
Test Case Prioritization for Regression Testing
of Service-Oriented Business Applications

*

ABSTRACT
Regression testing assures the quality of modified service-oriented
business applications against unintended changes. However, a
typical regression test suite is large in size. Earlier execution of those
test cases that may detect failures is attractive. Many existing
prioritization techniques order test cases according to their respective
coverage of program statements in a previous version of the
application. On the other hand, industrial service-oriented business
applications are typically written in orchestration languages such as
WS-BPEL and integrated with workflow steps and web services via
XPath and WSDL. Faults in these artifacts may cause the application
to extract wrong data from messages, leading to failures in service
compositions. Surprisingly, current regression testing research
hardly considers these artifacts. We propose a multilevel coverage
model to capture the business process, XPath, and WSDL from the
perspective of regression testing. We develop a family of test case
prioritization techniques atop the model. Empirical results show that
our techniques can achieve significantly higher rates of fault
detection than existing techniques.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—Testing
tools; D.2.8 [Software Engineering]: Metrics—Product metrics

General Terms: Measurement, Reliability, Verification

Keywords
Test case prioritization, service orientation, XPath, WSDL

1. INTRODUCTION
Industrial leaders such as IBM, Microsoft, Oracle, and BEA

promote the use of service-oriented business processes to build their
enterprise applications. Process engineers may develop such
applications using orchestration languages like the Web Service for
Business Process Execution Language (WS-BPEL) [22] and
Business Process Modeling Language (BPML). In a typical
application, a business workflow (say, coded in BPEL) may use
external web services to implement individual workflow steps. To
transfer type-safe XML messages [22] among individual workflow

steps and web services, process engineers write diverse
specifications in Web Service Description Language (WSDL) [23]
(dubbed WSDL specifications) to interpret different portions of the
same or different XML documents for various workflow steps. Since
a workflow step may use part of the content kept in an XML
document, process engineers may define XPath expressions [25],
which pairs with WSDL specifications, to extract the required
contents from the document.

To cope with changing business requirements, process engineers
may modify the service-oriented business process [11][14][26].
Testers should assure the quality of such revised applications.
Regression testing, aimed at detecting potential faults caused by
software changes, is the de facto approach [8][20]. It reruns test cases
from existing test suites to ensure that no previously working
function has failed as a result of the modification [8]. Although many
researchers point out that frequent executions of regression test are
crucial in successful application development [8][15], rerunning the
regression test suite for large and complex systems may take days
and even weeks, which is time-consuming. In service-oriented
computing, a business process may invoke external web services
(such as viewing an article in Economist.com), which may incur
charges. To reduce costs, it is desirable to detect failures as soon as
possible when executing the test suite. The use of effective
regression testing techniques is, therefore, crucial.

Thus, test case prioritization [19] is important in regression testing
[9][15]. It schedules the test cases in a regression test suite with a
view to maximizing certain objectives (such as revealing faults
earlier), which help reduce the time and cost required to maintain
service-oriented business applications. Existing regression testing
techniques for such applications focus on testing individual services
[20] or workflow programs [6]. Surprisingly, to the best of our
knowledge, the integration complexity raised by non-imperative
artifacts such as XPath and WSDL among workflow steps has been
inadequately addressed in regression testing research.

Let us consider a simple example. Suppose an application aims to
implement an XPath query to select (from a list of available hotel
rooms kept in an XML document) all “single rooms” priced less than
$100. Suppose also that the XPath expression has been implemented
erroneously as selecting either “single rooms” or rooms priced less
than $100. Using this incorrect XPath query, the application may
select a “single room” priced at $100 or above. In general, an XPath
query in a workflow step may introduce additional (conceptual)
branch decisions (such as deciding whether a room can be selected),
and thus affect the workflow logic.

Furthermore, different XML messages that conform to the same
WSDL specification may contain different sets of XML elements
(including tags and attribute names). We refer to an XML element
defined by at least one XML schema in a WSDL specification as a
WSDL element. Incorrectly defining a WSDL element or failing to
provide a definition may result in an integration error.

* This research is supported in part by GRF grants of the Research Grants
Council of Hong Kong (project nos. 111107, 123207, 717308, and 717506).
☨All correspondence should be addressed to Dr. W. K. Chan at Department
of Computer Science, City University of Hong Kong, Tat Chee Avenue, Hong
Kong. Tel: (+852) 2788 9684. Fax: (+852) 2788 8614. Email:
wkchan@cs.cityu.edu.hk.

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW’09, April 20–24, 2009, Madrid, Spain.
ACM 978-1-60558-487-4/09/04.

Lijun Mei
The University of

Hong Kong
Pokfulam

Hong Kong

ljmei@cs.hku.hk

Zhenyu Zhang
The University of

Hong Kong
Pokfulam

Hong Kong

zyzhang@cs.hku.hk

W. K. Chan †
City University of

Hong Kong
Tat Chee Avenue

Hong Kong

wkchan@cs.cityu.edu.hk

T. H. Tse
The University of

Hong Kong
Pokfulam

Hong Kong

thtse@cs.hku.hk

WWW 2009 MADRID! Track: Web Engineering / Session: Service Oriented Development

901

Faults may reside on the non-imperative artifacts (such as XPath
and WSDL) in a service-oriented business application. To the best of
our knowledge, however, prioritization techniques to effectively find
test cases to reveal such implementation problems earlier during
maintenance has not been studied. This paper tackles the problem.

Following our previous work [12], we model an XPath query (in
the presence of a WSDL specification) as an XPath Rewriting Graph
(XRG). An XRG represents potential scenarios of content selections
from XML messages. Each content selection scenario is captured as
an XRG branch (see Section 2.2.2). We note that XRG branches for
different XML messages that the XPath expression is querying on
may be different. To account for the WSDL artifact, we say that a test
case t has covered a WSDL element e if t contains an XML message
m as input, or t causes the application to generate an XML message m,
such that m has e as its entity tag. In a changing business application,
every artifact (workflow, XPath, or WSDL) may be modified. As a
result, fault(s) may be introduced to the artifacts. The use of
workflow coverage data to prioritize test cases may be effective for
detecting faults in the workflow program, such as wrong predicates.
However, such prioritizations may be ineffective for handling faults
in other artifacts. More examples will be given in Section 3.

We propose a multilevel coverage model to capture the coverage
requirements of these artifacts. Level 1 covers only the workflow,
level 2 covers both workflow and XPath, and level 3 covers
workflow, XPath, and WSDL. Through the level-by-level use of
coverage data for test cases, we propose a new family of test case
prioritization techniques.

To handle multiple types of artifact in the family of test case
prioritization techniques, we use two strategies. The first strategy is
to treat different artifacts homogenously, which is akin to enlarging
the coverage space from pure workflow-oriented coverage space to a
space linked up to the coverage space of other artifact types. We call
it a summation strategy. On the other hand, we appreciate that such a
homogenous treatment of artifacts may not reflect the different roles
of these artifacts in a service-oriented business application. For
instance, from the perspective of process engineers who write such
applications, a workflow program is more important than XPath
expressions or WSDL specifications. Therefore, we propose another
strategy called a refinement strategy. This strategy would refer to
another type of artifact (such as WSDL) only if using the artifacts
already referred to (such as workflow and XPath) cannot help a
prioritization technique to select a test case.

We develop a family of techniques using the above model and
strategies. With the inclusion of more artifacts, our techniques can
intuitively be more effective in detecting faults residing across
various artifacts. Our experiment further shows that the family of
techniques is effective to reveal regression faults in modified
programs, and the techniques at a higher level is generally more
effective than those at a lower level.

The main contribution of this paper is threefold. (i) Through a
multilevel coverage model, we propose a family of test case prioriti-
zation techniques that consider imperative and non-imperative
artifacts (including workflow, XPath, and WSDL) in
service-oriented business applications. (ii) We analyze the proposed
prioritization techniques and present a hierarchy to capture their
relations. To our best knowledge, this is the first logical hierarchy to
relate test case prioritization techniques in the literature. (iii) We
report an experimental study to verify the effectiveness of our
proposal.

The rest of the paper is organized as follows: Section 2 gives the
preliminaries. Section 3 shows a motivating example to discuss the
challenges. Section 4 presents our prioritization techniques. Section 5
presents an experiment to validate our proposal, followed by

discussions and related work in Sections 6 and 7, respectively. Finally,
Section 8 concludes the paper.

2. PRELIMINARIES
2.1 Test Case Prioritization

Test case prioritization [5][19] is an important kind of regression
testing technique [9][18]. With the information gained in the
previous software evaluation, we may design techniques to run the
test cases to achieve a certain goal in the regression testing. For
example, proper test case prioritization techniques increase the fault
detection rate of a test suite and the chance of executing test cases
with higher rates of fault detection earlier [5]. We adopt the test case
permutation problem from [19] as follows:

Given: T, a test suite; PT, the set of permutations of T; and f, a
function from PT to real numbers. (For example, f may calculate the
fault detection rate of a permutation of T.)

Problem: To find T’∈PT such that, ∀T’’∈PT, T’’ ≠ T’ ⇒ f (T’) ≥
f (T’’).

The metric of Average Percentage of Faults Detected (APFD) [5]
is widely adopted in evaluating test case prioritization techniques
[6][19]. A higher APFD value indicates faster (or better) fault
detection rate [5]. Let T be a test suite containing n test cases, F be a
set of m faults revealed by T, and TFi be the first test case index in
ordering T’ of T that reveals fault i. The following equation gives the
APFD value for ordering T’ [5].

nmn
TFTFTF

APFD m

2
1

 ...

 1 21 +
+++

−=

We provide an example to show how APFD measures the fault
detection rate of different test suite ordering.

0
10
20
30
40
50
60
70
80
90

100

0.0 0.2 0.4 0.6 0.8 1.0

Pe
rc

en
t D

et
ec

te
d

Fa
ul

ts

Test Suite Fraction

0
10
20
30
40
50
60
70
80
90

100

0.0 0.2 0.4 0.6 0.8 1.0

Pe
rc

en
t D

et
ec

te
d

Fa
ul

ts

Test Suite Fraction
(a) APFD for test suite T1 (b) APFD for test suite T2

APFD = 47.5% APFD = 75.0%

Test Case
Fault

f1 f2 f3 f4 f5 f6 f7 f8

tA • • •

tB
tC • • • •

tD • • •

tE • •

Example on
test suite and
faults exposed

Figure 1. Example illustrating the APFD measure.
A program may have multiple faults. A test case sometimes can

detect zero, one, or more faults, however, it can hardly find out all
faults. Suppose the faults that test cases tA to tE can detect are shown
in Figure 1. Let the two permutations for tA to tE be T1 〈tB, tA, tD, tC, tE〉
and T2 〈tC, tD, tE, tA, tB〉. The APFD measures on T1 and T2 are also
given in Figure 1.

Other metrics [9] can also be used to measure these techniques.
Owing to space limit, we will report such results in future work.

2.2 XPath and XPath Query Model
2.2.1 XPath

We adopt the definition of XPath expression in [13]. An XPath
expression is defined using the following grammar:

][|//|/|.|*| qqqqqqnq →

The operators include the following: n ∈ Σ is any label, * denotes a
label wildcard, and . (the dot operator) denotes the current node. The
constructions / and // mean child and descendant navigations, while

WWW 2009 MADRID! Track: Web Engineering / Session: Service Oriented Development

902

the square brackets [] enclose a predicate. The symbols in Σ
represent the element labels and attribute labels that can occur in
XML documents. The set of all trees are denoted by TΣ, and each tree
represents an XML document satisfying the XML schema Ω. We
also use Ω to represent the set of labels that can occur in the XML
schema Ω. For a tree t ∈ TΣ, an XPath query q(t) is a query on t using
an XPath expression q, and returns a set of nodes of t. NODES (t) and
EDGES(t) denote the sets of nodes and edges, respectively. LABEL(x)
is the label on node x, LABEL (x) ∈ Σ. The transitive closure of
EDGES(t) is denoted by EDGES

+
 (t), and the reflexive and transitive

closure of EDGES(t) is denoted by EDGES*(t).
Reference [13] gives the following definitions to represent a

decidable fragment of XPath in Figure 2. According to [13], this
fragment has provided representative XPath syntaxes and is
sufficient to be the basis of studying XPath.

n(x)
*(x)
.(x)

(q1/q2)(x)
(q1//q2)(x)
(q1[q2])(x)

=
=
=
=
=
=

Rule
1
2
3
4
5
6

…
…
…
…
…
…

{y | (x, y)∈EDGES(t), LABEL(y) = n}
{y | (x, y) ∈EDGES(t)}
{x}
{z | y∈q1(x), z∈q2(y)}
{z|y∈q1(x), (y, u)∈EDGES*(t), z∈q2(u)}
{y | y∈q1(x), q2(y)≠Ø}

Figure 2. Syntax of a decidable fragment of XPath [13].

2.2.2 XPath query model
XPath queries are used to locate contents from an XML document.

We have proposed in [12] an XPath Rewriting Graph (XRG) to
represent an XPath with a document model Ω of XML documents.
We revisit XRG here to facilitate the description of our techniques.
An XRG is built on the definitions of XPath syntactic constructs [13].
We treat these definitions (Figure 2) as “left-to-right” rewriting rules,
and through a series of rewriting [3], transform an XPath into a
normal form or a fixed point. An XRG also records the intermediate
rewriting steps, and links every two consecutive steps in the graph.

To capture the notion of rewriting [3], there are two types of node
in an XRG, namely rewriting node 〈q, Lc, rule〉 and rewritten node 〈q,
Lc, Ln, S〉. q is an XPath expression. Lc and Ln are sets of nodes (Lc, Ln
⊆ NODES(Ω)). They represent the sets of tags relevant to q. Lc is the
set of nodes located by the previous rewriting step. Ln is the set of
nodes that can be located by q starting from some node in Lc. S is a
set-theoretic representation of the result of q. Besides, rule denotes
the rewriting rule used to generate the sub-terms in this node. Initially,
Lc is assigned to {ROOT}, where ROOT is the unique root node of Ω.

1 <xsd:complexType name="hotel">
2 <xsd:element name="name" type="xsd:string"/>
3 <xsd:element name="room" type="xsd:RoomType"/>
4 <xsd:element name="error" type="xsd:string"/>
5 </xsd:complexType>

6 <xsd:complexType name="RoomType">
7 <xsd:element name="roomno" type="xsd:int" />
8 <xsd:element name="price" type="xsd:int"/>
9 <xsd:element name="persons" type="xsd:int"/>
10 </xsd:complexType>

Figure 3. Part of WSDL document: XML schema of hotel.
Let us show an example of an XRG. Suppose, during the reserva-

tion of a hotel room (see the example in Section 3), the booking
information (in XML format) is kept in a BPEL variable
HotelInformation. Figure 3 shows a simplified XML schema hotel
for HotelInformation. (We have omitted relevant details from the
schema to ease the discussion of the example in Section 3.) A room
has three attributes (lines 7–9): roomno, price, and persons
(indicating the maximum number of persons allowed).

Consider an XPath query on HotelInformation, denoted by

XQ(HotelInformation, q), where q is //room[@price≤’Price’ and

@persons=’Num’]/price/. Informally, q finds a room within the
requested price that can accommodate the requested number of
persons. The corresponding XRG is shown in Figure 4.

We use the algorithm Compute_XRG from [12] to construct
XRGs. We show the first rewriting step to illustrate how an XRG is
computed. XQ (HotelInformation, q) is first identified by Rule 5
(q1 = * and q2 = room[precondition]/price/*), where
precondition is “@price≤’Price’ and @persons=’Num’ ”. Rewrit-
ing node R1 is thus generated. Next, the algorithm recursively
processes three sub-terms: //, q1, and q2. The middle sub-term //
matches Rule 5 (note that // is the same as .//.), and so R3 is generated.
The left sub-term * matches Rule 2, and hence rewritten node R2 is
generated. The right sub-term q2 matches Rule 4, and rewriting node
R4 is generated. The remaining rewriting steps are similar.

< //price/, A={ROOT},(q1//q2)>

<room[precondition]/price/*, C,(q3/q4)>

q7(E),q7=(price) q8(F), q8=*

q1(A), q1= * q2(C), q2=(room[precondition]/price/*)

R1

R3R2 R4

R9 R10

XQ(HotelInformation, //room[precondition]/price/)Rewriting Node

Rewritten Node

precondition: (@price≤‘Price’ and @persons=’Num’)
A = {ROOT} B = {hotel} C = {name, room, roomno, price, persons, error} D = {room} E = {room}
F = {price} G = {g | g is the price value}
Rule 1: n(x) = {y|(x, y)∈EDGES(t), LABEL(y) = n} Rule 2: *(x) = {y|(x, y)∈EDGES (t)}
Rule 4: (q1/q2)(x) = {z| y∈q1(x), z∈q2(y)} Rule 5: (q1//q2)(x) = {z|y∈q1(x), (y, u)∈EDGES*(t), z∈q2(u) }
Rule 6: (q1[q2])(x) ={y| y∈q1(x), q2(y) ≠ Ø }

< *, A, B, Rule2>

< price, E, F, Rule1> < *, F, G, Rule2>

q5(C),q5=(precondition) q6(D), q6=room
R7 R8

<precondition, C,
D, Rule 1>

< room, D, E, Rule 1>

<room[precondition], C,(q5[q6])> <price/*, E,(q7/q8)>

R5 R6
q3(C),q3=room[precondition]) q4(E),q4= price/*

< //, B, C, Rule5>

Figure 4. Example of XPath Rewriting Graph (XRG).

Following [12], we can obtain a conceptual path that models a
logical computation of an XPath via an inorder traversal of the XRG
with all the rewriting nodes dropped (as illustrated in Figure 8). Such
a path contains implicit predicates that decide on the legitimate
branch (called XRG branch) to be taken. For example, if no element
in the XML document can be selected for the set B in R2, B would be
empty. This will result in no more applicable rewriting. A succeeding
rewritten node will be appeared on a conceptual path only if its
preceding rewritten node provides a non-empty set of Lc. Therefore,
a branch can be modeled by whether Lc on a node is empty or not.

3. MOTIVATING EXAMPLE
We adapt the business process HotelBooking from the

TripHandling project [21] to introduce the challenges in a typical
service-oriented business application. HotelBooking offers the hotel
booking service. Since showing the actual BPEL code in XML
format is quite lengthy, we follow [12] to use an UML activity
diagram to depict this business process to ease the illustration (Figure
5(a)). We also present two changes that may result in integration
failures in Figures 5(b) and 5(c).

We use a node to represent a workflow node, and a link to
represent a transition between two activities. We also annotate the
nodes with information extracted from the program, such as the
input-output parameters of the activities and XPath. The nodes are
numbered as Ai (for i from 1 to 8) to ease the illustration. The process
HotelBooking in Figure 5(a) is described as follows:
(a) A1 receives a user’s hotel booking request, and stores it in the

variable BookRequest.

WWW 2009 MADRID! Track: Web Engineering / Session: Service Oriented Development

903

(b) A2 extracts the inputted room price and number of persons via
XPath //price/ and //persons/ from BookRequest, and stores
them in the variables Price and Num, respectively.

(c) A3 invokes the service HotelPriceService to find available hotel
rooms with prices within budget (not exceeding Price), and
keeps the result in HotelInformation (defined in Figure 3).

(d) A4 assigns RoomPrice using the price extracted via the XPath
//room[@price≤’Price’ and @persons=’Num’]/price/.

(e) A5 further verifies locally that the price in HotelInformation
should not exceed the inputted price (the variable Price).

(f) If the verification passes, A7 will execute HotelBookService to
book a room, and A8 returns the result to the customer.

(g) If RoomPrice is erroneous or HotelBookService (A7) produces a
failure, A6 will invoke a fault handler, i.e., 〈A7, A6〉 is executed.

For ease of understanding, we summarize the artifacts and their
relationships in UML class diagram notation (as shown in Figure 6).
The description has been given in Section 1.

Workflow WSDL

XPath (XRG)

web services

see example
in Figure 3

see example
in Figure 4

see example
in Figure 5

SO business application Level-1:
Workflow

Level-2:
Workflow, XPath

Level-3:
Workflow, XPath,
WSDL

see example
in Figure 7

XML messages

Figure 6. Key artifacts and their relationships in typical

service-oriented business application.
Suppose a process engineer Rick decides that the precondition at

node A4 in Figure 5(a) should be changed to that at node A4 in Figure
5(b). (He attempts to allow customers to select any room that can
provide accommodation for the requested number of persons.)
However, he wrongly changes the precondition in the XPath (namely,
changing “and” to “or”). While he intends to provide customers
more choices, the process does not support his intention (for instance,
the process is designed to immediately proceed to book rooms, rather
than providing choices for customers to select). Further, suppose
another engineer May wants to correct this fault. She plans to change
node A4 in Figure 5(b) back to that in Figure 5(a). However, she
considers that the precondition at node A5 is redundant (i.e., no need
to require RoomPrice ≥ 0). Therefore, she changes the node A5 in
Figure 5(b) to become the node A5 in Figure 5(c), and forgets to
handle a potential scenario (Price < 0). Her change thus introduces a
regression fault into the original program.

We use a set of test cases (t1 to t6) to illustrate the challenges in test
case prioritization. The inputs to WS-BPEL applications are XML
documents. We simply use the price value of the variable Price to
stand for the variable to save space. Due to page limit, the XML
schema that defines BookRequest is not shown. Let us discuss A4.
Figure 7 shows the messages used at A4 for t1 to t6.

 <Price, Num> <Price, Num>
Test case 1 (t1): <200, 1> Test case 2 (t2): <150, 2>
Test case 3 (t3): <125, 3> Test case 4 (t4): <100, 2>
Test case 5 (t5): < 50, 1> Test case 6 (t6): < –1, 1>

<hotel>
<name>Hilton Hotel</name>
<room>

<roomno>R106</roomno>
<price>105</Price>
<persons>1<persons>

</room>
<room>

<roomno>R101</roomno>
<price>150</price>
<persons>3<persons>

</room>
</hotel >

Test Case 1 Test Case 2 Test Case 3

Test Case 5

<hotel>
<room>

<price>-1</Price>
<persons>1<persons>

</room>
<error>InvalidPrice<error>

</hotel >
Test Case 4 Test Case 6

<hotel>
</hotel >

<hotel>
<name>Hilton Hotel</name>
<room>

<roomno>R106</roomno>
<price>105</Price>
<persons>1<persons>

</room>
</hotel >

<hotel>
<room>

<roomno></roomno>
<price>100</Price>
<persons>2<persons>

</room>
</hotel >

<hotel>
<name>Hilton Hotel</name>
<room>

<roomno>R106</roomno>
<price>105</Price>
<persons>1<persons>

</room>
<room>

<roomno>R101</roomno>
<price>150</price>
<persons>3<persons>

</room>
</hotel >

Figure 7. XML messages for XQ(HotelInformation,
//room[@price ≤ ’Price’ and @persons = ’Num’]/price/).

When executing t1 to t6 on the program in Figure 5(b), t1 extracts a
right room price; t4 to t6 extract no price value; both t2 and t3 extract
the price 105 of the single room, however, they actually need to book
a double room and a family room, respectively. Observe that, t2 and
t3 can detect the fault in Figure 5(b). Similarly, for the program in
Figure 5(c), t1 and t2 can extract the right room prices; t3 to t5 extract
no price value; t6 extracts a room price –1, although it should not
extract any price. Only t6 can detect the fault in Figure 5(c).

Regression testing uses the coverage data achieved from previous
execution round over a preceding version of the application to guide
the current round of test case prioritization before executing these
test cases on the modified application. Table 1 shows the workflow
branch coverage of t1 to t6 on the original program of HotelBooking
(i.e., Figure 5 (a)). We use a “•” to represent the item covered by test
cases in Figure 8 and Tables 1, 2, and 3.

if XQ(HotelInformation, //roomno/) ≠ null
&& RoomPrice ≥ 0

&& RoomPrice ≤ Price

Price= XQ(BookRequest, //price/)
Num= XQ(BookRequest, //persons/)

Price= XQ(BookRequest, //price/)
Num= XQ(BookRequest, //persons/)

RoomPrice = XQ(HotelInformation,
//room[@price≤’Price’ and

persons≥‘Num’]/price)

if XQ(HotelInformation, //roomno/) ≠ null
&& RoomPrice ≤ Priceif RoomPrice ≥ 0

&& RoomPrice ≤ Price

No

RoomPrice = XQ(HotelInformation,
//room[@price≤’Price’ and
@persons=‘Num’]/price)

Yes
Input:
RoomPrice
Output:
BookingResult

Input: BookRequest

A5:
Validate

Price

A6: Fault
Handling

A7: Invoke HotelBookService

A8: Reply BookingResult

Price= XQ(BookRequest, //price/)
Num= XQ(BookRequest, //persons/)

Input: Price
Output: HotelInformation

A1: Receive HotelBookReqest

A2: Assign Price

A3: Invoke HotelPriceService

A4: Assign
RoomPrice

(a) Original Program (b) Changed Program - 1 (c) Changed Program - 2

No Yes
Input:
RoomPrice
Output:
BookingResult

Input: BookRequest

A5:
Validate

Price

A6: Fault
Handling

A7: Invoke HotelBookService

A8: Reply BookingResult

Input: Price
Output: HotelInformation

A1: Receive HotelBookReqest

A2: Assign Price

A3: Invoke HotelPriceService

A4: Assign
RoomPrice

RoomPrice = XQ(HotelInformation,
//room[@price≤’Price’ or
@persons≥‘Num’]/price)

No Yes
Input:
RoomPrice
Output:
BookingResult

Input: BookRequest

A5:
Validate

Price

A6: Fault
Handling

A7: Invoke HotelBookService

A8: Reply BookingResult

Input: Price
Output: HotelInformation

A1: Receive HotelBookReqest

A2: Assign Price

A3: Invoke HotelPriceService

A4: Assign
RoomPrice

Figure 5. Activity diagram of a WS-BPEL application.

WWW 2009 MADRID! Track: Web Engineering / Session: Service Oriented Development

904

We observe that the workflow branches covered by t2, t3, t5, and t6
are same (Table 1). A conventional branch-coverage prioritization
technique may simply order them randomly, and thus ignore much
useful information that potentially helps prioritize test cases to
achieve a higher fault detection rate. Therefore, we introduce how
XPath and WSDL can be used to address the challenges. Figure 8
shows the XRG nodes covered by t1 to t6 on the XRG (Figure 4) at
node A4 of Figure 5(a).

Table 1. Workflow branch coverage for t1 to t6.
Branch t1 t2 t3 t4 t5 t6
〈A1, A2〉 • • • • • •
〈A2, A3〉 • • • • • •
〈A3, A4〉 • • • • • •
〈A4, A5〉 • • • • • •
〈A5, A6〉 • • • •
〈A5, A7〉 • •
〈A7, A6〉
〈A7, A8〉 • •

Total 6 5 5 6 5 5

Price = XQ(HotelInformation, q)

R2

R3

R8

R7

A4

< *, A, B, Rule2>

< //, B, C, Rule 5>

<precondition, C, D, Rule 1>

< room, D, E, Rule 1>

< price, E, F, Rule1>

< *, F, G, Rule2>

R9

R10

t1 t2 t3 t4 t5 t6
• • • • • •

• • • • • •

• • • • •

• • • • •

• • •

• • •

• • •

• •

•

Figure 8. Example of XRG conceptual path.

Different XRG branches may lead to different content selections,
and return different values to the workflow (see [12] for how to find
out such a path). For example, the XRG branch of t1 extracts the
value 150 from the price tag and assigns the value to the variable
Price. However, for t2 and t5, it will return no value (referred to as the
null value for the ease of discussion) to Price. We further present
Table 2 to show how t1 to t6 cover different XRG branches in the
above XRG at node A4 of Figure 5(a).

Table 2. XRG branch coverage for t1 to t6.
XRG branch t1 t2 t3 t4 t5 t6

〈R2, R3〉 • • • • • •
〈R2, A4〉
〈R3, R7〉 • • • • •
〈R3, A4〉 •
〈R7, R8〉 • • • • •
〈R7, A4〉
〈R8, R9〉 • • •
〈R8, A4〉 • •
〈R9, R10〉 • • •
〈R9, A4〉
Total 5 4 4 5 2 5

We observe that the XRG branches covered by t1 and t4 are iden-
tical. On the other hand, the branches covered by t2 and t3 are differ-
ent from those covered by t5 and t6. Let the tuple 〈top, bottom〉 denote
the theoretical highest (top) and lowest (bottom) priority orders of a
test case determined by a potential prioritization technique. If we use
the additional coverage data on the XRG branch, the tuples for both
t2 and t3 are 〈2, 3〉. However, using the additional branch coverage
data, the tuples for both t2 and t3 are 〈2, 6〉. This shows that the use of
additional XRG branch coverage may increase the chance of
achieving a higher fault detection rate.

To explore the difference between test cases like t1 and t4, we
further present Table 3 on how test cases t1 to t6 cover the WSDL
elements (the schema is given in Figure 3) at node A4. Table 3 shows
that t1 to t3 cover the same set of WSDL elements, and are different
from t4, t5, or t6. Intuitively, if we use the additional coverage data on
WSDL elements, the couple for t6 will be 〈2, 2〉. However, the couple
for t6 is 〈2, 6〉 if using the additional branch coverage data, and is 〈1,
6〉 if using the additional XRG branch coverage data. It shows that
using WSDL elements has the potential to increase the chance of
achieving a higher fault detection rate.

Table 3. Statistics of WSDL elements for t1 to t6.
XML schema t1 t2 t3 t4 t5 t6

hotel • • • • • •
name • • •
room • • • • •

roomno • • • •
price • • • • •

persons • • • • •
error •

val(name) • • •
val(roomno) • • •

val(price) • • • • •
val(persons) • • • • •
val(error) •

Total 10 10 10 7 1 8

We have shown that merely using the workflow branch coverage
data may not reveal the internal conceptual branches and message
types caused by the XPath and WSDL, and thus the performance of
test case prioritization has not been fully maximized. This
observation motivates us to present new techniques that take the
XRG and WSDL coverage data into consideration.

4. OUR TEST CASE PRIORITIZATION
Given a test suite T for a service-oriented business application, our

target is to reorder T according to the coverage data of the test cases
in T when P is executed, with a view to effective regression testing of
modified versions of P. In this section, we present a family of new
test case prioritization techniques for such regression testing.

In view of the presence of heterogeneous artifacts, we propose a
new coverage model to facilitate the development of our test case
prioritization techniques. A coverage model for a service-oriented
business application P is a 4-tuple 〈T, Ґα, Ґβ, Ґγ〉, where (a) T is a
regression test suite for P; (b) Ґα, Ґβ, and Ґγ represent, respectively,
sets of workflow branches, sets of XRG branches, and sets of WSDL
elements collected from various executions of P; and (c) Ґα(t), Ґβ(t),
and Ґγ(t) represent, respectively, the set of workflow branches, the set
of XRG branches, and the set of WSDL elements covered by the
execution of P with respect to a test case t ∈ T.

We propose to utilize the coverage data of the test cases by levels.
Level 1 covers only workflow, which is the basis of a business
process. Next, since workflow may use XPath expressions to
manipulate XML messages, level 2 covers both workflow and XPath.
Finally, since XML messages must conform to the WSDL
specification, level 3 covers workflow, XPath, and WSDL. For ease
of presentation, we refer to the three levels of coverage data as CM-1,
CM-2, and CM-3, respectively, where CM stands for Coverage

Model. Through the level-by-level use of coverage data, we propose
a new family of test case prioritization techniques.

4.1 Our Prioritization Techniques
This section presents our test case prioritization techniques. If we

considered a workflow program as a conventional program, the first
two techniques (M1 and M2) would resemble to the branch coverage

WWW 2009 MADRID! Track: Web Engineering / Session: Service Oriented Development

905

techniques of conventional programs [5][19]. Examples of each
technique are shown in Table 4.

4.1.1 CM-1 (Level 1): Using Ґα only.
M1 (Total-CM1) [19]: This technique sorts the test cases in T in

descending order of the total number of workflow branches executed
by each test case. If multiple test cases cover the same number of
workflow branches, M1 orders them randomly.

M2 (Addtl-CM1) [19]: This technique iteratively selects a test
case t that yields the greatest cumulative workflow branch coverage,
and then removes the covered workflow branches, Γα(t), from all
remaining test cases to indicate that those removed workflow
branches have been covered by the selected test cases. Additional
iterations will be conducted until all workflow branches have been
covered by at least one selected test case. If multiple test cases cover
the same number of workflow branches in the current round of
selection, the technique selects one of them randomly. If no
remaining test cases can further improve the cumulative workflow
branch coverage, the technique resets the workflow branch covered
of each remaining test case to its original value. It applies the above
procedure until all test cases in T have been selected.

Let m and n be the test suite size and the maximum number of
workflow branches covered by a test case t, respectively. Collecting
the branch coverage of test cases will take O(mn) time. Sorting test
cases will take O(m log m) time. Therefore, M1 can be finished in
O(mn + m log m) time and M2 can be finished in O(m2 n + m2 log m)
time.

4.1.2 CM-2 (Level 2): Using Ґα and Ґβ.
M3 (Total-CM2-Sum): This technique is the same as Total-

CM1, except that it uses the total number of workflow and XRG
branches covered by each test case, rather than only the total number
of workflow branches as in Total-CM1. It treats workflow branches
and XRG branches in the same way.

M4 (Addtl-CM2-Sum): This technique is the same as Addtl-
CM1, except that it uses the set of workflow and XRG branches
covered by each test case, rather than only the set of workflow
branches as in Addtl-CM1. It also treats workflow branches and
XRG branches in the same manner.

Another way to prioritize test cases is to reorder test cases using
the number of workflow branches, and when encountering a tie, in
which multiple test cases have the same number of workflow
branches, a technique may use the number of XRG branches to break
the tie.

M5 (Total-CM2-Refine): This technique is the same as Total-
CM1 except that, if multiple test cases cover the same number of
workflow branches, to break the tie, M5 orders them in descending
order of the total number of XRG branches covered by each test case
involved in the tie. If there is still a tie, M5 randomly orders the test
cases involved.

M6 (Addtl-CM2-Refine): This technique is the same as
Addtl-CM1 except three things. First, in each iteration, M6 removes
the covered workflow branches and the XRG branches of the
selected test cases from the remaining test cases to indicate that those
removed workflow branches and XRG branches have been covered
by the selected test cases (despite that M6 still selects test cases based
on the workflow branch coverage as in Addtl-CM1). Second, if
multiple test cases cover the same number of workflow branches in
the current round of selection, rather than selecting one of them
randomly, the technique selects the test case that has the maximum
number of uncovered XRG branches. If there is still a tie, it randomly
selects one of the test cases involved. Third, when resetting is
needed, the technique resets each remaining test case to its original
workflow branch coverage and XRG branch coverage.

Let m, n, and x be the test suite size, the maximum number of
workflow branches, and XRG branches covered by a test case t,
respectively. Collecting the branch coverage and XRG branch
coverage of test cases will take O(mn + mx) time. Sorting test cases
will take O(m log m) time. Therefore, M3 can be finished in O(mn +
mx + m log m) time and M4 can be finished in O(m2 n + m2 x + m2 log
m) time. The time complexity of M5 and M6 are the same with those
of M3 and M4, respectively.

4.1.3 CM-3 (Level 3): Using Ґα, Ґβ, and Ґγ.
M7 (Total-CM3-Sum): This technique is the same as Total-

CM2, except that it uses the total number of workflow branches,
XRG branches, and WSDL elements covered by each test case,
rather than only the total number of workflow and XRG branches as
in Total-CM2. It treats workflow branches, XRG branches, and
WSDL elements in the same way.

M8 (Addtl-CM3-Sum): This technique is the same as
Addtl-CM2-Sum, except that it uses the set of workflow branches,
XRG branches, WSDL elements covered by each test case, rather
than just the set of workflow and XRG branches as in
Addtl-CM2-Sum. It also treats workflow branches, XRG branches,
and WSDL elements in the same fashion.

M9 (Total-CM3-Refine): This technique is the same as
Total-CM2-Refine, except that in the case of a tie, M9 arranges the
test cases in descending order of the total number of WSDL elements
covered by each test case involved. If it still cannot resolve a tie, the
technique randomly orders the test cases involved.

M10 (Addtl-CM3-Refine): This technique is the same as
Addtl-CM1, except three things. First, in the each iteration, M10
removes the covered workflow branches, the covered XRG branches
and the covered WSDL elements of the selected test cases from the
remaining test cases to indicate that those removed workflow
branches, XRG branches and WSDL elements have been covered by
the selected test cases (despite that M10 still selects test cases based
on the workflow branch coverage as in Addtl-CM1). Second, if
multiple test cases cover the same number of workflow branches in
the current round of selection, the technique selects the test case that
has the maximum number of uncovered XRG branches. If there is a
tie, it selects the test case that has the maximum number of
uncovered WSDL elements. If there is still a tie, it randomly selects
one of the test cases involved. Third, if resetting is needed, the
technique resets each remaining test case to its original workflow
branch coverage, XRG branch coverage, and WSDL element
coverage.

Let m be the test suite size; n, x, and w be the maximum numbers
of workflow branches, XRG branches, and WSDL elements covered
by a test case t, respectively. Collecting the coverage data of
workflow branches, XRG branches, and WSDL elements of m test
cases takes O(mn + mx + mw) time. Sorting m test cases takes O(m
log m) time. Hence, M7 can be completed in O(mn + mx+ mw + m
log m) time while M8 can be completed in O(m2

 n + m2
 x + m2

 w + m2
log m) time. The time complexities of M9 and M10 are the same as
those of M7 and M8, respectively.

4.2 Benchmark Techniques
In Section 5, we will follow [5][19] and compare our test case

prioritization techniques with two control techniques, namely
random and optimal. For the sake of completeness, we revisit them
in this section.

C1: Random prioritization [19]. This technique randomly orders
the test cases in a test suite T.

C2: Optimal prioritization [19]. Given a program P and a set of
known faults in P, if we know the specific test cases in a test suite T
that expose specific faults in P, then we can determine an optimal

WWW 2009 MADRID! Track: Web Engineering / Session: Service Oriented Development

906

ordering of the test cases to maximize the fault detection rate of T.
Such a prioritization is an approximation to the optimal case [19].

4.3 Analysis of Prioritization Techniques
In total, we have reported 10 techniques. The acronyms of these

techniques are listed in Table 4. We use the motivating example
prioritization results on t1–t6 to help illustrate each technique.
Table 4. Categories of prioritization techniques and examples.
Category Name Index t1 t2 t3 t4 t5 t6

CM-1
(workflow)

Total-CM1 M1 1 6 4 2 5 3

Addtl-CM1 M2 1 5 6 3 2 4

CM-2
(summation)

Total-CM2-Sum M3 2 4 5 1 6 3

Addtl-CM2-Sum M4 1 5 2 4 3 6

CM-2
(refinement)

Total-CM2-Refine M5 2 4 5 1 6 3

Addtl-CM2-Refine M6 1 6 4 3 2 5

CM-3
(summation)

Total-CM3-Sum M7 2 1 3 4 6 5

Addtl-CM3-Sum M8 1 5 3 6 4 2

CM-3
(refinement)

Total-CM3-Refine M9 1 4 5 2 6 3

Addtl-CM3-Refine M10 1 4 2 3 6 5

Inspired by subsumption relations among the coverage criteria in
unit testing, we propose a notion of subsumption for test case
prioritization techniques.

Subsumption: Given two test case prioritization techniques X and
Y, we say that X subsumes Y if and only if any permutation of any test
suite produced by Y can also be produced by X.

Obviously, subsumption is reflexive, transitive, and anti-
symmetric. It is, therefore, an equivalence relation. We have
analyzed the subsumption relations among our techniques, and the
result is summarized in Figure 9. For instance, we have proved that
(M1) Total-CM1 subsumes (M5) Total-CM2-Refine, and we use an
arrow from M1 to M5 to represent this relation in the figure. Other
arrows can be interpreted similarly.

The proof of the subsumption relations is straightforward and
hence we omit the details because of space limit. The basic idea is
that, if random selection in resolving ties in one technique is replaced
by a more deterministic procedure in another technique, then the
former technique subsumes the latter. For instance, unlike M1
(which always use the random selection approach to resolve tie
cases), M5 references the XRG branch coverage of test cases to
resolve tie cases before using a random selection as the last resort.
Because any test case that M5 can pick to resolve a tie may also be
selected by chance in M1, any test case permutation produced by M5
must be a permutation that can be produced by M1. Other
subsumption relations shown in Figure 9 can also be reasoned
similarly.

random

Total-CM-1 Addtl-CM-1

Total-CM2-Refine Addtl-CM2-Refine

Total-CM3-Refine Addtl-CM3-Refine

Optimal

(C1)

(M1) (M2)

(M5)

(M9)

(C2)

(M6)

(M10)

Figure 9. Hierarchy of test case prioritization techniques.

5. THE EXPERIMENT
5.1 Experimental Design

We choose WS-BPEL [22], a representative type of service-
oriented business application [1][16][24], to evaluate our approach.
The Software Engineering community also uses these applications to
evaluate approaches related to service-oriented business applications
(e.g., see [12]). We adopt the set of applications evaluated in [12] as
our subject. Table 5 shows the descriptive statistics of the subject
applications. For example, the size of each application is described
using the number of XML elements (“Element”) and the lines of
code (“LOC”).

Table 5. Subject programs and their descriptive statistics.

Ref. Applications

M
od

ifi
ed

V

er
sio

ns

El
em

en
t

LO
C

X
Pa

th

X
R

G

Br
an

ch

W
SD

L
El

em
en

t

U
se

d
V

er
sio

ns

A atm [1] 8 94 180 3 12 12 5
B buybook [16] 7 153 532 3 16 14 5
C dslservice [24] 8 50 123 3 16 20 5
D gymlocker [1] 7 23 52 2 8 8 5
E loanapproval[1] 8 41 102 2 8 12 7
F marketplace [1] 6 31 68 2 10 10 4
G purchase [1] 7 41 125 2 8 10 4
H triphandling [1] 9 94 170 6 36 20 8
 Total 60 527 1352 23 114 106 43

We use the known faults and associated test suites to measure the
effectiveness of different prioritization techniques. The faults in the
modified versions have been reported by [12] (in which faults are
created following the methodology presented in [7]). We then follow
[4][5][7] and discard any fault version if more than 20 percent of test
cases can detect failures due to its fault. The statistics of the selected
modified versions from [12] are shown in the rightmost column of
Table 5.

We implement a tool to automatically generate test cases for each
application. Based on WSDL specifications, XPath queries, and
workflow logics of the application (not using modified versions), we
generate test cases to ensure that the generated test cases can cover
all workflow branches, XRG branches, and WSDL elements
(dubbed CM-3 elements) at least once. In total, for each application,
1000 test cases are generated and formed up a test pool. This
construction process is also adopted in [5][19].

(b) 50 Percentile (c) 75 Percentile (d) Mean(a) 25 Percentile

Level-1 Level-2 Level-3 Level-1 Level-2 Level-3 Level-1 Level-2 Level-3 Level-1 Level-2 Level-3

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

C1 C2 M
1

M
2

M
3

M
4

M
5

M
6

M
7

M
8

M
9

M
10

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

C1 C2 M
1

M
2

M
3

M
4

M
5

M
6

M
7

M
8

M
9

M
10

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

C1 C2 M
1

M
2

M
3

M
4

M
5

M
6

M
7

M
8

M
9

M
10

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

C1 C2 M
1

M
2

M
3

M
4

M
5

M
6

M
7

M
8

M
9

M
10

 Figure 10. Overall comparisons using APFD measurement.

WWW 2009 MADRID! Track: Web Engineering / Session: Service Oriented Development

907

(a) atm (b) buybook (c) dslservice

(f) marketplace

(d) gymlocker

(g) purchase (h) triphandling(e) loanapproval

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

C1 C2 M
1

M
2

M
3

M
4

M
5

M
6

M
7

M
8

M
9

M
10

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

C1 C2 M
1

M
2

M
3

M
4

M
5

M
6

M
7

M
8

M
9

M
10

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

C1 C2 M
1

M
2

M
3

M
4

M
5

M
6

M
7

M
8

M
9

M
10

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

C1 C2 M
1

M
2

M
3

M
4

M
5

M
6

M
7

M
8

M
9

M
10

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

C1 C2 M
1

M
2

M
3

M
4

M
5

M
6

M
7

M
8

M
9

M
10

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

C1 C2 M
1

M
2

M
3

M
4

M
5

M
6

M
7

M
8

M
9

M
10

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

C1 C2 M
1

M
2

M
3

M
4

M
5

M
6

M
7

M
8

M
9

M
10

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

C1 C2 M
1

M
2

M
3

M
4

M
5

M
6

M
7

M
8

M
9

M
10

Figure 11. Comparisons on each application using APFD measurement (CM-3 techniques always outperform random).

Table 6. Statistics of test suite sizes.
 Ref.

Size A B C D E F G H Avg.

Maximum 146 93 128 151 197 189 113 108 140.6
Average 95 43 56 80 155 103 82 80 86.8
Minimum 29 12 16 19 50 30 19 27 25.3

We select test cases one by one randomly from a test pool and put
them into a test suite (which is initially empty). Such selection is
iteratively done until all the CM-3 elements have been covered at
least once (and each fault has been detected by at least one selected
test case). The process is similar to the test suite construction in
[5][17]. We apply each test suite to applicable modified versions of
corresponding application. In total, we successfully generate 100 test
suites for each application. Table 6 shows the statistics of the test
suites.

For each subject program and for each constructed test suite, our
tool applies C1, C2, and M1–M10 to prioritize the test suite. For
every prioritized test suite, the tool executes each modified version of
the corresponding subject program over the test cases according to
their order in the prioritized test suite. Since all the test case
execution results on these applications are determined, we can figure
out whether a fault has been revealed by a test case through
comparing the test result on the modified version to that on the
original program. Our tool automates the comparisons.

5.2 Data Analysis
5.2.1 Prioritization effectiveness

For each application, we apply C1, C2, and M1–M10 on a test
suite, run the modified applications over the test suite, and then
calculate APFD values. We repeat this procedure 100 times using the
generated test suites. In total, 69,440 test cases have been executed,
and we collect 833,280 APFD values. The results are represented
using box-plots in Figures 10 and 11. A box-plot shows the 25th
percentile, median, and 75th percentile of a technique in a graph. We
summarize the overall results using the 25th percentile, median, 75th
percentile, and mean APFD in Figure 10, respectively. The results
for individual applications are given in Figure 11.

In Figure 10, we find that M6 and M7–M10 (i.e., one technique at
level 2 and all techniques at level 3) are generally better than all the
other techniques except the optimal technique (C2). When we focus
on the techniques M1–M6, M2 and M4 are the best two techniques

among the techniques in the same level. Both M3 and M5 are better
than M1. M1 reports the worst performance among M1–M10 in this
experiment.

The overall result may not represent the result of each benchmark
application, and hence we further compare C2 and M1–M10 with the
random technique (C1). If the APFD achieved at the 25th percentile
of a technique is larger than, equal to or smaller than the random
technique (C1), then we add 1 at the category “> Random”, “=
Random”, and “< Random” of the technique, respectively. Similarly,
we compare C2 and M1–M10 with C1 using the median and 75th
percentile APFD values. Table 7 shows the comparison results.

Table 7. Comparisons with random technique.
 Technique

Category C
2

M
1

M
2

M
3

M
4

M
5

M
6

M
7

M
8

M
9

M
10

25% > Random 8 5 7 6 8 5 8 7 8 7 8
< Random 0 3 1 2 0 3 0 1 0 1 0

Median > Random 8 6 7 6 8 6 7 8 8 8 8
< Random 0 2 1 2 0 2 1 0 0 0 0

75% > Random 8 6 7 7 8 6 7 8 8 7 8
< Random 0 2 1 1 0 2 1 0 0 1 0

From Table 7, we note that C2, M4, M8, and M10 outperform the
random technique (C1) in all categories. It is not surprising that C2 is
better than C1, since C2 is an optimal approximation technique. C1
shows the worst performance generally. Among our techniques
(M1–M10), M1, M3, and M5 show the worst performance when
comparing to C1. This observation also holds when using the mean
APFD values, as shown in Figure 10(d).

5.2.2 Hypothesis analysis
We further apply hypothesis analysis on the results to identify the

differences among different techniques. We follow [9] to explore
where the differences lie by using a multiple-comparison procedure.
The Least Significant Difference (LSD) method was employed in
multiple-comparison to compare test case prioritization techniques
[9]. If the significance level is less than 0.05, the difference among
the metrics is statistically significant.

We compare each pair of techniques for each application, and
categorize the results into two groups (> 0.05 and < 0.05) using the
significance of the mean difference. We do not show the cases when
x – y = 0. The results are shown in Table 8.

We group M1–M10 into three groups according to the coverage
model: M1–M2 (CM-1), M3–M6 (CM-2), and M7–M10 (CM-3).

WWW 2009 MADRID! Track: Web Engineering / Session: Service Oriented Development

908

The between-group comparisons measure the differences between
M1–M2 and M3–M6, between M1–M2 and M7–M10, and between
{M4, M6} and M7–M10. The within-group comparisons measure
the differences within M1–M2, M3–M6, and M7–M10. Due to page
limit, we only report the results on comparing M4 and M6 in the
group M3–M6 (CM-2) to compare with M7–M10. We choose M4
and M6 as the representative techniques for M3–M6 because these
two techniques show a better performance in Figure 10. We mark the
rows which indicate CM-2 techniques and CM-3 techniques are
significantly better than CM-1 techniques into gray in background.

Table 8. Multiple comparisons (least significance differences).

Category Techniques
(x, y)

Sig. < 0.05 Sig. > 0.05
x–y>0 x–y<0 x–y>0 x–y<0

Between
Group

M1–M2
vs.

M3–M6

M1, M3 1 2 4 1
M1, M4 0 6 1 1
M1, M5 1 2 4 1
M1, M6 0 3 2 3
M2, M3 3 2 3 0
M2, M4 0 6 1 1
M2, M5 2 2 4 0
M2, M6 0 3 1 4

M1–M2
vs.

M7–M10

M1, M7 0 5 3 0
M1, M8 0 6 1 1
M1, M9 1 5 0 2
M1, M10 0 6 0 2
M2, M7 2 4 1 1
M2, M8 0 7 1 0
M2, M9 2 5 1 0
M2, M10 0 5 2 1

M4, M6
vs.

M7–M10

M4, M7 3 2 1 0
M4, M8 0 2 0 5
M4, M9 2 1 2 2
M4, M10 1 2 3 1
M6, M7 2 3 1 1
M6, M8 0 6 1 0
M6, M9 2 4 1 0
M6, M10 0 2 1 4

Within
Group

M1–M2 M1, M2 0 2 0 6

M3–M6

M3, M4 0 4 2 1
M3, M5 0 0 4 3
M3, M6 1 3 1 2
M4, M5 4 0 1 2
M4, M6 4 0 2 1
M5, M6 1 2 1 3

M7–M10

M7, M8 1 4 2 0
M7, M9 1 0 3 3
M7, M10 2 3 0 2
M8, M9 3 1 2 1
M8, M10 3 0 1 3
M9, M10 2 3 0 2

In the between-group category, M4 and M6–M10 all show
significantly better results than both M1 and M2 (using the workflow
coverage data). The difference between {M3, M5} and {M1, M2}
are not significant. In the within-group category, we note that both
M4 and M6 are significantly better than M3 and M5, which confirms
our observation in Figure 10. The techniques within M7–M10 are
similar in performance, and we only find the significant differences
between M8 and {M7, M9, M10}.
5.2.3 Adequacy of coverage data

This section analyzes the impact of different levels of coverage
data on the effectiveness of the technique. We use the overall mean
APFD result of each technique in Figure 10(d). C1 and C2 report the
worst and best mean result using the mean APFD in the box-plot of
Figure 10(d).

Let us focus on the mean effectiveness of M1–M10. Using the
mean APFD in Figure 10(d), the techniques using the additional
coverage data are better those using the total coverage data. The pairs
of techniques (M1, M2), (M3, M4), (M5, M6), (M7, M8), and (M9,
M10) all demonstrate this conclusion.

We also check the subsumption relations (Figure 9) and overall
effectiveness (Figure 10) for two groups of techniques: (M1, M5,

M9) and (M2, M6, M10). The comparison result indicates a
technique being subsumed may achieve a higher fault detection rate.
For example, M5 is better than M1, and M9 is better than M5.

We observe that the mean effectiveness increases when more
types of artifact have been considered in test case prioritization
technique (i.e., as we include Ґα, to Ґα and Ґβ, and finally Ґα, Ґβ, and
Ґγ). For example, when we categorize the techniques at Level 2 and
Level 3 into pairs (M3, M7), (M4, M8), (M5, M9), and (M6, M10),
the differences between two techniques in each pair support our
observation. Similar observation can also be found in the
between-group comparisons in Table 8.

5.3 Threats to Validity
The construct validity of our experiment relates to the metrics used

to evaluate the effectiveness of test case prioritization. We use the
metrics APFD in the experiment. Although normally knowing the
faults exposed by a test case in advance is impractical, and hence an
APFD value cannot be estimated before testing has been done.
However, APFD can be used as a measure to show the feedback of
prioritization techniques when testing has finished.

The external validity is whether the experiment can be generalized.
We use WS-BPEL applications as subjects. They are a representative
kind of service-oriented business application. Our experiments can
be conducted using other service-oriented applications that use
XPath queries and WSDL specifications. We will find more such
applications to evaluate our techniques.

6. DISCUSSIONS
First, we use XRGs to model XPath queries in the presence of

WSDL specifications. Other models to represent the XPath queries
can also be used after defining coverage properly. However, the
effectiveness of different XPath models may be different. In addition,
our coverage model arranges the three artifacts in a particular order:
〈workflow, XPath, WSDL〉. It would be interesting to study the
effectiveness of other potential orders (such as 〈workflow, WSDL,
XPath〉), and compare them with our proposed techniques. Other
such orders may result in different test case prioritization techniques.
We plan to collaborate with the industry to apply our techniques in
real-world projects and study the effectiveness of our presented
techniques. We also plan to apply other statistical analyses of the
results to gain more insights in the future.

Second, test case prioritization techniques can be categorized
generally into two types [19]: general test case prioritization and
version-specific test case prioritization. General test case priori-
tization reorders a test suite T for a program P to be useful in
subsequent revised versions of P. Version-specific test case priori-
tization reorders test cases in a test suite T to be useful in a specific
version P’ of P. Our work is under the category of general test case
prioritization. It would be interesting to extend our techniques to
version-specific test case prioritization.

7. RELATED WORK
This section reviews the related literature. In the context of test

suite construction, Martin et al. [10] generated test cases based on
WSDL specifications and treated them as requests for web services.
Their technique perturbed the web requests, in the spirit of mutation
testing, to test whether web services may robustly handle the pertur-
bation. Their work discussed briefly the potential usage of the
technique in regression testing of web services. Our previous work [2]
applied metamorphic relations to construct test cases for stateless
web services. Our previous work [12] proposed XPath Rewriting
Graphs (XRGs) to represent conceptual paths (see Section 2.2). The
XRGs help reveal the connection between WSDL and Workflow. It
also proposed several unit testing criteria to exploit such connections

WWW 2009 MADRID! Track: Web Engineering / Session: Service Oriented Development

909

to guide the construction of test suites. In this paper, we do not
generate test suites but study the techniques to reorder existing test
suites for regression testing.

Next, we review the research on test case selection for service-
oriented applications. Ruth and Tu [20] proposed to conduct impact
analysis to identify revised fragments of code in a service by compar-
ing the control flow graph (CFG) of the new version with that of the
preceding version. Their technique selected test cases associated
with modified edges of the CFG. We study the test case prioritization
problem in regression testing, rather than the test case selection
problem. According to [15], these are distinct (but important)
problems in regression testing research.

Hou et al. [6] proposed to add quota to constraint the number of
requests to specific web services. They further developed techniques
to prioritize test cases to maximize test requirement coverage under
such quota constraints. Our work studies the internal organization of
service-oriented business applications (representing the internal
organization using a multilevel coverage model) and prioritizes test
cases according to such properties.

8. CONCLUSION
Regression testing is the de facto means to assure the quality of a

program against unintended effects of maintenance. Test case
prioritization has been an effective means to order test cases in
regression test suites so that faults can be detected earlier. When
maintaining a service-oriented business application such as one
written in WS-BPEL, process engineers may unintentionally
introduce faults into various artifacts including the workflow pro-
grams, XPath queries, and WSDL specifications. Traditional test
case prioritization techniques, which do not take all the artifacts into
consideration, may no longer be effective for such an application.

In this paper, we have examined the important impact of
considering these heterogeneous artifacts on test case prioritization
in the regression testing of service-oriented business applications,
and demonstrated the shortcomings of traditional test case priori-
tization techniques in this aspect. We have proposed a family of test
case prioritization techniques that take into account the coverage data
of test cases at three levels (workflow, XPath, and WSDL). We have
further presented a hierarchy of subsumption relations among the test
case prioritization techniques. To the best of our knowledge, this is
the first hierarchy to relate test case prioritization techniques in the
literature. The experiment results show that our techniques
significantly outperform conventional test case prioritization
techniques in terms of the fault detection rate (the most widely used
metric for evaluating test case prioritization techniques in the
software engineering community). Our experiment results also
confirm that considering the artifacts level by level is an effective
strategy in regression testing for assuring the quality of
service-oriented business applications.

In the future, we will continue to study how to make use of non-
imperative artifacts to develop effective techniques to address other
challenges in the regression testing of service-oriented business
applications. It would also be interesting to adapt our techniques to
other service-oriented applications.

9. REFERENCES
[1] BPWS4J: a Platform for Creating and Executing BPEL4WS Processes,

Version 2.1. IBM, 2002. Available at
http://www.alphaworks.ibm.com/tech/bpws4j.

[2] W. K. Chan, S. C. Cheung, and K. R. P. H. Leung. A metamorphic
testing approach for online testing of service-oriented software applica-
tions. International Journal of Web Services Research, 4 (2): 60–80,
2007.

[3] H. Y. Chen, T. H. Tse, and T. Y. Chen. TACCLE: a methodology for

object-oriented software testing at the class and cluster levels. ACM
Transactions on Software Engineering and Methodology, 10 (1):
56–109, 2001.

[4] H. Do, G. Rothermel, and A. Kinneer. Empirical studies of test case
prioritization in a JUnit testing environment. In Proceedings of the 15th
International Symposium on Software Reliability Engineering (ISSRE
2004), pages 113–124. 2004.

[5] S. G. Elbaum, A. G. Malishevsky, and G. Rothermel. Test case
prioritization: a family of empirical studies. IEEE Transactions on
Software Engineering (TSE), 28 (2): 159–182, 2002.

[6] S.-S. Hou, L. Zhang, T. Xie, and J.-S. Sun. Quota-constrained test-case
prioritization for regression testing of service-centric systems. In
Proceedings of the IEEE International Conference on Software
Maintenance (ICSM 2008), pages 257–266. 2008.

[7] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Experiments on the
effectiveness of dataflow- and controlflow-based test adequacy criteria.
In Proceedings of the 16th International Conference on Software
Engineering (ICSE 1994), pages 191–200. 1994.

[8] H. K. N. Leung and L. J. White. Insights into regression testing. In
Proceedings of the IEEE International Conference on Software
Maintenance (ICSM 1989), pages 60–69. 1989.

[9] Z. Li, M. Harman, and R. M. Hierons. Search algorithms for regression
test case prioritization. IEEE TSE, 33 (4): 225–237, 2007.

[10] E. Martin, S. Basu, and T. Xie. Automated testing and response analysis
of Web services. In Proceedings of the IEEE International Conference
on Web Services (ICWS 2007), pages 647–654. 2007.

[11] L. Mei, W. K. Chan, and T. H. Tse. An adaptive service selection
approach to service composition. In Proceedings of the IEEE
International Conference on Web Services (ICWS 2008), pages 70–77.
2008.

[12] L. Mei, W. K. Chan, and T. H. Tse. Data flow testing of service-oriented
workflow applications. In Proceedings of the 30th International
Conference on Software Engineering (ICSE 2008), pages 371–380.
2008.

[13] G. Miklau and D. Suciu. Containment and equivalence for a fragment of
XPath. Journal of the ACM, 51 (1): 2–45, 2004.

[14] O. Moser, F. Rosenberg, and S. Dustdar. Non-intrusive monitoring and
service adaptation for WS-BPEL. In Proceedings of the 17th
International Conference on World Wide Web (WWW 2008), pages
815–824. 2008.

[15] A. K. Onoma, W.-T. Tsai, M. Poonawala, and H. Suganuma.
Regression testing in an industrial environment. Communications of the
ACM, 41 (5): 81–86, 1998.

[16] Oracle BPEL Process Manager. Oracle Technology Network.
Available at http://www.oracle.com/technology/products/ias/bpel/.
Last access February 8, 2009.

[17] S. Rapps and E. J. Weyuker. Selecting software test data using data flow
information. IEEE TSE, SE-11 (4): 367–375, 1985.

[18] G. Rothermel and M. J. Harrold. Analyzing regression test selection
techniques. IEEE TSE, 22 (8): 529–551, 1996.

[19] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold. Prioritizing test
cases for regression testing. IEEE TSE, 27 (10): 929–948, 2001.

[20] M. E. Ruth and S. Tu. Towards automating regression test selection for
Web services. In Proceedings of the 16th International Conference on
World Wide Web (WWW 2007), pages 1265–1266. 2007.

[21] Travel handling. BPEL Repository. IBM, 2006 Available at
http://www.alphaworks.ibm.com/tech/bpelrepository.

[22] Web Services Business Process Execution Language Version 2.0.
OSAIS. Available at http://www.oasis-open.org/committees/wsbpel/. Last
access February 8, 2009.

[23] Web Services Description Language (WSDL) 1.1. W3C, 2001.
Available at http://www.w3.org/TR/wsdl.

[24] Web Services Invocation Framework: DSL Provider Sample
Application. Apache Software Foundation, 2006. Available at
http://ws.apache.org/wsif/wsif_samples/index.html.

[25] XML Path Language (XPath) Recommendation. W3C, 2007. Available
at http://www.w3.org/TR/xpath20/.

[26] C. Ye, S. C. Cheung, and W. K. Chan. Publishing and composition of
atomicity-equivalent services for B2B collaboration. In Proceedings of
the 28th International Conference on Software Engineering (ICSE
2006), pages 351–360. 2006.

WWW 2009 MADRID! Track: Web Engineering / Session: Service Oriented Development

910

