
VolCE v1.0.1

Cunjing Ge, Feifei Ma and Jian Zhang
Institute of Software

Chinese Academy of Sciences
Email: {gecj,maff,zj}@ios.ac.cn

Feb. 2015

1 Introduction

1.1 What is VolCE?

VolCE is designed for computing or estimating the size of the solution space of an SMT
formula where the theory T is restricted to the linear arithmetic theory. (SMT stands
for Satisfiability Modulo Theories.) The prototype tool presented in [2] computes the
exact volume of the solution space. However, exact volume computation in general is an
extremely difficult problem. It has been proved to be #P-hard, even for explicitly described
polytopes. On the other hand, it suffices to have an approximate value of the volume in
many cases. Later we implemented a tool to estimate the volume of polytopes [1] and
integrated it into the framework of [2]. The new tool is called VolCE. It can efficiently
handle instances of dozens of dimensions with high accuracy. In addition, VolCE also
accepts constraints involving independent Boolean variables.

1.2 What can VolCE do?

VolCE uses the following three packages:

• PolyVest [1], which can be used to estimate the volume of polytopes

• Vinci [6], a software package that implements several algorithms for (exact) volume
computation.

• LattE (Lattice point Enumeration) [3], a software package dedicated to the problems
of counting lattice points and integration inside convex polytopes.

1

mailto:gecj@ios.ac.cn


2 Installation

• Step 1: Make sure that g++ (version 4.8 or higher version) is installed on your
machine (you can type “g++ -v” to check this).

• Step 2: The functionality of VolCE is dependent on some other libraries: zlib, boost,
lpsolve, glpk, gfortran, LAPACK, BLAS and Armadillo. On Ubuntu or Debian,
you can use “apt-cache search” and “apt-get install” to find and install all of these
libraries. Or you can download these libraries from:

Library URL
zlib http://zlib.net/
boost http://www.boost.org/

lpsolve http://sourceforge.net/projects/lpsolve/
glpk http://www.gnu.org/software/glpk/

gfortran http://gcc.gnu.org/fortran/
LAPACK http://www.netlib.org/lapack/
BLAS http://www.netlib.org/blas/index.html

Armadillo http://arma.sourceforge.net/

Note. For lpsolve, make sure that its header files and the dynamic library (i.e.,
liblpsolve55.so) are included in the directories “/usr/include/lpsolve” and
“/usr/lib/lp solve”, respectively. Besides, LAPACK and BLAS should be installed
before installing Armadillo.

• Step 3: Open a shell (command line), change into the directory that was created by
unpacking the VolCE archive, and type:

sh build.sh

When the build process is finished, you will find all binaries in the directory “release/”.

• Step 4: Install LattE [3]. Build and move the executable files (count and scdd gmp)
into directory “release/bin/”.

This release of VolCE has been successfully built on the following operating systems:

• Ubuntu 12.04 on 64-bit with g++ 4.8.1

• Ubuntu 13.10 on 32-bit with g++ 4.8.1

2



3 Input Format

The input of VolCE is an SMT formula where the theory T is restricted to the linear
arithmetic theory. It involves variables of various types (including integers, reals and
Booleans). We usually use bi to denote Boolean variables, xj to denote numeric variables.
In the input formula, there can be logical operators (like AND, OR, NOT), arithmetic
operators (like addition, subtraction, scalar multiplication) and comparison operators (like
<, ≤, >, ≥, =, 6=).

Syntactically, there are two formats for the input file:

• VolCE style

• SMT-LIBv2 [4]

We now describe them in detail.

3.1 VolCE Style Input Format

Let us introduce some concepts first.

• LAC: A linear arithmetic constraint (LAC) is a comparison between two linear
arithmetic expressions. Such a constraint can be denoted by a Boolean variable (e.g.,
b3 ≡ x1 + x2 ≤ 1).

• literal: A literal is either a Boolean variable (e.g., b3) or a negated Boolean variable
(e.g., NOT b3).

• clause: A clause is a set of one or more literals, connected with OR. (Boolean variables
may not be repeated inside a clause.)

• formula: A formula is a set of one or more clauses, connected with AND.

It is well known that any Boolean expression can be converted into the conjunctive normal
form (CNF) easily (e.g., using the Tseitin transformation [5]). So the input of VolCE is
a formula in the CNF form, where each Boolean variable may stand for some LAC. The
input file generally consists of two parts: LACs, and clauses in the CNF.

3



An example of VolCE style formula is the following:

b1 ≡ x1 < x2,

b3 ≡ x1 + x2 < 1,

b4 ≡ x1 ≤ 1,

b5 ≡ x2 ≤ 1,

b6 ≡ x1 ≥ 0,

b7 ≡ x2 ≥ 0,

(b1 OR (NOT b3)) AND
(b1 OR (NOT b2) OR b3) AND
((NOT b3) OR b4) AND
b4 AND b5 AND b6 AND b7.

(1)

There are 7 Boolean variables (b1, . . . , b7), 2 numeric variables (x1 and x2), 6 LACs and
7 clauses in Formula 1. Note that b2 is an independent Boolean variable which does not
represent any LAC.

Syntactically, VolCE accepts input in an “Enhanced DIMACS CNF Format”. Every line
beginning with “c” is a comment. The first non-comment line must be of the form:

p cnf v lc BOOLS CLAUSES NUMVARS LACS

It specifies the number of Boolean variables, the number of clauses, the number of numeric
variables and the number of linear constraints.

Every line beginning with “m” defines a linear constraint and its corresponding Boolean
variable. It must be of the form:

m i a1 ... an op b

It defines a linear inequality a1x1 + · · · + anxn op b, where a1, . . . , an, b are constants,
and op is a comparison operator: <, <=, >, >= or =. (The tool does not support 6=
directly. However, ax 6= b ⇔ NOT ax = b.) The number i means the Boolean variable
bi represents this inequality. The space between the character “m” and the number i is not
mandatory.

Each of the other lines defines a clause: a positive literal is denoted by the corresponding
number (so 4 means b4), and a negative literal is denoted by the corresponding negative
number (so -5 means NOT b5). The last number in the line should be zero. Each of these
lines is a space-separated list of numbers.

So the above Formula 1 would be written in the following way:

4



c It is an example, f1.vs.
p cnf v lc 7 7 2 6
c Linear Constraints part.
m1 1 -1 < 0
m3 1 1 < 1
m4 1 0 <= 1
m5 0 1 <= 1
m6 1 0 >= 0
m7 0 1 >= 0
c CNF part.
1 -3 0
1 -2 3 0
-1 3 0
4 0
5 0
6 0
7 0

See the file examples/f1.vs.

3.2 The SMT-LIBv2 Language Inputs

VolCE also partially supports the SMT-LIBv2 language. For details of this language, visit
the website:

http://www.smt-lib.org/

VolCE recognizes SMT-LIBv2 format from the file name extension “.smt2”. It automatically
parses such a file into the VolCE style input.
Table 1 lists the commands, variable types and identifiers of SMT-LIBv2 language that
supported by VolCE. VolCE ignores some basic commands like set-logic, set-info,
check-sat, exit. It directly checks all of the assertions. Besides, assert commands
must be written after all the declare-fun commands.

Table 1: Supported SMT-LIBv2 Components

Commands declare-fun assert
Variable Types Int Real Bool

Identifiers

let
and or not => ite

+ - * /
= > >= < <= distinct

In the SMT-LIBv2 language, the above Formula 1 would be written like this:

5



(set-logic QF_LRA)
(set-info :f1.smt2)
(set-info :smt-lib-version 2.0)
(set-info :status sat)
(declare-fun x () Real)
(declare-fun y () Real)
(declare-fun b () Bool)
(assert (and (<= x 1) (<= y 1) (>= x 0) (>= y 0)))
(assert (let ((v1 (< (+ x y) 1)) (v2 (< x y)))
(and (or v1 (not v2)) (or v1 v2 b) (or (not v1) v2))))
(check-sat)
(exit)

See the file examples/f1.smt2.

4 Running VolCE

To run VolCE, you should switch your working directory to the absolute path of VolCE.

VolCE has a help menu. To view it, simply type the command "./volce --help".

The general usage of VolCE is

% ./volce [OPTION]... <INPUT-FILE>

The meanings of the options are given in the following table.

Table 2: Command-line Options of VolCE

Option Meaning
-P Enables PolyVest for volume approximation. The input vari-

ables in the linear inequalities are reals. By default, VolCE calls
PolyVest. It assumes that all the numeric variables are reals.

-V Enables Vinci for volume computation. The input variables in
the linear inequalities are reals.

-L Enables LattE to count the number of integer solutions. The
input variables in the linear inequalities should be integers. This
option is usually enabled in the case of integer variables.

-w=NUMBER Specifies the word length of numeric variables in bit-wise rep-
resentations. Then each variable is automatically bounded by
the range [−2w−1, 2w−1 − 1]. Setting the word length to 0 will
disable this feature. By default, the word length is 8, which
means the domain of every numeric variable is [−128, 127]. For
example, you can change it to 3, by using the option -w=3.

6



-maxc=NUMBER Sets the maximum sampling coefficient of PolyVest, which is
an upper bound. Generally, the larger this coefficient is, the
more accurate the result will be. However, the running time
of the tool will be longer. The default value of maxc is 1600.
For example, you may change it to 1000, by using the option
-maxc=1000.

-minc=NUMBER Sets the minimum sampling coefficient of PolyVest. The de-
fault value is 40.

To estimate the volume of the solution space of Formula 1, simply type:

% ./volce examples/f1.vs

Note that Formula 1 guarantees 0 ≤ x1, x2 ≤ 1. So we can disable the internal bit-wise
bounds of numeric variables, by setting the word length to 0:

% ./volce -w=0 examples/f1.vs

You can also enable PolyVest, Vinci, LattE at the same time:

% ./volce -P -V -L -w=0 examples/f1.vs

Remarks Several tools (PolyVest, Vinci, LattE) have been integrated which can be
enabled for different situations. Vinci gives an accurate volume for a polytope; but it may
have difficulty handling problem instances with more than 10 numeric variables. PolyVest
gives approximate results, but it can deal with larger instances. LattE is good at count-
ing the number of integer solutions. Sometimes, the first two tools can also be used for
approximating the number of integer solutions.

5 Examples

Example 1 For the above Formula 1, we have two input files: VolCE style input (f1.vs)
and SMT-LIBv2 input (f1.smt2).

Execute the command:

% ./volce -P -V -L -w=0 examples/f1.smt2

And we obtain the result:

7



Enabled PolyVest.
Enabled Vinci.
Enabled LattE.
Set word length to 0.
Disabled default bounds since word l
ength <= 0.
VolCE Directory: ...
Working Directory: ...

====================================

Parsing smt2 file.
Reading Input.
Number of bool vars: 16
Number of clauses: 29
Number of numeric vars: 2
Number of linear constraints: 6

====================================

Branches: 2
SATISFIABLE

====================================
============= PolyVest =============
====================================

FIRST ROUND
0 0.222875 * 2
1 0.24338 * 1

SEC & LAST ROUND
0 1600 0.252037 * 2

1 1600 0.250964 * 1

Total approximation: 0.755039

====================================

The total volume (PolyVest): 0.75503
900

====================================
============== Vinci ===============
====================================

0.25000000 * 2
0.25000000 * 1

====================================

The total volume (Vinci): 0.75000000

====================================
============== LattE ===============
====================================

0 * 2
2 * 1

====================================

The total volume (LattE): 2

Analysis:

Figure 1 shows the linear constraints in Formula 1. The plane is splitted into 4 areas, since
b4, b5, b6, b7 are always True. The pair {b1, b3} determines the counted areas.

• Area I: {b1 = True, b3 = True}. It has no lattice points.

• Area II: {b1 = True, b3 = False}. It has 1 lattice point: {0, 1}.

8



Figure 1: Solution Space of Formula 1

• Area III: {b1 = False, b3 = False}. It has 2 lattice points: {1, 0} and {1, 1}.

• Area IV: {b1 = False, b3 = True}. It has 1 lattice point: {0, 0}.

There are 3 Boolean solutions for Formula 1: {b1 = True, b2 = True, b3 = True}, {b1 =
True, b2 = False, b3 = True}, and {b1 = False, b2 = True, b3 = False}. Thus the volume
of the solution space is 2× vol(AreaI) + vol(AreaIII) = 0.75. And there are 2× 0 + 2 = 2
integer solutions (lattice points).

Example 2 Here is an exercise for young pupils: In the following square, there are 8
sub-areas. Color them so that the neighboring sub-areas use different colors. How many
different coloring schemes are there?

A
D

B

C
E

F

G

H

Obviously, this problem can be regarded as a solution counting problem. The input consists
of the following inequalities:

xA 6= xB, xA 6= xD, xB 6= xC, xB 6= xD, xB 6= xE,

9



xC 6= xE, xD 6= xE, xD 6= xF, xD 6= xG,

xE 6= xG, xE 6= xH, xF 6= xG, xG 6= xH.

We assume that there are at most 4 colors, and execute the following command:

% ./volce -L -w=2 examples/coloring.smt2

We find that there are 768 solutions.

Example 3 In [2], we describe a program called getop() and analyze the execution fre-
quency of its paths. For Path1, its path condition1 is:

(NOT ((c = 32) OR (c = 9) OR (c = 10))) AND
((c != 46) AND ((c < 48) OR (c > 57)))

Here c is a variable of type char; it can be regarded as an integer variable within the
domain [-128..127].

For the above path condition, we can compute the number of solutions by executing the
command:

% ./volce -L examples/program_analysis/getopPath1.smt2

We find that the path condition has 242 solutions. (We do not need to use the option -w=8,
because the default word length is 8.)

Given that the size of the whole search space is 256, we conclude that the frequency of
executing Path1 is about 0.945 (i.e., 242/256). This means, if the input string has only
one character, most probably, the program will follow this path.

Another path, Path2, has the following path condition:

((c0 = 32) OR (c0 = 9) OR (c0 = 10)) AND
(NOT ((c1 = 32) OR (c1 = 9) OR (c1 = 10))) AND
(NOT ((c1 != 46) AND ((c1 < 48) OR (c1 > 57)))) AND
(NOT ((c2 >= 48) AND (c2 <= 57))) AND
(NOT (c2 = 46))

Given this set of constraints, and using LattE, our tool tells us that the number of solutions
is 8085. The executed command is:

% ./volce -L examples/program_analysis/getopPath2.smt2

So the path execution frequency is 8085/(256 ∗ 256 ∗ 256) which is roughly 0.00048.
1The path condition is a set of constraints such that any input data satisfying these constraints will

make the program execute along that path.

10



Example 4 Hoare’s program FIND takes an array A[N] and an integer f as input. It
tries to find the element of the array, whose value is the f -th in order of magnitude; and
to rearrange the array in such a way that this element is placed in A[f ], all elements with
subscripts lower than f have smaller values, and all elements with subscripts greater than
f have larger values.

Assume that N = 8. We may extract two execution paths from the program, and generate
the path conditions. The first path condition is the following:

(A[0] < A[3]); !(A[1] < A[3]); (A[3] < A[7]);
!(A[3] < A[6]); !(A[2] < A[3]); !(A[3] < A[5]);
!(A[3] < A[4]); (A[0] < A[4]); (A[6] < A[4]); (A[5] < A[4]).

Setting the word length to 4, we can find that the number of solutions is 4075920. The
executed command is:

% ./volce -L -w=4 examples/program_analysis/FINDpath1.smt2

The second path condition is a bit more complicated:

!(A[0] < A[3]); (A[3] < A[7]); (A[3] < A[6]);
(A[3] < A[5]); (A[3] < A[4]); !(A[1] < A[3]);
(A[3] < A[2]); (A[3] < A[1]); (A[1] < A[0]);
(A[2] < A[0]); !(A[0] < A[7]); !(A[4] < A[0]);
(A[0] < A[6]); !(A[0] < A[5]); (A[1] < A[7]);
(A[2] < A[7]); !(A[7] < A[5]); !(A[1] < A[5]);
!(A[2] < A[5]); (A[5] < A[2]); (A[2] < A[1]).

Executing the command:

% ./volce -L -w=4 examples/program_analysis/FINDpath2.smt2

we find that the number of solutions is 87516. So, the first path is executed much more
frequently than the second one. (We assume that the input space is evenly distributed.)

Example 5 Let us try a randomly generated example (ran 5 20 8.vs). It has 5 Boolean
variables, 8 numeric variable, 20 clauses and 5 linear constraints.

Execute the command:

% ./volce -P -V -w=4 examples/ran/ran_5_20_8.vs

And we obtain the result:

11



Enabled PolyVest.
Enabled Vinci.
Set word length to 4.
VolCE Directory: ...
Working Directory: ...

====================================

Reading Input.
Number of bool vars: 5
Number of clauses: 20
Number of numeric vars: 8
Number of linear constraints: 5

====================================

Branches: 1
SATISFIABLE

====================================
============= PolyVest =============
====================================

FIRST ROUND

0 8.38972e+06 * 1

SEC & LAST ROUND
0 1600 7.88093e+06 * 1

Total approximation: 7.88093e+06

====================================

The total volume (PolyVest): 7880930
.00000000

====================================
============== Vinci ===============
====================================

7970738.22355500 * 1

====================================

The total volume (Vinci): 7970738.22
355500

References

[1] C. Ge, F. Ma and J. Zhang. A fast and practical method to estimate volumes of convex
polytopes. Dec. 2013. http://arxiv.org/abs/1401.0120v1

[2] F. Ma, S. Liu and J. Zhang. Volume computation for Boolean combination of linear
arithmetic constraints. In: Proc. CADE-22, LNCS 5663, pp.453–468, 2009.

[3] LattE, available at https://www.math.ucdavis.edu/~latte/

[4] SMT-LIB: The Satisfiability Modulo Theories Library. http://www.smt-lib.org/

[5] G.S. Tseitin. On the complexity of derivation in propositional calculus. In: Slisenko,
A.O. (ed.) Structures in Constructive Mathematics and Mathematical Logic, Part II,
Seminars in Mathematics (translated from Russian), pp.115–125, Steklov Mathemat-
ical Institute, 1968.

12



[6] Vinci, available at
http://www.math.u-bordeaux1.fr/~aenge/?category=software&page=vinci

13


	Introduction
	What is VolCE?
	What can VolCE do?

	Installation
	Input Format
	VolCE Style Input Format
	The SMT-LIBv2 Language Inputs

	Running VolCE
	Examples

