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Abstract— Differential games play an important role in col-
lision avoidance, motion planning and control of aircrafts, and
related applications. The central problem is the computation of
the set of initial states from which the ego player can enforce
safety specifications over a specified time horizon. In this paper
we study differential games based on invariant sets generation,
where the ego player aims to perpetually force the system
to satisfy certain safety specification while the mutual other
player attempts to enforce a violation of the safety specification.
This game is studied within the Hamilton-Jacobi reachability
framework via computing two new robust controlled invariant
sets, i.e., the lower robust controlled invariant set and the
upper robust controlled invariant set (Definition 2). These two
robust controlled invariant sets are respectively characterized
as the zero level set of the unique bounded continuous viscosity
solution to a Hamilton-Jacobi equation with sup-inf Hamilto-
nian and inf-sup Hamiltonian. This is the main contribution of
this work. The uniqueness and continuity property of viscosity
solutions facilitates the use of contemporary numerical methods
to solve this game. Two examples, including a Moore-Greitzer
jet engine model, are used to illustrate our approach.

I. INTRODUCTION

Differential games, i.e., dynamic games featuring an evo-
lution governed by differential equations, have many impor-
tant applications in engineering domains, e.g., in the analysis
of collision avoidance [28], [36], energy management [15]
and safe reinforcement learning [31]. They model a form
of strategic interactions among rational players, where each
player makes decisions in light of its own preference while
expecting adversarial actions from the mutual other player.
As the resulting winning strategies are robust against any
possible action of the adversary, differential games have
received growing interest as a model facilitating synthesis
of reliable control strategies for safety-critical systems.

Differential games were initiated by Rufus Isaacs in the
early 1950s when he studied military pursuit-evasion prob-
lems while working in the Rand Corporation. The pursuit-
evasion game he studied is a two-player zero-sum game,
where the players have completely opposite interests [22].
A challenging class of differential games is to determine
the set of states from which the ego player is able to stay
away from an avoid set, regardless of opposing actions of
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the mutual other player. This set goes by many names in the
literature such as discriminating kernels [2], [13], backward
reachable sets [27] and stable bridges [34]. Differential
games can be solved within the Hamilton-Jacobi reachability
framework. Hamilton-Jacobi reachability analysis addresses
reachability problems by exploiting the link to optimal con-
trol through viscosity solutions of Hamilton-Jacobi equations
[4]. It extends the use of Hamilton-Jacobi equations, which
are widely used in optimal control theory [5], [6], to perform
reachability analysis over both finite time horizons [24], [27],
[25], [1], [18] and the infinite time horizon [12], [20], [21].
While computationally intensive, Hamilton-Jacobi reachabil-
ity approaches are still appealing nowadays due to the avail-
ability of contemporary numerical methods [16] and modern
numerical tools such as [26], [10], which allow solving as-
sociated game problems conveniently. Within the Hamilton-
Jacobi reachability framework, continuity and uniqueness of
solutions are desirable from a numeric computation point of
view, since rigorous convergence results for many popular
numerical approximations, e.g., finite difference schemes,
ENO schemes and WENO schemes, to the derived Hamilton-
Jacobi equation require continuity and uniqueness of the
solution. Unfortunately, reachability analysis under state con-
straints may induce discontinuities of viscosity solutions, see
for instance [23], [5], [17], [7], [14], [29], [8], [3], unless
the dynamics satisfy special assumptions at the boundary
of state-constraint sets, e.g., inward pointing qualification
assumption [32], [33], [9], outward pointing condition [19]
and vanishing on the boundary [7]. These conditions are,
however, restrictive and viscosity solutions can therefore be
discontinuous in general. Recently, without requiring such
assumptions, the work in [11] infers a modified Hamilton-
Jacobi equation and considers reachability problems over fi-
nite time horizons for state-constrained systems with control
inputs. The modified Hamilton-Jacobi equation exhibits a
unique continuous viscosity solution. Based on the Hamilton-
Jacobi formulation in [11], the work in [25] studies the
finite-time games for state-constrained systems. The work in
[18] further investigates differential games over finite time
horizons where the target set, the state constraint set and the
dynamic are allowed to be time-varying. Recently, the work
in [38] studies the problem of computing robust invariant sets
over the infinite time horizon for state-constrained perturbed
systems without control inputs, where a robust invariant set
is a set of states such that every possible trajectory starting
from it never violates a given state constraint, irrespective of
the actual perturbation. In [38] the maximal robust invariant
set is described as the zero level set of the unique continuous
viscosity solution to a Hamilton-Jacobi equation.



In this paper we extend the Hamilton-Jacobi formulation
in [38] to address differential games based on invariant
sets generation. In the game, we consider the problem of
computing two new robust controlled invariant sets, i.e., the
lower and upper robust controlled invariant sets. For a given
state-constraint set, the lower robust controlled invariant set
is a set of initial states such that for any neighborhood of
the state-constraint set and any finite time horizon, there
exists a nonanticipative strategy for the ego player which
makes the system stay inside the neighborhood over the
finite time horizon, irrespective of actions of the mutual
other player; the upper one is a set of initial states such that
for any neighborhood of the state-constraint set, any finite
time horizon and any nonanticipative strategy of the mutual
other player, there exists an action for the ego player which
makes the system stay inside the neighborhood over the finite
time horizon. We characterize the lower robust controlled
invariant set as the zero level set of the unique bounded
continuous viscosity solution to a Hamilton-Jacobi equation
with sup-inf Hamiltonian and the upper robust controlled
invariant set as the zero level set of the unique bounded
continuous viscosity solution to a Hamilton-Jacobi equation
with inf-sup Hamiltonian, respectively. Under the classical
Isaacs condition, these two sets coincide. To the best of
our knowledge this is the first work on the use of Hamilton-
Jacobi equations to address differential games with the lower
and upper robust controlled invariant sets. Two examples,
including a Moore-Greitzer jet engine model, are employed
to demonstrate our approach.

This paper is structured as follows: Section II gives an
introduction of differential games of interest in this paper,
including the notion of lower and upper robust controlled
invariant sets. Section III formulates the computation of
both lower and upper robust controlled invariant sets within
the framework of Hamilton-Jacobi type partial differential
equation. After demonstrating our approach on two examples
in Section IV, we conclude this paper in Section V.

II. DIFFERENTIAL GAME FORMULATION

In this section we introduce the notations and definitions
used in the rest of this paper. The following basic notations
will be used throughout this paper: Rn denotes the set of
n-dimensional real vectors. ‖x‖ denotes the 2-norm, i.e.,
‖x‖ :=

√∑n
i=1 x

2
i , where x = (x1, . . . , xn)>. C∞(Rn)

denotes the set of smooth functions over Rn. Vectors are
denoted by boldface letters.

We consider systems with dynamics given by{
ẋ(s) = f(x(s),u(s),d(s))

x(0) = x0 ∈ X .
(1)

Here we assume that f(x,u,d) : Rn × U × D 7→ Rn is
continuous over x, u and d, and locally Lipschitz over x
uniformly for u ∈ U and d ∈ D. The sets X , U and D
are compact subsets of finite dimensional spaces Rn, Rm
and Rl respectively, and the controls u(·) : [0,∞) 7→ U and

d(·) : [0,∞) 7→ D are measurable functions. We define

U = {u(·) : [0,∞) 7→ U,measurable} and
D = {d(·) : [0,∞) 7→ D,measurable}

as the respective sets of control functions.
Throughout this paper we will investigate differential

games in which the ego player wants to control the system to
enforce safety specifications while the mutual other player
attempts to prevent this. For this reason, we will usually
interpret u(·) as a control action while considering d(·)
as an adversarial perturbation. The trajectory of system (1)
under the control of u(·) ∈ U and d(·) ∈ D is denoted
by φu,dx0

(·) : R 7→ Rn with φu,dx0
(0) = x0. The game is

investigated in the framework of non-anticipative strategies,
whose concepts are formally presented in Definition 1.

Definition 1: We say that a map α(·) : D 7→ U is a non-
anticipative strategy (for the ego player) if it satisfies the
following condition:

For d1(·), d2(·) ∈ D and s ≥ 0 for which d1(t) = d2(t)
for almost every t ∈ [0, s], α(d1)(t) and α(d2)(t) coincide
for almost every t ∈ [0, s]. The set of non-anticipative
strategies α(·) for the ego player is denoted by Γ.

Non-anticipative strategies for the mutual other player
β(·) : U 7→ D are defined similarly. Its set is denoted by
∆.

Based on the non-anticipative strategies in Definition 1,
we define two new robust controlled invariant sets, i.e., the
lower robust controlled invariant set and the upper robust
controlled invariant set.

Definition 2: Let X = {x ∈ Rn | h(x) ≤ 0} and Xε =
{x ∈ Rn | h(x) ≤ ε} be sets in Rn, where X is compact
and h(x) is bounded and locally Lipschitz continuous in Rn,

1) The lower robust controlled invariant set R− of system
(1) is the set of initial states x such that for any ε > 0 and
any T ≥ 0, there exists a non-anticipative strategy α(·) ∈ Γ
such that for any perturbation d(·) ∈ D the corresponding
trajectory φα(d),d

x (t) stays inside Xε for t ∈ [0, T ], i.e.,

R− =

{
x ∈ Rn

∣∣∣∣∣ ∀ε > 0,∀T ≥ 0,∃α(·) ∈ Γ,∀d(·) ∈ D,
∀t ∈ [0, T ],φα(d),d

x (t) ∈ Xε

}
.

2). The upper robust controlled invariant set R+ of system
(1) is the set of initial states x such that for any T ≥ 0 and
any ε > 0 and any non-anticipative strategy β(·) ∈ ∆, there
exists a control u(·) ∈ U such that the trajectory φu,β(u)

x (t)
stays inside Xε for t ∈ [0, T ], i.e.,

R+ =

{
x ∈ Rn

∣∣∣∣∣ ∀ε > 0,∀T ≥ 0,∀β(·) ∈ ∆,∃u(·) ∈ U ,
∀t ∈ [0, T ],φu,β(u)

x (t) ∈ Xε

}
.

Note that the assumption on the boundedness of h(x) over
x ∈ Rn is not restrictive since if h(x) is unbounded, then
h(x) := h(x)

1+h2(x) is bounded and the set X is still equal to
{x ∈ Rn | h(x) ≤ 0}.

The differential game of interest in this paper is on the
computation of the sets R− and R+ based on the following
assumption.



Assumption 1: Both the sets R− and R+ are not empty
and have nonempty interior.

From Definition 2, we have the following inference.
Corollary 1: R− ⊆ X and R+ ⊆ X .

Proof: Let x ∈ R− but x /∈ X .
Obviously, there exists ε1 > 0 such that h(x) = ε1.

Therefore,

∃ε < ε1,∃T = 0,∀α(·) ∈ Γ,∃d(·) ∈ D,
∃t ∈ [0, T ],φα(d),d

x (t) /∈ Xε,

contradicting x ∈ R−. Therefore, x ∈ X and thus R− ⊆ X .
Analogously, we have R+ ⊆ X .

III. CHARACTERIZATION OF ROBUST CONTROLLED
INVARIANT SETS

In this section we characterize the lower and upper robust
controlled invariant sets using Hamilton-Jacobi equations
with sup-inf and inf-sup Hamiltonians respectively.

A. System Reformulation

As f is assumed to be locally Lipschitz continuous in
system (1), the existence of a global solution φu,dx0

(t) over
t ∈ [0,∞) is not guaranteed for any initial state x0 ∈ Rn.
However, the existence of global solutions is a prerequisite
for constructing Hamilton-Jacobi partial differential equa-
tions in the Hamilton-Jacobi reachability framework. As in
[38], [37], in this subsection we construct a system, to which
the global solution over t ∈ [0,∞) starting from any initial
state x0 ∈ Rn exists. Also, its solution coincides with the
solution to system (1) over a compact set B. The compact
set B is chosen to satisfy

X ⊆ B and ∂B ∩ ∂X = ∅, (2)

resulting in that there exists ε′ > 0 such that

Xε ⊆ B and ∂Xε ∩ ∂B = ∅,∀ε ∈ [0, ε′]. (3)

Such a set B exists since the set X is a compact set in Rn.
The auxiliary system is of the following form:

ẋ(s) = F (x(s),u(s),d(s)), (4)

where F (x,u,d) : Rn × U × D 7→ Rn, which is globally
Lipschitz continuous over x ∈ Rn uniformly for u ∈ U and
d ∈ D with Lipschitz constant Lf , i.e.,

‖F (x1,u,d)− F (x2,u,d)‖ ≤ Lf‖x1 − x2‖ (5)

for x1,x2 ∈ Rn, u ∈ U and d ∈ D, where Lf is the
Lipschitz constant of f over B. Moreover, f(x,u,d) =
F (x,u,d) over B × U ×D.

The existence of system (4) is guaranteed by Kirszbraun’s
extension theorem for Lipschitz maps [35]. For instance,

F (x,u,d) := inf
y∈B

(f(y,u,d) +ALf‖x− y‖) (6)

satisfies such requirement, where A is an n-dimensional
vector with each component being equal to one. Thus, for
any (x0,u(·),d(·)) ∈ B × U × D, there exists a unique
absolutely continuous trajectory x(t) = ψu,dx0

(t) satisfying

(4) a.e. with x(0) = x0 for t ∈ [0,∞) [Theorem 5.5, Section
III, [5]]. Since f(x,u,d) = F (x,u,d) over B×U×D, we
have the conclusion that given x0 ∈ B, u(·) ∈ U , d(·) ∈ D
and T ≥ 0, if ψu,dx0

(t) ∈ B for t ∈ [0, T ], φu,dx0
(t) ∈ B for

t ∈ [0, T ] holds and further φu,dx0
(t) = ψu,dx0

(t) for t ∈ [0, T ].
Moreover, the sets R− and R+ for system (1) coincide

with the corresponding sets for system (4). Since Xε1 ⊆ Xε2
for 0 < ε1 ≤ ε2,

R− =

{
x ∈ Rn

∣∣∣∣∣ ∀ε ∈ [0, ε′],∀T ≥ 0,∃α(·) ∈ Γ,

∀d(·) ∈ D,∀t ∈ [0, T ],φα(d),d
x (t) ∈ Xε

}
and

R+ =

{
x ∈ Rn

∣∣∣∣∣ ∀ε ∈ [0, ε′],∀T ≥ 0,∀β(·) ∈ ∆,

∃u(·) ∈ U ,∀t ∈ [0, T ],φu,β(u)
x (t) ∈ Xε

}
holds, where ε′ is defined in (3). Therefore, we have that

R− =

{
x ∈ Rn

∣∣∣∣∣ ∀ε > 0,∀T ≥ 0,∃α(·) ∈ Γ,∀d(·) ∈ D,
∀t ∈ [0, T ],ψα(d),d

x (t) ∈ Xε

}
and

R+ =

{
x ∈ Rn

∣∣∣∣∣ ∀ε > 0,∀T ≥ 0,∀β(·) ∈ ∆,∃u(·) ∈ U ,
∀t ∈ [0, T ],ψu,β(u)

x (t) ∈ Xε

}
.

This indicates that both the lower and upper robust controlled
invariant sets can be obtained based on system (4). In the rest
we consider system (4) instead of system (1).

B. Hamilton-Jacobi Equations

In order to obtain Hamilton-Jacobi equations for charac-
terizing the sets R− and R+, for any solution ψu,dx (·) of
system (4) with an initial value x we associate a payoff
which depends on (u(·),d(·)) ∈ U ×D and is denoted by

J(x,u,d) := sup
t∈[0,∞)

e−γth(ψu,dx (t)), (7)

where γ is a scalar constant valued in (0,∞).
For the payoff J(x,u,d), we respectively define the lower

value function V −(x) and upper value function V +(x) as
follows:

V −(x) := inf
α(·)∈Γ

sup
d(·)∈D

J(x,α(d),d) (8)

and
V +(x) := sup

β(·)∈∆

inf
u(·)∈U

J(x,u,β(u)). (9)

We will show that the zero level sets of the lower value
function V −(x) and the upper value function V +(x) are
respectively the lower robust controlled invariant set R− and
the upper robust controlled invariant set R+, i.e., R− =
{x ∈ Rn | V −(x) = 0} and R+ = {x ∈ Rn | V +(x) = 0}.
Before justifying this statement, we need an intermediate
proposition stating that both the lower value function V − and
the upper value function V + are non-negative and bounded
over Rn.

Proposition 1: The lower value function V −(x) is non-
negative and bounded over x ∈ Rn. Analogously, the upper



value function V +(x) is non-negative and bounded over x ∈
Rn as well.

Proof: We just prove the statement pertinent to the
lower value function V −(x). The similar proof procedure
applies to the upper value function V +(x) as well.

Since h(x) is bounded over Rn, we have that

lim
t→∞

e−γth(ψα(d),d
x (t)) = 0

for α(·) ∈ Γ, d(·) ∈ D and x ∈ Rn. Since J(x,α(d),d) ≥
limt→∞ e−γth(ψ

α(d),d
x (t)) for α(·) ∈ Γ, d(·) ∈ D and x ∈

Rn, this implies that

J(x,α(d),d) ≥ 0,∀α(·) ∈ Γ,∀d(·) ∈ D,∀x ∈ Rn.

Thus,

sup
d(·)∈D

J(x,α(d),d) ≥ 0,∀α(·) ∈ Γ,∀x ∈ Rn.

Consequently, V −(x) ≥ 0 for x ∈ Rn.
The boundedness of V − is guaranteed by the fact that

J(x,α(d),d) ≤M,∀α(·) ∈ Γ,∀d(·) ∈ D,∀x ∈ Rn,

where M is a positive value such that |h(x)| ≤ M over
x ∈ Rn. Thus, V −(x) ≤M over x ∈ Rn.

Lemma 1: R− = {x | V −(x) = 0} and R+ = {x |
V +(x) = 0}.

Proof: 1. For the statement R− = {x | V −(x) = 0},
we first prove R− ⊆ {x | V −(x) = 0}.

Assume that x ∈ R− and ε is an arbitrary positive number.
Since h(x) is bounded over x ∈ Rn, there exists M > 0 such
that h(x) ≤M over x ∈ Rn. Also, since limt→∞Me−γt =
0, there exists T > 0 such that Me−γt ≤ ε for t ≥ T .

Since x ∈ R−, there exists αε,T (·) ∈ Γ such that

sup
d(·)∈D

sup
t∈[0,T ]

h(ψ
αε,T (d),d
x (t)) ≤ ε

and thus

sup
d(·)∈D

sup
t∈[0,∞)

e−γth(ψ
αε,T (d),d
x (t))

= sup
d(·)∈D

max{ sup
t∈[0,T ]

e−γth(ψ
αε,T (d),d
x (t)),

sup
t∈[T,∞)

e−γth(ψ
αε,T (d),d
x (t))}

≤ max{ sup
d(·)∈D

sup
t∈[0,T ]

e−γth(ψ
αε,T (d),d
x (t)),

sup
d(·)∈D

sup
t∈[T,∞)

e−γth(ψ
αε,T (d),d
x (t))}

≤ ε.

Furthermore,

V −(x) = inf
α(·)∈Γ

sup
d(·)∈D

J(x,α(d),d)

≤ sup
d(·)∈D

J(x,αε,T (d),d) ≤ ε.

Since ε is an arbitrary positive number, V −(x) ≤ 0. In addi-
tion, according to Proposition 1 which states that V −(x) ≥ 0
over Rn, we conclude that R− ⊆ {x ∈ Rn | V −(x) = 0}.

Next, we prove that {x ∈ Rn | V −(x) = 0} ⊆ R−.
Assume that x0 ∈ {x ∈ Rn | V −(x) = 0} but x0 /∈ R−.

Therefore, we have

∃ε > 0,∃T ≥ 0,∀α(·) ∈ Γ,∃d(·) ∈ D,
∃t ∈ [0, T ],ψα(d),d

x0
(t) /∈ Xε.

Therefore, supt∈[0,∞) e
−γth(ψ

α(d),d
x0 (t)) ≥ e−γT ε for

α(·) ∈ Γ and consequently

inf
α(·)∈Γ

sup
d(·)∈D

sup
t∈[0,∞)

e−γth(ψα(d),d
x0

(t)) ≥ e−γT ε,

contradicting V −(x0) = 0. Thus, x0 ∈ R− and further
{x | V −(x0) = 0} ⊆ R−.

In summary, we have R− = {x ∈ Rn | V −(x) = 0}.
2. We prove that R+ = {x | V +(x) = 0}, and first prove

that R+ ⊆ {x | V +(x) = 0}.
Let x ∈ R+ and V +(x) = δ > 0. We will derive a

contradiction. Due to V +(x) = δ > 0, there exists β1(·) ∈
∆ such that infu(·)∈U J(x,u,β1(u)) > δ

2 , implying that
J(x,u,β1(u)) > δ

2 for all u(·) ∈ U . Due to the fact that
there exists T ′ > 0 such that

e−γth(ψu,β(u)
x (t)) ≤ e−γT

′
M ≤ δ

2
,

for t ≥ T ′,u(·) ∈ U and β(·) ∈ ∆, where M is a positive
value such that |h(x)| ≤M over x ∈ Rn, there exists Tu ∈
[0, T ′] for u(·) ∈ U such that

e−γTuh(ψu,β1(u)
x (Tu)) >

δ

2

and therefore, ψu,β1(u)
x (Tu) /∈ X δ

2
,∀u(·) ∈ U , contradicting

x ∈ R+. Thus, R+ ⊆ {x | V +(x) ≤ 0} holds. In addition,
according to Proposition 1 which states that V +(x) ≥ 0 for
x ∈ Rn, we have R+ ⊆ {x ∈ Rn | V +(x) = 0}.

Next, we show that {x ∈ Rn | V +(x) = 0} ⊆ R+. Let
V +(x) = 0 but x /∈ R+. According to the concept of R+

in Definition 2, we have that

∃ε > 0,∃T ≥ 0,∃β(·) ∈ ∆,∀u(·) ∈ U ,
∃t ∈ [0, T ], h(ψu,β(u)

x (t)) > ε.

Therefore, supβ(·)∈∆ infu(·)∈U J(x,u,β(u)) ≥ e−γT ε,
which contradicts V +(x) = 0. Therefore, we conclude that
{x ∈ Rn | V +(x) = 0} ⊆ R+.

In summary, {x ∈ Rn | V +(x) = 0} = R+.
From Lemma 1, if the lower value function V −(x) and

the upper value function V +(x) are computed, the sets R−
and R+ can be obtained. We in the sequel show that the
lower value function V −(x) : Rn → R and the upper
value function V +(x) : Rn → R are respectively the unique
continuous and bounded viscosity solution to Eq. (10) and
Eq. (11):

min
{
γV −(x)−H−(x,

∂V −(x)

∂x
), V −(x)− h(x)

}
= 0

(10)
and

min
{
γV +(x)−H+(x,

∂V +(x)

∂x
), V +(x)− h(x)

}
= 0,

(11)



for x ∈ Rn, where H−(x,p) = supd∈D infu∈U p ·
F (x,u,d) and H+(x,p) = infu∈U supd∈D p · F (x,u,d)
are the sup-inf and inf-sup Hamiltonians respectively. The
concept of viscosity solutions to Eq. (10) and Eq. (11) is
presented in Definition 3.

Definition 3: [5] A locally bounded and continuous func-
tion V (x) on Rn is a viscosity solution of Eq. (10) (Eq.
(11)), if for any test function v(x) ∈ C∞(Rn) such that
V (x)− v(x) attains a local minimum at x0 ∈ Rn,

min{γV (x0)−H−(x0,p), V (x0)− h(x0)} ≥ 0

(min{γV (x0)−H+(x0,p), V (x0)− h(x0)} ≥ 0)
(12)

holds, i.e., V (x) is a viscosity supersolution; 2) for any test
function v(x) ∈ C∞(Rn) such that V (x) − v(x) attains a
local maximum at x0 ∈ Rn,

min{γV (x0)−H−(x0,p), V (x0)− h(x0)} ≤ 0

(min{γV (x0)−H+(x0,p), V (x0)− h(x0)} ≤ 0)
(13)

holds, i.e., V (x) is a viscosity subsolution, where p =
∂v(x)
∂x |x=x0

.

Firstly, we show that both V −(x) and V +(x) are uni-
formly continuous.

Lemma 2: Both the lower value function V −(x) and the
upper value function V +(x) are uniformly continuous over
Rn.

Proof: We just prove the statement related to the lower
value function V −(x). The one for the upper value function
V +(x) can be justified following the same procedure.

|V (x1)− V (x2)|
≤ | inf

α(·)∈Γ
sup
d(·)∈D

J(x1,α(d),d)

− inf
α(·)∈Γ

sup
d(·)∈D

J(x2,α(d),d)|

≤ sup
α(·)∈Γ

sup
d(·)∈D

|J(x1,α(d),d)− J(x2,α(d),d)|

≤ sup
α(·)∈Γ

sup
d(·)∈D

sup
t∈[0,∞)

e−γt|h(ψα(d),d
x2

(t))− h(ψα(d),d
x1

(t))|.

Since h(x) is bounded over x ∈ Rn, for arbitrary ε > 0,
there exists Tε ≥ 0 such that

sup
α(·)∈Γ

sup
d(·)∈D

sup
t∈[Tε,∞)

e−γt|h(ψα(d),d
x2

(t))− h(ψα(d),d
x1

(t))|

≤ ε.

Therefore,

sup
α(·)∈Γ

sup
d(·)∈D

sup
t∈[0,∞)

e−γt|h(ψα(d),d
x2

(t))− h(ψα(d),d
x1

(t))|

≤ max{
sup
α(·)∈Γ

sup
d(·)∈D

sup
t∈[0,Tε)

e−γt|h(ψα(d),d
x2

(t))− h(ψα(d),d
x1

(t))|,

sup
α(·)∈Γ

sup
d(·)∈D

sup
t∈[Tε,∞)

e−γt|h(ψα(d),d
x2

(t))− h(ψα(d),d
x1

(t))|

}
≤ max{

sup
α(·)∈Γ

sup
d(·)∈D

sup
t∈[0,Tε)

e−γt|h(ψα(d),d
x2

(t))− h(ψα(d),d
x1

(t))|,

ε

}
≤ max{LheLfTε‖x1 − x2‖, ε},

where Lh ad Lf are the Lipschitz constants of h and F
over the bounded set Ω(B1) = {x | x = ψ

α(d),d
x0 (t), t ∈

[0, Tε],x0 ∈ B1,α(·) ∈ Γ,d(·) ∈ D} with B1 being a
compact set in Rn covering x1 and x2 respectively. The
boundedness of the set Ω(B1) can be obtained based on the
fact that F (x,u,d) : Rn×U ×D 7→ Rn, which is globally
Lipschitz continuous over x ∈ Rn uniformly for u ∈ U and
d ∈ D with Lipschitz constant Lf , and

‖ψα1(d1),d1
x1

(t)−ψα2(d2),d2
x2

(t)‖

≤ ‖x1 − x2‖+ Lf

∫ t

0

‖ψα1(d1),d1
x1

(s)−ψα2(d2),d2
x2

(s)‖ds

≤ eLfTε‖x1 − x2‖

for t ∈ [0, Tε], α1(·) ∈ Γ,α2(·) ∈ Γ,d1(·) ∈ D and d2(·) ∈
D.

Since there exists δ > 0 satisfying ‖x1 − x2‖ ≤ δ such
that supα(·)∈Γ supd(·)∈D supt∈[0,Tε) e

−γt|h(ψ
α(d),d
x2 (t)) −

h(ψ
α(d),d
x1 (t))| ≤ ε, there exists δ > 0 satisfying ‖x1 −

x2‖ ≤ δ such that |V (x1)− V (x2)| ≤ 2ε.
Due to the arbitrariness of ε, we shows the uniform

continuity of V −(x).
The following theorem states that the lower value function

V −(x) and the upper value function V +(x) are the viscosity
solution to Eq. (10) and Eq. (11) respectively.

Theorem 1: The lower value function V −(x) and the
upper value function V +(x) are respectively the viscosity
solution to Eq. (10) and Eq. (11).

Proof: The proof follows the one of Theorem 1.10 in
Section VIII in [5] with some modifications. The details can
be found in https://lcs.ios.ac.cn/˜xuebai/
Differential_Games_Based_on_Invariant_
Generation.pdf.

Further, we show the uniqueness of viscosity solutions to
Eq. (10) and Eq. (11).

Theorem 2: The lower value function V −(x) and the
upper value function V +(x) are respectively the unique
viscosity solution to Eq. (10) and Eq. (11).

Proof: The proof follows the one of Theorem 2.12
in Section III in [5] with some modifications. It is based

https://lcs.ios.ac.cn/~xuebai/Differential_Games_Based_on_Invariant_Generation.pdf
https://lcs.ios.ac.cn/~xuebai/Differential_Games_Based_on_Invariant_Generation.pdf
https://lcs.ios.ac.cn/~xuebai/Differential_Games_Based_on_Invariant_Generation.pdf


on proving a comparison principle: If V1(x) and V2(x)
are bounded continuous functions over x ∈ Rn, and they
are respectively a viscosity sub and supersolution to Eq.
(10) (Eq. (11)), then V1(x) ≤ V2(x) in Rn. Obviously, if
such comparison principle holds, the uniqueness of bounded
continuous solutions to Eq. (10) (Eq. (11)) is guaranteed.

The details can be found in https://lcs.ios.ac.
cn/˜xuebai/Differential_Games_Based_on_
Invariant_Generation.pdf.

We will show that V −(x) = V +(x) for x ∈ Rn based
on Eq. (10) and Eq. (11) under the Isaacs condition.

Theorem 3: V −(x) ≤ V +(x) holds for x ∈ Rn and con-
sequently R+ ⊆ R−. Moreover, if H−(x,p) = H+(x,p)
for x ∈ Rn and p ∈ Rn, then V −(x) = V +(x) for x ∈ Rn
and thus R− = R+.

Proof: Since the upper value function V +(x) is a
supersolution to Eq. (11), we have that for v(x) ∈ C∞(Rn)
such that V −(x)−v(x) attains a local minimum at x0 ∈ Rn,

min{γV +(x0)−H+(x0,p), V +(x0)− h(x0)} ≥ 0.

Since H−(x,p) ≤ H+(x,p) for x ∈ Rn and p ∈ Rn, we
have that

min{γV +(x0)−H−(x0,p), V +(x0)− h(x0)} ≥ 0,

where p = ∂v(x)
∂x |x=x0 . Therefore, the upper value function

V +(x) is also a supersolution to Eq. (10). According to the
comparison statement in the proof of Theorem 2, V −(x) ≤
V +(x) holds for x ∈ Rn.

Also, since V −(x) ≥ 0 over Rn according to Proposition
1, {x ∈ Rn | V +(x) = 0} ⊆ {x ∈ Rn | V −(x) = 0} holds.
Furthermore, from Lemma 1, we have R+ ⊆ R−.

Obviously, the fact that H−(x,p) = H+(x,p) for x ∈
Rn and p ∈ Rn implies that V −(x) = V +(x) for x ∈ Rn
and thus {x | V −(x) = 0} = {x | V +(x) = 0}. According
to Lemma 1, we have R− = R+.

Remark 1: Since F (x,u,d) : Rn × U × D 7→ Rn is
continuous over x, u and d, according to Theorem 2.3 in
Chapter VIII in [5], if U and D are convex spaces, the sets
{u ∈ U | H(u,d) ≥ t} and {d ∈ D | H(u,d) ≥ t} are
convex for all t ∈ R, u ∈ U , d ∈ D, where H(u,d) =
p · F (x,u,d). Then H−(x,p) = H+(x,p).

The simplest system for Theorem 2.3 in Chapter VIII in
[5] to hold is the one being affine in the control variables
u ∈ U and d ∈ D, that is, F (x,u,d) = F1(x)+F2(x)u+
F3(x)d, where U and D are convex compact sets in Rm
and Rl respectively. This implies that f(x,u,d) = F1(x)+
F2(x)u+ F3(x)d for x ∈ B.

IV. EXAMPLES

In this section we illustrate our approach on two examples.
For numerical implementation of solving Eq. (10) and Eq.
(11), we use the ROC-HJ solver [10]1.

1https://uma.ensta-paristech.fr/soft/ROC-HJ/

Example 1: We consider a two-dimensional system of the
following form adopted from [38]:

ẋ = −0.5x,

ẏ = 10x2 − (u− d)2y,
(14)

where U = [−0.2, 0.2], D = [−0.2, 0.2] and X = {(x, y)> |
h(x, y) ≤ 0} with h(x, y) = x2+y2−1

1+(x2+y2−1)2 .
Let B = [−1.1, 1.1] × [−1.1, 1.1]. Obviously, the set B

satisfies (2). We can construct an auxiliary system ẋ(s) =
F (x(s),u(s),d(s)) of the form (4) such that F (x,u,d) =
f(x,u,d) for (x,u,d) ∈ B×U×D. According to Lemma
1 and Theorem 1, the lower and upper robust controlled
invariant sets, i.e., R− and R+, can be computed by solving
Eq. (10) and Eq. (11) respectively. We perform numerical
computations on the set B and use uniform grids of 4× 104

to solve Eq. (10) and Eq. (11).
For this example the Isaacs condition, i.e., H−(x,p) =

H+(x,p) for p ∈ Rn and x ∈ Rn, does not hold. Indeed,
e.g., for p = (1, 1) and x ∈ B, we get p · f(x,u,d) =
−0.5x+ 10x2 + (u− d)2y, implying

sup
d∈D

inf
u∈U

p · f(x,u,d) ={
−0.5x+ 10x2, if y ≤ 0 ∧ x ∈ B
−0.5x+ 10x2 − 0.04y, if y > 0 ∧ x ∈ B

,

but

inf
u∈U

sup
d∈D

p · f(x,u,d) ={
−0.5x+ 10x2 − 0.04y, if y ≤ 0 ∧ x ∈ B
−0.5x+ 10x2, if y > 0 ∧ x ∈ B

.

Thus, we cannot guarantee that R− = R+.
The level sets of computed functions V −(x) and V +(x)

are illustrated in Fig. 1 and 2 respectively. The level sets
displayed in Fig. 1 and 2 further confirm that the lower value
function V −(x) and the upper value function V +(x) are
non-negative, as stated in Proposition 1.

The computed lower robust controlled invariant set R− =
{x | V −(x) = 0} and the upper robust controlled invariant
set R+ = {x | V +(x) = 0} are respectively illustrated in
Fig. 1 and 2. The comparison of them is illustrated in Fig.
3. The visualized result in Fig. 3 indicates that R+ ⊆ R−,
as claimed in Theorem 3.

Example 2: Moore-Greitzer jet engine model. We test
our approach on the following system coming from [30],
corresponding to a Moore-Greitzer jet engine model:

ẋ = −y − 3

2
x2 − 1

2
x3 + d,

ẏ = (0.8076 + u)x− 0.9424y,

where X = {x | h(x) ≤ 0} with h(x) = x2+y2−0.25
1+(x2+y2−0.25)2 ,

d ∈ [−0.02, 0.02] and u ∈ [−0.01, 0.01].
From [30], we know that u(x) = 0.8076x− 0.9424y is a

controller that guarantees the existence of a robust invariant

https://lcs.ios.ac.cn/~xuebai/Differential_Games_Based_on_Invariant_Generation.pdf
https://lcs.ios.ac.cn/~xuebai/Differential_Games_Based_on_Invariant_Generation.pdf
https://lcs.ios.ac.cn/~xuebai/Differential_Games_Based_on_Invariant_Generation.pdf
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Fig. 1. Above: The blue region denotes the computed lower robust
controlled invariant set R− for Example 1. Below: An illustration of level
sets of the computed lower value function V −(x).
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Fig. 2. Above: The blue region denotes the computed upper robust
controlled invariant set R+ for Example 1. Below: An illustration of level
sets of the computed upper value function V +(x).
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Fig. 3. An illustration of comparison of the computed lower robust
controlled invariant set R− and upper robust controlled invariant set R+

for Example 1. Red and blue curves denote the boundaries of computed
sets R− and R+, respectively.
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Fig. 4. Above: The blue region denotes the computed lower robust
controlled invariant set R− and upper robust controlled invariant set R+.
Below: An illustration of level sets of the computed upper value function
V −(x) and upper value function V +(x) for Example 2.

set of the following system

ẋ = −y − 3

2
x2 − 1

2
x3 + d,

ẏ = u

where d ∈ [−0.02, 0.02]. In our example we change the
coefficient 0.8076 of the variable x in u(x) to 0.8076 + u
with u ∈ [−0.01, 0.01].
Let B = [−0.51, 0.51]× [−0.51, 0.51]. Obviously, the set B
satisfies (2). We can construct an auxiliary system (4) with
F (x,u,d) of the form (6).

Since f(x,u,d) can be written as f1(x) + f2(x)u +
f3(x)d, and U and D are convex, we obtain that F (x,u,d)
satisfies Theorem 2.3 in Chapter VIII of [5], as illustrated in
Remark 1. Furthermore, according to Remark 1 and Theorem
3, we have V −(x) = V +(x) for x ∈ Rn and thus R− =
R+. Thus, the lower and upper robust controlled invariant
sets, i.e., R− and R+, can be computed by solving either
Eq. (10) or Eq. (11).

We perform numerical computations on the set B and use
uniform grids of 4 × 104 to solve Eq. (10). The computed
sets R− = {x | V −(x) = 0} and R+ = {x | V +(x) = 0}
are illustrated in Fig. 4, which also illustrates the level sets
of functions V −(x) and V +(x). The level sets displayed in
Fig. 4 further confirm that both functions V −(x) and V +(x)
are non-negative, as stated in Proposition 1.

V. CONCLUSION AND FUTURE WORK

In this paper we considered differential games based on
the computation of two new robust controlled invariant sets,
i.e., the lower and upper robust controlled invariant sets. This
game was studied within the Hamilton-Jacobi reachability
framework, in which the lower robust controlled invariant set
is characterized as the zero level set of the unique bounded
continuous viscosity solution to a Hamilton-Jacobi equation
with sup-inf Hamiltonian while the upper robust controlled
invariant set is characterized as the zero level set of the



unique bounded continuous viscosity solution to a Hamilton-
Jacobi equation with inf-sup Hamiltonian. Two examples,
including one adopted from a Moore-Greitzer jet engine
model, were employed to illustrate our approach.

In our future work, we would investigate the condition un-
der which Assumption 1 holds, and the relationship between
the lower (upper) robust controlled invariant set R− (R+)
and the lower (upper) controlled invariant set R∗− (R∗+),
where the concepts of both sets R∗− and R∗+ are given in
Definition 4.

Definition 4: Let X = {x ∈ Rn | h(x) ≤ 0} be a
compact set in Rn, where h(x) is a bounded and locally
Lipschitz continuous function in Rn,

1) The lower controlled invariant set R∗− of system (1)
is the set of initial states x such that for any T ≥ 0,
there exists a non-anticipative strategy α(·) ∈ Γ such that
for any perturbation d(·) ∈ D the corresponding trajectory
φ
α(d),d
x (t) stays inside X for t ∈ [0, T ], i.e.,

R∗− =

{
x ∈ Rn

∣∣∣∣∣ ∀T ≥ 0,∃α(·) ∈ Γ,∀d(·) ∈ D,
∀t ∈ [0, T ],φα(d),d

x (t) ∈ X

}
.

2). The upper controlled invariant set R∗+ of system (1) is
the set of initial states x such that for any T ≥ 0 and any
non-anticipative strategy β(·) ∈ ∆, there exists a control
u(·) ∈ U such that the trajectory φu,β(u)

x (t) stays inside X
for t ∈ [0, T ], i.e.,

R∗+ =

{
x ∈ Rn

∣∣∣∣∣ ∀T ≥ 0,∀β(·) ∈ ∆,∃u(·) ∈ U ,
∀t ∈ [0, T ],φu,β(u)

x (t) ∈ X

}
.
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[20] L. Grüne and O. S. Serea. Differential games and Zubov’s method.
SIAM Journal on Control and Optimization, 49(6):2349–2377, 2011.
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