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Abstract

One way of proving theorems in modal logics is translating them
into the predicate calculus and then using conventional resolution-style
theorem provers. This approach has been regarded as inappropriate
in practice, because the resulting formulas are too lengthy and it is
impossible to show the non-theoremhood of modal formulas. In this
paper, we demonstrate the practical feasibility of the (relational) trans-
lation method. Using a state-of-the-art theorem prover for first-order
predicate logic, we proved many benchmark theorems available from
the modal logic literature. We show the invalidity of propositional
modal and temporal logic formulas, using model generators or satis-
fiability testers for the classical logic. Many satisfiable formulas are
found to have very small models. Finally, several different approaches
are compared.

*Supported in part by the National High Technology Program under grant No. 863-
306-05-03-3.



1 Introduction

Modal logics have been studied by many researchers in computer science
and artificial intelligence. There are roughly two classes of methods for
automated reasoning in these logics. With the translational approach, we
transform modal formulas to first-order predicate logic (FOPL) formulas
and then use existing tools for the classical logic. Alternatively, we can
design tools specifically for modal logics. Such methods are classified as
the direct approach. They include, among others, semantic tableaux, modal
resolution, and matrix-based procedures. See, for example, [1, 5, 22].

The translational approach can be further divided into syntactic and
semantic methods [16]. To use the syntactic method, we introduce a special
unary predicate P which means its argument is provable, and translate the
axioms and rules into classical logic. This method can only be applied to
propositional modal logics. On the other hand, the semantic methods are
based on Kripke semantics. Such a method is applicable to first-order modal
logics, but properties of the accessibility relation should be defined by a finite
set of sentences in predicate logic. This can be done in a number of ways. In
the standard way [16], we introduce a special binary predicate R to describe
the accessibility relation between the possible worlds. This is now called
relational translation. In addition, there are so-called functional translation
and semi-functional translation [18, 17].

The relational translation approach is very simple and quite general. It
can deal with many modal logics, and it benefits from the power of existing
tools for the classical logic. But there are also some problems with it. To
quote Goré [8] (page 2), “by translating into first order logic, the transla-
tional methods immediately surrender the decidability of the propositional
modal logic they translate.” Another problem is that, the result of trans-
lation is usually a complicated formula, which makes its proof difficult to

find. Ohlbach and Weidenbach [19] gave the following example:
Prove that (¢Op «+» ©OCOp) is valid in KD45.

Using the standard translation method and the popular resolution-style
prover OTTER 3.0 [13], they failed in finding a proof.

For these reasons, the (relational) translation method has been neglected
by many researchers. Is it really that bad? Our experiments show that it is
quite competitive. In this paper, we shall describe some of the results. We
suggest using both theorem provers and counterexample finders to decide the



validity of modal formulas. In addition, we study the problem of satisfying
propositional temporal logic formulas.

2 Translating Normal Modal Logics

2.1 Propositional Normal Modal Logics

We first review some relevant definitions and facts. For more details, see
[2, 10]. There are many modal logic systems. But in this paper, we shall
consider only normal modal logics.

The smallest normal system is called K. It can be extended by defining
additional axioms. The most well-known axiom schemas include D, T, B, 4,
5. There are only 15 distinct normal systems (including K itself) produced
by taking the schemas (as axioms) in all combinations. They are named K,
KD, KT4, and so on. Among them, KT4 and KT5 are also known as S4
and S5, respectively.

The semantics of modal logics is often defined in terms of the possible
worlds structures. Many propositional modal systems have the finite model
property, which means, every non-theorem is false in some finite model. This
property implies decidability, if the logic is finite axiomatizable. It is well
known that each of the above 15 modal logics has the finite model property.
Moreover, in some systems (e.g. S5), any satisfiable formula can be satisfied
in a small finite model (whose size does not exceed the length of the formula).

2.2 The Relational Translation Method

Roughly speaking, the modal operators O and < correspond to universal
and existential quantifiers in FOPL, respectively. There is a standard way
of translating modal formulas into FOPL formulas. To do so, we add a
‘world’ argument to each proposition, and introduce a new binary predicate
R to describe the accessibility relation between worlds. If the current world
is w, then the formula ¢ will be translated to Tr(p,w), which means ¢ is
true at w. The basic translation rules are defined inductively as follows:

Tr(p,w) = pw)

Ir(w,w) = —Tr(y,w)
TT(¢1 A "/}27w) = TT(¢1,w) A TT('(/)Z,’LU)
Tr(Oy,w) = Yv(R(w,v)— Tr(y,v))

Tr(OY,w) = Fv(R(w,v) N Tr(¢,v))



where v is a new ‘world’ variable. The proposition p in the original formula
becomes a unary predicate. For example, T'r(<$0Op, 0) is the formula

Jw (R(o,w) A Vv (R(w,v) — p(v)))

The following theorem [16, 15] forms the basis of the relational transla-
tion method.

Theorem. A formula ¢ is valid in a modal logic system S if and only if
Az(S) = Yw Tr(p,w) is valid in first-order predicate logic, where Az(S) is
a set of axioms describing properties of the accessibility relation.

For example, (Op — <p) is valid in KT, because the sentence

Vo R(z,z) —
Vw (Vv (R(w,v) = p(v)) = Fv(R(w,v) Ap(v)))

is a theorem in the predicate calculus.

2.3 A Concurrent Program as the Decision Procedure

The concurrent program in Fig. 1 consists of a theorem proving process (P;)
and a model finding process (P;). The theorem proving process can be based
on any refutationally complete proof procedure. To find a model of some
fixed size, one can either use a decision procedure for the classical proposi-
tional calculus (such as the Davis-Putnam algorithm) or use a finite model
search program for the first-order predicate logic. The input parameter ¢ is
a propositional modal logic formula and S is a normal modal logic system.

We assert that the concurrent program can serve as a decision procedure
for many propositional modal logics like K, KT, KD, S4, .... Such a
modal system should possess the finite model property, and the accessibility
relation should be characterized by a finite set of sentences in first-order
predicate logic. The program terminates under the fairness assumption. (It
is unfair if one process, e.g., the theorem prover, never has a chance to be
executed.)

3 Experimental Results

For non-classical logics, there are not so many automated reasoning tools and
test problems. Here we describe some experimental results on the bench-
marks used by other authors [1, 3, 9, 6]. We shall not elaborate on the



program CDP(yp,S)
cobegin
¢ := Az(S) = YwTr(p,w);
Py
repeat
apply a suitable set of inference rules to ¢;
until (contradiction is deduced);
kill(P) ;
Il
Py
var n = 0;
repeat
n:=n+1;
find an n-element model of ¢;
until (a model is found);
kill(Py) ;
coend

Figure 1: The decision procedure



programs’ performances, because they are affected by several factors such
as the data structures and the programming languages. Moreover, not all
timing information are available in the related papers.

It is very easy to implement a tool for translating modal logic formulas.
(The translation time will be neglected.) To show the satisfiability of the
formulas, we may use various tools, such as FINDER, MGTP, LDPP, SATO,
MACE and SEM [20, 21, 23, 14, 25]. In the following, we only report the size
of the smallest model satisfying each formula. In many cases, the models
are very small, and can be easily found by any of the tools.

To prove modal theorems, we use the resolution-style theorem prover
OTTER 3.0.4 [13], running on a SPARCstation 20 with 32 MB memory.
We did not take much advantage of OTTER’s special features to achieve
high performances. It was instructed to run in autonomous mode. However,
since the prover is not so good at proving “if-and-only-if” theorems [12], we
broke each theorem of the form A <> B into two cases A —» B and B — A.
In such a way, Ohlbach and Weidenbach’s example mentioned earlier can be
proved within 2 seconds.

Problem Set 1!

In [1] Catach describes a tableaux-based program called TABLEAUX, and
gives the validity status of 31 formulas in 16 modal logic systems. The
formulas are very simple, and TABLEAUX completed all 496 tests in less
than 1 minute. For simplicity, we consider only the logics K, KD45, S4 and
S5, which are very important in knowledge representation and reasoning.

There are totally 31 x 4 = 124 tests to be performed. Among these, 67
cases are validity proofs. With only a few exceptions, OTTER finds each
proof within 1 second. In the remaining 57 cases, we found the smallest
structures which show the invalidity of the formulas. Of these 57 counter-
models, only 8 are of size 3. The others are of size 1 or 2.

For those formulas containing the equivalence connective, if we give them
directly to the translator and then to OTTER, it will be much more difficult
to find the proofs. For example, the last formula OOp < &Op is valid in
KD45. It takes OTTER about 2 minutes to find a proof. But each of the
formulas OOp — <Op and ¢Op — OOp can be proved to be valid in less
than 0.25 second.

!Some early results on this set of problems were described in [24].



Problem Set 2

Demri [3] analyses several different strategies in a tableau-based S4 prover,
and compares them on a set of 9 valid formulas. Here we list 4 of them:

4. O.(-PC — O0,-PC)
A O,0,04,(PC V PBV PA)
A Dcljb(—!PB — Da—!PB)
A DCDb(—!PC — DaﬂPC)
A O.-0O0,PB
A O,0,-0,PA
— O0.PC
5. ¢0(O(p Vv Ogq) « (Op Vv Og))
6. ¢0((p — q) ¢ F(q, F(p,q)))
where F(A, B) stands for (mAV —C(AAB)V (BAC(AA-B))
9. O(O(Op — O(Og — Or)) — O(O(Op — Og) — Or))

The first one is a multimodal formula, encoding McCarthy’s 3 Wise Men
puzzle. (C is the wisest man.) There are typos in formulas (6) and (9). The
correct versions are as follows [4]:

6a. <O((p — q) ¢ F(p, F(p,q)))
9a. O(O(Op — O(Og — Or)) — O(O(Op A Og) — Or))

Formulas (5) and (6a) are obtained from S5-valid formulas. A formula ¢ is
satisfiable in S5 iff GO¢ is satisfiable in S4. Instead of proving the validity of
<&0O¢ in S4, we prove directly ¢ is valid in S5. As previously, we divide each
“if-and-only-if” theorem into two cases. In this way, 8 of the 9 theorems are
easily proved, each requiring less than 2 seconds. The exception is formula
(6a) whose proof is found in about 1 minute.

It is interesting to note that some non-theorems are falsified in very small
models. For example, the negation of (6) and (9) are satisfied in 1-world
models. And, if we substitute O, PB for O.PC' in formula (4), then there
is also a countermodel of size 1, which can be easily found by exhaustive
search.

Problem Set 3

Recently Goré, Heinle and Heuerding [9] studied the relations between some
propositional normal modal logics, using the Logics Work Bench (LWB). As



a side-effect of this work, they collected a database of theorems which can
be used to test modal theorem provers.

LWB has automated proof procedures for only a few modal logics, namely,
K, KT, KT4, KT45 and KW. To deal with extensions of these logics, one
can add some modalised instances of the new axioms to the premises. The
user has to provide the appropriate instances. For more details about this
technique, see [9].

In the appendix of [9], 72 K-theorems are listed. Most of them are easy
for OTTER to prove, but there are also some difficult ones. The results are
summarized in the following table.

OTTER time | number of theorems
< 10 sec. 51
10-100 sec. 4
100-1000 sec. 5
> 1000 sec. 12

So about 3 quarters of the theorems can be proved within 2 minutes.
The 12 difficult formulas are very complicated. Some of them can be easily
proved if we work in a different modal system rather than in K. For example,
using our translation tool and OTTER, we can prove that M — Pt is valid in
K4 within 10 seconds. Here M and Pt stand for the following two formulas:

M = O0p—<Op Pt = O(pVv<oOp) = O(pAQdp)

Instead of proving the theorem directly, Goré, Heinle and Heuerding
prove the following K-theorem:

P1 A2 ANps AN M — Pt

where ¢; is an instance of 4, ¢2 and ¢3 are instances of 04. The resulting
formula is quite lengthy, and OTTER has difficulty finding a proof for it. 1
am not indicating that the “modalised instance” technique is not useful. But
the generality and power of the translation approach should be emphasized.
Of course, a powerful prover for the predicate calculus is very important.

Based on the formulas given in [9], we also examined some conjectures
which are not valid in K. They are usually falsified in very small Kripke
structures. The following are some examples:



formula size of structure
M — Pt 2
H— L
Ht - L*
L— LT
Lt+ > [T
Dum4 — Dum

NN NN W

The formulas H, HT, L, Lt and LT are defined as follows:

H = (O(pVqeAD(OpVg) AO(pVOg)) — (OpV Og)
H* = (3(OpVg)ADO(pV Og)) = (OpV Og)
L = 0O((pAOp) —¢)VDO((gAOg) — p)
LT = 0O(0p—q)VO(dg — p)
L™ = 0O(Op — Og) vO(Og — Op)
Dum = 0O(O(p — Op) — p) — (COp — p)
Dum4 = 0O(O(p — Op) — p) = (SOp — (pV Op))

To show that Dum holds in KTDum2, Goré, Heinle and Heuerding
proved the K-theorem:

w1 A pa AODum2 — Dum

where @1 and @2 are instances of 1" and O7T', respectively. Dum2 is defined
by:
Dum?2 = 0O(O(p — Op) — Op) — (¢Op — p)

We tried to find a small reflexive structure falsifying Dum2 — Dum, but
failed. The formula turned out to be KT-valid, which can be proved in
about 1 second. So Dum is implied by either Dum2 or ODum?2 in KT.

Problem Set 4

Giunchiglia and Sebastiani [6] developed a SAT-based decision procedure
for K, called KSAT. It has been tested against a large number of randomly
generated 3CNF modal formulas. We implemented a similar method for
generating random formulas, and found that quite some satisfiable formulas
have very small models. But the number of formulas that have been tested
is not enough for us to make any conclusion.



We did not spend much time on this set of problems. There are two
reasons for this. Firstly, the generated formulas usually contain repetitive
or complementary literals in the same clause, e.g. O(p1 V p2 V —p1). This
problem is quite serious when there are only a few variables (say, fewer than
5). Secondly, we are more interested in structured formulas. But when only
the average timings are recorded, some hard formulas (e.g., formulas of the
form A ++ B ) can be hided in many other easy formulas.

4 Satisfying Propositional Temporal Logic Formu-
las

Temporal logic was introduced into computer science by Amir Pnueli about
20 years ago. It is a convenient tool for specifying and verifying concurrent
programs [11]. There are many versions of temporal logic. For example,
time may be discrete or dense, a time point can have only one successor or
several successors. Here we consider the linear time temporal logic (LTL),
where time is modeled by the set of natural numbers. In addition to the
‘box’ and ‘diamond’ operators, LTL has such operators as ‘next-time’ and
‘until’.

Since LTL is based on the natural numbers, induction is needed to prove
some theorems. A resolution-style automatic theorem prover is not enough
if we translate LTL formulas into FOPL formulas. However, propositional
LTL also has the finite model property, i.e., a formula is satisfiable iff it
has a model consisting of a finite number of states. And we can still use
model generation tools in FOPL to find models of satisfiable propositional
temporal logic formulas. But we have to check the generated model can be
translated into some LTL model.

For simplicity, let us consider only the next-time operator. In this case,
we need a new unary successor operator S. The binary relation R is reflexive
and transitive. In addition, we have to add such axioms as R(z, S(z)).

Let us give a simple example to illustrate the difference between models
found in this way and models obtained by the tableau method. Consider the
formula O (O Op, where O denotes next-time. With the tableau method, we
get a 3-state model: {sg, s1, sa}, where S(sg) = s1,5(s1) = s2,S(s2) = s2,
p can take any value in the first two states, but it is true in sy. In general, if
there are k next-time operators, we shall get a (k+1)-state model. However,
with the translation method, a 1-state model is produced: {s¢}, S(so) = so,
p holds at sg.

10



5 Related Work

As we mentioned in the introduction, there are quite some methods for the
automated reasoning in modal logics. But relatively few implementations
are available. The matrix method and the functional translation method
require specialized unification algorithms. In contrast, it is very easy to
write a relational translator.

Another advantage of the translational approach is its generality. It can
be applied to many modal logic systems. Changing from one system to
another, we need only modify the axioms. On the other hand, many other
methods and tools are designed for a few specific systems. For example,
semi-functional translation [17] and the technique described in [19] are most
suitable for sertal modal logics like KD and KD45. Modal resolution rules
are discussed in [5], within 5 systems, i.e., K, Q, T, S4 and S5. The
program LWB has built-in proof procedures for 5 selected logics, and KSAT
[6, 7] works only in K. TABLEAUX can deal with many modal systems.
But if one was to extend it with new systems, new procedures (encoding the
semantic properties) would have to be added.

Tableau-based decision procedures can be used both to prove theorems
and to show the satisfiability of formulas. As we point out in the previous
section, the models found by our method are usually different from those
generated by tableau procedures. An example in linear time temporal logic
has been given to show the difference. For another example, the formula
4. Op — O0Op is not valid in K. Catach [1] gives a 3-world countermodel
produced by the tableau-based procedure. But with our method, we shall
first find the smallest model having 2 worlds:

R‘ w wy p‘ wo w1

wq | False True ‘False True
wy | True False

where wq is the real world.

According to our experiences, many satisfiable formulas have very small
models. Thus it is practical to use model generation tools in the classical
logic to show the satisfiabiliy of propositional modal formulas. However, for
some modal logics (like K), there are some specially constructed formulas
[10] which are satisfiable only in exponential-size models. They present much
difficulty for methods based on the Kripke semantics. The program KSAT
can deal with such formulas efficiently [7].

11



6 Concluding Remarks

The (relational) translation technique has been known for a long time. But
few reports on its practical performances are available, and previously no
one has studied the generation of countermodels with this method. Our
experiments show that, the method is quite competitive. Without spending
much effort, we can prove a lot of theorems in many modal logics, using
existing tools in the classical logic. Moreover, by combining a theorem
prover with a model generator, we can decide the satisfiability as well as the
validity of propositional formulas. It is interesting that many non-theorems
turn out to have very small countermodels.

Compared with other methods, relational translation has some appeal-
ing features. (See the previous section.) Theoretically, it provides decision
procedures for various important logics. Practically, we expect that it can
deal with a large number of formulas of reasonable sizes. It should be very
useful in those applications where first-order reasoning is inevitable, and in
the applications which have several modal operators belonging to different
systems.

It is certainly not true that the translational approach is better than
other approaches in all respects. The method has some drawbacks. But it
is not so weak as thought previously. Rather than proposing a entirely new
method, we try to identify and overcome some difficulties. The power of the
translation approach is largely dependent on the tools available in predicate
calculus. In our experiments, only OTTER (in its autonomous mode) was
used to prove theorems. This may not be the best choice. One can use other
types of provers (e.g., a nonclausal one) or exploit more features of OTTER
to achieve better performances. One can also develop special techniques for
handling the transitivity axiom or the seriality axiom (similar to that of

[19]).
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