Exercise sheet 3 on Discrete Mathematics

Naijun Zhan

Yangjia Li

http://lcs.ios.ac.cn/~znj/DM2016

Let A be a finite alphabet, such as the English alphabet, and consider the following simple programming language **WHILE** whose well-formed programs are those obtained by applying the rules of the following grammar:

Numbers:

 $Num ::= d \mid dNum \qquad \text{where } d \in \{0, 1, \dots, 9\}$

Identifiers:

$$Id ::= aId' \qquad \text{where } a \in A$$
$$Id' ::= \lambda \mid aId' \mid NumId'$$

Numeric expressions:

$$Exp ::= Num \mid Id$$
$$\mid Exp + Exp \mid Exp - Exp \mid Exp * Exp \mid Exp / Exp$$

Boolean expressions:

 $BExp ::= \mathbf{true} \mid \mathbf{false} \mid Exp = Exp$ $\mid \neg BExp \mid BExp \land BExp \mid BExp \lor BExp$

Programs:

$$P ::= \mathbf{skip} \mid Id := Exp \mid P; P$$
$$\mid \mathbf{if} \; BExp \; \mathbf{then} \; P \; \mathbf{else} \; P \; \mathbf{fi}$$
$$\mid \mathbf{while} \; BExp \; \mathbf{do} \; P \; \mathbf{done}$$

Exercise 3.1. Show, by providing the appropriate functions, that the set of identifiers has the same cardinality as \mathbb{N} .

Exercise 3.2. Show that the set of all well-formed WHILE programs is countable.

Exercise 3.3. Show the following statements:

- 1. If A is an uncountable set and B is a countable set, then $|A \setminus B| = |A|$.
- 2. Let \mathbb{I} be the set of irrational numbers, i.e., $\mathbb{I} = \{ r \in \mathbb{R} \mid r \notin \mathbb{Q} \}$. Then $|\{0,1\}^{\omega} \setminus \{0,1\}^* 0^{\omega}| = |\mathbb{I} \cap [0,1]|$.
- 3. $|\{0,1\}^{\omega}| = |[0,1]|.$
- 4. $|[0,1]| = |[0,1] \times [0,1]| = |[0,1]^n|$ for each $n \ge 1$.

Exercise 3.4. Consider the semantic bracket operator presented in Definition 2.1.6 of the lecture notes. Show that $\models \varphi \rightarrow \psi$ iff $\llbracket \varphi \rrbracket \subseteq \llbracket \psi \rrbracket$.

Exercise 3.5. Let $\mathfrak{Q}_1 \subseteq FOL$ be the set of FOL formulas φ such that each quantifier operator $Qx \pmod{Q \in \{\forall, \exists\}}$ and $x \in VS$ appears at most once in φ .

Provide a function Scope, including its type, such that, given a quantifier operator Qx (with $Q \in \{\forall, \exists\}$ and $x \in VS$) and a formula $\varphi \in \mathfrak{Q}_1$, it returns the formula corresponding to the scope of Qx.

Exercise 3.6. Given $\varphi, \psi, \eta \in FOL$,

- 1. provide a function #, including its type, that returns how many times ψ occurs in φ as sub-formula;
- 2. provide a function R_{∞} , including its type, that replaces each occurrence of φ in η with ψ ;
- 3. provide a function R_1 , including its type, that replaces exactly one occurrence of φ in η with ψ if φ occurs in η , and that returns η if φ does not occur in η . If φ occurs in η multiple times, then there is no requirement on the particular instance to be replaced.

Exercise 3.7. Prove the following:

- 1. For any predicate P with arity 2, $\forall x \forall y P(x, y) \vdash \forall y \forall z P(y, z)$.
- 2. Assume x is not free in φ , then $\varphi \to \forall x \psi$ and $\forall x (\varphi \to \psi)$ are syntactically equivalent.
- 3. We say a formula φ has repeated occurrences of a bound variable x, if Qx appears more than once in the sub-formulas of φ (recall $Q \in \{\forall, \exists\}$). Prove that there exists a formula φ' which has no repeated occurrences of any bound variable such that φ and φ' are syntactically equivalent.

Exercise 3.8. Prove the following:

- $Q1. \ \neg \forall x \varphi \vdash \dashv \exists x \neg \varphi; \ and \ \neg \exists x \varphi \vdash \dashv \forall x \neg \varphi.$
- Q2. $\forall x \varphi \land \psi \vdash \exists \forall x (\varphi \land \psi, if x \text{ does not occur in } \psi.$
- *Q3.* $\exists x \varphi \lor \exists x \psi \vdash \exists x (\varphi \lor \psi).$

Exercise 3.9. Let S be a binary predicate symbol, P and Q unary predicate symbols. Prove the following:

- $Q1 \ \exists x \exists y (S(x,y) \lor S(y,x)) \vdash \exists x \exists y S(x,y).$
- $Q2 \ \forall x \forall y \forall z (S(x,y) \land S(y,z) \rightarrow S(x,z)), \ \forall x \neg S(x,x) \vdash \forall x \forall y (S(x,y) \rightarrow \neg S(y,x)).$
- $Q3 \ \exists x \exists y (S(x,y) \lor S(y,x)), \ \neg \exists x S(x,x) \vdash \exists x \exists y (x \neq y).$
- $Q_4 \quad \forall x(P(x) \lor Q(x)) \vdash \forall xP(x) \lor \forall Q(x) \text{ is not provable.}$

Exercise 3.10. Prove Lemma 3.4.3: a Hintikka set Γ is consistent, and moreover, for each formula φ , either $\varphi \notin \Gamma$, or $\neg \varphi \notin \Gamma$.

Exercise 3.11. Given a formula φ , let $\mathfrak{H}(\varphi)$ be the set of Hintikka sets containing φ , that is, $\mathfrak{H}(\varphi) = \{ \Gamma \subseteq FOF \mid \varphi \in \Gamma \text{ and } \Gamma \text{ is a Hintikka set} \}$. We say that $\Gamma \in \mathfrak{H}(\varphi)$ is minimal if, for each $\Gamma' \in \mathfrak{H}(\varphi)$, it holds that $\Gamma' \subseteq \Gamma$ implies $\Gamma' = \Gamma$; we denote by $\mathfrak{m}(\varphi)$ the set of minimal Hintikka sets in $\mathfrak{H}(\varphi)$, that is, $\mathfrak{m}(\varphi) = \{ \Gamma \in \mathfrak{H}(\varphi) \mid \Gamma \text{ is minimal} \}$.

1. Provide a minimal Hintikka set $\Gamma_{\varphi} \in \mathfrak{m}(\varphi)$ for the formula

$$\varphi = \forall x \forall y (\neg (x \approx y) \to (R(x, y) \to \neg R(y, x)))$$

under the assumption that $VS = \{x, y\}$, $FS = CS = \{a, b\}$, $PS = \{R\}$, and $ES = \{\approx\}$.

- 2. Prove that $\mathfrak{H}(\varphi) \cap \mathfrak{H}(\neg \varphi) = \emptyset$ for each $\varphi \in FOF$.
- Let PL ⊆ FOF be the set of FOL formulas in which each predicate appears at most once and in which no quantifier Q ∈ {∀,∃} occurs. Define a function c: PL → N such that, for each φ ∈ PL, returns the number of different minimal Hintikka sets containing φ.