and F-test are slower than those of CBI, SOBER, and

Mann-Whitney, as the size of sample set increases. The results also show that

using Wilcoxon or Mann-Whitney in our model is more effective for test suite

having larger number of test cases than for small sized test suite.

Though CBI and SOBER use self-proposed hypothesis testing models, their

scalability is better than using any of the two parametric hypothesis testing mod-

els in our framework. This is because the models used in CBI and SOBER are

driven by their fault-localization heuristics and have advantages than a general

parametric hypothesis testing model. However, the scalability of using both of

the two non-parametric hypothesis testing models in our framework is better than

CBI and SOBER. This because their presumption of normal distributed feature

spectra do not fit the realistic environment, and thus introduces inaccuracy to

their model.

Efficiency Analysis

In this section, we report the efficiency of our implementation of these fault-

localization techniques.

Figure 6.8 shows the program names, and the mean execution time of us-

ing these techniques to rank the predicates. The target programs are the 111

faulty versions. The test suite size is 1000. All the times spent are collected

by sequentially executing each technique to rank the predicates in each faulty

version. The six categories represent the overall results, and the results on “re-

place”, “print tokens” and “print tokens2”, “schedule” and “schedule2”, “tcas”,

and “tot info”, respectively. In each category, the six different bars respectively

shows the mean running time of the six techniques on the faulty versions of that

program category.

Let us take the first category in Figure 6.8 as illustration. In it there are six

bars, which in order stand for the mean time spent of Wilcoxon (0.544 seconds),

Mann-Whitney (0.387 seconds), CBI (0.613 seconds), SOBER (0.605 seconds),

t-test (0.400 seconds), and F-test (0.397 seconds), to rank the predicates in the

111 faulty versions.

From Figure 6.8, we observe that the running time show an increasing trend

as the program scales increase. For example, programs “replace”, “print tokens”,

122

Chapter 6

0.397
0.400

0.605
0.613

0.387
0.544

overall

1.218
1.223

1.657
1.674

1.192
1.002

print_tokens &

print_tokens2

0.821
0.826

1.311
1.333

0.799

0 121

1.598

replace

ro
g

ra
m

s

0.155
0.158

0.265
0.278

0 024

0.149

0.021

0.121

schedule &

schedule2

p
r

0.024
0.025
0.051

0 129

0.046

0.072

0.024

0.048

tcas

Wilcoxon

Mann-Whitney

CBI

SOBER

0.076
0.077

0.129
0.129

0.0 0.5 1.0 1.5 2.0

tot_info

mean running time (seconds)

SOBER

t-test

F-test

Figure 6.8: Time spend of each techniques on different programs

123

Chapter 6

90%

100%
d

Wilcoxon

Mann-Whitney

50%

60%

70%

80%

e
o

f
fa

u
lt

 l
o

ca
te

d

y

CBI

SOBER

t-test

F-test

10%

20%

30%

40%

p
er

ce
n

ta
g

e

0%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

percentage of predicate examined

Figure 6.9: Effectiveness comparisons on print tokens & print tokens2

and “print tokens2” have larger scales than programs “schedule”, “schedule2”,

“tcas”, and “tot info”, and the mean running time of each technique in the former

three programs is longer than those in the latter four programs. This is under-

standable. It can be explained as the larger the program scale is, the larger the

program contains more predicates. The more predicates need to be processed,

the more time is consumed.

We also observe that, compared to the running time of CBI and SOBER, the

running time of Wilcoxon, Mann-Whitney, t-test, and F-test are also acceptable.

It means that the techniques generated using our model are feasible in practice.

Individual Effectiveness Comparison

In this section, we report the results of these fault-localization techniques on

each individual program.

Figure 6.9 to 6.13 show the results of these techniques on individual Siemens

programs. The program print tokens has only 4 faulty versions and cannot

form a meaningful sample set. We combine them with the faulty versions of

print tokens2, and show them together in Figure 6.9. Such a consideration is

also based on the fact that these two programs have similar program structures.

For the same reason, we combine the faulty versions of program schedule and

schedule2, and show them in Figure 6.11. Figure 6.10, 6.12, and 6.13 shows the

124

Chapter 6

90%

100%
d

Wilcoxon

Mann-Whitney

50%

60%

70%

80%

e
o

f
fa

u
lt

 l
o

ca
te

d

y

CBI

SOBER

t-test

F-test

10%

20%

30%

40%

p
er

ce
n

ta
g

e

0%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

percentage of predicate examined

Figure 6.10: Effectiveness comparisons on replace

90%

100%

d

Wilcoxon

Mann-Whitney

50%

60%

70%

80%

e
o

f
fa

u
lt

 l
o

ca
te

d

y

CBI

SOBER

t-test

F-test

10%

20%

30%

40%

p
er

ce
n

ta
g

e

0%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

percentage of predicate examined

Figure 6.11: Effectiveness comparisons on schedule & schedule2

125

Chapter 6

90%

100%
d

Wilcoxon

Mann-Whitney

50%

60%

70%

80%

e
o

f
fa

u
lt

 l
o

ca
te

d

y

CBI

SOBER

t-test

F-test

10%

20%

30%

40%

p
er

ce
n

ta
g

e

0%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

percentage of predicate examined

Figure 6.12: Effectiveness comparisons on tcas

90%

100%

d

Wilcoxon

Mann-Whitney

50%

60%

70%

80%

e
o

f
fa

u
lt

 l
o

ca
te

d

y

CBI

SOBER

t-test

F-test

10%

20%

30%

40%

p
er

ce
n

ta
g

e

0%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

percentage of predicate examined

Figure 6.13: Effectiveness comparisons on tot info

126

Chapter 6

results on faulty versions of program replace, tcas, and tot info, respectively.

Let us first focus on Figure 6.9, when checking up to 30% of all the predi-

cates, none of the six techniques show obvious advantages to the others. How-

ever, in the rest of the predicate examining range, Wilcoxon is always the most

effective one. The other five techniques perform comparably.

In Figure 6.10, the curve of Wilcoxon is always above each of the other five

curves. It means that the technique of using the Wilcoxon signed-rank test in

our model is the most effective one among these six techniques. The curve of

Mann-Whitney and the curve of SOBER are close to each other. It means that

Wilcoxon and SOBER are comparably effective. The other these techniques,

CBI, t-test, and F-test, are comparably effective with one another.

In Figure 6.11, Mann-Whitney and Wilcoxon perform more effectively than

CBI and SOBER, except that, in the range of [80%, 100%], SOBER catches

up with Wilcoxon. In the majority of the range, say [30%, 80%], CBI and

SOBER are more effective than t-test and F-test. In Figure 6.12, Wilcoxon,

Mann-Whitney, and CBI are comparably more effective than the other three

techniques. In Figure 6.13, Wilcoxon, Mann-Whitney, CBI, and SOBER per-

forms comparably. Their effectiveness has great advantages over that of t-test

and F-test.

In summary, our intuitive observations are: (i) Wilcoxon and Mann-Whitney

are more effective, or if not, as effective as CBI and SOBER, (ii) CBI and

SOBER are more effective than t-test and F-test in most cases.

Answering Research Questions Q1 - Q5

In previous section, we have the observation that TC3 techniques are more ef-

fective than TC1 techniques and TC1 techniques are more effective than TC2

techniques, in most cases. To figure out whether there exist significantly differ-

ences among these techniques and enhance our intuitive observation, we conduct

hypothesis testing as follows.

To answer the research questions in Section 6.4, we collect the effectiveness

of these six techniques on the 111 faulty versions, and conduct hypothesis test-

ing to determine the relative order of effectiveness for each pair of techniques.

The results are shown in Table 6.4. Take the right-most number “0.0068” as

illustration, it means the p-value of hypothesis “F-test has significant improve-

ments on t-test” is 0.0068. Here, the null hypothesis is given as “F-test does not

have significant improvements on t-test”, which can be rejected as 5% signifi-

cant level. Note that in the table, we do not show those numbers that are greater

than 0.05. Those cells, which corresponding numbers are greater than 0.05, are

127

Chapter 6

Table 6.4: The p-value results of hypothesis “technique X has significant im-

provements on technique Y”

X =
Wilcoxon Mann-Whitney CBI SOBER F-test

Y =
t-test < 0.0001 < 0.0001 = 0.0002 < 0.0001 = 0.0068
F-test < 0.0001 = 0.0003 = 0.0074 = 0.0080
SOBER < 0.0001 = 0.0362
CBI = 0.0025
Mann-Whitney = 0.0327

leave blank. Therefore, the cells with number mean that the corresponding tech-

nique X outperforms the corresponding technique Y (the null hypothesis can be

rejected at 5% significant level). The cells without number filled in mean that

the corresponding technique X has no significant difference with that of the cor-

responding technique Y .

Finally, we summarize the hypothesis testing results as,

R1: TechniqueWilcoxon significantly outperformsMann-Whitney, Mann-Whitney

significantly outperforms SOBER, and SOBER in turn significantly out-

performs F-test,

R2: Technique Wilcoxon significantly outperforms CBI, and CBI significantly

outperforms F-test,

R3: Technique F-test significantly outperforms t-test.

Therefore, we can answer the research questions in Section 6.4 as,

A1: Comparing to TC1 techniques, TC2 techniques are not more effective.

A2: Comparing to TC2 techniques, TC3 techniques are more effective?

A3: Comparing to TC1 techniques, not both TC2 and TC3 techniques are more

effective.

Further, we also conduct hypothesis testing to answer the other research

questions in Section 6.4. For each curve in Figure 6.7, we compute the difference

between two adjacent check points, and compare it with a series of zero. Thus,

we conduct hypothesis testing (the Student’s t-test is used) to test the hypothesis

128

Chapter 6

that “the effectiveness of technique in test has a significant improvement with

the increasing of test suite size”. The corresponding null hypothesis is given

as “the effectiveness of technique in test has no significant improvement with

the increasing of test suite size”. The hypothesis testing results for each of the

Wilcoxon, Mann-Whitney, t-test, F-test, SOBER, and CBI are 0.05, 0.21, 0.33,

0.99, 0.16, and 0.16, respectively. If we deem 0.05 as the significance level,

the effectiveness of the technique Wilcoxon is deemed to have a significant im-

provement with the increasing of test suite size. If we use their resultant p-value

from their hypothesis testing as a measure to compare their scalability, in terms

of test suite size. Our conclusion is that Wilcoxon has the best scalability, and

in turn, CBI and SOBER, Mann-Whitney, t-test, and F-test. As a result, we give

the answer to aforementioned research question Q4.

A4: With the increasing of test suite size, T2 techniques do not gain more

effective fault-localization results; while some T3 techniques gain more

effective fault-localization results.

In our efficiency test report (Figure 6.8), there are too limited samples to

form statistically meaningful hypothesis testing. Therefore, we give intuitive

observation and conclude that they have comparably practical running time (the

running time is always at a second level). As previous, we answer the final

research question.

A5: In terms of running time, T1, T2, and T3 techniques have comparably

practical efficiencies.

In summary, we conclude that, over the Siemens programs, use of non-

parametric hypothesis testing methods improves the effectiveness of previous

predicate-based fault-localization techniques.

Answering Research Question Q6

In this section, we first conduct normality test on the evaluation biases of 5778

predicates from 111 faulty versions of Siemens programs, and report the distri-

bution of evaluation biases for these predicates. After that, we use hypothesis

testing method to answer Q6.

The distributions (represented in form of histograms) of the normality test

results are shown in Figure 6.14. For each predicate, we separately consider its

evaluation biases in passed executions and its evaluation biases in failed execu-

tions. For each predicate, we specify its normality test result as the minimum of

its normality test result of evaluation biases in all passed executions and that in

129

Chapter 6 3 2 3 83 0 0 03 5 0 0es 2 3 3 91 5 0 02 0 0 02 5 0 03 0 0 0rof predi cat 9 2 1 9 2 4 1 3 1 3 1 4 1 0 1 605 0 01 0 0 0numb er (0 . 0 , 0 . 1] (0 . 1 , 0 . 2] (0 . 2 , 0 . 3] (0 . 3 , 0 . 4] (0 . 4 , 0 . 5] (0 . 5 , 0 . 6] (0 . 6 , 0 . 7] (0 . 7 , 0 . 8] (0 . 8 , 0 . 9] (0 . 9 , 1 . 0]p À v a l u e r e s u l t o f n o r m a l i t y t e s t
(a) range of 0 to 11 7 5 62 0 0 0es 1 0 0 01 5 0 0rof predi cat 1 7 0 1 2 7 1 0 1 5 9 3 5 4 0 1 7 1 7 1 705 0 0numb er (0 . 0 0 , 0 . 0 1] (0 . 0 1 , 0 . 0 2] (0 . 0 2 , 0 . 0 3] (0 . 0 3 , 0 . 0 4] (0 . 0 4 , 0 . 0 5] (0 . 0 5 , 0 . 0 6] (0 . 0 6 , 0 . 0 7] (0 . 0 7 , 0 . 0 8] (0 . 0 8 , 0 . 0 9] (0 . 0 9 , 0 . 1 0]p í v a l u e r e s u l t o f n o r m a l i t y t e s t
(b) range of 0.0 to 0.11 2 6 91 2 0 01 4 0 0es 6 0 08 0 01 0 0 01 2 0 0rof predi cat 1 4 2 7 8 4 8 5 9 5 0 3 1 3 3 2 8 1 802 0 04 0 0numb er (0 . 0 0 0 , 0 . 0 0 1] (0 . 0 0 1 , 0 . 0 0 2] (0 . 0 0 2 , 0 . 0 0 3] (0 . 0 0 3 , 0 . 0 0 4] (0 . 0 0 4 , 0 . 0 0 5] (0 . 0 0 5 , 0 . 0 0 6] (0 . 0 0 6 , 0 . 0 0 7] (0 . 0 0 7 , 0 . 0 0 8] (0 . 0 0 8 , 0 . 0 0 9] (0 . 0 0 9 , 0 . 0 1 0p � v a l u e r e s u l t o f n o r m a l i t y t e s t
(c) range of 0.00 to 0.01

Figure 6.14: Results of normality test for predicates

all failed executions. Figure 6.14(a) shows the number of predicates that have

corresponding p-value for normality test of their evaluation biases, in the range

of [0, 1] (10 segments). The leftmost data column stands for the predicates hav-
ing p-values (of normality test for their evaluation biases) less than or equal to

0.1. The number of such predicates is 2399. It means that, if the null hypothe-

sis (evaluation biases of predicates form normal distributions) is true, for 2399

predicates, the probability of the appearance of their observed evaluation biases

is less than 10%. In other words, for these 2399 predicates, at the 10% signifi-

cance level, the null hypothesis can be rejected. The rightmost column stands for

the predicates having p-values greater than 0.9. The number of such predicates is

3238. It means that, if the null hypothesis is true, for these 3238 predicates, the

probability of observing the sample evaluation biases is higher than 90%. The

central eight columns respectively mean the predicates having p-values in ranges

130

Chapter 6

of (0.1, 0.2], (0.2, 0.3], (0.3, 0.4], (0.4, 0.5], (0.5, 0.6], (0.6, 0.7], (0.7, 0.8], and
(0.8, 0.9]. These ranges are decided by uniformly dividing the range of [0, 1].
The second plot and third plot show the same statistics in ranges of [0.0, 0.1] and
[0.00, 0.01], respectively.

From Figure 6.14(a), we observe that not all of the predicates form statisti-

cally meaningful normal distributions. If we choose 0.1 as the significance level

for the p-value of normality test, the null hypothesis can be rejected for 2339

(more than 0.4) predicates. We deem their evaluation biases to be far from hav-

ing normal distributions. If we deem 0.9 as the significance level for the p-value

of normality test, 3238 (less than 60%) of them are recognized to have normally

distributed evaluation biases. We deem that their evaluation biases have normal

distributions.

Figure 6.14(b) is a zoom-in representation of the range of [0.0, 0.1] (the range
of the leftmost data column of Figure 6.14(a)). We notice that, for 1756 out of

2339 (more than 75%) of the predicates having p-values in the range of [0.0, 0.1],
their corresponding p-values concentrate in the range of [0.00, 0.01]. Let us
focus on Figure 6.14(c). We further notice that, for 1269 out of 1756 (near to

75%) of the predicates having p-values in the range of [0.00, 0.01], their p-values
concentrate in the range of [0.000, 0.001].

Our observation is that: (i) For no more than 60% of the predicates, their

evaluation biases have normal distributions (the null hypothesis cannot be re-

jected at a significance level of less than 0.9). (ii) For a majority of the rest 40%

of the predicates, their evaluation biases are far from having normal distributions

(the null hypothesis can be rejected at the 0.1 significance level). (iii) There are

few predicates whose degrees of normality are within the range of [0.1, 0.9].

Recall that we make use of the standard normality test method, the Jarque-

Bera test, to measure the degree of normality for the evaluation biases of predi-

cates. The higher the degree of normality (p-value result of the Jarque-Bera test)

for a predicate is, the closer the observed evaluation biases is to a normal distri-

bution. Since we calculate a degree of normality for each predicate, we design

the following null hypothesis to answer the research question of Q6:

H1: “The mean degree of normality for the tested predicates is

greater than a given threshold θ1.”

Such a null hypothesis captures the mean degree of normality for the predi-

cates, and is therefore used to determine whether normal distributions are com-

mon for predicates. Besides, we introduce a parameter θ1 to control the power of

the null hypothesis. The higher the value of θ1 is, the more confidence the null

131

Chapter 6

hypothesis has. Therefore, for same set of predicates, the higher a θ1 is chosen,

the easier the null hypothesis can be rejected.

To answer research questionQ6, we conduct the one-tail Student’s t-test [125]

to test H1. The p-value of the Student’s t-test means that by how much proba-

bility is the observed predicates from a population with mean degree of normal-

ity greater than θ1. For example, suppose we have only three predicates. The

degrees of normality for them are 0.640, 0.750, and 0.860, respectively. The

p-value result of the Student’s t-test on null hypothesis H1 with θ1 = 0.600 will
be 0.929. On the other hand, the p-value result of the Student’s t-test on null

hypothesis H1 with θ1 = 0.750 will be 0.500. Similarly, the p-value result of
the Student’s t-test on null hypothesis H1 with θ1 = 0.900 will be 0.071. It
means, equally, the probability that the predicates are from a population with

mean degree of normality greater than 0.600 is 92.9%. The other two numbers

are similarly explained.

We vary the value of θ1 in the range of [0, 1]. The corresponding p-value of
one-tail Student’s t-test results are shown in Table 6.5. The upper row shows the

threshold values for θ1, the lower row shows the one-tail Student’s t-test result

in terms of p-value.

threshold value 0.000 - 0.500 0.576 0.584 0.587 0.591 0.600 - 1.000

(θ1)

p-value result 1.000 0.500 0.100 0.050 0.010 ≤ 0.0001

Table 6.5: Student’s t-test on different threshold for H1

We observe that we have great confidence (probability near to 100.0%) that

these predicates are from a population with mean degree of normality greater

than 0.500. At the same time, the probability that these predicates are from a

population with mean degree of normality greater than 0.600 is less than 0.01%.

Therefore, from the meaning of the null hypothesis and the symmetry of the

one-tail test, we conclude that it is very likely (near to 100.0%) that these pred-

icates are from a population with mean degree of normality in the range of

[0.500, 0.600].
We note that in statistics, in order to be statistically significant (to reject a

null hypothesis), generally it requires at least 0.1 significance level [125]. Since

we want to study the normality of program spectra in a conservative manner, we

132

Chapter 6

set the threshold of degree of normality to a reasonable value (e.g., 0.700, 0.800,

or higher) in the above null hypothesis. With θ1 > 0.600, the null hypothesis
H1 can be always rejected at the 0.0001 significance level (the resultant p-value

is less than 0.0001). Obviously, 0.0001 is a reasonably small value for signifi-

cance level; and we conclude that normal distributions are not common for the

evaluation biases of predicates. The answer to Q6 is no.

By the nature of null hypothesis, we know that the smaller the value of the

threshold is, the more difficult we can reject the null hypothesis. For example,

if we choose a value of 0.600 as the threshold. The hypothesis becomes: “The

mean degree of normality for the tested predicates is greater than 0.600”. Still,

such a null hypothesis can continue to be rejected at the 0.0001 significance

level. Our results as presented in Table 6.5 indicates that many predicates cannot

produce dynamic behaviors that form normal distributions even if one wishes to

lower the judgment standard to wishfully assume that it could be the case.

Answering Research Question Q7

In this section, we first conduct normality test on the evaluation biases of the

most fault-relevant predicates from the 111 faulty versions of Siemens suite, and

report their normality distribution. After that, we use hypothesis testing method

to study Q7. At the end of this subsection, we compare the statistical nature of

the most fault-relevant predicates with the other predicates.

We know from the previous subsection that not all the predicates can be

regarded as having normally distributed evaluation biases. One may wonder

whether parametric technique may reasonably be applied if the distributions of

the dynamic behavior of the most fault-relevant predicates are closely related to

normal distribution. Therefore, in this subsection, we are going to study whether

the evaluation biases of their most fault-relevant predicates may form normal dis-

tributions. Like the analysis in the previous subsection, the same normality test

on the most fault-relevant predicates (111 in total) is applied. For each of these

predicates, we separately consider its evaluation biases in passed executions and

its evaluation biases in failed executions. Furthermore, for each predicate, we

specify its normality test result as the minimum among its normality test result

of evaluation biases in all passed executions and that in all failed executions. The

results are shown in Figure 6.15.

Figure 6.15 shows the distribution of the p-value results for normality test on

the 111 most fault-relevant predicates in these faulty versions. It can be inter-

preted similar to Figure 6.14.

Let us focus on Figure 6.15(a) first. If we deem 0.9 as the significance level

133

Chapter 6 6 16 07 0es 4 53 04 05 06 0rof predi cat 3 0 2 0 0 0 0 001 02 0numb er (0 . 0 , 0 . 1] (0 . 1 , 0 . 2] (0 . 2 , 0 . 3] (0 . 3 , 0 . 4] (0 . 4 , 0 . 5] (0 . 5 , 0 . 6] (0 . 6 , 0 . 7] (0 . 7 , 0 . 8] (0 . 8 , 0 . 9] (0 . 9 , 1 . 0]p G v a l u e r e s u l t o f n o r m a l i t y t e s t
(a) range of 0 to 13 73 54 0es 1 52 02 53 0rof predi cat 4 1 1 0 2 0 0 0 0051 01 5numb er (0 . 0 0 , 0 . 0 1] (0 . 0 1 , 0 . 0 2] (0 . 0 2 , 0 . 0 3] (0 . 0 3 , 0 . 0 4] (0 . 0 4 , 0 . 0 5] (0 . 0 5 , 0 . 0 6] (0 . 0 6 , 0 . 0 7] (0 . 0 7 , 0 . 0 8] (0 . 0 8 , 0 . 0 9] (0 . 0 9 , 0 . 1 0]p t v a l u e r e s u l t o f n o r m a l i t y t e s t
(b) range of 0.0 to 0.13 13 03 5es 1 52 02 53 0rof predi cat e 2 1 2 0 1 0 0 0 0051 0numb er (0 . 0 0 0 , 0 . 0 0 1] (0 . 0 0 1 , 0 . 0 0 2] (0 . 0 0 2 , 0 . 0 0 3] (0 . 0 0 3 , 0 . 0 0 4] (0 . 0 0 4 , 0 . 0 0 5] (0 . 0 0 5 , 0 . 0 0 6] (0 . 0 0 6 , 0 . 0 0 7] (0 . 0 0 7 , 0 . 0 0 8] (0 . 0 0 8 , 0 . 0 0 9] (0 . 0 0 9 , 0 . 0 1 0]p ¡ v a l u e r e s u l t o f n o r m a l i t y t e s t
(c) range of 0.00 to 0.01

Figure 6.15: Results of normality test for the most fault-relevant predicates

for the p-value of normality test, 61 most fault-relevant predicates out of 111

(less than 60%) are recognized to exhibit normally distributed evaluation biases.

It means that, if the null hypothesis is true, for 61 predicates, there is more than

90% probability for their observed evaluation biases to appear. On the other

hand, if we choose 0.1 as the significance level (which is the de facto approach

to apply hypothesis testing approach), there are still 45 predicates(more than

40%) that the null hypothesis can be rejected for them.

From Figure 6.15(b), we observe that, for 37 predicates out of 45 (more than

80%) having corresponding p-values in the range of [0.0, 0.1], their p-values
concentrate in the range of [0.00, 0.01]. When we zoom in further, as shown in
Figure 6.15(c), 31 predicates out of 37 (near to 85%) which p-values are in the

range of [0.00, 0.01], their p-values concentrate in the range of [0.000, 0.001].

Our observations are as follows: (i) For about 60% of the predicates, their

134

Chapter 6

evaluation biases have normal distributions (the null hypothesis cannot be re-

jected at a significance level of less than 0.9). (ii) For a majority of the rest 40%

of the predicates, their evaluation biases are far from having normal distributions

(the null hypothesis can be rejected at the 0.1 significance level). (iii) There are

few predicates whose normality test results are within the range of [0.1, 0.9].

p-value range

for >0.900 >0.500 >0.100 >0.050 >0.010
normality test

% of all predicates 56.04% 58.69% 59.52% 61.70% 78.04%

(number) (3238) (3391) (3439) (3565) (4509)

% of the most

fault-relevant 54.95% 54.95% 59.46% 61.26% 66.67%

predicates (61) (61) (66) (68) (74)

(number)

Table 6.6: Comparison of statistics of predicates with statistics of the most fault-

relevant predicates

We further compare the statistics of the most fault-relevant predicates with

the statistics of all predicates collected in the experiment. The results are shown

in Table 6.6. Take the leftmost data column for example. It means that 56.04%

(3238 out of 5778) of all studied predicates have p-value results of normality

test greater than 0.900. However, only 54.95% (61 out of 111) of the most fault-

relevant predicates have p-values greater than 0.900. We observe that the former

value is higher than the latter value. The other columns show the similar phe-

nomena. From this table, we observe that the degree of normality for the most

fault-relevant predicates is generally lower than that for all predicates. This find-

ing is important because it may indicate that effectiveness of existing parametric

statistical fault-localization technique may be related to some unknown factors

rather than the normality assumption that underlying such techniques; on the

other hand, the study of such unknown factors is not within the scope of this

thesis.

Similar toQ6, we design the following null hypothesis to answer the research

question of Q7:

135

Chapter 6

H2: “The mean degree of normality for the tested most fault-relevant

predicates is greater than a given threshold θ2.”

Such a null hypothesis captures the mean degree of normality for the most

fault-relevant predicates, and is therefore used to determine whether normal dis-

tributions are common for the most fault-relevant predicates. A parameter θ2
is introduced to control the power of the null hypothesis. The higher the value

of θ2 is, the more confidence the null hypothesis has. Therefore, for same set

of predicates, the higher a θ2 is chosen, the easier the null hypothesis can be

rejected.

To answer research question Q7, we also conduct the one-tail Student’s t-

test [125] to testify H2. The p-value of the Student’s t-test means that by how

much probability is the observed predicates from a population with mean degree

of normality greater than θ2. We change the value of θ2 in the range of [0, 1].
The corresponding p-value of one-tail Student’s t-test results are shown in Table

6.7. The upper row shows the threshold values, the lower row shows the one-tail

Student’s t-test result in terms of p-value.

threshold value 0.000 - 0.400 0.561 0.621 0.638 0.671 0.700 - 1.000

(θ2)

p-value result 1.000 0.500 0.100 0.050 0.010 ≤ 0.0001

Table 6.7: Student’s t-test on different threshold for H2

We observe that we have great confidence (probability near to 100.0%) that

these predicates are from a population with mean degree of normality greater

than 0.400. At the same time, the probability that these predicates are from a

population with mean degree of normality greater than 0.700 is less than 0.01%.

Therefore, from the meaning of the null hypothesis and the symmetry of the

one-tail test, we draw the conclusion that it is very possible (neat to 100.0%)

that these predicates are from a population with mean degree of normality in the

range of [0.400, 0.700].
Similarly, since we want to study the normality of program spectra in a

conservative manner, we set the threshold of degree of normality to a reason-

able value (e.g., 0.700, 0.800, or higher) in the above null hypothesis. With

θ2 > 0.700, the null hypothesis H2 can be always rejected at the 0.0001 signif-

136

Chapter 6

icance level (the resultant p-value is less than 0.0001). Since 0.0001 is a rea-

sonably small value for significance level, we conclude that normal distributions

are not common for the evaluation biases of the most fault-relevant predicates.

The answer to Q7 is no. And our results as presented in Table 6.7 indicates that

many fault-relevant predicates cannot produce dynamic behavior that form nor-

mal distributions even if one wishes to lower the judgment standard to wishfully

assume that it could be the case.

Answering Research Question Q8

In this section, we first report the finding and then analyze the result using hy-

pothesis testing to answer Q8.

From previous subsections, we know that the assumption of evaluation biases

of predicates forming normal distribution is not well supported by the experi-

ment on the Siemens suite. Since the non-parametric fault-localization technique

is supposedly not based on such an assumption, we predict that the effectiveness

of non-parametric fault-localization technique does not correlate to the normality

of predicates. Figures 6.16 gives the results of corresponding correlation tests.

To investigate whether it is the case, we analyze the P-score of the predicate list

produced by our fault-localization technique against the degree of normality.

Figure 6.16 depicts the correlations between our non-parametric fault-localization

technique and the p-value of the most fault-relevant predicates. In this figure,

there are 111 points, which stand for the 111 faulty versions. The X-coordinates

mean the p-value results of normality tests for the most fault-relevant predicates.

The Y-coordinates mean the P-score results for the same faulty version. This fig-

ure is divided into two parts. The left rectangle represents 55 most fault-relevant

predicates with p-value less than 1.0. The right axis represents the 56 most fault-

relevant predicates with p-value equal to 1.0.

We observe that, for the 56 points which evaluation biases form normal dis-

tributions (with p-value of value 1.0), their corresponding points distribute along

the axis; for the rest 55 points which corresponding p-value is less than 1.0, they

scatter within the rectangle on the left. We observe that as the p-value changes

from 0.0 to 1.0, the P-score result of the fault-localization technique on the cor-

responding faulty version does not show an obvious increasing or decreasing

trend. On the contrary, those P-score results appear scattering across the whole

rectangle. Apparently, as far as our non-parametric fault-localization technique,

the normality of evaluation biases for the most fault-relevant predicate does not

strongly correlate to the effectiveness of the technique to locate faults.

We design the following hypothesis to answer Q8:

137

Chapter 6

0 . 81 . 0 0 . 81 . 0
0 . 6coreres ul t 0 . 6
0 . 20 . 4P Àsc 0 . 20 . 4
0 . 00 . 0 0 0 0 0 1 0 . 0 0 0 0 1 0 0 . 0 0 0 1 0 0 0 . 0 0 1 0 0 0 0 . 0 1 0 0 0 0 0 . 1 0 0 0 0 0 1 . 0 0 0 0 0 0p Â v a l u e r e s u l t o f n o r m a l i t y t e s t 0 . 01 . 0 0 0 0 0 0
Figure 6.16: Effect of normality on fault-localization techniques

H3: “The correlation of normality and effectiveness is greater than

a given threshold θ3.”

To scientifically investigate the effect of normality on these fault-localization

techniques, we conduct the standard Pearson Correlation test on them. The Pear-

son Correlation test of normality and P-score for the non-parametric fault local-

ization technique on the 111 faulty versions is 0.1201. If we solely count the
55 faulty versions, which p-value is less than 1.0, the Pearson Correlation test

of normality and P-score for the non-parametric fault-localization technique is

0.0037.
We may choose some reasonable threshold values (e.g., 0.700, 0.750, or

higher) to determine whether these exist strong correlations between the degree

of normality of the most fault-relevant predicate from some faulty version and

the effectiveness of fault-localization techniques on this faulty version. However,

the hypothesis H3 with θ3 ≥ 0.700 can be always easily rejected. It means that,
the answer to Q8 is no, and the normality for evaluation biases for predicates

weakly correlates with the effectiveness of the non-parametric fault-localization

technique. This can be also explained as that the non-parametric hypothesis test-

138

Chapter 6

ing model for fault localization has high robustness in terms of the normality for

the evaluation biases of predicates.

6.5.6 Threats to Validity

In this section, we discuss the threats to internal, construct, and external validity

of our experiment.

Internal Validity

Internal validity is mainly caused by factors that affect experimental results.

The authors of SOBER have shared their instrumented faulty versions. We

found that they missed some predicates. Since there is no evidence which of

predicates should be included or not, we follow their specification to count all

the predicates on and re-work the experiment. Therefore, the result of SOBER

in our thesis is not the same as those reported previously.

We design null hypothesis and use hypothesis testing method to answer the

interested research questions. However, to control the power of the designed null

hypothesis, some parameters are involved in the research questions. For research

questions Q6, Q7, and Q8, arbitrarily choosing these parameters does not have

scientific support. To address this threat, we adopts some previously widely used

value (e.g., 0.700 for correlation test), or changes the values in reasonable range

to conduct hypothesis testing for several times with different thresholds.

In analyzing the scalability of our methods, CBI, and SOBER, we use the

same programming library in implementation, and do not optimize any of them.

Such consideration is to fairly compare their effectiveness. However, different

implementation detail may affect their effectiveness and running time.

Many statistical algorithms are involved in our experiment, including the

Mann-Whitney test, the Jarque-Bera test, and the Student’s t-test. Different im-

plementation details (such as accuracy in floating operations) may affect the ex-

periment results. To address this threat, we choose using same programming

library (ALGlib) to implement these algorithms. Such a consideration can re-

duce the implementation error and computing error.

Construct Validity

In the experiment, we include CBI and SOBER for comparison. However, there

exist other techniques, and our intent is that both of CBI and SOBER are repre-

sentative predicate-based techniques. We, therefore, adopt only CBI and SOBER

as peer techniques and compare our method with them.

139

Chapter 6

Another threat is the predicates we choose to investigate. Since CBI and

SOBER reinterpret different kinds of statements as predicates, it seems not easy

to compare them with each other directly. However, SOBER has reported that

scalar-pair predicates have minor effects on fault-localization results. Hence, we

follow SOBER to adopt the other two kinds of predicates in the experiment. The

effect of including scalar-pair statements as predicates is not investigated in this

thesis.

Although t-score is widely used in previous work (including [76][77]), some

limitations have also been reported in the use of t-score (see [36] for example).

Has any other measures been used to evaluate predicate-based techniques suc-

cessfully? we are not aware of such alternatives in the public literature. There-

fore, we involve a novel metrics, P-score. The P-score metrics evaluates the

speed of locating the most fault-relevant predicate using the generated predicate

list. The consideration is that all these techniques estimate the fault relevance of

predicates and generate a list of predicates according to their suspiciousness.

We use the Mann-Whitney test, the Jarque-Bera test, the Student’s t-test, and

the Pearson Correlation test in the experiment. Using other kind of hypothesis

testing method, normality test method, or correlation test method may produce

different results. To address this issue, all the methods we choose are represen-

tative algorithms among their families.

Threats also exist in the manual work involved in the experiments, since we

manually mark the most fault-relevant predicates. This step is neither entirely

objective nor automated. However, for some faulty versions that are hard to iden-

tify the most fault-relevant predicate, we have excluded them from the experi-

ment, and listed out these faulty versions. How to decide the most fault-relevant

predicate for other programs can be discussed in future work.

External Validity

In this experiment, external validity is related to the target programs used.

We use a previously used metric, P-score to evaluate the effectiveness of

fault-localization techniques. Using other kind of metrics may give different

results. Since we cannot generate our results to other metrics, more future work

may address this threat. For example, the metric t-score is also used in previous

studies [76][77]. However, it is also reported to have some limitation [36].

In our experiment, we empirically show the results of using two non-parametric

and two parametric hypothesis testing methods to locate fault. Using other kinds

of non-parametric or parametric statistical methods may give different results.

External validity may also be caused by the target programs used. Since the

140

Chapter 6

faults in Siemens programs are manually seeded, they may not truly represent

realistic faults. Using other programs may give different results. On the other

hand, the effect of using other metric is not discussed yet. More evaluation

should, therefore, be done in the future.

Our experiment is conducted on the Siemens programs. Though the Siemens

programs are representative programs and have been used in many previous stud-

ies [68][70][76][77], using other programs (e.g., JAVA programs instead of C

programs) may product different results. Besides, using different normality test

or hypothesis testing method may also affect the experiment results. More eval-

uation on using such alternatives should be included in future work.

6.6 Summary

Many previous studies contrast the feature spectra of passed and failed execu-

tions to locate the predicates correlated to faults (or to locate the faulty state-

ments directly). However, they overlook the investigation of the statistical dis-

tributions of the spectra, on which their parametric techniques fully rely. In our

previous work, we have argued and empirically verified that assuming a specific

distribution of feature spectra of dynamic program statistics is problematic. It

highlights a threat to construct validity in fault localization research that previ-

ous studies do not report in their empirical evaluation and model development.

In this chapter, we formally investigated the statistical nature about the nor-

mality test results for predicates. We showed empirically that the evaluation

biases of predicates, and particularly the most fault-relevant predicates, are not

necessarily normally distributed. In fact, almost all examined distributions of

evaluation biases are either normal or far from normal, but not in between. Be-

sides, the most fault-relevant predicates are less likely to exhibit normal distri-

butions in their evaluation biases than other predicates. Our work highlights a

threat to construct validity in fault-localization techniques that employ paramet-

ric hypothesis testing methods. We further investigated the effect of normality

of predicates on fault-localization techniques, and used it as a measure to test the

robustness of non-parametric fault-localization techniques. The empirical results

showed that the non-parametric model for fault localization has high robustness

in terms of the normality for the evaluation biases of predicates.

Our main contribution in this chapter is four-fold. (i) This chapter conducts

the first experiment of using both standard non-parametric and parametric hy-

pothesis testing methods in statistical fault localization. The empirical results

enhance previous conclusion that using non-parametric hypothesis testing meth-

141

Chapter 6

ods are effective for predicate-based fault-localization techniques. (ii) It is the

first investigation on the normality nature of the execution spectra. The empirical

results show that normal distribution is not common for the evaluation biases of

predicates. In particular, the results indicate that the chance of the distribution of

the evaluation biases of fault-relevant predicates being normal is less likely than

that of other predicates. Such a finding highlights a threat to the construct valid-

ity of any empirical study which is based on the assumption that the evaluation

biases of predicates form normal distributions. (iii) It proposes a new metrics

P-score to measure the effectiveness of fault-localization techniques. (iv) It is

the first study that investigates the effect of normality for the evaluation biases of

predicates on non-parametric fault-localization techniques. The empirical results

show that the effectiveness of our non-parametric fault-localization technique is

weakly correlated to normality of the underlying distribution of evaluation bi-

ases.

142

143

Chapter 7

Further Discussion

In this chapter, we discuss several issues related to previous chapters.

7.1 Tie-breaking Strategy

For the statistical fault-localization techniques discussed in this thesis, the
suspiciousness score of program elements may be identical to each other. In
such a case, such program elements form a tie and they should be examined as
a whole when evaluating the effectiveness of that technique.

In previous work, the tie-breaking strategy (see [96][112]) is often
employed to optimize the baseline fault-localization techniques. For program
elements in a tie case, their priorities are further determined using other
formulas, such as the confidence formula Conf(si) [112] used in the technique
Tarantula. A tie-breaking strategy gives a better ranking list when one follows
the ranking list to locate faults. On the other hand, a tie-breaking strategy does
not modify the computed suspicious scores of the program entities by those
techniques.

Our technique can also be optimized in exactly the same way. For example,
the tie-break strategy can be applied on our techniques Slope, CP, or DES, to
improve the effectiveness of them. Currently, we do not use any tie-breaking
strategy in CP and DES. However, involving a tie-breaking strategy in CP or
DES is believed to improve the effectiveness of them.

7.2 Adaptation of our Technique

Our techniques can be easily applied to other dimension. For example, the
heuristics of Slope can be also used in function-level, module-level, branch-
level, and so on. Since such work can be developed by direct applying the
thought of Slope, we do not list their results in this thesis.

Chapter 7

144

Take our technique CP as an example. We capture the propagation of
infected program states via CFG. In fact, other flow-graph representations of
program executions, such as program dependency graphs [5] or data flow
graphs, may be employed to replace CFG. We do not iteratively show how to
adapt each of them in our technique.

7.3 Fault Fix after Fault Localization

In a complete software debugging process, programmers need to fix the fault
after locating it. However, this is out of the scope of this thesis work.

7.4 Oracle Problem before Fault Localization

Software testing is a key activity in any software development project. It
assures applications by executing programs over test cases with the intent to
reveal failures [9]. Definitely, statistical fault localization relies on the output
of software testing, that is, the pass/fail status of those test cases.

In this section, we first give necessary background on oracle problem in
testing, and then design research questions to understand the properties of two
testing methods, Metamorphic Testing and Assertion Checking. In the
experiment section, we report the empirical results and analyze the empirical
results.

This section is based on our previous work [118].

7.4.1 Background

To conduct testing, software testers usually evaluate the test results through an
oracle, which is a mechanism for checking whether a program behaves
correctly [108]. Many programs do not have a full specification, and many of
them are developed without similar versions for reference. In these situations,
oracles may be unavailable or too expensive to apply. This is known as the test
oracle problem [108]. The oracle problem is not limited to the above kinds of
scenarios. For instance, for programs involving complex computations (such
as partial differential equations [31], graphics-based software [21][24][25],
database applications [101], large-scale components, web server, or operating
systems [101]), their outputs are difficult to verify. In current software
practices, the oracle is often a human tester who checks the testing results
manually. The manual checking of program output acutely limits the
efficiency of testing and increases its cost, especially when there is a need to
verify the results of a large number of test cases. Assessing the correctness of

Chapter 7

145

program outcomes has, therefore, been recognized as “one of the most
difficult tasks in software testing” [79].

As we have discussed in Section 7.4.1, metamorphic testing relies on a
checking condition that relates multiple test cases and their results in order to
reveal failures. Such a checking condition is known as a metamorphic
relation. In this section, we revisit metamorphic relations and discuss how
they can be used in the metamorphic approach to software testing.

Metamorphic Relations

A metamorphic relation (MR) is a relation over a series of distinct inputs and
their corresponding results for multiple evaluations of a target function [2].
Consider, for instance, the sine function. We have the following relation: If x2
=  – x1, then sin x2 = – sin x1. We note from this example that a metamorphic
relation consists of two parts. The first part (denoted by r in the definition
below) relates x2 to x1. The second part (denoted by r') relates the results of
the function. If the MR above is not satisfied for some input, we deem that a
failure is revealed.

 Definition 7.2.1 (Metamorphic Relation) [21] Let x1, x2, …, xk be a series
of inputs to a function f , where k ≥ 1, and let f (x1), f (x2), …, f (xk) be the
corresponding series of results. Suppose f (xi1), f (xi2), …, f (xim) is a
subseries, possibly an empty subseries, of f (x1), f (x2), …, f (xk). 2 Let
xk+1, xk+2, …, xn be another series of inputs to f , where n ≥ k + 1, and let f
(xk+1), f (xk+2), …, f (xn) be the corresponding series of results. Suppose,
further, that there exists relations r (x1, x2, …, xk, f (xi1), f (xi2), …, f (xim), xk+1,
xk+2, …, xn) and r′ (x1, x2, …, xn, f (x1), f (x2), …, f (xn)) such that r′ must be
true whenever r is satisfied. Here, r and r’ can be any mathematics relation of
aforementioned parameters. We say that

 MR = { x1, x2, …, xn, f (x1), f (x2), …, f (xn)
 | r (x1, x2, …, xk, f (xi1), f (xi2), …, f (xim), xk+1, xk+2, …, xn)
 → r′ (x1, x2, …, xn, f (x1), f (x2), …, f (xn)) }

is a metamorphic relation. When there is no ambiguity, we simply write the
metamorphic relation as

 MR: If r (x1, x2, …, xk, f (xi1), f (xi2), …, f (xim), xk+1, xk+2, …, xn)
 then r′ (x1, x2, …, xn, f (x1), f (x2), …, f (xn)).

2 x1, x2, …, xk and f (x1), f (x2), …, f (xk) denotes a series of inputs and its
corresponding series of results.

Chapter 7

146

Furthermore, x1, x2, …, xk are known as initial test cases and xk+1, xk+2, …, xn
are known as follow-up test cases.

Similar to assertions in the mathematical sense, metamorphic relations are
also necessary properties of the function to be implemented. They can,
therefore, be used to detect inconsistencies in a program. They can be any
relations involving the inputs and outputs of two or more executions of the
target program. They may include inequalities, periodicity properties,
convergence properties, subsumption relationships, and other properties.

Intuitively, human testers are needed to study the problem domain related
to a target program and formulate metamorphic relations accordingly. This is
akin to requirements engineering, in which humans instead of automatic
requirements engines are necessary for formulating systems requirements. In
some domains where the requirements of an implementation are best specified
mathematically, metamorphic relations may readily be identified. Is there a
systematic methodology guiding testers to formulate metamorphic relations
like the methodologies that guide systems analysts to specify requirements?
This remains a challenging question. We shall further investigate along this
line in the future. We observe that other researchers are also beginning to
formulate important properties in the form of specifications to facilitate the
verification of system behaviors [37].

Metamorphic Testing

In practice, if the program is written by a competent programmer, most test
cases will be passed test cases. These passed test cases have been considered
useless in conventional testing. Metamorphic testing (MT) uses information
from such passed test cases, which will be referred to as initial test cases.

Consider a program p for a target function f in the input domain D. A
series of initial test cases T = t1, t2, …, tk can be selected according to any test
case selection strategy. Executing the program p on T produces outputs p(t1),
p(t2), …, p(tk). When there is a test oracle, the test results can be verified
against f(t1), f(t2), …, f(tk). If these results reveal any failure, testing stops. On
the other hand, when there is no test oracle or when no failure is revealed, the
metamorphic testing procedure can continue to be applied to automatically
generate follow-up test cases T’ = {tk+1, tk+2, …, tn} based on the initial test
cases T so that the program can be verified against metamorphic relations.

 Definition 7.2.2 (Metamorphic Testing) [21] Let P be an implementation of
a target function f. The metamorphic testing of the metamorphic relation

 MR: If r (x1, x2, …, xk, f (xi1), f (xi2), …, f (xim), xk+1, xk+2, …, xn),

Chapter 7

147

 then r′ (x1, x2, …, xn, f (x1), f (x2), …, f (xn))

involves the following steps: (i) Given a series of initial test cases x1, x2, …,
xk and their respective results P(x1), P(x2), …, P(xk), generate a series of
follow-up test cases xk+1, xk+2, …, xn according to the relation r (x1, x2, …, xk,
P(xi1), P(xi2), …, P(xim), xk+1, xk+2, …, xn) over the implementation P. (ii)
Check the relation r′ (x1, x2, …, xn, P(x1), P(x2), …, P(xn)) over P. If r′ is false,
then the metamorphic testing of MR reveals a failure.

Metamorphic Testing Procedure

Gotlieb and Botella [54] developed an automated framework for a class of
metamorphic relations. The framework translates a specification into a
constraint logic programming (CLP) program. Test cases can be automatically
generated according to the CLP program using a constraint solving approach.
Their framework works on a subset of the C language, but it is not clear
whether the framework is applicable to test cases involving objects. Since we
want to apply MT to object-oriented programs, we adopt the original
procedure [19], which is described as follows:

First, testers identify and formulate metamorphic relations MR1, MR2, …,
MRn from the target function f. For each metamorphic relation MRi, testers
construct a function geni to generate follow-up test cases from the initial test
cases. Next, for each metamorphic relation MRi, testers construct a function
veri, which will be used to verify whether multiple inputs and the
corresponding outputs satisfy MRi. After that, testers generate a set of initial
test cases T according to a preferred test case selection strategy. Finally, for
every test case in T, the test driver invokes the function geni to generate
follow-up test cases and apply the function veri to check whether the test cases
satisfy the given metamorphic relation MRi. If a metamorphic relation MRi is
violated by any test case, veri reports that an error is found in the program
under test.

7.4.2 Research Questions

Like other comparisons of testing strategies such as comparison between
control flow and data flow test adequacy criteria [37] and comparison among
different data flow test adequacy criteria [60], controlled experimental
evaluations are essential. They should answer the following research questions.

(a) Can the subjects properly apply MT after training? Can the subjects
identify correct and useful metamorphic relations from target
programs? Can the same metamorphic relations be discovered by

Chapter 7

148

multiple subjects?

(b) Is MT an effective testing method? Does MT have a comparative
advantage over other testing strategies such as assertion checking in
terms of the number of mutants detected? To address this question, we
shall use the standard statistical technique of null hypothesis testing.

Null Hypothesis H0: There is no significant difference between MT
and assertion checking in terms of the number of mutants detected.

Alternative Hypothesis H1:There is a significant difference between
MT and assertion checking in terms of the number of mutants
detected.

We aim at applying the standard concept of the p-value in the Mann-
Whitney test to find the confidence level that H0 can be rejected, with
a view to supporting our claim that the difference between MT and
assertion checking is statistically significant rather than by chance.

(c) What is the effort, in terms of time cost, in applying MT?

(d) If an MR is faulty, what is the cost (in terms of the number of mutants
detected) of applying it?

7.4.3 Experiment

This section describes the set up of the controlled experiment. It first
formulates the research questions to be investigated and then describes the
experimental design and experimental procedure.

Our experiment identifies four independent and three dependent variables.
The independent variables are testing strategies, subjects, target programs,
faulty versions of target programs, and faulty versions of metamorphic
relation programs. The dependent variables are time cost, number of
metamorphic relations/assertions, and testing effectiveness in terms of
mutation detection ratio. For the variable on testing strategies, we incorporate
MT and assertion checking. In the rest of this section, we describe the other
three independent variables. Later sections will analyze the results according
to the dependent variables.

Target Programs

We used three open-source programs as target programs. All of them were
Java programs selected from real-world software systems.

Chapter 7

149

The first target program Boyer is a program using the Boyer-Moore
algorithm to support the applications in Canadian Mind Products, an online
commercial software company (available at http://mindprod.com/
products1.html). The program returns the index of the first occurrence of a
specified pattern within a given text.

The second target program BooleanExpression evaluates Boolean
expressions and returns the resulting Boolean values. For example, the
program may evaluate the expression “!(true && false) || true” and returns
true. The program is a core part of a popular open-source project jboolexpr
(available at http://sourceforge.net/projects/jboolexpr) in SourceForge (URL
http://www.sourceforge.net), the largest open-source project website.

The third target program is TxnTableSorter. It is taken from a popular
open-source project Eurobudget (http://eurobudget.sourceforge.net) in the
SourceForge website. Eurobudget is an office application written in Java,
similar to Microsoft Money or Quicken.

Table 7.1 shows the statistics of the three target programs. The first
program is a piece of commercial software. The second program is a core part
of a standard library. The third one is selected from real office software with
hundreds of classes and more than 100,000 lines of code in total. All of them
are open source. The sizes of these programs are in line with the sizes of target
programs used in typical software testing researches such as [2], in which it
uses the Siemens suites.

Faulty Versions of Target Programs

To investigate the relative effectiveness of metamorphic testing and assertion
checking, we use mutation operators [59] to seed faults to programs. A
previous study [2] shows that a set of well-defined mutation operators can
simulate the real environment for testing experiments.

In our experiment, mutants are seeded using the tool muJava [80]. The tool
supports two levels of mutation operators: class level and method level. Class
level mutation operators are operators specific to generating faults in object-
oriented programs at the class level. Method level mutation operators defined
in work [87] are operators specific for statement faults. We only seed method

Table 7.1: Statistics of target programs

Program
Number of

LOC
Number of
Methods

Number of Output
Affecting Methods

Boyer 241 16 9
BooleanExpression 231 15 12

TxnTableSorter 281 18 15

Chapter 7

150

level mutation operators to the programs under study because our experiment
focuses on unit testing and this set of operators has been studied extensively in
the software engineering research community [2][17][26][53][86][87]. Table
7.2 lists all the mutation operators used in the controlled experiment.

General speaking, muJava examines each statement in a given program
and then applies each applicable mutation operator to generate a variant of the
program. In other words, for each statement and each applicable mutation
operator, it produces a single-fault version of the given program. It has been
well-recognized in the software engineering research community that single-
fault mutants couple well with high-order mutants and real faults and using
them to conduct test experiment can adequately simulate realism [2][87]. On
the other hand, research on finding an adequate subset of mutation operators to
replace the entire set is still going on [86]. Many software engineering
researchers continue to use the full set of mutants constructed from a tool to
conduct experiments.

A total of 151 mutants are generated by muJava for the class Boyer, 145
for the class BooleanExpression, and 378 for TxnTableSorter. Note that faults
are only seeded into the methods supposedly covered by the test cases for unit
testing. Table 7.3 lists the number of mutants under each category of
operators. We create a faulty version for each mutant. Finally, we used all the
151 + 145 + 378 = 674 single-fault versions in the controlled experiment.

Table 7.2: Categories of mutation operators

Category Description
AOD Delete Arithmetic Operator
AOI Insert Arithmetic Operator
AOR Replace Arithmetic Operator
ROR Replace Relational Operator
COR Replace Conditional Operators
COI Insert Conditional Operator
COD Delete Conditional Operator
SOR Replace Shift Operator
LOR Replace Logical Operator
LOI Insert Logical Operator
LOD Delete Logical Operator
ASR Replace Assignment Operators

Chapter 7

151

Controlled Variables

All the 38 subjects are graduate students in computer science or equivalent
who attend the course “Advanced Topics in Software Engineering: Software
Testing” at The University of Hong Kong. These students have at least a
bachelor degree in computer science, computer engineering, or electronic
engineering. The majority of them are part-time MSc students with some
industrial experience. The rests are MPhil and PhD students. We control that
the training sessions of either approach are comparable in duration and in
content. The number of subjects used our controlled experiment is similar to

Figure 7.1: Experiences of subjects in object-oriented design, Java, testing,
and assertions

0-2
months

19%

3-6
months

16%

7-12
13%

13-24
months

18%

> 24
months

34%

OO Design
(Months of Experience)

0-2
months

24%

3-6
months

29%
7-12
13%

13-24
months

10%

> 24
months

24%

Java
(Months of Experience)

0-2
months

74%

3-6
months

5%

7-12
5%

13-24
months

3% > 24
months

13%

Assertion
(Months of Experience)

0-2
months

60%

3-6
months

16%

7-12
11%

13-24
months

5%

> 24
months

8%

Testing
(Months of Experience)

Chapter 7

152

those in other software engineering controlled experiments. For instance, the
experiments in [59][105] use 44 subjects.

Since differences in software engineering background might affect the
students’ capability to apply metamorphic testing or assertion checking, we
conduct a brief survey prior to the experimentation. The survey asks subjects
their experiences in the industrial environment in each of the following four
areas: object-oriented design, Java programming, software testing, and
assertion checking.

Figure 7.1 lists the result of the survey. The overall survey result shows
that most of them have real-life or academic experience. As most of subjects
are knowledgeable about object-oriented design and Java programming, they
are deemed to be competent in the tasks in the controlled experiment. On the
other hand, we find a few students having rather limited experience in
software testing and assertion checking. Since they have no prior concepts of
metamorphic testing either, the experiment does not specifically favor the
metamorphic approach.

Experimental Setup

Before the experiment, the subjects are given a six-hour training to use MT
and assertion checking. We carefully monitor the time durations so that the
times allocated to train either technique are roughly equal to each other. (We
could not have identical durations for both techniques; otherwise, the same
testing background such as the concept of test oracles in general would
needlessly be introduced twice to the subjects.) The target programs and the
tasks to be performed are also presented to the subjects. The subjects are
briefed about the main functionality of each target program and the algorithm
used, thus simulating the process in real-life in which a tester acquires the
background knowledge of the program under test. They are blind to the use of
any mutants in the controlled experiment. For each program, the subjects are
required to apply MT strictly following the procedure described in previous
section, as well as to add assertions to the source code for checking. We do not
restrict the number of metamorphic relations and assertions to be associated to
individual target programs. The subjects are told to develop metamorphic

Table 7.3: Number of single-fault programs by mutation operator category

Program AOD AOI AOR COD LOI ROR LOR COR COI ASR Total

Boyer 1 85 14 0 24 16 3 2 1 5 151
BooleanExpression 3 86 3 1 22 27 0 3 0 0 145

TxnTableSorter 8 226 16 0 71 43 2 7 5 0 378

Chapter 7

153

relations and assertions as they consider suitable, with a view to thoroughly
test each target program.

We do not mandate the use of a particular testing case generation strategy,
such as all-def-use criterion or random testing or specification-based approach,
for either MT or assertion checking. The subjects are simply asked to provide
adequate test cases for testing the target programs. This avoids the possibility
that some particular test case selection strategy, when applied in large scale,
might favor either MT or assertion checking.

We ask the students to submit metamorphic relations, functions to generate
follow-up test cases, functions to verify metamorphic relations, test cases for
metamorphic testing, source code with inserted assertions, and test cases for
assertion checking. They are also asked to report the time costs to apply
metamorphic testing and assertion checking. Before testing the faulty versions
with these functions, assertions, and test cases, we check their submissions
carefully to ensure that there is no implementation error.

Results and Analysis

This section presents the experimental results of applying metamorphic testing
and assertion checking. They are structured according to the dependent
variables presented in the last section.

Feasibility of MR Development and Assertion Development

A critical and difficult step in applying MT and assertion checking is to
develop metamorphic relations and assertions for the target programs. Table
7.4 reports the number of metamorphic relations and assertions identified by
the subjects for the three target programs. The mean numbers of metamorphic
relations developed by the subjects for the three programs are 2.79, 2.68, and
5.00, respectively. The total numbers of distinct metamorphic relations
identified by all subjects for the three programs are 18, 39, and 25,
respectively. The mean numbers of assertions for the three programs are 6.96,
11.35, and 10.97, respectively.

First, we observe that all the subjects can properly create metamorphic
relations and assertions after training. We further inspect their metamorphic
relations and assertions, and find that many of the identified artifacts overlap
among subjects. Take Boyer as an example. There are 38 subjects in total.
They collectively identify 18 distinct metamorphic relations, and on average,
each subject identifies 2.79 metamorphic relations. In other words, if all the
metamorphic relations identified are distinct, there should be 108 metamorphic
relations. It means that, on average, each distinct metamorphic relation is

Chapter 7

154

discovered by six subjects (or 15.7% of the population). We also observe a
similar result for assertion checking. This result is encouraging. It indicates
that the identification of metamorphic relations can be practical and may share
among different developers. It further answers another important research
question on whether the same metamorphic relation can be discovered by
more than one subject. The answer is “yes”.

To observe the variations in the feasibility of discovering metamorphic
relations and assertions, we further normalize the standard derivations against
the corresponding mean values in Table 7.4 for each program. The results are
shown in Table 7.5. We observe that the standard deviations for discovering
metamorphic relations are much larger than those for discovering assertions.
In addition, we observe that the normalized standard deviations for
discovering metamorphic relations across the three programs are quite
consistent (close to 0.60 in each case). On the other hand, for assertions, the
standard deviations trends vary from 0.20 to 0.30, which indicate a relatively
larger fluctuation among programs. This initial finding may indicate that
discovering metamorphic relations can be less dependent on the type of
program being studied than discovering assertions. In other words, it suggests
that there may be some hidden dominant factors (independent of the nature of
target programs) governing the discovery of metamorphic relations. It will be
interesting to identify these factors in the future.

On the other hand, we observe from Table 7.5 that the absolute values of
the normalized standard deviations for discovering assertions are much
smaller than those of metamorphic relations. It shows that our subjects

Table 7.4: Number of metamorphic relations and assertions

Program Total
No. of Metamorphic Relation No. of Assertions
Mean Max Min StdDev Mean Max Min StdDev

Boyer 18 2.79 5 1 1.66 6.96 43 1 8.94
BooleanExpression 39 5.00 12 1 3.01 11.35 49 1 9.69

TxnTableSorter 25 2.68 7 1 1.59 10.97 36 2 10.97

Table 7.5: Normalized standard derivations

Program Metamorphic Relation Assertion Checking

Boyer 0.59 0.21
BooleanExpression 0.60 0.20

TxnTableSorter 0.59 0.30

Chapter 7

155

produce more predictable number of assertions. It may give project managers
good guidelines to allocate project resources if they assign their programmers
to do assertion checking in their software applications.

Size and Granularity of Metamorphic Relations and Assertions per
Program

In general, the subjects can identify a larger number of assertions than
metamorphic relations. As shown in Table 7.4, the maximum number of
metamorphic relations discovered by subjects is almost the same as the mean
number of assertions discovered by subjects. This suffices to indicate that
there is a significant difference between the numbers of artifacts produced by
the two testing methods.

We also observe that the subjects’ abilities to identify metamorphic
relations and assertions vary. This is understandable and agrees with the
intuition that different developers may have quite diverse programming
abilities. Take BooleanExpression as an example. Some subjects can identify
12 metamorphic relations and 49 assertions, while some others can only
identify one metamorphic relation and one assertion.

We further observe from Table 7.4 that, for the three target programs, the
ratios of the mean number of identified metamorphic relations to the mean
number of identified assertions are 0.40, 0.44, and 0.24, respectively. If the
effectiveness between the use of metamorphic testing and the use of assertion
checking to identify failures is comparable, these ratios indicate that
metamorphic relations can achieve a more coarse-grained granularity than
assertions does. If so, we believe that MT helps developers raise the level of
abstraction more than assertion checking does. Our data analysis to be
presented in the next section will validate whether the effectiveness of the two
methods are comparable.

Comparison on Fault Detection Capabilities

We use the subjects’ metamorphic relations, assertions, and source and follow-
up test cases to test the faulty versions of the target programs. The mutation
detection ratio [2][59][87] is used to compare the fault detection capabilities of
MT and assertion checking strategies. The mutation detection ratio of a test
set is defined as the number of mutants detected by the test set over the total
number of mutants [59]. For metamorphic testing, a mutant is detected if a
source test case and follow up test cases executed on the mutant do not satisfy
some metamorphic relations. For assertion checking, a mutant is detected if a

Chapter 7

156

mutated statement is executed by a test case to enter an erroneous state that
triggers an assertion statement.

 For the sake of fairness, we apply these two methods to the same set of
test cases separately. The source and follow-up test cases from metamorphic
testing are both applied to assertion checking.

The average sizes of the test suites (including source and follow-up test
cases) used by all students for the three programs were 19.9, 22.2, and 16.8,
respectively. We also analyzed all the mutants manually before testing, and
remove the equivalent mutants. There are 19, 18, and 61 equivalent mutants
for program Boyer, BooleanExpression, and TxnTableSorter, respectively. We
do not include them when calculating mutation detection ratios as these
mutants cannot be detected by any test cases.

Table 7.6 reports on the mutation detection ratios for each program using
the two testing methods. It shows that the mutation detection ratios by
applying MT ranged from 44% to 93% for program Boyer, from 46% to 89%
for program BooleanExpression, and from 32% to 74% for program
TxnTableSorter.

Under the “Aggregate” columns are the percentages of mutants detected
by all subjects. For MT, the mutation detection ratios were 98%, 95%, and
83%, respectively. Each entry was significantly better than the corresponding
mutation detection ratio for assertion checking. This result, again, is
encouraging.

The p-value of the standard Mann-Whitney test was less than 0.001 in all
cases. Hence, we reject the null hypothesis H0 on the effectiveness of fault
detection at a 99.9% confidence level. In other words, MT may not only be
comparable to assertion checking, but outperforms the latter. We use the same

Table 7.6: Mutation detection ratios for metamorphic testing and assertion
checking

Program

Metamorphic Testing Assertion Checking Result of
Mann-

Whitney
Test

Mean Max Min Stdev
Aggre-

gate
Mean Max Min Stdev

Aggre-
gate

Boyer 60% 93% 44% 0.13 98% 40% 66% 27% 0.12 81% < 0.001

Boolean-
Expression

63% 89% 46% 0.11 95% 39% 66% 30% 0.10 78% < 0.001

Txn-
TableSorter

59% 74% 32% 0.14 83% 37% 58% 22% 0.11 63% < 0.001

Chapter 7

157

set of test cases when applying the Mann-Whitney test.
These setting and hypothesis testing results indicate that the difference is

attributed by the ability to violate the constraints specified via metamorphic
relations and those specified via assertion checking. We observe that the
difference between the two testing methods in our experiment is whether the
constraint is specified for one execution or for multiple executions. The former
type of constraint is for assertion checking, and the latter type is for
metamorphic relation. In the other words, the result indicates that using the
test results of multiple executions to identify failures collectively is more
effective than just using one execution.

Although our empirical results show that metamorphic testing can be
effective, there is a need to develop systematic methods for creating
metamorphic relations and assertions (because individual tester’s results were
lower than the aggregated results of all testers in either approach). The average
differences between the mean column and the aggregate column for MT and
assertion checking were 41.3% and 35.3%, respectively. The standard
derivations did not differ much statistically. They ranged from 0.10 to 0.14, as
shown in Table 7.6.

Comparison of Time Cost

We would like to compare the time costs between metamorphic testing and
assertion checking. From the subjects’ submissions, we found that they spent
less time on applying assertion checking than metamorphic testing.

Table 7.7 shows the statistics of the time costs for applying the respective
strategies to the target programs. Each entry in the column “Smallest
Observation” stands for the smallest value (time cost in terms of hours) in the
respective data set. Each entry in the column “Largest Observation” stands for
the largest value in the respective data set. Each entry under “Median”
captures the 50th percentile in the data. The entries under “Lower Quartile”
and “Upper Quartile” capture the values of the 25th and 75th percentiles (in

Table 7.7: Statistics of time costs for applying MT and assertion checking

Smallest

Observation
Lower

Quartile
Lower
Notch

Median
Upper
Notch

Upper
Quartile

Largest
Observation

Boyer
MT 0.58 1.73 1.99 2.51 5.01 5.11 9.82

Assertion 0.58 1.03 1.03 1.48 1.99 2.12 2.18
Boolean-

Expression
MT 0.32 2.25 2.51 3.28 6.03 8.02 12.71

Assertion 0.45 1.35 1.48 1.99 3.02 5.01 7.77
Txn-

TableSorter
MT 0.26 2.51 3.02 3.98 6.03 6.99 11.68

Assertion 0.52 1.03 1.28 1.99 3.02 3.98 6.74

Chapter 7

158

the order from small to large) in the data, respectively. The entries under
“Lower Notch” and “Upper Notch” display the variability of the median in the
data set.

We observe from Table 7.7 several interesting tradeoffs between MT and
assertion checking. First, the smallest observation in assertion checking is
consistently larger than that in MT. Although applying MT is apparently more
complex than assertion checking, this result shows that, for the most effective
testers, the effort to design and implement metamorphic relations is less than
the effort to design and implement assertions. Second, for each of the three
target programs, the median and the largest observation in MT are always
greater than the corresponding values in assertion checking. It indicates that
designing and implementing MRs is generally more time-consuming than
designing and implementing assertions. Third, from the lower quartiles and
upper quartiles in MT and assertion checking for these programs, we further
observe that the time spent on MT varies more drastically than the time on
assertion checking.

 Intuitively, many developers have developed skills to understand program
logic from source code and are comfortable in conducting program
comprehension. Furthermore, developers are used to modifying an existing
program to implement new changes to the source code. In view of the above
intuition, we believe that adding assertions to source code is a more familiar
and handy task for the subjects than formulating and implementing MRs.

To analyze the differences between these two testing approaches to
alleviate the test oracle problem, we further represent their time costs using
box-and-whisker plots. Figure 7.2 shows the plots for applying the respective
strategies to the target programs. The time cost for MT includes the time to
identify and formulate test cases, write functions to generate follow-up test

Figure 7.2: Box-and-whisker plots of time costs for applying MT and assertion

checking

Chapter 7

159

cases, and write functions to verify the identified metamorphic relations. The
time cost for assertion checking includes the time spent on adding assertions to
the source code.

The vertical axis of Figure 7.2 shows the time cost in number of hours.
The bottom and top horizontal lines of each box indicate the lower and upper
quartiles. The whiskers, drawn as dotted vertical lines, show the full range of
the data. The median is drawn as a horizontal line inside each box. A notch is
added to each box to show the uncertainty interval for each median. If two
median notches do not overlap, it indicates that there is a statistically
significant difference between the two medians at a 95% confidence level.

For Boyer and TxnTableSorter, there is a significantly difference between
the times spent in applying metamorphic testing and assertion checking. The
difference is less statistically significant for BooleanExpression. The exact
values of the respective notches can be found in Table 7.7.

The difference in time cost is acceptable for a number of reasons. First, the
time costs for MT implementations include the generation of follow-up test
cases, whereas the time costs for assertion checking do not include the
generation of any test cases. Second, some subjects have had prior experience
in assertion checking. We believe that the extra time spent on developing
programs to generate follow-up test cases have paid off because, as discussed
in later section, these (follow-up) test cases have demonstrated to be very
useful in detecting failures of the target programs. Furthermore, although there
are statistically significant differences in time costs (especially if we view
Table 7.7 in relative terms), we also note that the actual median difference in
absolute terms ranges between one to two hours in the experiment.

Figure 7.2 further indicates that the time cost for applying MT to object-
oriented testing at the class level is acceptable compared to that of assertion
checking. When we consolidate the comparisons in later sections, we find that
MT provides a stronger oracle check with a tradeoff of slightly more time for
preparation.

Table 7.8: Mutation detection ratios for MT
with and without faulty metamorphic relation implementations

Program
With Correct MR

Implementations Only
With Both Correct and Faulty MR

Implementations
Mean Max Min Stdev Median Mean Max Min Stdev Median

Boyer 59% 100% 2% 0.25 56% 95% 100% 85% 0.03 95%

Boolean-
Expression

72% 100% 34% 0.27 85% 91% 100% 80% 0.08 94%

Txn-
TableSorter

66% 100% 6% 0.22 57% 91% 100% 67% 0.05 90%

Chapter 7

160

Comparison of MT with and without Faulty MR Implementations

As we have highlighted, an MR is a property that the correct version of a
program under test should exhibit. To apply MT automatically, testers need to
execute the implementations of the MRs for the program under test. In the
controlled experiment, these MR implementations are constructed by the
subjects. It is crucial to know whether MT can still be effective if MR
implementations can be faulty.

We thus conduct a follow-up experiment to validate whether MT is robust
enough if faulty metamorphic relations are used to detect failures in the
subject programs. We use the set of mutation operators of muJava mentioned
above to generate single-fault mutants of the MR implementations. In total,
muJava produces 88, 71, and 89 MR mutants for the three subject programs,
respectively. If an MR mutant cannot be killed by any test case, we exclude it
from the follow-up experiment. We also exclude similar target program
mutants. We then select a test suite of 20 test cases randomly from the test
pool for each target program and comput the mutation detection ratio
accordingly. We note that, in this validation experiment, a revealed failure
may be a mistake (namely, a false positive case) produced by a faulty MR
implementation, a failure of the faulty target program, or both. We repeated
the experiment by selecting the test suites 10 times.

The result is shown in Table 7.8. First, if we only use correct MRs to
identify failures, the mean fault detection rate in the validation experiment is
close to the mutation detection rate shown in Table 7.6. It indicates that the
results of the validation experiment are comparable to the above-mentioned
experiment that compares MT and assertion checking. Second, if MR
implementations can be faulty, the mean value is much higher (consistently
over 90% as shown in the rightmost column of Table 7.8). The result indicates
that a test suite is likely to detect problems in the combination of a faulty
target program and a set of faulty MRs. This finding is encouraging because
MT can still be reasonably applied even if some MR implementations may be
faulty. If a faulty MR implementation can be debugged successfully, we
believe that the failure detection rate of the test suite will drop, as indicated by
the comparison in Table 7.7. However, fixing the faults in the MR implement-
ations will incur additional time cost. It may make the difference in time cost
between metamorphic testing and assertion checking more noticeable. Thus, it
warrants more study to find the extent that testers should stop further
maintenance of a faulty MR implementation in order to balance the
development cost and product quality.

Further Discussions on MT

Chapter 7

161

In general, we observe that the more MRs being used, the higher will be the
mutation detection ratio. As we have indicated, there is a need to propose
more systematic methods to construct the implementation of metamorphic
relations. The utilization of an MR implementation also increases as testers
increase the number of initial test cases applicable to the MR. Since the
resources in software testing are often limited, it is also worth investigating the
number of test cases adequate for MT.

Moreover, testers may apply a number of metamorphic relations in order
to test a program. In general, different metamorphic relations have non-
identical fault detection capabilities. Let us, for instance, analyze the
experimental results of the Boyer program. The subjects have identified 18
metamorphic relations in total. We observe that four subjects have only
identified one and the same metamorphic relation (MR1 in Table 7.9). The
implementation of this metamorphic relation constructs a follow-up test case
by appending an arbitrary string to the string in the initial test case and reusing
the given pattern in the initial test case. It also checks whether the Boyer
program over the two test cases will give the same outputs if the program
locates successfully the given pattern in the initial string. The mutation
detection ratios resulting from these MR implementations by the subjects are
no more than 60% no matter how many test cases they used. We also find that
some subjects using the other metamorphic relations (MR2 and MR3 in Table
9) achieve mutation detection ratios higher than 80%, although they only
propose four initial test cases. It indicates that the quality of metamorphic
relations can be a key factor in determining the effectiveness of MT.

Threats to Validity

We describe the threats to validity in the following sections.

Table 7.9: Examples of Metamorphic Relations for program Boyer

Index Metamorphic Relation
MR1 If (x1 = concatenate (x2, x3))  (find (x2, x4) > −1),

then find (x1, x4) = find (x2, x4).
MR2 If (x1 = concatenate (x2, x3))  (find (x2, x4) = −1)  (find (x3, x4) > −1),

then find (x1, x4) ≤ length (x2) + find (x3, x4).
MR3 If (x1 = concatenate (x2, x3))  (find (x1, x4) = length (x2)),

then find (x3, x4) = 0.
The function concatenate (x, y) returns the result of concatenating string x and string
y. The function find (x, y) returns the zero-based index of string y within the string x
if x contains y; otherwise, it returns −1.

Chapter 7

162

Internal Validity

For this experiment, we provide the subjects with all the background materials
and confirm with them that they have sufficient time to perform all the tasks.
On the other hand, we appreciate that students might be interrupted by minor
Internet activities when they perform their tasks. Hence, the time costs
reported by the subjects should be viewed and analyzed conservatively.
Furthermore, the subjects do not know the nature and details of the faults
seeded. This measure ensures that their “designed” metamorphic relations and
assertions are unbiased with respect to the seeded faults.

We use test cases provided by our subjects to conduct the experiment. We
do not know whether these test cases may favor assertion checking,
metamorphic testing, or neither of them. We do not disclose the purpose of the
experiment to any subjects, and only request them to produce test cases that
they consider sufficient for both metamorphic testing and assertion checking.
To address the threat to internal validity, we use all test cases from different
subjects on every applicable MR. Since subjects do not communicate with one
another in the experiment, this setting helps disassociate test cases from
particular MRs.

Readers may be concerned whether the target programs can be faulty. We
have carefully checked the classes before the experiment. Furthermore, none
of the subjects has reported any errors in the target programs. Another concern
is whether the developed MRs may contain faults. To address this threat, we
have run all test cases by all subjects as well as our own test cases on all these
MRs for the target programs. We observe no failure in the verification
exercise. To further address this risk, we have also conducted a verification
experiment to explicitly test the mutants of the implementations of the
metamorphic relations.

External Validity

In this experiment, external validity is related to the degree to which the
results can be generalized to the testing of real-world systems. The programs
used in our experiment are from real-life applications. For example,
Eurobudget is widely used and has been downloaded more than 10,000 times
from SourceForge. On the other hand, some real-world programs can be much
larger and less well documented than the open-source programs studied. More
future studies may be in order for the testing of large complex systems using
the MT method. We use the MR implementations produced by our subjects.
Other testers of other target programs may produce other MR
implementations. Additional experiments should always be helpful in

Chapter 7

163

improving the generalization of the results that we obtain and present in this
thesis.

We use Java programs in the experiments, and all MR implementations are
naturally written in Java. Although Java programs are widely used in practice,
an MR is inherently a property. It may also be intuitive to implement an MR
using a rule-based approach via logic programming. It is not immediately
obvious to us whether the use of a rule-based approach may produce different
comparison results.

We use the test cases produced by the subjects. The use of other schemes
(such as statement coverage) may produce different sets of test cases.

Construct Validity

We measure the effectiveness of metamorphic testing and assertion checking
via a mutation detection ratio. Mutation analysis has been used and validated
to be reliable for testing experiments that stimulate real fault scenarios for
deterministic, procedural programs (written in C) [2]. The use of mutation
detection ratio can be regarded as a reliable measure of the fault detection
capability of a testing technique.

In our experiment, to compare metamorphic testing and assertion
checking, we use the same test pool and only use the method level of mutation
operators to produce mutants in procedural program style. Moreover, the
target programs are deterministic; and thus, they produce the same output
every time that a program executes a particular test case. Therefore, the
failures shown in the outputs are also deterministic. However, our target
programs are in Java, which is not the same as the C language. The set of
mutation operators is not identical to that used by Andrews et al. [2]. On the
other hand, many testing experiments use mutation analysis as the means to
assure the effectiveness of various testing techniques.

To measure the time cost for applying MT and assertion checking, we use
the time spent by individual subjects on individual target programs. We do not
control how a subject conducts their tasks. Thus, a subject may make a
mistake when doing a task, find out a similar mistake when working on
another task, and then go back to the former task to rectify the first mistake.
Thus, a preceding task may be over-estimated in terms of the time spent, while
the later task may benefit from the development experience of the preceding
task and be under-estimated. We treat this factor as random noise in the
experiment. We measure the times reported by each subject on applying MT
and on applying assertion checking.

Chapter 7

164

7.4.4 Summary

The main contribution of this section is three-fold. (i) It is the first controlled
experiment to compare metamorphic testing and assertion checking. The
experiment shows that metamorphic testing is more effective than assertion
checking as a means to identify faults. (ii) It provides the first empirical
evidence to resolve the speculation whether subjects have difficulty
formulating metamorphic relations and implementing MT. Indeed, the results
of the experiment show that all subjects manage to propose metamorphic
relations for the target programs after a brief general introduction on MT, and
identical or very similar metamorphic relations are proposed by different
subjects. (iii) This chapter further reports the first experiment to evaluate the
effectiveness of (correct and faulty) metamorphic relations in MT. The result
shows that a test suite can effectively identify failures from faulty target
programs despite the presence of faulty metamorphic relation implementations.
Our analysis on raw data also indicates that the granularity of using MT is
coarser than assertion checking in failure detection.

165

Chapter 8

Conclusion

Software covers every corner of our lives, such as entertainment, education,
and research. On the other hand, software faults are common. Everyone wants
perfect software while most software is far from bug-free. Software debugging
is important in software development. A major and time-consuming task in
debugging is to locate faults. A common approach in statistical fault
localization aims at locating program elements that are close to the faults, in
terms of the positions (i.e., line numbers) of program statements. This relaxes
the requirement to pinpoint the exact locations of the faults and has been
shown empirically to be quite effective. In this thesis, we focus on such
statistical fault localization techniques and investigate four topics.

First, we note that existing statistical fault-localization approaches focus
on finding program elements that, when exercised, correlate strongly to
program failures. However, an infected program state triggered by a fault may
propagate a long way before the program execution finally causes a failure.
Previous techniques are not effective to locate faults that, when exercised,
have relatively weak correlations with program failures. We assess the suspi-
ciousness scores of edges. We further set up a set of linear algebraic equations
over the suspiciousness scores of basic blocks and statements, which
abstractly model the propagation of suspicious program states through control
flow edges in a back-tracing manner. Such an equation set can be efficiently
solved using standard mathematical techniques such as Gaussian elimination
and the least square method. Empirical results show that our proposed
technique, known as CP, is effective when compared with existing techniques.

Second, during the experimental evaluation in a previous study, we find
that representative predicate-level techniques are not as effective as statement-
level techniques. We observe that the fault-localization capabilities of various
evaluation sequences of the same Boolean expression are not identical.

Chapter 8

166

Because of short-circuit evaluations of Boolean expressions in program execu-
tion, different evaluation sequences of a predicate may produce different
resultant values. This inspires us to investigate the effectiveness of using Bool-
ean expressions at the evaluation sequence level for statistical fault localiza-
tion. Experiments on the Siemens programs and UNIX utility programs show
that finer-grained fault-localization techniques may result in better effective-
ness.

Third, in real-life testing and debugging environments, passed (i.e.,
successful) executions may not always be available or reliable. We propose a
new model and develop a technique known as Slope, which uses two formulas
that share the same model and can be applied to different scenarios with or
without passed executions. Our underlying model first collects the execution
counts of statements and, for each statement, calculates the fraction of failed
executions with respect to all executions having the same execution count. It
then calculates the failing rate accordingly. Considering every tuple of failing
rate, execution count as a point in two-dimensional space, the model lines up
these points and uses the slope of the line as the mean of the signal of
suspiciousness and the fitting error as the noise to the signal. We have
developed a formula based on the idea of signal-to-noise ratio and propose a
novel and effective fault-localization technique. We continue to eliminate the
dependency on passed executions by further approximations, which enables
our Slope technique to work effectively in scenarios where passed executions
are unavailable or unreliable to use. An experiment on UNIX utility programs
shows that our approaches are promising.

Fourth, many previous studies overlook the statistical distributions of the
spectra, on which their parametric techniques fully rely. We have argued and
empirically verified that assuming a specific distribution of feature spectra of
dynamic program statistics is problematic. It highlights a threat to construct
validity in fault-localization research that previous studies do not report in
their empirical evaluations and model development. We have proposed a non-
parametric approach that applies general hypothesis testing techniques
proposed by mathematicians to statistical fault localization, and cast our
technique in a predicate-based setting. We have conducted experiments on the
Siemens suite to evaluate the effectiveness of our model. The experimental
results show that our model can be effective in locating faults and requires no
artificial parameters or operators. Empirically, our approach gives better fault-
localization effectiveness than existing predicate-level fault-localization
techniques. In addition, we have also conducted experiment to compare the

Chapter 8

167

effectiveness of using two standard non-parametric hypothesis testing methods
and two standard parametric hypothesis testing methods. The results show that,
when there is no evidence of any specific distribution of program feature
spectra, the use of standard non-parametric hypothesis testing methods gives
better results than the use of parametric hypothesis testing methods.

Since statistical fault localization uses dynamic execution information of
programs and dependent partly on the pass/fail status of test cases, this thesis
also discusses some related issues and reports a controlled experiment to study
the application of metamorphic testing (MT) and assertion checking as the
means to alleviate the test oracle problem. The experimental results indicate
that, after training, testers can apply MT to test programs effectively, and that
MT is a more effective testing strategy than assertion checking in terms of
fault detection capability. Our study also reveals that the granularity of MRs is
coarser than that of assertion checking, which may indicate that MRs provide
a high level of abstraction for testers to deal with testing tasks.

In conclusion, this thesis develops statistical fault-localization techniques
that are particularly effective when (a) the exercising of faulty statements are
not strongly corrected to failures, (b) a program has many compound predi-
cates, (c) passed executions are unavailable, or (d) the distribution profile of
the program spectra is not available. The experiments in this thesis show that
the proposed techniques are effective.

Future work may include integrating Slope with CP to gain better
effectiveness and independence of passed executions. Second, since we use a
concept of signal-to-noise ratio to construct the key formula, how to make use
of an effective method to reduce the noise level is also a future direction.
Third, we are also interested in locating multiple faults and locating faults in
distributed systems. Fourth, we would like to conduct an empirical study to
investigate the effect of incorrectly marked successful or failure-causing test
cases on the effectiveness of fault localization techniques.

Chapter 8

168

169

Bibliography

[1] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund. “On the accuracy of
spectrum-based fault localization”. In Proceedings of
Testing: Academic and Industrial Conference Practice and
Research Techniques – MUTATION (TAICPART-MUTATION 2007),
pages 89-98. IEEE Computer Society Press, Los Alamitos, CA, 2007.

[2] J. H. Andrews, L. C. Briand, and Y. Labiche. “Is mutation an
appropriate tool for testing experiments?”. In Proceedings of the 27th
International Conference on Software Engineering (ICSE 2005), pages
402-411. ACM Press, New York, NY, 2005.

[3] S. Ar, M. Blum, B. Codenotti, and P. Gemmell. “Checking
approximate computations over the reals”. In Proceedings of the 25th
Annual ACM Symposium on Theory of Computing (STOC 1993), pages
786-795. ACMPress, New York, NY, 1993.

[4] P. Arumuga Nainar, T. Chen, J. Rosin, B. Liblit. “Statistical debugging
using compound Boolean predicates”. In Proceedings of the 2007 ACM
SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA 2007), pages 5-15. ACM Press, New York, NY, 2007.

[5] G. K. Baah, A. Podgurski, and M. J. Harrold. “The probabilistic
program dependence graph and its application to fault diagnosis”. In
Proceedings of the 2008 ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA 2008), pages 189-200. ACM
Press, New York, NY, 2008.

[6] T. Ball and S. Horwitz. “Slicing programs with arbitrary control-flow”.
In Proceedings of Workshop on Automated and Algorithm Debugging
(AADEBUG 1993), volume 749 of Lecture Notes in Computer
Science, pages 206-222. Springer, London, UK, 1993.

[7] T. Ball, P. Mataga, and M. Sagiv. “Edge profiling versus path
profiling: the showdown”. In Proceedings of Symposium on Principles
of Programming Languages (POPL 1998), pages 134-148. ACM
Press, New York, NY, 1998.

[8] Baudry, B., Fleurey, F., Le Traon, Y., 2006. “Improving test suites for
efficient fault localization”. In Proceedings of the 28th International

Bibliography

170

Conference on Software Engineering (ICSE 2006), pages 82-91. ACM
Press, New York, NY.

[9] B. Beizer. “Software testing techniques”. Van Nostrand Reinhold, New
York, NY, 1990.

[10] S. Beydeda. “Self-metamorphic-testing components”. In Proceedings
of the 30th Annual International Computer Software and Applications
Conference (COMPSAC 2006), volume 1, pages 265-272, IEEE
Computer Society Press, Los Alamitos, CA, 2006.

[11] R. V. Binder. “Testing object-oriented systems: models, patterns, and
tools”. AddisonWesley, Reading, MA, 2000.

[12] M. Blum and S. Kannan. “Designing programs that check their work”.
Journal of the ACM, 42 (1): 269-291, 1995.

[13] M. Blum, M. Luby, and R. Rubinfeld. “Self-testing/correcting with
applications to numerical problems”. Journal of Computer and System
Sciences, 47 (3): 549-595, 1993.

[14] D. Binkley and M. Harman. “An empirical study of predicate
dependence levels and trends”. In Proceedings of International
Conference on Software Engineering (ICSE 2003), pages 330-339.
IEEE Computer Society, 2003.

[15] M. D. Bond and K. S. McKinley. “Continuous path and edge
profiling”. In Proceedings of Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO 2005), pages 130-140.
IEEE Computer Society Press, Los Alamitos, CA, 2005.

[16] J. F. Bowring, J.M. Rehg, and M. J. Harrold. “Active learning for
automatic classification of software behavior”. In Proceedings of the
2004 ACM SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA 2004), pages 195-205. ACM Press, New York,
NY, 2004.

[17] L. C. Briand, M. Di Penta, and Y. Labiche. “Assessing and improving
state-based class testing: a series of experiments”. IEEE Transactions
on Software Engineering, 30 (11): 770-783, 2004.

[18] L. C. Briand, Y. Labiche, and X. Liu. “Using machine learning to
support debugging with Tarantula”. In Proceedings of International
Symposium on Software Reliability Engineering (ISSRE 2007), pages
137-146. IEEE Computer Society, 2003.

[19] F. T. Chan, T. Y. Chen, S. C. Cheung, M. F. Lau, and S. M. Yiu.
“Application of metamorphic testing in numerical analysis”. In
Proceedings of the IASTED International Conference on Software
Engineering (SE 1998), pages 191-197. ACTA Press, Calgary, Canada,
1998.

[20] W. K. Chan, T.Y. Chen, S.C. Cheung, T. H. Tse, and Zhenyu Zhang.
“Towards the testing of power-aware software applications for wireless

Bibliography

171

sensor networks”. In Proceedings of the 12th International Conference
on Reliable Software Technologies (Ada-Europe 2007), pages 84-99.
LNCS 4498, Springer-Verlag, Berlin, 2007.

[21] W. K. Chan, T. Y. Chen, H. Lu, T. H. Tse, and S. S. Yau. “A
metamorphic approach to integration testing of context-sensitive
middleware-based applications”. In Proceedings of the 5th
International Conference on Quality Software (QSIC 2005), pages
241-249. IEEE Computer Society Press, Los Alamitos, CA, 2005.

[22] W. K. Chan, T. Y. Chen, H. Lu, T. H. Tse, and S. S. Yau. “Integration
testing of context-sensitive middleware-based applications: a
metamorphic approach”. International Journal of Software Engineering
and Knowledge Engineering, 16 (5): 677-703, 2006.

[23] W. K. Chan, M. Y. Cheng, S. C. Cheung, and T. H. Tse. “Automatic
goal-oriented classification of failure behaviors for testing XML-based
multimedia software applications: an experimental case study”. Journal
of Systems and Software, 79 (5): 602-612, 2006.

[24] W. K. Chan, S. C. Cheung, and K. R. P. H. Leung. “Towards a
metamorphic testing methodology for service-oriented software
applications”. The 1st International Conference on Services
Engineering (SEIW 2005). In Proceedings of the 5th International
Conference on Quality Software (QSIC 2005), pages 470-476. IEEE
Computer Society Press, Los Alamitos, CA, 2005.

[25] W. K. Chan, S. C. Cheung, and K. R. P. H. Leung. “A metamorphic
testing approach for online testing of service-oriented software
applications”. International Journal of Web Services Research, 4 (2):
60-80, 2007.

[26] W. K. Chan, S. C. Cheung, J. C. F. Ho, and T. H. Tse. “PAT: a pattern
classification approach to automatic reference oracles for the testing of
mesh simplification programs”. Journal of Systems and Software 82(3):
422-423, 2008.

[27] W. K. Chan, J. C. F. Ho, and T. H. Tse. “Finding failures from passed
test cases: improving the pattern classification approach to the testing
of mesh simplification programs”, Software Testing, Verification and
Reliability (2009). doi:10.1002/stvr.408.

[28] W. K. Chan, J. C. F. Ho, and T. H. Tse. “Piping classification to
metamorphic testing: an empirical study towards better effectiveness
for the identification of failures in mesh simplification programs”. In
Proceedings of the 31st Annual International Computer Software and
Applications Conference (COMPSAC 2007), volume 1, pages 397-404.
IEEE Computer Society Press, Los Alamitos, CA, 2007.

[29] W. K. Chan, L. Mei, and Z. Zhang. “Modeling and testing of cloud
applications”, in Proceedings of 2009 IEEE Asia-Pacific Services

Bibliography

172

Computing Conference (APSCC 2009), IEEE Computer Society Press,
Los Alamitos, CA, pp. 111-118 (2009).

[30] D. Chapman. “A program testing assistant”. Communications of the
ACM, 25 (9): 625-634, 1982.

[31] T. Y. Chen, J. Feng, and T. H. Tse. “Metamorphic testing of programs
on partial differential equations: a case study”. In Proceedings of the
26th Annual International Computer Software and Applications
Conference (COMPSAC 2002), pages 327-333. IEEE Computer
Society Press, Los Alamitos, CA, 2002.

[32] T. Y. Chen, T. H. Tse, and Z. Q. Zhou. “Semi-proving: an integrated
method based on global symbolic evaluation and metamorphic
testing”. In Proceedings of the 2002 ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA 2002), pages
191-195. ACM Press, New York, NY, 2002.

[33] T. Y. Chen, T. H. Tse, and Z. Q. Zhou. “Fault-based testing without
the need of oracles”. Information and Software Technology, 45 (1): 1-
9, 2003.

[34] W. Chen, R. H. Untch, G. Rothermel, S. Elbaum, and J. von Ronne,
“Can fault-exposure-potential estimates improve the fault detection
abilities of test suites?”, Software Testing, Verification and Reliability
12 (4): 197-218 (2002).

[35] T. Chilimbi, B. Liblit, K. Mehra, A. Nori, K. Vaswani. “Holmes:
effective statistical debugging via efficient path profiling”. In
Proceedings of the 31st International Conference on Software
Engineering (ICSE 2009), pages 34-44. ACM Press, New York, NY,
2009.

[36] H. Cleve, A. Zeller. “Locating causes of program failures”. In
Proceedings of the 27th International Conference on Software
Engineering (ICSE 2005), pages 342-351. ACM Press, New York, NY.

[37] R. L. Cobleigh, G. S. Avrunin, and L. A. Clarke. “User guidance for
creating precise and accessible property specifications”. In Proceedings
of the 14th ACM SIGSOFT International Symposium on Foundations
of Software Engineering (SIGSOFT 2006/FSE-14), pages 208-218.
ACM Press, New York, NY, 2006.

[38] J. S. Collofello and L. Cousins. “Towards automatic software fault
location through decision-to-decision path analysis”. In Proceedings of
the 1987 National Computer Conference, pages 539–544. Chicago, IL,
1987.

[39] G. E. Dallal. “Why P = 0.05?”. Available at http://www.tufts.edu/
gdallal/p05.htm.

Bibliography

173

[40] H. Do, S. G. Elbaum, G. Rothermel. “Supporting controlled
experimentation with testing techniques: an infrastructure and its
potential impact”. Empirical Software Engineering 10 (4), 405–435.

[41] H. Do, S. Mirarab, L. Tahvildari, and G. Rothermel, “An empirical
study of the effect of time constraints on the cost-benefits of regression
testing”. In Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (SIGSOFT
2008/FSE-16), pages 71-82. ACM Press, New York, NY, 2008.

[42] H. Do and G. Rothermel, “A controlled experiment assessing test case
prioritization techniques via mutation faults”. In Proceedings of the
IEEE International Conference on Software Maintenance (ICSM
2005), pages 411-420. IEEE Computer Society Press, Los Alamitos,
2005.

[43] H. Do and G. Rothermel, “An empirical study of regression testing
techniques incorporating context and lifetime factors and improved
cost-benefit models”. In Proceedings of the 14th ACM SIGSOFT
International Symposium on Foundations of Software Engineering
(SIGSOFT 2006/FSE-14), pages 141-151. ACM Press, New York, NY,
2006.

[44] H. Do and G. Rothermel, “On the use of mutation faults in empirical
assessments of test case prioritization techniques”, IEEE Transactions
on Software Engineering 32 (9): 733-752 (2006).

[45] H. Do and G. Rothermel, “Using sensitivity analysis to create
simplified economic models for regression testing”, in Proceedings of
the 2008 ACM SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA 2008), pages 51-62. ACM Press, New York, NY,
2008.

[46] H. Do, G. Rothermel, and A. Kinneer, “Prioritizing JUnit test cases: an
empirical assessment and cost-benefits analysis”, Empirical Software
Engineering 11: 33-70 (2006).

[47] J. A. Durães and H. S. Madeira. “Emulation of software faults: A field
data study and a practical approach”. IEEE Transactions on Software
Engineering, 32 (11): 849–867, 2006.

[48] S. Elbaum, D. Gable, and G. Rothermel, “The impact of software
evolution on code coverage information”, in Proceedings of the IEEE
International Conference on Software Maintenance (ICSM 2001), page
170. IEEE Computer Society Press, Los Alamitos, CA2001.

[49] S. G. Elbaum, A. G. Malishevsky, and G. Rothermel, “Prioritizing test
cases for regression testing”, in Proceedings of the 2000 ACM
SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA 2000), ACM SIGSOFT Software Engineering Notes 25 (5):
102-112 (2000).

Bibliography

174

[50] S. G. Elbaum, A. G. Malishevsky, and G. Rothermel, “Incorporating
varying test costs and fault severities into test case prioritization”. In
Proceedings of the 23rd International Conference on Software
Engineering (ICSE 2001), pages 329-338. IEEE Computer Society
Press, Los Alamitos, CA, 2001.

[51] S. G. Elbaum, A. G. Malishevsky, and G. Rothermel, “Test case
prioritization: a family of empirical studies”, IEEE Transactions on
Software Engineering 28 (2): 159-182 (2002).

[52] S. G. Elbaum, G. Rothermel, S. Kanduri, and A. G.Malishevsky.
“Selecting a cost-effective test case prioritization technique”. Software
Quality Control, 12 (3): 185-210, 2004.

[53] P. Francis, D. Leon, M. Minch, and A. Podgurski. “Tree-based
methods for classifying software failures”. In Proceedings of the 15th
International Symposium on Software Reliability Engineering (ISSRE
2004), pages 451- 462. IEEE Computer Society Press, Los Alamitos,
CA, 2004.

[54] A. Griesmayer, S. Staber, R. Bloem. “Automated fault localization for
C programs”. Electronic Notes in Theoretical Computer Science 174
(4), 95–111, 2007.

[55] A. Gotlieb and B. Botella. “Automated metamorphic testing”. In
Proceedings of the 27th Annual International Computer Software and
Applications Conference (COMPSAC 2003), pages 34-40. IEEE
Computer Society Press, Los Alamitos, CA, 2003.

[56] N. Gupta, H. He, X. Zhang, and R. Gupta. “Locating faulty code using
failure-inducing chops”. In Proceedings of the 20th IEEE/ACM
Interna- tional Conference on Automated Software Engineering (ASE
2005), pages 263–272. ACM Press, New York, NY, 2005.

[57] M. J. Harrold, G. Rothermel, K. Sayre, R. Wu, and L. Yi. “An
empirical investigation of the relationship between spectra differences
and regression faults”. Software Testing, Verification and Reliability,
10 (3): 171–194, 2000.

[58] R. Helm, W. M. Holland, and D. Gangopadhyay. “Contracts:
specifying behavioral compositions in object-oriented systems”. In
Proceedings of the 5th Annual Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA 1990),
ACM SIGPLAN Notices, 25 (10): 169-180, 1990.

[59] W. E. Howden. “Weak mutation testing and completeness of test sets”.
IEEE Transactions on Software Engineering, SE-8 (4): 371-379, 1982.

[60] P. Hu, “Automated Fault Localization: a Statistical Predicate Analysis
Approach”. PhD Thesis, The University of Hong Kong, 2006.

[61] P. Hu, Z. Zhang, W. K. Chan, and T. H. Tse. “An empirical
comparison between direct and indirect test result checking

Bibliography

175

approaches”. In Proceedings of the 3rd International Workshop on
Software Quality Assurance (SOQUA 2006) in conjunction with the
14th ACM SIGSOFT Symposium on Foundations of Software
Engineering (SIGSOFT 2006/FSE-14), pages 6-13. ACM Press, New
York, NY, 2006.

[62] P. Hu, Z. Zhang, W. K. Chan, and T. H. Tse, “Fault localization with
non-parametric program behavior model”, in Proceedings of the 8th
International Conference on Quality Software (QSIC 2008), pages
385-395. IEEE Computer Society Press, Los Alamitos, California,
2008.

[63] M. Hutchins, H. Foster, T. Goradia, T. Ostrand. “Experiments on the
effectiveness of dataflow- and controlflow-based test adequacy
criteria”. In Proceedings of the 16th International Conference on
Software Engineering (ICSE 1994), pages 191-200. IEEE Computer
Society Press, Los Alamitos, CA.

[64] D. Jeffrey, N. Gupta, R. Gupta. “Fault localization using value
replacement”. In Proceedings of the 2008 ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA
2008), pages 167-178. ACM Press, New York, NY, 2008.

[65] B. Jiang, W. K. Chan, Z. Zhang, and T. H. Tse. “Where to Adapt
Dynamic Service Compositions”, in Proceedings of the 18th
International World Wide Web Conference (WWW 2009), Madrid,
Spain, Apr 20 - 24, 2009. (poster track)

[66] B. Jiang, Z. Zhang, W. K. Chan and T. H. Tse, “Adaptive random test
case prioritization”, in Proceedings of the 24rd IEEE/ACM
International Conference on Automated Software Engineering (ASE
2009), IEEE Computer Society Press, Los Alamitos, CA, pp. 233-244.

[67] B. Jiang, Z. Zhang, T. H. Tse, and T. Y. Chen, “How well do test case
prioritization techniques support statistical fault localization”. In
Proceedings of the 33rd Annual IEEE International Computer
Software and Applications Conference (COMPSAC 2009), vol. 1,
pages 99-106. IEEE Computer Society Press, Los Alamitos, CA, 2009.

[68] J. A. Jones and M. J. Harrold. “Empirical evaluation of the Tarantula
automatic fault-localization technique”. In Proceedings of the 20th
IEEE/ACM International Conference on Automated Software
Engineering (ASE 2005), pages 273–282. ACM Press, New York, NY,
2005.

[69] J. A. Jones, M. J. Harrold, J. F. Bowring. “Debugging in parallel”. In
Proceedings of the 2007 ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA 2007), pages 16-26. ACM Press,
New York, NY, 2007.

Bibliography

176

[70] J. A. Jones, M. J. Harrold, J. Stasko. “Visualization of test information
to assist fault localization”. In Proceedings of the 24th International
Conference on Software Engineering (ICSE 2002), pages 467-477.
ACM Press, New York, NY, 2002.

[71] A. J. Ko and B. A. Myers. “Debugging reinvented: asking and
answering why and why not questions about program behavior”. In
Proceedings of International Conference on Software Engineering
(ICSE 2008), pages 301-310. ACM Press, New York, NY, 2008.

[72] B. Korel. “PELAS: Program error-locating assistant system”. IEEE
Transactions on Software Engineering, 14 (9): 1253–1260, 1988.

[73] M. Last, M. Friedman, and A. Kandel. “The data mining approach to
automated software testing”. In Proceedings of the 9th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining
(KDD 2003), pages 388-396. ACM Press, New York, NY, 2003.

[74] B. Liblit, A. Aiken, A.X. Zheng, and M. We. Jordan. “Bug isolation
via remote program sampling”. In Proceedings of the 2003 ACM
SIGPLAN Conference on Programming Language Design and
Implementation (PLDI 2003), ACM SIGPLAN Notices, 38 (5): 141–
154, 2003.

[75] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, M. Jordan. “Scalable
statistical bug isolation”. In Proceedings of the 2005 ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI 2005), ACM SIGPLAN Notices 40 (6), 15–26.

[76] C. Liu, L. Fei, X. Yan, S. P. Midkiff, J. Han. “Statistical debugging: a
hypothesis testing-based approach”. IEEE Transactions on Software
Engineering 32 (10), 831–848.

[77] C. Liu, X. Yan, L. Fei, J. Han, S. P. Midkiff. “SOBER: statistical
model-based bug localization”. In Proceedings of the Joint 10th
European Software Engineering Conference and 13th ACM SIGSOFT
International Symposium on Foundation of Software Engineering
(ESEC 2005/FSE-13), ACM SIGSOFT Software Engineering Notes 30
(5), 286–295.

[78] R. Lowry. “Concepts and Applications of Inferential Statistics”. Vassar
College, Poughkeepsie, NY, 2006. Available at
http://faculty.vassar.edu/lowry/webtext.html.

[79] H. Lu, W. K. Chan, and T. H. Tse. “Testing context-aware middleware
centric programs: a data flow approach and an RFID-based
experimentation”. In Proceedings of the 14th ACM SIGSOFT
International Symposium on Foundations of Software Engineering
(SIGSOFT 2006/FSE-14), pages 242-252. ACM Press, New York, NY,
2006.

Bibliography

177

[80] Y.-S.Ma, A. J. Offutt, and Y.-R. Kwon. “MuJava: an automated class
mutation system”. Software Testing, Verification and Reliability, 15
(2): 97-133, 2005.

[81] L. I. Manolache and D. G. Kourie. “Software testing using model
programs”. Software: Practice and Experience, 31 (13): 1211-1236,
2001.

[82] L. Mei, Z. Zhang, and W. K. Chan, “More Tales of Clouds: Software
Engineering Research Issues from the Cloud Application Perspective”,
in Proceedings of the 33rd Annual IEEE International Computer
Software and Applications Conference (COMPSAC 2009), vol. 1,
IEEE Computer Society Press, Los Alamitos, CA, pp. 525-530 (2009).
(short paper)

[83] L. Mei, Z. Zhang, W. K. Chan, and T. H. Tse, “Test case prioritization
for regression testing of service-oriented business applications”. In
Proceedings of the 18th International World Wide Web Conference
(WWW 2009), pages 901-910. ACM Press, New York, NY, 2009.

[84] B. Meyer. “Applying ‘design by contract’”. IEEE Computer, 25 (10):
40-51, 1992.

[85] C. Murphy. “Using runtime testing to detect defects in applications
without test oracles”. In Companion to Proceedings of the 16th ACM
SIGSOFT International Symposium on Foundations of Software
Engineering (SIGSOFT 2008/FSE-16), pages 21-24. ACM Press, New
York, NY, 2008.

[86] A. S. Namin, J. H. Andrews, and D. J. Murdoch. “Sufficient mutation
operators for measuring test effectiveness”. In Proceedings of the 30th
International Conference on Software Engineering (ICSE 2008), pages
351-360, ACM Press, New York, NY, 2008.

[87] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf. “An
experimental determination of sufficient mutant operators”. ACM
Transactions on Software Engineering and Methodology, 5 (2): 99-
118, 1996.

[88] A. Podgurski, D. Leon, P. Francis, W. Masri, M. Minch, J. Sun, and B.
Wang. “Automated support for classifying software failure reports”. In
Proceedings of International Conference on Software Engineering
(ICSE 2003), pages 465-475. IEEE Computer Society, 2003.

[89] L. Prechelt, B. Unger, W. F. Tichy, P. Brössler, and L. G. Votta. “A
controlled experiment in maintenance comparing design patterns to
simpler solutions”. IEEE Transactions on Software Engineering, 27
(12): 1134- 1144, 2001.

[90] M. Renieris, S. P. Reiss. “Fault localization with nearest neighbor
queries”. In Proceedings of the 18th IEEE International Conference on

Bibliography

178

Automated Software Engineering (ASE 2003), pages 30-39. IEEE
Computer Society Press, Los Alamitos, CA.

[91] T. Reps, T. Ball, M. Das, and J. Larus. “The use of program profiling
for software maintenance with applications to the year 2000 problem”.
In Proceedings of the 6th European SOFTWARE ENGINEERING
conference held jointly with the 5th ACM SIGSOFT international
symposium on Foundations of software engineering (ESEC 1997).
Volume 1301 of LNCS, Springer-Verlag, 1997, pp. 432-449.

[92] G. Rothermel, S.G. Elbaum, A. Malishevsky, P. Kallakuri, and B.
Davia. “The impact of test suite granularity on the cost- effectiveness
of regression testing”. In Proceedings of the 24th International
Conference on Software Engineering (ICSE 2002), pages 130-140.
ACM Press, New York, NY, 2002.

[93] G. Rothermel, R.H. Untch, C. Chu, and M.J. Harrold. “Test case
prioritization: an empirical study”, in Proceedings of the 15th IEEE
International Conference on Software Maintenance (ICSM 1999),
pages 179-188. IEEE Computer Society Press, Los Alamitos, CA,
1999.

[94] G. Rothermel, R.H. Untch, C. Chu, and M.J. Harrold. “Prioritizing test
cases for regression testing”. IEEE Transactions on Software
Engineering 27 (10): 929-948 (2001).

[95] Eduard Säckinger, “Broadband circuits for optical fiber
communication”. Wiley-Interscience, 2005.

[96] R. Santelices, J. A. Jones, Y. Yu, and M. J. Harrold. “Lightweight fault
localization using multiple coverage types”. In Proceedings of
International Conference on Software Engineering (ICSE 2009), pages
56-66. IEEE Computer Society Press, Los Alamitos, CA, 2009.

[97] S. Sinha, H. Shah, C. Görg, S. Jiang, M. Kim, and M. Harrold. “Fault
localization and repair for Java runtime exceptions”. In Proceedings of
International Symposium on Software Testing and Analysis (ISSTA
2009), pages 153-164. ACM Press, New York, NY, 2009.

[98] Y. Sun and E. L. Jones. “Specification-driven automated testing of
GUI-based Java programs”. In Proceedings of the 42nd Annual
Southeast Regional Conference (ACM-SE 42), pages 140-145. ACM
Press, New York, NY, 2004.

[99] R. N. Taylor. “Assertions in programming languages”. ACM
SIGPLAN Notices, 15 (1): 105-114, 1980.

[100] F. Tip. “A survey of program slicing techniques”. Journal of
Programming Languages, 3 (3): 121–189, 1995.

[101] T. H. Tse, S. S. Yau, W. K. Chan, H. Lu, and T. Y. Chen. “Testing
context sensitive middleware-based software applications”. In
Proceedings of the 28th Annual International Computer Software and

Bibliography

179

Applications Conference (COMPSAC 2004), volume 1, pages 458-465.
IEEE Computer Society Press, Los Alamitos, CA, 2004.

[102] M. Vanmali, M. Last, and A. Kandel. “Using a neural network in the
software testing process”. International Journal of Intelligent Systems,
17 (1): 45-62, 2002.

[103] I. Vessey. “Expertise in debugging computer programs: a process
analysis”. International Journal of Man-Machine Studies 23 (5), 459–
494.

[104] J. M. Voas. “PIE: a dynamic failure-based technique”. IEEE
Transactions on Software Engineering, 18 (8): 717-727, 1992.

[105] M. Vokáč, W. Tichy, D. We. K. Sjoberg, E. Arisholm, and M. Aldrin.
“A controlled experiment comparing the maintainability of program
designed with and without design patterns: a replication in a real
programming environment”. Empirical Software Engineering, 9
(3):149-195, 2004.

[106] X. Wang, S. C. Cheung, W. K. Chan, Z. Zhang. “Taming coincidental
correctness: refine code coverage with context pattern to improve fault
localization”. In Proceedings of the 31st International Conference on
Software Engineering (ICSE 2009), pages 45-55. ACM Press, New
York, NY, 2009.

[107] M. Weiser. “Program slicing”. IEEE Transactions on Software
Engineering, SE-10 (4): 352–357, 1984.

[108] E. J. Weyuker. “On testing non-testable programs”. The Computer
Journal, 25 (4): 465-470, 1982.

[109] E. Wong, Y. Qi, L. Zhao, and K. Cai. “Effective Fault Localization
using Code Coverage”. In Proceedings of the 31st Annual
International Computer Software and Applications Conference
(COMPSAC 2007), pages 449–456, IEEE Computer Society,
Washington, DC, USA, 2007.

[110] P. Wu. “Iterative metamorphic testing”. In Proceedings of the 29th
Annual International Computer Software and Applications Conference
(COMPSAC 2005), volume 1, pages 19-24. IEEE Computer Society
Press, Los Alamitos, CA, 2005

[111] Q. Xie and A. M. Memon. “Designing and comparing automated test
oracles for GUI-based software applications”. ACM Transactions on
Software Engineering and Methodology, 16 (1): Article No. 4, 2007.

[112] Y. Yu, J. A. Jones, M. J. Harrold. “An empirical study of the effects of
test-suite reduction on fault localization”. In Proceedings of the 30th
International Conference on Software Engineering (ICSE 2008), pages
201-210. ACM Press, New York, NY, 2009.

[113] A. Zeller. “Isolating cause-effect chains from computer programs”. In
Proceedings of the 10th ACM SIGSOFT International Symposium on

Bibliography

180

Foundations of Software Engineering (SIGSOFT 2002/FSE-10). ACM
SIGSOFT Software Engineering Notes, 27 (6): 1–10, 2002.

[114] A. Zeller, R. Hildebrandt. “Simplifying and isolating failure-inducing
input”. IEEE Transactions on Software Engineering 28 (2), 183– 200.

[115] X. Zhang, N. Gupta, and R. Gupta. “Locating faults through automated
predicate switching”. In Proceedings of the 28th International
Conference on Software Engineering (ICSE 2006), pages 272–281.
ACM Press, New York, NY, 2006.

[116] X. Zhang, S. Tallam, N. Gupta, and R. Gupta. “Towards locating
execution omission errors”. In Proceedings of Programming Language
Design and Implementation (PLDI 2007), pages 415-424. ACM Press,
2007.

[117] Z. Zhang, W. K. Chan, and T. H. Tse. “Synthesizing component-based
WSN applications via automatic combination of code optimization
techniques”. In Proceedings of the 7th International Conference on
Quality Software (QSIC 2007), pages 181-190. IEEE Computer
Society Press, Los Alamitos, CA, USA, 2007.

[118] Z. Zhang, W. K. Chan, T. H. Tse, and P. Hu. “Experimental study to
compare the use of metamorphic testing and assertion checking”,
Journal of Software (JoS) 20(10), 2009.

[119] Z. Zhang, W. K. Chan, T. H. Tse, P. Hu, and X. Wang. “Is non-
parametric hypothesis testing model robust for statistical fault
localization?”. In Journal of Information and Software Technology
(IST) 51(11): 1573-1585 (2009).

[120] Z. Zhang, W. K. Chan, T. H. Tse, B. Jiang, and X.Wang. “Capturing
propagation of infected program states”. In Proceedings of the 7th joint
meeting of the European Software Engineering Conference and the
ACM SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC 7/FSE-17), pages 43-52. ACM Press, New York,
NY, 2009.

[121] Z. Zhang, W. K. Chan, T. H. Tse, H. Lu, and L. Mei. “Resource
prioritization of code optimization techniques for program synthesis of
wireless sensor network applications”. Journal of Systems and
Software (JSS) 82(9): 1376-1387 (2009).

[122] Z. Zhang, B. Jiang, W. K. Chan, and T. H. Tse. “Debugging through
evaluation sequences: a controlled experimental study”. In Proceedings
of the 32nd Annual International Computer Software and Applications
Conference (COMPSAC 2008), pages 128-135. IEEE Computer
Society Press, Los Alamitos, CA, 2008.

[123] Z. Zhang, B. Jiang, W. K. Chan, T. H. Tse, and Xinming Wang. “Fault
localization through evaluation sequences”. In Journal of Systems and
Software (JSS) 83(2): 174-187 (2010).

Bibliography

181

[124] A. X. Zheng, M. I. Jordan, B. Liblit, M. Naik, A. Aiken. “Statistical
debugging: simultaneous identification of multiple bugs”. In
Proceedings of the 23rd International Conference on Machine
Learning (ICML 2006), pages 1105-1112. ACM Press, New York, NY,
2006.

[125] D. G. Zill, M. R. Cullen. “Advanced Engineering Mathematics”. Jones
and Bartlett Publishers, Sudbury, MA.

Bibliography

182

