
First Order Logic (FOL) 1

http://lcs.ios.ac.cn/˜znj/DM2017

Naijun Zhan

April 5, 2017

1Special thanks to Profs Hanpin Wang (PKU) and Lijun Zhang (ISCAS) for their courtesy of
the slides on this course.

1/46

Outline

1 Syntax of an algorithm in pseudo-code

2 Examples of algorithms

3 The Growth of Functions

4 Complexity of Algorithms

5 Logic and Computer Science – Logical Revolution

2/46

Algorithm (from wikipedia)

An algorithm is a set of rules that precisely defines a sequence of operations, which
can perform calculation, data processing and automated reasoning tasks.
An algorithm is an effective method that can be expressed within a finite amount of
space and time and in a well-defined formal language for calculating a function.
Starting from an initial state and initial input (perhaps empty), the instructions
describe a computation that, when executed, proceeds through a finite number of
well-defined successive states, eventually producing “output" and terminating at a
final ending state. The transition from one state to the next is not necessarily
deterministic; some algorithms, known as randomized algorithms, incorporate
random input.
History

The concept of algorithm has existed for centuries;
what would become the modern algorithm began with attempts to solve the
Entscheidungsproblem (the "decision problem") posed by David Hilbert in 1928.
Subsequent formalizations were framed as attempts to define “effective calculability"
or “effective method"; those formalizations included the Gödel-Herbrand-Kleene
recursive functions, Alonzo Church’s lambda calculus, Emil Post’s “Formulation 1",
and Alan Turing’s Turing machines.
Giving a formal definition of algorithms, corresponding to the intuitive notion,
remains a challenging problem.

Church-Turing Thesis: any real-world computation can be translated into an
equivalent computation involving a Turing machine.
An algorithm can be considered to be any sequence of operations that can be
simulated by a Turing-complete system. 3/46

Algorithm (Cont’d)

Expressing algorithms: high-level description, implementation-level description and
formal description.
Complexity analysis: Formal versus empirical, execution efficiency.
Classification

By implementation: recursion, logical, serial, parallel, distributed, deterministic vs
nondeterministic, exact vs approximation, quantum
By design paradigm: brute-force or exhaustive search, divide and conquer, search and
enumeration, randomized algorithms.
By optimization problems: linear programming, dynamic programming, integer
programming, semi-definite programming, the greedy method, the heuristic method
By field of study
By complexity: space complexity and time complexity.

4/46

Pseudo-code

Numbers:

Num ::= d | dNum where d ∈ {0, 1, . . . , 9}

Identifiers:

Id ::= aId ′ where a ∈ A
Id ′ ::= λ | aId ′ | NumId ′

Numeric expressions:

Exp ::= Num | Id | Id[Exp] | length(Id) | (Exp) | Exp + Exp
| Exp − Exp | Exp ∗ Exp | Exp/Exp | Id(Exp, . . . ,Exp)

Boolean expressions:

BExp ::= true | false | Exp = Exp | (BExp) | Exp ≤ Exp | Exp < Exp
| Exp ≥ Exp | Exp > Exp | ¬BExp | BExp ∧ BExp | BExp ∨ BExp

Procedure declaration

Pr ::= procedure Id(Id , . . . , Id) P
| procedure Id(Id , . . . , Id) P; return Exp

Programs:

P ::= skip | Id := Exp | Id[Exp] := Exp | P;P
| if BExp then P else P fi | while BExp do P done
| for Id := Exp to Exp do P done | Id(Exp, . . . ,Exp)

5/46

Outline

1 Syntax of an algorithm in pseudo-code

2 Examples of algorithms

3 The Growth of Functions

4 Complexity of Algorithms

5 Logic and Computer Science – Logical Revolution

6/46

Collatz Conjecture

Algorithm 1: Collatz Conjecture
/* The following pseudo-code in PROC terminates when the value of n

becomes to 1. */
/* The input n is a natural number, greater than or equal to 1 */
procedure Collatz(n)
while n 6= 1 do
if even(n) then

n := n/2
else

n := n× 3 + 1
fi

done

Discussion: Does this algorithm terminate?

7/46

Algorithm 2: Maximum in a generic array
/* The following pseudo-code in PROC returns the maximum value

occurring in the provided array. */
procedure max(array)

maxvalue := array[0];
for i := 1 to length(array)− 1 do
if array[i] > maxvalue then

maxvalue := array[i]
else
skip

fi
done;
return maxvalue

8/46

Algorithm 3: Index of a value in an array
/* The following pseudo-code in PROC returns the index of the specified

value if it occurs in the provided array, otherwise length(array) is
returned. */
procedure indexOf(value, array)

index := length(array);
for i := 0 to length(array)− 1 do
if array[i] = value then

index := i
else
skip

fi
done;
return index

9/46

Algorithm 4: Index of a value in a sorted array
/* The following pseudo-code in PROC returns the index of the specified

value if it occurs in the provided sorted array, otherwise
length(array) is returned. */
procedure indexOfSorted(value, array)

index := length(array);
low := 0;
high := length(array)− 1;
while low < high do

middle := (low + high)/2;
if array[middle] < value then

low := middle + 1
else

high := middle
fi

done;
if array[low] = value then

index := low
else
skip

fi;
return index

10/46

Algorithm 5: Swap elements in an array
/* The following pseudo-code in PROC swaps the elements at index i and

j in the provided array. */
procedure swap(array, i, j)

temp := array[i];
array[i] := array[j];
array[j] := temp

11/46

Algorithm 6: Bubble sort
/* The following pseudo-code in PROC sorts the provided array. */
procedure bubbleSort(array)
for i := 0 to length(array)− 1 do
for j := 0 to (length(array)− 1)− i do
if array[j] > array[j + 1] then

swap(array, j, j + 1)
else
skip

fi
done

done

12/46

Algorithm 7: Gnome sort
/* The following pseudo-code in PROC sorts the provided array. */
procedure gnomeSort(array)

i := 0;
while i < length(array) do
if i = 0 ∨ array[i− 1] ≤ array[i] then

i := i + 1
else

swap(array, i, i− 1);
i := i− 1

fi
done

Exercise
Does this algorithm terminate? please justify your judgement.

13/46

Algorithm 8: Insertion sort
/* The following pseudo-code in PROC sorts the provided array. */
procedure insertionSort(array)
for i := 1 to length(array)− 1 do

j := i;
while j > 0 ∧ array[j− 1] > array[j] do

swap(array, j, j− 1);
j := j− 1

done
done

14/46

Greedy Algorithms

Algorithm 9: Change Making
/* The algorithm makes changes c1 > c2 . . . > cr for n cents. */
procedure procedureChange(c1, c2, . . . , cr)
for i := 1 to r do

di := 0;
while n ≥ ci do

di := di + 1;
n := n − ci

done
done

15/46

Decidability

A decision problem is any arbitrary yes-or-no question on an infinite set of inputs.
Because of this, it is traditional to define the decision problem equivalently as: the
set of possible inputs together with the set of inputs for which the problem returns
yes.
The Primality problem: is the instance x a prime number?
The answer (solution) to any decision problem is just one bit (true or false).

A problem Q is decidable iff there is an algorithm A, such that for each instance q of
Q, the computation A(q) stops with an answer.
A problem Q is semi-decidable iff there is an algorithm A, such that for each
instance q of Q, if q holds, then A(q) stops with the positive answer; otherwise,
A(q) either stops with the negative answer, or does not stop.

16/46

The Halting Problem

Halting problem
It takes as input a computer program and input to the program and determines whether
the program will eventually stop when run with this input.

If the program halts, we have our answer.
If it is still running after any fixed length of time has elapsed, we do not know
whether it will never halt or we just did not wait long enough for it to terminate.

Undecidability of the Halting Problem

17/46

Satisfiability Problem and DPLL

The slides are downloadable from
http://www.computational-logic.org/iccl/master/lectures/summer07/sat/slides/dpll.pdf

18/46

Outline

1 Syntax of an algorithm in pseudo-code

2 Examples of algorithms

3 The Growth of Functions

4 Complexity of Algorithms

5 Logic and Computer Science – Logical Revolution

19/46

Let f and g be functions from the set of integers or the set of real numbers to the set of
real numbers. We say that f (x) is O(g(x)) if there are constants C and k such that
|f (x)| ≤ C |g(x)| whenever x > k.

Let f and g be functions from the set of integers or the set of real numbers to the set of
real numbers. We say that f (x) is Ω(g(x)) if there are positive constants C and k such
that |f (x)| ≥ C |g(x)| whenever x > k.
Moreover, We say that f (x) is Θ(g(x)) if f (x) is O(g(x)) and Ω(g(x)).

20/46

Exercise

Show that:
1 Show that log n! is O(nlogn).
2 Show that n2 is not O(n).
3 Suppose that f1(x) is O(g1(x)) and that f2(x) is O(g2(x)). Then (f1 + f2)(x) is

O(max(|g1(x)|, |g2(x)|)).
4 Suppose that f1(x) is O(g1(x)) and f2(x) is O(g2(x)). Then (f1f2)(x) is

O(g1(x)g2(x)).
5 Show that 3x2 + 8xlogx is Θ(x2).
6 Assume an 6= 0. Show that

∑n
i=0 ai x i is Θ(xn).

21/46

Outline

1 Syntax of an algorithm in pseudo-code

2 Examples of algorithms

3 The Growth of Functions

4 Complexity of Algorithms

5 Logic and Computer Science – Logical Revolution

22/46

Space complexity vs time complexity

We are interested in the time complexity of the algorithm.

23/46

P vs NP

A problem that is solvable using an algorithm with polynomial worst-case complexity
is called tractable. Tractable problems are said to belong to class P.
Problems for which a solution can be checked in polynomial time are said to belong
to the class NP.
The P = NP problem asks whether NP, the class of problems for which it is possible
to check solutions in polynomial time, equals P, the class of tractable problems.
NP-complete problems: It is an NP problem and if a polynomial time algorithm for
solving it were known, then P = NP.
The satisfiability problem is NP-complete. Cook-Levin Theorem

A prize of 1, 000, 000 dollars is offered by the Clay Mathematics Institute for its solution.

24/46

Outline

1 Syntax of an algorithm in pseudo-code

2 Examples of algorithms

3 The Growth of Functions

4 Complexity of Algorithms

5 Logic and Computer Science – Logical Revolution

25/46

Hilbert Program

NOTE: The following material is from Moshe Vardi
Hilbert Program (1922-1930): Formalize mathematics and establish that:

Mathematics is consistent:
a mathematical statement and its negation cannot ever both be proved.
Mathematics is complete:
all true mathematical statements can be proved.
Mathematics is decidable: there is a mechanical way to determine whether a given
mathematical statement is true or false.

26/46

The Demise of Hilbert Program

Gödel:
Incompleteness of ordinary arithmetic - There is no systematic way of resolving all
mathematical questions.
Impossibility of proving consistency of mathematics
Gödel (1930): "This sentence is not provable."
Church and Turing (1936): Unsolvability of first-order logic:
The set of valid first-order sentences is not computable.

27/46

Entscheidungsproblem

Entscheidungsproblem (The Decision Problem) [Hilbert-Ackermann, 1928]: Decide if a
given first-order sentence is valid (dually, satisfiable).
Church-Turing Theorem, 1936: The Decision Problem is unsolvable.
Turing, 1936:

Defined computability in terms of Turing machines (TMs)
Proved that the termination problem for TMs is unsolvable ("this machine
terminates iff it does not terminate")
Reduced termination to Entscheidungsproblem.

28/46

Mathematical Logic - 1936

Logic as Foundations of Mathematics:
Incomplete (example: Continuum Hypothesis)
Cannot prove its own consistency
Unsolvable decision problem
Unsolvable termination problem
Can we get some positive results?
Focus on special cases!

29/46

The Fragment-Classification Project

Idea: Identify decidable fragments of first-order logic - (1915-1983)
Monadic Class (monadic predicates)
Bernays-Schönfinkel Class (∃∗∀∗)
Ackermann Class (∃∗∀∃∗)
Gödel Class (∃∗∀∀∃∗)

Outcome: Very weak classes! What good is first-order logic?

30/46

Monadic Logic

Monadic Class: First-order logic with monadic predicates - captures syllogisms.
∀x(Man(x)→ Mortal(x))
Löwenheim, 1915: The Monadic Class is decidable.

Proof: Bounded-model property - if a sentence is satisfiable, it is satisfiable in a
structure of bounded size.
Proof technique: quantifier elimination.

31/46

Logic of Integer Addition

Integer Addition:
Domain: N (natural numbers)
Predicate: =

Addition function: +

y = 2x : y = x + x
x ≤ y : (∃z)(y = x + z)

x = 0 : (∀y)(x ≤ y)

x = 1 : x 6= 0 ∧ (∀y)(y = 0 ∨ x ≤ y)

y = x + 1 : (∃z)(z = 1 ∧ y = x + z)

Bottom Line: Theory of Integer Addition can express Integer Programming (integer
inequalities) and much more.

32/46

Presburger Arithmetics

Mojzesz Presburger, 1929:
Sound and complete axiomatization of integer addition
Decidability: There exists an algorithm that decides whether a given first-order
sentence in integer-addition theory is true or false.

Decidability is shown using quantifier elimination, supplemented by reasoning about
arithmetical congruences.
Decidability can also be shown using automata-theoretic techniques.

Complexity of Presburger Arithmetics
Complexity Bounds:

Oppen, 1978: TIME(22
2poly

) upper bound

Fischer & Rabin, 1974: TIME(22
lin
) lower bound

Rabin, 1974: "Theoretical Impediments to Artificial Intelligence": "the complexity results
point to a need for a careful examination of the goals and methods in AI".

33/46

Finite Words - Nondeterministic Finite Automata

Input word: a0, a1, ..., an−1
Run: s0, s1, ..., sn

s0 ∈ S0

si+1 ∈ ρ(si , ai) for i ≥ 0
Acceptance: sn ∈ F
Recognition: L(A) - words accepted by A.
Fact: NFAs define the class Reg of regular languages.

34/46

Logic of Finite Words

View finite word w = a0, ..., an−1 over alphabet Σ as a mathematical structure:
Domain: 0, ..., n − 1
Dyadic predicate: ≤
Monadic predicates: {Pa : a ∈ Σ}

Monadic Second-Order Logic (MSO):
Monadic atomic formulas: Pa(x) (a ∈ Σ)
Dyadic atomic formulas: x < y
Set quantifiers: ∃P, ∀P
Example: (∃x)((∀y)(¬(x < y)) ∧ Pa(x)) - last letter is a.

35/46

Automata and Logic

[Büchi, Elgot, Trakhtenbrot, 1957-8 (independently)]: MSO ≡ NFA
Both MSO and NFA define the class Reg.
Proof: Effective

From NFA to MSO (A→ ϕA)
From MSO to NFA (ϕ→ Aϕ)

36/46

NFA Nonemptiness

Nonemptiness: L(A) = ∅
Nonemptiness Problem: Decide if given A is nonempty.
Directed Graph GA = (S,E) of NFA A = (Σ, S, S0, ρ,F):

Nodes: S
Edges: E = {(s, t) : t ∈ ρ(s, a) for some a ∈ Σ}

It holds: A is nonempty iff there is a path in GA from S0 to F .
Decidable in time linear in size of A, using breadth-first search or depth-first search.

37/46

MSO Satisfiability - Finite Words

Satisfiability: models(ψ) = ∅
Satisfiability Problem: Decide if given ψ is satisfiable.
It holds: ψ is satisfiable iff Aψ is nonnempty.
It holds: MSO satisfiability is decidable.

Translate ψ to Aψ.
Check nonemptiness of Aψ .

38/46

Complexity Barrier

Computational Complexity:
Naive Upper Bound: Nonelementary Growth 2 to the power of the tower of height
O(n)

Lower Bound [Stockmeyer, 1974]: Satisfiability of FO over finite words is
nonelementary (no bounded-height tower).

39/46

Program Verification

The Dream - Hoare, 1969: "When the correctness of a program, its compiler, and
the hardware of the computer have all been established with mathematical certainty,
it will be possible to place great reliance on the results of the program."
The Nightmare - De Millo, Lipton, and Perlis, 1979: "We believe that . . . program
verification is bound to fail. We cannot see how it is going to be able to affect
anyone’s confidence about programs."
“. . . software verification . . . has been the Holy Grail of computer science for many
decades but not in some very key areas, for example, driver verification we are
building tools that can do actual proof about the software and how it works in order
to guarantee the reliability." (Bill Gates, keynote address at Winhec 2002)
Hoare has pose a grand challenge: “The verification challenge is to achieve a
significant body of verified programs that have precise external specifications,
complete internal specifications, machine-checked proofs of correctness with respect
to a sound theory of programming."
NICTA seL4 using Isabelle/HOL, INRIA CompCert using Coq

40/46

The Hoare Triple {ϕ}P{ψ}

Logic in Computer Science: c. 1980
Status: Logic in CS is not too useful!

First-order logic is undecidable.
The decidable fragments are either too weak or too intractable.
Even Boolean logic is intractable.
Program verification is hopeless.

Post 1980: From Irrelevance to Relevance
A Logical Revolution:

Relational databases
Boolean reasoning
Model checking
Termination checking
...

41/46

The Temporal Logic of Programs

Crux: Need to specify ongoing behavior rather than input/output relation! "Temporal
logic to the rescue" [Pnueli, 1977]:

Linear temporal logic (LTL) as a logic for the specification of non-terminating
programs
Model checking via reduction to MSO
But: nonelementary complexity!

In 1996, Pnueli received the Turing Award for seminal work introducing temporal logic
into computing science and for outstanding contributions to program and systems
verification.

Examples
always not (CS1 and CS2): safety
always (Request implies eventually Grant): liveness
always (Request implies (Request until Grant)): liveness

42/46

Model Checking

"Algorithmic verification" [Clarke & Emerson, 1981, Queille & Sifakis, 1982]: Model
checking programs of size m wrt CTL formulas of size n can be done in time mn.
Linear-Time Response [Lichtenstein & Pnueli, 1985]: Model checking programs of size m
wrt LTL formulas of size n can be done in time m2O(n) (tableau heuristics).
Seemingly:

Automata: non-elementary
Tableaux: exponential

43/46

Back to Automata

Exponential-Compilation Theorem [Vardi & Wolper, 1983-1986]: Given an LTL formula
ϕ of size n, one can construct an automaton Aϕ of size 2O(n) such that a trace σ satisfies
ϕ if and only if σ is accepted by Aϕ. Automata-Theoretic Algorithms:

LTL Satisfiability: ϕ is satisfiable iff L(Aϕ) = ∅ (PSPACE)
LTL Model Checking: M |= ϕ iff L(M × A¬ϕ) = ∅ (m2O(n))

Today: Widespread industrial usage
Industrial Languages: PSL, SVA (IEEE standards)

44/46

Solving the Unsolvable

B. Cook, A. Podelski, and A. Rybalchenko, 2011:"in contrast to popular belief, proving
termination is not always impossible"

The Terminator tool can prove termination or divergence of many Microsoft
programs.
Tool is not guaranteed to terminate! Explanation:
Most real-life programs, if they terminate, do so for rather simple reasons.
Programmers almost never conceive of very deep and sophisticated reasons for
termination.

45/46

Logic: from failure to success

Key Lessons:
Algorithms
Heuristics
Experimentation
Tools and systems

Key Insight: Do not be scared of worst-case complexity.
It barks, but it does not necessarily bite!

46/46

	Syntax of an algorithm in pseudo-code
	Examples of algorithms
	The Growth of Functions
	Complexity of Algorithms
	Logic and Computer Science � Logical Revolution

