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Abstract— Stochastic discrete-time systems, i.e., discrete-time
dynamic systems subject to stochastic disturbances, are an
essential modelling tool for many engineering systems, and
reach-avoid analysis is able to guarantee safety (i.e., via avoiding
unsafe sets) and performance (i.e., via reaching target sets). In
this paper we study the infinite time reach-avoid problem of
stochastic discrete-time systems. The stochastic discrete-time
system of interest is modeled by iterated polynomial maps
with stochastic disturbances, and the problem addressed is to
effectively compute an inner approximation of its p-reach-avoid
set. The p-reach-avoid set collects those initial states that give
rise to a bundle of trajectories which with probability at least p
eventually hits a designated set of target states while remaining
inside a set of safe states before the first hit. The computation
of the p-reach-avoid set is first reduced to the computation of a
corresponding p-super-level set and is then inner-approximated
by solving a semi-definite programming problem obtained from
a relaxation of the definition of the super-level set. Two examples
demonstrate the proposed approach.

I. INTRODUCTION

Since the development of digital computers, the discrete-
time perspective on system dynamics plays an important
role in the control theory [12]. Discrete time differs from
a continuous time view in that the signals take the form of
sequences of samples. Such discrete-time systems arise as the
result of sampling from a continuous-time system or when
only discrete data are available [13]. Due to the inherent
noise in sensors and other measurement errors, as well as
due to partly unknown dynamics of the system, uncertainties
in the samples and signals arise, which can conveniently
be modelled in a probabilistic way using random variables
and stochastic processes. This leads to discrete-time systems
with stochastic disturbances (i.e., stochastic discrete-time
systems). Stochastic discrete-time systems have obtained
considerable attention among both control and computer
scientists due to their capabilities for modeling real-life
systems.

Dynamic properties of interest, generally posed as system
verification obligations, are the stability of an equilibrium,
the invariance of a set, or controllability and observability
[7]. This system verification perspective has recently been
broadened, using formal methods [2], towards checking
richer specifications of temporal behavior. An important
instance is reach-avoid properties covering both safety (i.e.,
via avoiding unsafe sets) and performance (i.e., via reaching
target sets). Such reach-avoid analysis has been applied in
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several domains such as motion planning in robotics [10],
spacecraft docking [8] and autonomous surveillance [5]. In
its qualitative form, it induces the problem of computing the
maximal set of initial states such that the system starting
from them is guaranteed to (eventually or within a given
time horizon) reach a target set while avoiding an unsafe set
till the target hit.

The verification of stochastic discrete-time systems, in
contrast, induces a more complex quantitative reach-avoid
analysis problem. Given an acceptance threshold in form of
a probability p, it calls for assuring probabilistic success of
the reach-avoid objective with at least the desired likelihood
p, i.e., accepts initial states from which the probability
of (eventually or within a given duration) reaching the
target while avoiding the unsafe set exceeds p. Established
methods for computationally solving this problem rely on
dynamic programming [1], [14] and thus are computationally
intractable for even moderately sized systems due to the
gridding of both the state and disturbance spaces that is
necessary to obtain a finite dynamic program. Recent work
has focused on alternatives to dynamic programming, includ-
ing approximate dynamic programming [6], semi-definite
programs [3], and Lagrangian techniques [4]. These works
are generally confined to reach-avoid problems of stochastic
discrete-time systems over finite time horizons, however.

This paper studies the infinite-time reach-avoid problem of
polynomial stochastic discrete-time dynamical systems and
resolves it computationally within the framework of semi-
definite programming. The reach-avoid problem of interest
in this paper is to inner-approximate the p-reach-avoid set,
which is the maximal set of initial states that each gives
rise to a set of trajectories which, with a probability being
larger than p, hit the target set in finite time while remaining
inside the safe set beforehand. In our approach, a bounded
value function whose p super-level set equals the p-reach-
avoid set of interest is first constructed. The description
of the super-level set then is reduced to a solution of a
system of equations. Finally, via relaxing the equations to a
system of inequalities and encoding the resulting inequalities
into semi-definite constraints based on the sum-of-squares
decomposition for multivariate polynomials, a semi-definite
program is derived whose solutions approximate the p-reach-
avoid set safely from the inner, i.e., represent a reliable subset
of the proper initial states. Two examples demonstrate the
proposed method.

The contributions of this paper thus are twofold:
1) We investigate the infinite time reach-avoid problem of

stochastic discrete-time systems modeled by iterative
polynomial maps subject to stochastic disturbances.



Their p-reach-avoid are reduced to the p super-level
set of a solution to a system of equations, which is an
extension of our previous work [16] to a quantitative-
verification setting: [16] in contrast studied the qualita-
tive reach-avoid analysis for discrete-time polynomial
systems free of disturbances.

2) A reduction to a semi-definite program is proposed
to inner-approximate the above super-level set. The
resultant semi-definite program falls within the convex-
programming category and can be solved efficiently
via interior point methods in polynomial time. Thus,
the proposed method reduces an overall non-convex
problem of computing p-reach-avoid sets to a problem
of solving a single convex program.

This paper is structured as follows. In Section II we intro-
duce the systems and the p-reach-avoid problem of interest.
After elaborating the reduction to semi-definite programming
problems in Section III, we demonstrate it on two examples.
Section V provides conclusions.

II. PRELIMINARIES

We start our exposition by a formal introduction of
discrete-time systems subject to stochastic disturbances and
the corresponding p-reach-avoid sets of interest. Before pos-
ing the problem studied, let us introduce some basic notions
used throughout this paper: N denotes the set of nonnegative
integers. For a set ∆, ∆c and ∂∆ denote the complement and
the boundary of the set ∆, respectively. R[·] denotes the ring
of polynomials in variables given by the argument. Vectors
are denoted by boldface letters.

∑
[x] is used to represent

the set of sum-of-squares polynomials over variables x, i.e.,

∑
[x] = {q′ ∈ R[x] | q′ =

k′∑
i=1

q2
i , qi ∈ R[x], i = 1, . . . , k′}.

In this paper we restrict our attention to the class of
discrete-time systems subject to stochastic disturbances that
can be modeled by iterative probabilistic polynomial maps
of the following form:

x(l + 1) = f(x(l),θ(l)),∀l ∈ N,
x(0) = x0 ∈ X ,

(1)

where x(·) : N→ Rn are states, and θ(·) : N→ Θ with Θ ⊆
Rm are stochastic disturbances. In addition, suppose that the
random vectors, θ(0),θ(1), . . ., are independent identically
distributed (i.i.d) and take values in Θ with the following
probability distribution,

Prob(θ(l) ∈ B) = P(B),∀l ∈ N, B ⊆ Θ.

E[·] is the expectation induced by the probability distribution
P. Also, we assume that f(x,θ) is polynomial over x ∈ Rn,
and is measurable over θ ∈ Θ.

Let Θ × Θ = Θ2. Then, the twofold composition of the
stochastic dynamical system, denoted by f2 : Rn × Θ2 →
Rn, is given by

x(l + 2) = f(f(x(l),θ(l)),θ(l + 1)) := f2(x(l),θl+1
l ),

where θl+1
l ∈ Θ2. Since the sequence of random vectors

{θ(l)} is assumed i.i.d, the probability measure on Θ2 will
simply be the product measure, i.e., P× P := P2. Similarly,
the l-times composition, f l : Rn ×Θl → Rn, is denoted by
x(l + 1) = f l(x(0),θl0), where θl0 ∈ Θl with probability
measure Pl.

Before defining the trajectory of system (1), we define a
disturbance policy controlling it.

Definition 1: A disturbance policy π is an ordered se-
quence {θ(i), i ∈ N}, where θ(·) : N→ Θ.

Given the system (1), a policy π = {θ(i), i ∈ N} is a
stochastic process defined on the canonical sample space
Ω = Θ∞, endowed with its product topology B(Ω), with
probability measure P∞. The probability measure P∞ is
induced by the probability measure P, and its associated
expectation is denoted by E∞.

A disturbance policy π together with an initial state x0 ∈
Rn induces a unique discrete-time trajectory as follows.

Definition 2: Given a disturbance policy π ∈ Ω and an
initial state x0 ∈ Rn, a trajectory of the system (1) is denoted
as φx0

π (·) : N→ Rn with φx0
π (0) = x0, i.e.,

φx0
π (l + 1) = f(φx0

π (l),θ(l)),∀l ∈ N.
Now, we define the p-reach-avoid set such that the sys-

tem (1) starting from it will touch the target set T while
remaining inside the safe set X till the hit, where

X = {x ∈ Rn | h(x) < 0} and T = {x ∈ Rn | g(x) ≤ 1}

with h(x), g(x) ∈ R[x] and T ⊆ X .
Definition 3: The p-reach-avoid set RAp is the set of

initial states such that the trajectories of (1) originating from
it will, with a probability being larger than p ∈ [0, 1),
eventually enter the target set T while remaining inside the
safe set X until the hit, i.e.,

RAp =

x0 ∈ X

∣∣∣∣∣∣
P∞
(
∃k ∈ N.φx0

π (k) ∈ T ∧

∀l ∈ [0, k] ∩ N.φx0
π (l) ∈ X

)
> p

 .

An inner-approximation is a subset of the set RAp.
Remark 1: The 0-reach-avoid set RA0 is the set of initial

states such that every trajectory of the system (1) originating
from it will enter the target set T in finite time while
remaining inside the safe state set X preceding the target
hitting time with a probability being larger than 0. That is,
there exists a non-empty set of disturbance policies π ∈ Π
such that the system (1) originating from RA0 will enter
the target set T in finite time while remaining inside the
safe state set X preceding the target hitting time. If the
disturbance policy is replaced by the control policy, the set
RA0 is an inner-approximation of a controllable reach-avoid
set. This inner-approximation, however, requires a positive
measure of the control set.

III. INNER-APPROXIMATING REACH-AVOID SETS

In this section we elucidate our semi-definite programming
method for inner-approximating the p-reach-avoid set RAp.



The semi-definite program originates from a system of equa-
tions, which is obtained based on a bounded value function
whose p super level set equals the p-reach-avoid set RAp.

Similar to [16], we define a switched system, whose
trajectories play a fundamental role in defining the bounded
value function, for obtaining the bounded value function
aforementioned whose p super-level set is equal to the p-
reach-avoid set RAp.

Definition 4: The switched discrete-time stochastic sys-
tem (or, SDSS), which is built upon the system (1), is a
quintuple (L̂, X̂ ,x0, f̂) with the following components:

- L̂ = {1, 2, 3} is a set of three locations;
- X̂ ⊆ Rn is the state constraint set;
- x0 ∈ X̂ is the initial state;
- f̂ = {f̂i(x,θ), i = 1, 2, 3}, where the evolution of the

state at location i = 1 is governed by the system

x(l + 1) = f̂i(x(l),θ(l))

with f̂i(x,θ) = f(x,θ) : X̂i × Θ → Rn, and the
evolution of the state at location i ∈ {2, 3} is governed
by the system

x(l + 1) = f̂i(x(l),θ(l))

with f̂i(x,θ) = x,∀θ ∈ Θ,

where
1) X̂ = {x ∈ Rn | h0(x) ≤ 0} is a set satisfying Ω̂ ⊂ X̂ ,

where h0(x) ∈ R[x] and

Ω̂ = {x ∈ Rn | x = f(x0,θ),x0 ∈ X ,θ ∈ Θ} ∪ X ;

2) X̂1 = X \ T = {x ∈ Rn | h(x) < 0 ∧ 1− g(x) < 0};
3) X̂2 = T = {x ∈ Rn | 1− g(x) ≤ 0};
4) X̂3 = X̂ \ X = {x ∈ Rn | h(x) ≥ 0 ∧ h0(x) ≤ 0}.
The trajectory of system SDSS, induced by initial state

x0 ∈ X̂ and disturbance policy π ∈ Ω, is denoted by ψx0
π (·) :

[0,∞)→ Rn. The set X̂ is invariant for system SDSS, that
is, trajectories of system SDSS originating from the set X̂
will never leave it.

Corollary 1: If x0 ∈ X̂ and π ∈ Ω,

ψx0
π (l) ∈ X̂

for l ∈ N and π ∈ Ω.
Proof: Since the sets X̂2 and X̂3 are positively invariant

for system SDSS, and trajectories originating from the set
X \ T will hit either the set X̂2 or the set X̂3 if they would
leave the set X \ T , it is easy to obtain the conclusion.

Clearly, the p-reach-avoid set RAp is equal to the set of
initial states enabling the system SDSS to hit the target set T
in finite time with a probability of at least p. Given x ∈ X̂ ,
let txT (π) be the hitting time of the target set T for the
trajectory ψxπ (·) : [0,∞)→ Rn, i.e.,

txT (π) = inf{k ∈ N | ψxπ (k) ∈ T }.

The p-reach-avoid set is the set of initial states rendering
the hitting time txT less than ∞ with a probability of at least
p. This is formally stated in Lemma 1.

Lemma 1: RAp = {x ∈ X | P∞(txT (π) < ∞) > p},
where RAp is the p-reach-avoid set.

Proof: We just need to show that

RAp \ T = {x ∈ X | P∞(txT (π) <∞) > p} \ T ,

since x ∈ T implies φxπ(0) = ψxπ (0) ∈ T and thus

P∞(txT (π) <∞)

= P∞(∃k ∈ N.φxπ(k) ∈ T
∧
∀l ∈ [0, k] ∩ N.φxπ(l) ∈ X )

= 1 > p.
(2)

Let x0 ∈ RAp \ T . According to Definition 3, we have
that P∞(A) > p, where

A =

{
π ∈ Ω

∣∣∣∣∣ ∃k ∈ N.φx0
π (k) ∈ T

∧
∀l ∈ [0, k] ∩ N.φx0

π (l) ∈ X

}
.

Let B = {π ∈ Ω | tx0

T (π) <∞}.
Let π ∈ A and

t̂x0

T (π) = inf{k ∈ N | φx0
π (k) ∈ T

∧
∀l ∈ [0, k]∩N.φx0

π (l) ∈ X}.

Obviously, tx0

T (π) <∞. We next show tx0

T (π) = t̂x0

T (π).
Since

φx0
π (l) ∈ X \ T ,∀l ∈ [0, t̂x0

T (π)) ∩ N

holds, according to Definition 4 we have that

ψx0
π (l) = φx0

π (l) ∈ X \ T ,∀l ∈ [0, t̂x0

T (π)) ∩ N.

Thus, t̂x0

T (π) ≤ tx0

T (π).
On the other hand,

ψx0
π (l) ∈ X \ T ,∀l ∈ [0, tx0

T (π)) ∩ N.

According to Definition 4 we have that

φx0
π (l) = ψx0

π (l) ∈ X \ T ,∀l ∈ [0, tx0

T (π)) ∩ N.

Thus, tx0

T (π) ≤ t̂x0

T (π).
Therefore, t̂x0

T (π) = tx0

T (π) <∞ and thus

π ∈ B.

Consequently, we have A ⊆ B, implying that

P∞(B) > p

and thus

RAp \ T ⊆ {x ∈ X | P∞(txT (π) <∞) > p} \ T .

Let x0 ∈ {x ∈ X | P∞(t̂xT (π) <∞) > p}\T and π ∈ B.
Therefore,

ψx0
π (l) ∈ X \ T ,∀l ∈ [0, tx0

T (π)) ∩ N.

Similar to the above proof, we obtain

t̂x0

T (π) = tx0

T (π).

Thus, B ⊆ A, implying that P∞(A) > p and thus

{x ∈ X | P∞(txT (w) <∞) > p} \ T ⊆ RAp \ T .



Thus, RAp = {x ∈ X | P∞(txT (π) <∞) > p} holds.
Now we define the value function V (x) : X̂ → R, whose

p super level set, i.e., {x ∈ X | V (x) > p}, is equal to the
p-reach-avoid set RAp.

V (x) := lim inf
k→∞

E∞[
∑k
i=0 1T (ψxπ (i))]

k + 1
, (3)

where 1T (x) is the indicator function of the set T , i.e.,
1T (x) = 1 if x ∈ T ; Otherwise, 1T (x) = 0.

Lemma 2: RAp = {x ∈ X | V (x) > p}, where V (·) :

X̂ → [0, 1] is the value function in (3).
Proof: According to Lemma 1, we just need to prove

that
V (x) = P∞(txT (π) <∞).

For k ∈ N, we have

E∞[
∑k
i=0 1T (ψxπ (i))]

k + 1
=

∑k
i=0 P∞(ψxπ (i) ∈ T )

k + 1
.

Therefore,

V (x) = lim
k→∞

inf

∑k
i=0 P∞(ψxπ(i) ∈ T )

k + 1
.

According to Lemma 3, which is shown below, we have that

lim
k→∞

P∞(ψxπ (k) ∈ T ) = P∞(txT (π) <∞).

As a consequence, V (x) = P∞(txT (π) <∞) and thus

RAp = {x ∈ X | V (x) > p}

according to Lemma 1.
Lemma 3: If x ∈ X , then

lim
l→∞

P∞(ψxπ (l) ∈ T ) = P∞(txT (π) <∞).

Proof: We first prove that

P∞(ψx0
π (l) ∈ T ) = P∞(tx0

T (π) ≤ l)

with l ∈ N.
Let

Ak = {π ∈ Ω | ψx0
π (k) ∈ T }

and
Bk = {π ∈ Ω | tx0

T (π) ≤ k}.

If Ak = Bk,
P∞(Ak) = P∞(Bk)

holds. We just need to prove that Ak = Bk.
Obviously, if π ∈ Ak, we have that

ψx0
π (k) ∈ T

and
ψx0
π (l) ∈ X ,∀l ∈ [0, k] ∩ N.

Thus, tx0

T (π) ≤ k, implying that π ∈ Bk. Consequently,
Ak ⊆ Bk.

If π ∈ Bk, tx0

T (π) ≤ k and thus

ψx0
π (k) ∈ T .

Therefore, π ∈ Ak and thus Bk ⊆ Ak.

Consequently, Ak = Bk and thus

P∞(Ak) = P∞(Bk).

Also, since
Ak2 ⊆ Ak1

and
Bk2 ⊆ Bk1

for 0 ≤ k2 ≤ k1, according to the Monotone Convergence
Theorem for measurable sets we have

lim
l→∞

P∞(ψx0
π (l) ∈ T ) = P∞(tx0

T (π) <∞).

The proof is completed.
According to Lemma 2 we conclude that the exact p-reach-

avoid set RAp can be obtained if the bounded value function
V (x) in (3) is computed. In the following we show that the
bounded value function V (x) in (3) could be the unique
bounded solution to a system of equations.

Theorem 1: If there exist bounded functions v(x) : X̂ →
R and w(x) : X̂ → R such that for x ∈ X̂ ,∫

Θ

v(f̂(x,θ))dP(θ)− v(x) = 0, (4)

v(x) = 1T (x) +

∫
Θ

w(f̂(x,θ))dP(θ)− w(x), (5)

then v(x) = V (x) for x ∈ X and thus RAp = {x ∈ X |
v(x) > p}, where V (·) : X̂ → [0, 1] is the function (3).

Proof: From (4), we have that

v(x0) = E∞[v(ψx0
π (i))],∀i ∈ N. (6)

From (5) we have that for i ∈ N,

v(ψx0
π (i)) =1T (ψx0

π (i))

+

∫
Θ

w(f̂(ψx0
π (i),θ))dP(θ)− w(ψx0

π (i)).

Thus, we can obtain that

E∞[v(ψx0
π (i))] = E∞[1T (ψx0

π (i))]

+ E∞[

∫
Θ

w(f̂(ψx0
π (i),θ))dP(θ)]− E∞[w(ψx0

π (i))]

and further
E∞[v(ψx0

π (i))] = E∞[1T (ψx0
π (i))]

+ E∞[w(ψx0
π (i+ 1))]− E∞[w(ψx0

π (i))]

which implies that
l∑
i=0

E∞[v(ψx0
π (i))] =

l∑
i=0

E∞[1T (ψx0
π (i))]

+

l∑
i=0

(
E∞[w(ψx0

π (i+ 1))]− E∞[w(ψx0
π (i))]

)
.

Combining (6), we have that for l ∈ N,

v(x0) =

∑l
i=0E

∞[1T (ψx0
π (i))]

l + 1

+
E∞[w(ψx0

π (l + 1))]− w(x0)

l + 1



and thus v(x0) = liml→∞
E∞[

∑l
i=0 1T (ψx0

π (i))]

l+1 = V (x0).
As an immediate consequence, we have that

RAp = {x ∈ X | v(x) > p}

from Lemma 2.
Theorem 1 tells that the p-reach-avoid set RAp could be

computed by solving the system of equations (4) and (5).
However, it is challenging, even impossible for solving them.
In order to circumvent the challenge of solving them directly,
in the following we show that an inner-approximation of
the set RAp could be obtained by solving a system of
inequalities, which is generated via relaxing the equations
(4) and (5).

Corollary 2: If there exist bounded functions v(x) : X̂ →
R and u(x) : X̂ → R such that for x ∈ X̂ ,∫

Θ

v(f̂(x,θ))dP(θ)− v(x) ≥ 0, (7)

v(x) ≤ 1T (x) +

∫
Θ

w(f̂(x,θ))dP(θ)− w(x), (8)

then {x ∈ X | v(x) > p} ⊆ RAp is an inner-approximation
of the p-reach-avoid set RAp.

Proof: From (7), we have that

v(x0) ≤ E∞[v(ψx0
π (i))],∀i ∈ N. (9)

From (8) we have that for i ∈ N,

v(ψx0
π (i)) ≤1T (ψx0

π (i))

+

∫
Θ

w(f̂(ψx0
π (i),θ))dP(θ)− w(ψx0

π (i)).

Thus,

E∞[v(ψx0
π (i))] ≤ E∞[1T (ψx0

π (i))]

+ E∞[

∫
Θ

w(f̂(ψx0
π (i),θ))dP(θ)]− E∞[w(ψx0

π (i))]

and further

E∞[v(ψx0
π (i))] ≤ E∞[1T (ψx0

π (i))]

+ E∞[w(ψx0
π (i+ 1))]− E∞[w(ψx0

π (i))],

which implies that

l∑
i=0

E∞[v(ψx0
π (i))] ≤

l∑
i=0

E∞[1T (ψx0
π (i))]

+ E∞[

l∑
i=0

w(ψx0
π (i+ 1))]− E∞[

l∑
i=0

w(ψx0
π (i))],

Combining (9), we have that for l ∈ N,

v(x0) ≤
∑l
i=0E

∞[1T (ψx0
π (i))]

l + 1

+
E∞[w(ψx0

π (l + 1))]− w(x0)

l + 1
,

and thus v(x0) ≤ liml→∞

∑l
i=0 E

∞[1T (ψx0
π (i))]

l = V (x0).
Thus, we have that

{x ∈ X | v(x) > p} ⊆ RAp.

The proof is completed.
Corollary 2 uncovers that an inner-approximation of the p-

reach-avoid set RAp comes with one solution v(x) : X̂ → R
to the system of inequalities (7) and (8). Constraints (7) and
(8) can be equivalently reformulated below:

[

∫
Θ

v(f̂1(x,θ))dP(θ)− v(x) ≥ 0,∀x ∈ X̂1]∧

3∧
i=1

[−v(x) + 1T (x) + w′(x) ≥ 0,∀x ∈ X̂i],
(10)

with w′(x) =
∫

Θ
w(f̂(x,θ))dP(θ) − w(x), which can be

further reduced to∫
Θ

v(f(x,θ))dP(θ)− v(x) ≥ 0,∀x ∈ X \ T ,

− v(x) +

∫
Θ

w(f(x,θ))dP(θ)− w(x) ≥ 0,∀x ∈ X \ T ,

− v(x) ≥ 0,∀x ∈ X̂ \ X ,
1− v(x) ≥ 0,∀x ∈ T .

(11)

If the functions v(x) and w(x) in (11) are polynomials
over x ∈ Rn, we can encode the system of inequalities (11)
into semi-definite constraints using the sum-of-squares de-
composition for multivariate polynomials, and then construct
a semi-definite program (12) for inner-approximating the p-
reach-avoid set RAp.

max c> · ŵ
s.t.∫

Θ

v(f(x,θ))dP(θ)− v(x) + s0(x)h(x)

− s1(x)(g(x)− 1) ∈
∑

[x],

− v(x) +

∫
Θ

w(f(x,θ))dP(θ)− w(x)

+ s2(x)h(x)− s3(x)(g(x)− 1) ∈
∑

[x],

− v(x) + s4(x)h0(x)− s5(x)h(x) ∈
∑

[x],

1− v(x)− s6(x)(1− g(x)) ∈
∑

[x],

(12)

where c> · ŵ =
∫
X̂ v(x)dx, ŵ is the constant vector

computed by integrating the monomials in v(x) ∈ R[x]
over X̂ , c is the vector composed of unknown coefficients in
v(x) ∈ R[x]; w(x) ∈ R[x], and si(x) ∈

∑
[x], i = 0, . . . , 6.

Theorem 2: If a function v(x) ∈ R[x] satisfies the semi-
definite program (12), the set

{x ∈ X | v(x) > p}

is an inner approximation of the p-reach-avoid set RAp.
Remark 2: A robust inner-approximation of the qualitative

reach-avoid set RA can also be obtained via solving a semi-
definite program derived from the semi-definite program (12).
The reach-avoid set RA is the set of initial states letting



the system (1) hit the target set T in finite time while
remaining inside the safe state set X till the hit irrespective
of disturbances. That is,

RA =

{
x0 ∈ X

∣∣∣∣∣ ∀π ∈ Ω.∃k ∈ N.φx0
π (k) ∈ T

∧
∀l ∈ [0, k] ∩ N.φx0

π (l) ∈ X

}
.

The semi-definite program is presented below.

max c> · ŵ
s.t.

v(f(x,θ))− v(x) + s0(x,θ)h(x)

− s1(x,θ)(g(x)− 1) + s2(x,θ)r(θ) ∈
∑

[x,θ],

− v(x) + w(f(x,θ))− w(x) + s3(x,θ)h(x)

− s4(x,θ)(g(x)− 1) + s5(x,θ)r(θ) ∈
∑

[x,θ],

− v(x) + s6(x)h0(x)− s7(x)h(x) ∈
∑

[x],

(13)

where Θ = {θ ∈ Rm | r(θ) ≤ 0} with r(θ) ∈ R[θ],
c> · ŵ =

∫
X̂ v(x)dx, ŵ is the constant vector computed by

integrating the monomials in v(x) ∈ R[x] over X̂ , c is the
vector composed of unknown coefficients in v(x) ∈ R[x];
w(x) ∈ R[x], and si(x,θ) ∈

∑
[x,θ], i = 0, . . . , 5, and

si(x) ∈
∑

[x], i = 6, 7.

Theorem 3: If a function v(x) ∈ R[x] satisfies the semi-
definite program (13), the set

{x ∈ X | v(x) > 0}

is an inner-approximation of the reach-avoid set RA.
Proof: The constraints in the semi-definite program (13)

imply that

v(f(x,θ))− v(x) ≥ 0,∀x ∈ X \ T ,∀θ ∈ Θ, (14)
v(x) ≤ w(f(x,θ))− w(x),∀x ∈ X \ T ,∀θ ∈ Θ, (15)

− v(x) ≥ 0,∀x ∈ X̂ \ X , (16)

Assume that x0 ∈ {x ∈ X | v(x) > 0} and x0 /∈ RA.
Consequently, either

∃π0 ∈ Ω.∀l ∈ N.φx0
π0

(l) ∈ X \ T (17)

or

∃π0 ∈ Ω.∃l ∈ N.φx0
π0

(l) /∈ X ∧
∧

i∈[0,l]∩N

φx0
π0

(i) ∈ X \ T

(18)
holds.

If (17) holds, according to the constraint (14) we have that

v(x0) ≤ v(φx0
π0

(l)),∀l ∈ N. (19)

Further, the constraint (15) implies that

v(φx0
π0

(l)) ≤ w(φx0
π0

(l + 1))− w(φx0
π0

(l)),∀l ∈ N

SDP (12)
Ex. dv dw ds T
1 10 10 12 3.53
2 14 14 16 3.71

TABLE I
PARAMETERS OF OUR IMPLEMENTATIONS ON (12) FOR EXAMPLES 1∼2.

dv AND dw : DEGREE OF POLYNOMIALS v AND w IN (12),
RESPECTIVELY; ds : DEGREE OF POLYNOMIALS si IN (12),

RESPECTIVELY, i = 0, . . . , 6; T : COMPUTATIONAL TIME(SECONDS)

and thus for l ∈ N,
l∑
i=1

v(φx0
π0

(i)) ≤
l∑
i=1

(w(φx0
π0

(i+ 1))− w(φx0
π0

(i))) (20)

Inequalities (19) and (20) tell that

v(x0) ≤
w(φx0

π0
(l + 1))− w(x0)

l + 1
,∀l ∈ N

and thus v(x0) ≤ 0, contradicting the fact that v(x0) > 0.
The fact that v(x0) > 0, together with the constraints (14)

and (16), indicates that (18) does not hold.
Consequently, {x ∈ X | v(x) > 0} ⊆ RA.

IV. EXAMPLES

In this section we demonstrate our semi-definite program-
ming approach on two examples. All computations were
performed on an i7-7500U 2.70GHz CPU with 32GB RAM
running Windows 10, where the Matlab toolboxes YALMIP
for sum-of-squares decomposition [9] and Mosek for semi-
definite programs [11] are used to implement (12).

Example 1: In this example we consider a computer-
based model of the following ordinary differential equation:{

ẋ(t) = −0.5x(t)− 0.5y(t) + 0.5x(t)y(t)

ẏ(t) = −0.5y(t) + 1 + θ(t)

where θ(·) : [0,∞) ∈ Θ with Θ being a compact set in R.
When performing computer simulations, Euler’s method is

often used to analyze an ordinary differential equation, which
employs the idea of a linear extrapolation along the local
derivative. When the simulation step is 0.01, the resulting
discrete-time system is of the following from:{

x(l + 1) = x(l) + 0.01(−0.5x(l)− 0.5y(l) + 0.5x(l)y(l))

y(l + 1) = y(l) + 0.01(−0.5y(l) + 1 + θ(l))

Assume that X = {(x, y) | x2 + y2 − 1 < 0} and T =
{(x, y) | 10x2 + 10(y − 0.5)2 ≤ 1}.

We first consider the following two cases with different
disturbance sets Θ. The set X̂ = {(x, y) | x2+y2−1.1 ≤ 0},
which can be computed by solving a semi-definite program
as in [16], is applicable for these two cases.

1) Θ = [−5, 5]: an inner-approximation of 0-reach-avoid
RA0, which is computed by solving (12) with param-
eters in Table I, is illustrated in Fig. 1. The computed
inner-approximations of p-reach-avoid RAp sets with
p = 0.25, 0.5 and 0.75 are illustrated in Fig. 2.
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Fig. 1. An illustration of the computed 0-reach-avoid sets for Example
1. The black curve denotes the boundary of the safe state set X . The red
curve and blue curve denote the computed inner-approximations of the strict
0-reach-avoid sets with Θ = [−10, 10] and Θ = [−5, 5] respectively. The
gray-black curves denote the trajectories starting from (0.1, 0.9)> with
θ(l) ≡ −5 and (−0.1,−0.9)> with θ(l) ≡ 5 respectively.
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Fig. 2. An illustration of computed p-reach-avoid sets for Example 1.
Above (Θ = [−5, 5]) and Below (Θ = [−10, 10]): The red, blue, green and
black curves denote the boundaries of the computed inner-approximations
of the 0.0-, 0.25-, 0.5- and 0.75-reach-avoid sets respectively.

2) Θ = [−10, 10]: an inner-approximation of the 0-reach-
avoid RA0, which is computed by solving (12) with
parameters listed in Table I, is also illustrated in Fig.
1. Meanwhile, the computed inner-approximations of
p-reach-avoid sets RAp with p = 0.25, 0.5 and 0.75
are illustrated in Fig. 2 as well.

Note that in both examples we obtain correct but useless
robust inner approximations of the qualitative reach-avoid
set, which are empty, via solving the semi-definite program
(13). This demonstrates that the p-reach-avoid set is a useful
generalization.

Example 2: Consider the following discrete-time Lotka-
Volterra model:{

x(l + 1) = rx(l)− ay(l)x(l)

y(l + 1) = sy(l) + acy(l)x(l)
(21)

where r = 0.5, a = 1, s = −0.5 + θ(l) with θ(·) : N →
[−0.5, 0.5] and c = 1.

Assume that X = {(x, y) | x2 + y2 − 1 < 0} and T =
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Fig. 3. An illustration of the computed 0-reach-avoid sets for Example 2.
The black curve denotes the boundary of the target set T . The red, blue and
green curves denote the boundaries of the computed inner-approximations
of the 0.0-, 0.25-, and 0.6-reach-avoid sets respectively. The gray-black
curves denote the trajectories starting from (−0.8,−0.4)>, (−0.4, 0.8)>

and (0.8,−0.4)> with θ(l) ≡ 0 respectively.

{(x, y) | 100x2 + 100y2 ≤ 1}. The set X̂ = {(x, y) | x2 +
y2− 2.25 ≤ 0} is used. The computed inner-approximations
of p-reach-avoid RAp sets with p = 0.0, 0.25 and 0.6 are
illustrated in Fig. 3.

Similar to Example 1, we obtain a correct but useless
robust inner-approximation, which is empty, for this example
via solving the semi-definite program (13) with parameters
listed in Table I.

V. CONCLUSION

We have elaborated a computational method for under-
approximating, i.e., approximating from the inner, the p-
reach-avoid set of discrete-time systems given as iterative
polynomial maps subject to stochastic disturbances. The
method builds on a semi-definite-programming relaxation of
the super-level set of a corresponding functional and was
demonstrated on two examples.

In future work we would extend the present method
to reach-avoid reachability of random ordinary differential
equations [15] and o the safe design of cyber-physical
systems such as autonomous vehicles. Also, we would in-
vestigate the conservativeness of the inner-approximations
computed by the present semi-definite programming method.
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