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Why FOL

Propositional logic is a coarse language, which only concerns about propositions and
boolean connectives. Practically, this logic is not powerful enough to describe
important properties we are interested in.

Example (Syllogism of Aristotle)
Consider the following assertions:

1 All men are mortal.
2 Socrates is a man.
3 So Socrates would die.

∀x(Man(x)→ Mortal(x))

Difference between FOL and PL
First order logic is an extension of proposition logic:

1 To accept parameters, it generalized propositions to predicates.
2 To designate elements in the domain, it is equipped with functions and constants.
3 It also involves quantifiers to capture infinite conjunction and disjunction.
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Signature

We are given:
an arbitrary set of variable symbols VS = {x , y , x1, . . . };
an arbitrary set (maybe empty) of function symbols FS = {f , g , f1, . . . }, where each
symbol has an arity;
an arbitrary set (maybe empty) of predicate symbols PS = {P,Q,P1, . . . }, where each
symbol has an arity;
an equality symbol set ES which is either empty or one element set containing {≈}.

Let L = VS ∪ {(, ),→,¬, ∀} ∪ FS ∪ PS ∪ ES. Here VS ∪ {(, ),→,¬,∀} are referred
to as logical symbols, and FS ∪ PS ∪ ES are referred to as non-logical symbols.

We often make use of the
set of constant symbols, denoted by CS = {a, b, a1, . . . } ⊆ FS, which consist of
function symbols with arity 0;
set of propositional symbols, denoted by PCS = {p, q, p1, . . . } ⊆ PS, which consist of
predicate symbols with arity 0.

4/34



FOL terms

The terms of the first order logic are constructed according to the following grammar:

t ::= x | ft1 . . . tn

where x ∈ VS, and f ∈ FS has arity n.
Accordingly, the set T of terms is the smallest set satisfying the following conditions:

each variable x ∈ VS is a term.
Compound terms: ft1 . . . tn is a term (thus in T ), provided that f is a n-arity
function symbol, and t1, . . . , tn ∈ T. Particularly, a ∈ CS is a term.

We often write f (t1, . . . , tn) for the compound terms.
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FOL formulas

The well-formed formulas of the first order logic are constructed according to the
following grammar:

ϕ ::= Pt1 . . . tn | ¬ϕ | ϕ→ ϕ | ∀xϕ

where t1, . . . , tn are terms, P ∈ PS has arity n, and x ∈ VS.
We often write P(t1, . . . , tn) for clarity. Accordingly, the set FOL of first order formulas is
the smallest set satisfying:

P(t1, . . . , tn) ∈ FOL is a formula, referred to as the atomic formula.
Compound formulas: (¬ϕ) (negation), (ϕ→ ψ) (implication), and (∀xϕ) (universal
quantification) are formulas (thus in FOL), provided that ϕ,ψ ∈ FOL.

We omit parentheses if it is clear from the context.
As syntactic sugar, we can define ∃xϕ as ∃xϕ := ¬∀x¬ϕ. We assume that ∀ and ∃ have
higher precedence than all logical operators.
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Examples of first-order logics

Mathematical theories
Presburger Arithmetic 〈N, 0, 1,+,=, <〉.
Peano Arithmetic 〈N, 0, S,+, ·,=, <〉
Tarski Algebra 〈R, 0,+, ·,=, <〉
Group 〈e,+,=〉.
Equivalence 〈R〉.

Example
Write “every son of my father is my brother” in predicate logic.
Let me denote “me”, S(x , y) (x is a son of y), F (x ; y) (x is the father of y), and
B(x ; y) (x is a brother of y) be predicate symbols of arity 2. Consider

∀x∀y(F (x ;me) ∧ S(y ; x)→ B(y ;me)).

Alternatively, let f (f (x) is the father of x) be a unary function symbol. Consider

∀x(S(x ; f (me))→ B(x ;me)).

Translating an English sentence into predicate logic can be tricky.
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Sub-formulas

For a formula ϕ, we define the sub-formula function Sf : FOL→ 2FOL as follows:

Sf (P(t1, . . . , tn)) = {P(t1, . . . , tn)}
Sf (¬ϕ) = {¬ϕ} ∪ Sf (ϕ)

Sf (ϕ→ ψ) = {ϕ→ ψ} ∪ Sf (ϕ) ∪ Sf (ψ)

Sf (∀xϕ) = {∀xϕ} ∪ Sf (ϕ)

Sf (∃xϕ) = {∃xϕ} ∪ Sf (ϕ)

Scope
The part of a logical expression to which a quantifier is applied is called the scope of this
quantifier. Formally, each sub-formula of the form Qxψ ∈ Sf (ϕ), the scope of the
corresponding quantifier Qx is ψ. Here Q ∈ {∀, ∃}.

Sentence
We say an occurrence of x in ϕ is free if it is not in scope of any quantifiers ∀x (or ∃x).
Otherwise, we say that this occurrence is a bound occurrence. If a variable ϕ has no free
variables, it is called a closed formula, or a sentence.
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Substitution

Substitution
The substitution of x with t within ϕ, denoted as Sx

t ϕ, is obtained from ϕ by replacing
each free occurrence of x with t.

We would extend this notation to Sx1,...,xn
t1,...,tn ϕ.

Remark 1
It is important to remark that Sx1,...,xn

t1,...,tn ϕ is not the same as Sx1
t1 . . .S

xn
tn ϕ: the former

performs a simultaneous substitution.
For example, consider the formula P(x , y): the subsitution Sx,y

y,x P(x , y) gives
Sx,y

y,x P(x , y) = P(y , x) while the substitutions Sx
y Sy

x P(x , y) give
Sx

y Sy
x P(x , y) = Sx

y P(x , x) = P(y , y).

Remark 2
Consider ϕ = ∃y(x < y) in the number theory. What is Sx

t ϕ for the special case of
t = y?
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Substitution

Substitutable on Terms
We say that t is substitutable for x within ϕ iff for each variable y occurring in t, there is
no free occurrence of x in scope of ∀y/∃y in ϕ.

α-β condition
If the formula ϕ and the variables x and y fulfill:

1 y has no free occurrence in ϕ, and
2 y is substitutable for x within ϕ,

then we say that ϕ, x and y meet the α-β condition, denoted as C(ϕ, x , y).

Lemma
If C(ϕ, x , y), then Sy

x Sx
yϕ = ϕ.
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Axioms

As for propositional logic, also FOL can be axiomatized.

Axioms
A1 ϕ→ (ψ → ϕ)

A2 (ϕ→ (ψ → η))→ ((ϕ→ ψ)→ (ϕ→ η))

A3 (¬ϕ→ ¬ψ)→ (ψ → ϕ)

A4 ∀xϕ→ Sx
t ϕ

if t is substitutable for x within ϕ
A5 ∀x(ϕ→ ψ)→ (∀xϕ→ ∀xψ)

A6 ϕ→ ∀xϕ
if x is not free in ϕ

A7 ∀x1 . . .∀xnϕ
if ϕ is an instance of (one of) the above axioms

MP Rule

ϕ→ ψ ϕ

ψ
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Deduction Theorem

Deductive sequence
Given a formula set Γ, a deductive sequence of ϕ from Γ is a sequence

ϕ0, ϕ1, . . . , ϕn = ϕ

where each ϕi should be one of the following cases:
1 ϕi ∈ Γ.
2 ϕi is an instance of some axiom.
3 There exists some j, k < i , such that ϕk = ϕj → ϕi .

And, we denote by Γ ` ϕ if there exists such deductive sequence. We write Γ, ψ ` ϕ for
Γ ∪ {ψ} ` ϕ.

Theorem (Deduction theorem)
Γ, ϕ ` ψ if and only if Γ ` ϕ→ ψ.
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Generalization Theorem

Syntactical Equivalence
We say ϕ and ψ are syntactically equivalent iff ϕ ` ψ and ψ ` ϕ.

Theorem
(Gen): If x has no free occurrence in Γ, then Γ ` ϕ implies Γ ` ∀xϕ.

Solution
Suppose that ϕ0, ϕ1, . . . , ϕn = ϕ is the deductive sequence of ϕ from Γ.

If ϕi is an instance of some axiom, then according to (A7), ∀xϕi is also an axiom.
If ϕi ∈ Γ, since x is not free in Γ, we have ` ϕi → ∀xϕi according to (A6).
Therefore, we have Γ ` ∀xϕi in this case.
If ϕi is obtained by applying (MP) to some ϕj and ϕk = ϕj → ϕi . By induction, we
have Γ ` ∀xϕj and Γ ` ∀x(ϕj → ϕi ). With (A5) and (MP), we also have Γ ` ∀xϕi
in this case.

Thus, we have Γ ` ∀xϕn, i.e., Γ ` ∀xϕ.
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Examples and proof techniques

Eg 1. Prove that
1 ∀x(ϕ→ ψ) ` ∀x(¬ψ → ¬ϕ),
2 ∀x(ϕ→ ψ) ` ∃xϕ→ ∃xψ.

Eg 2. Prove that
1 ∀x∀yϕ ` ∀y∀xϕ,
2 ∃x∀yϕ ` ∀y∃xϕ.

Eg 3. Prove that
1 If Γ ` ϕ and Γ ` ¬ψ, then Γ ` ¬(ϕ→ ψ),
2 ∀x¬(ϕ→ ψ) ` ¬(ϕ→ ∃xψ).

Proof techniques
By contradiction: In order to prove Γ ` ϕ, we only need to prove Γ,¬ϕ ` F .
By assumption: Assume Sx

x0ϕ, where x0 is a fresh variable, once we have
Γ, Sx

x0ϕ ` ψ, then Γ ` ∃x .ϕ→ ψ.
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Lemmas and theorems

Lemma
(Ren): If C(ϕ, x , y), then ∀xϕ and ∀ySx

yϕ are syntactical equivalent. That is,
1 ∀xϕ ` ∀ySx

yϕ.
2 ∀ySx

yϕ ` ∀xϕ.

Lemma
(RS): Let ηϕψ denote the formula obtained by replacing (some or all) ϕ inside η by ψ.
If ϕ ` ψ and ψ ` ϕ then η ` ηϕψ and ηϕψ ` η.

Lemma

If C(ϕ, x , y) and Γ ` ψ, then Γ ` ψ∀xϕ
∀ySx

yϕ
.

Theorem
(GenC) If Γ ` Sx

aϕ where a does not occur in Γ ∪ {ϕ}, then Γ ` ∀xϕ.
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Tarski structure

To give semantics of terms/formulas of first order logic, we need an appropriate structure
in which interpret the functions and predicates of FOL.

Tarski structure
A Tarski structure is a pair I = 〈D, I〉, where:
D is a non-empty set, called the domain.
For each n-ary function f , we have I(f ) ∈ Dn → D.
For each n-ary predicate P, we have I(P) ∈ Dn → {0, 1}.

Thus, for each constant a, we have I(a) ∈ D.

Assignment
Given a Tarski structure I = 〈D, I〉, an assignment σ under I is a mapping
σ : VS → D.
We use ΣI to denote the set consisting of assignments under I .
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Formal semantics–Interpretation of terms

Let I = 〈D, I〉 and σ ∈ ΣI .
Each term t is interpreted to an element I (t)(σ) belonging to D:

If t = x is a variable, then I (t)(σ) = σ(x).
If t = f (t1, . . . , tn) where f is an n-ary function, then
I (t)(σ) = I(f )(I (t1)(σ), . . . ,I (tn)(σ)).

Thus, if t = a is a constant, then I (t)(σ) = I(a).
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Formal semantics–Interpretation of formulas

Each formula ϕ has a truth value I (ϕ)(σ) ∈ {0, 1}:

If ϕ = P(t1, . . . , tn), where P is an n-ary predicate, then
I (ϕ)(σ) = I(P)(I (t1)(σ), . . . ,I (tn)(σ)).
If ϕ = ¬ψ, then I (ϕ)(σ) = 1−I (ψ)(σ).
If ϕ = ψ → η, then

I (ϕ)(σ) =

{
1 if I (ψ)(σ) = 0 or I (η)(σ) = 1,
0 if I (ψ)(σ) = 1 and I (η)(σ) = 0.

If ϕ = ∀xψ, then

I (ϕ)(σ) =

{
1 if I (ψ)(σ[x/d ]) = 1 for each d ∈ D,
0 if I (ψ)(σ[x/d ]) = 0 for some d ∈ D

where σ[x/d ] is a new assignment defined as

σ[x/d ](y) =

{
σ(y) if y 6= x ,
d if y = x .

We write (I , σ) 
 ϕ if I (ϕ)(σ) = 1.
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Theorem of Substitution

Theorem of Substitution
Suppose that t is substitutable for x within ϕ, then

(I , σ) 
 Sx
t ϕ if and only if (I , σ[x/I (t)(σ)]) 
 ϕ.

We say that I is a model of ϕ, denoted as I 
 ϕ, if (I , σ) 
 ϕ for each σ ∈ ΣI .
In particular, we say that I = 〈D, I〉 is a frugal model of ϕ if |D| is not more than the
cardinality of the language.
Recall that ϕ is a sentence, if there is no free variable occurring in ϕ.

Theorem
If ϕ is a sentence, then

I 
 ϕ iff (I , σ) 
 ϕ for some σ ∈ ΣI .
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Satisfiability and validity

Let ϕ,ψ be FOL formulas and Γ be a set of FOL formulas. Then we define:
(I , σ) 
 Γ if for each η ∈ Γ, (I , σ) 
 η;
Γ |= ϕ if for each I and σ ∈ ΣI , (I , σ) 
 Γ implies (I , σ) 
 ϕ;
ϕ and ψ are equivalent if {ϕ} |= ψ and {ψ} |= ϕ;
ϕ is valid if ∅ |= ϕ.

Tautology for FOL
For a formula ϕ ∈ FOL, we construct ϕ′ as follows:

for each sub-formula ψ of ϕ which is either an atomic formula, or a formula of the
form ∀xη, we replace it with a corresponding propositional variable pψ.

If ϕ′ is a tautology in propositional logic, then we say ϕ is a tautology for FOL.
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Prenex Normal Form (PNF)

A formula is in prenex normal form if and only if it is of the form
Q1x1Q2x2 . . .QkxkP(x1, x2, . . . , xk ), where each Qi , i = 1, 2, ... , k is either the existential
quantifier or the universal quantifier, and P(x1, . . . , xk ) is a predicate involving no
quantifiers.
Question: can we transform a formula into an equivalent PNF form?
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Soundness

Similarly to propositional logic, for FOL we have the soundness property:

Theorem
If Γ ` ϕ, then Γ |= ϕ.

Hint.
For proving the theorem, show and make use of the following results:
{∀x(ϕ→ ψ), ∀xϕ} |= ∀xψ;
if x is not free in ϕ, then ` ϕ→ ∀xϕ.

Corollary
If ` ϕ, then |= ϕ.
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Completeness

A Hintikka set Γ is a set of FOL formulas fulfilling the following properties:
1 For each atomic formula ϕ (i.e, ϕ = P(t1, . . . , tn), where n ≥ 0), either ϕ /∈ Γ or
¬ϕ /∈ Γ.

2 ϕ→ ψ ∈ Γ implies that either ¬ϕ ∈ Γ or ψ ∈ Γ.
3 ¬¬ϕ ∈ Γ implies that ϕ ∈ Γ.
4 ¬(ϕ→ ψ) ∈ Γ implies that ϕ ∈ Γ and ¬ψ ∈ Γ.
5 ∀xϕ ∈ Γ implies that Sx

t ϕ ∈ Γ for each t which is substitutable for x within ϕ.
6 ¬∀xϕ ∈ Γ implies that there is some t with C(ϕ, x , t) such that ¬Sx

t ϕ ∈ Γ.
Note: C(ϕ, x , t) iff C(ϕ, x , y) for all y occurring in t.
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Completeness (cont’d)

Lemma

A Hintikka set Γ is consistent, and moreover, for each formula ϕ, either ϕ 6∈ Γ, or ¬ϕ 6∈ Γ.

Theorem
A Hintikka set Γ is satisfiable, i.e, there is some interpretation I and some σ ∈ ΣI such
that (I , σ) 
 ϕ for each ϕ ∈ Γ.
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Completeness (cont’d)

Theorem
If Γ is a set of FOL formulas, then “Γ is consistent” implies that “Γ is satisfiable”.
Particularly, if Γ consists only of sentences, then Γ has a frugal model.

Proof.
Let us enumeratea the formulas as ϕ0, ϕ1, . . . , ϕn, . . ., and subsequently define a series of
formula sets as follows. Let Γ0 = Γ, and

Γi+1 =


Γi ∪ {¬ϕi} if Γi ` ¬ϕi

Γi ∪ {ϕi} if Γi 6` ¬ϕi and ϕi 6= ¬∀xψ
Γi ∪ {ϕi ,¬Sx

aψ} if Γi 6` ¬ϕi , and ϕi = ¬∀xψ

Above, for each formula ∀xψ, we pick and fix the constant a which does not occur in
Γi ∪ {ϕi}. Finally let Γ∗ = lim

i→∞
Γi .

If Γ is consistent, the set Γ∗ is maximal and consistent, and is referred to as the Henkin
set. Thus, a Henkin set is also a Hintikka set.

aWe assume the language to be countable, yet the result can be extended to languages with
arbitrary cardinality.
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Completeness (cont’d)

Theorem
If Γ |= ϕ, then Γ ` ϕ.

Corollary
If |= ϕ, then ` ϕ.

Theorem
Γ is consistent iff each of its finite subset is consistent. Moreover, Γ is satisfiable iff each
of its finite subsets is satisfiable.
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The axiomatization based on the Hilbert’s systems seen in the previous section can be
extended to the case of first order logic with the equality ≈. To do this, two additional
axioms have to be included in the Hilbert’s system:

A≈: x ≈ x ;
A′≈: (x ≈ y)→ (α→ αx

y ), where α is an atomic formula.
The soundness and completeness results can be proved similarly in the extended Hilbert’s
system; note that for the completeness one, a variation of the Tarski structure is
required, namely, the domain considered in the construction modulo the relation ≈. This
allows us so manage correctly the formulas that are equivalent under ≈.
The actual details about the above construction are omitted; the interested reader is
invited to formalize them.
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Overview

34/34


	Syntax of FOL
	The Axiom System: the Hilbert's System
	Semantics of FOL
	A Sound and Complete Axiomatization for FOL without Equality  
	The Axiom System: Soundness
	The Axiom System: Completeness

	A Sound and Complete Axiomatization for FOL with Equality 

