
SCIENCE CHINA
Information Sciences

September 2021, Vol. 64 192103:1–192103:17

https://doi.org/10.1007/s11432-019-2767-4

c© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021 info.scichina.com link.springer.com

. RESEARCH PAPER .

Learning real-time automata

Jie AN1, Lingtai WANG2,3, Bohua ZHAN2,3*, Naijun ZHAN2,3* & Miaomiao ZHANG1*

1School of Software Engineering, Tongji University, Shanghai 201804, China;
2State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing 100190, China;

3University of Chinese Academy of Sciences, Beijing 100190, China

Received 20 January 2019/Revised 18 May 2019/Accepted 11 December 2019/Published online 5 August 2021

Abstract Real-time automata (RTAs) are a subclass of timed automata with only one clock which resets at

each transition. In this paper, we present an active learning algorithm for deterministic real-time automata

(DRTAs) in both continuous-time semantics and discrete-time semantics. For a target language recognized

by a DRTA A, we convert the problem of learning DRTA A to the problem of learning a canonical real-time

automaton A with the same recognized language, i.e., L(A) = L(A). The algorithm is inspired by existing

learning algorithms for symbolic automata.

Keywords automaton learning, active learning, real-time automata

Citation An J, Wang L T, Zhan B H, et al. Learning real-time automata. Sci China Inf Sci, 2021, 64(9): 192103,

https://doi.org/10.1007/s11432-019-2767-4

1 Introduction

Angluin introduced the L∗ algorithm for learning regular sets from queries and counterexamples in her
seminal study [1]. This framework is called query learning or active learning, which is distinguished
from passive learning (i.e., generating a model from a given set of examples) and many machine learning
methods. In Angluin’s active automaton learning, instead of training a model from a given data set,
a learner wants to learn a regular language from a teacher who knows the regular language and has
an oracle to answer queries from the learner. The teacher is assumed to be fully reliable in answer-
ing the queries. Under these settings, depending on the decision method for the language equivalence
problem of deterministic finite automata (DFA), the L∗ algorithm can guarantee to learn a correct DFA
which recognizes the target regular language. Many efficient active learning algorithms follow Angluin’s
querying-answering framework to learn mealy machines [2], register automata [3–5], nondeterministic
finite automata [6], Büchi automata [7, 8], and so on. There are also some automaton learning libraries,
tools, and applications [9–11].

For timed systems where timing constraints play a key role, however, the situation is much more
complicated, because the set of actions with timing information is infinite, making it fundamentally
different from the finite alphabet of a classic finite automaton. Because the L∗ algorithm cannot handle
such an infinite set of timed actions, it is a really difficult but interesting problem to learn a formal
model of a timed system. There are also some pioneering studies on learning timed models. A passive
learning algorithm was given in [12] to learn deterministic real-time automata [13] from labeled time-
stamped event sequences. The generated real-time automaton just accepts all positive labeled sequences
and rejects all negative labeled sequences of a given set respectively. A passive learning algorithm for
timed automata with one clock was proposed in [14]. Because the finite data set is only a part of the
infinite behaviors of the target system or model, passive learning cannot guarantee to learn a correct
model of the target system. Event-recording automata [15] are a kind of timed automata that, for every
action a, use a clock that records the time of the last occurrence of a. Event-recording automata can
be determinized. Its active learning algorithm in [16] is prohibitively complex, owing to the too many
degrees of freedom and multiple clocks of event-recording automata.

*Corresponding author (email: bzhan@ios.ac.cn, znj@ios.ac.cn, miaomiao@tongji.edu.cn)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-019-2767-4&domain=pdf&date_stamp=2021-8-5
https://doi.org/10.1007/s11432-019-2767-4
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-019-2767-4
https://doi.org/10.1007/s11432-019-2767-4

An J, et al. Sci China Inf Sci September 2021 Vol. 64 192103:2

Inspired by the learning algorithms for symbolic automata [17, 18], we focus on the Angluin-style
learning algorithm for real-time automata (RTAs) [13] under both continuous-time semantics and discrete-
time semantics in this paper. A real-time automaton can be regarded as a timed automaton [19] with
only one clock which resets at every transition. RTAs yield simple models while preserving adequate
expressiveness, and therefore have been widely used in practical real-time systems, e.g., scheduling of real-
time tasks [20, 21] and key-distribution protocols [22]. We define a subclass of RTAs named canonical
real-time automata (CRTAs) and show that each deterministic real-time automaton (DRTA) can be
transformed to a CRTA which has the same recognized language. Therefore, the problem of learning a
DRTA can be converted to the problem of learning a CRTA with the same recognized language. The
basic ideas are as follows. By preparing a real-time observation table to store the information gathered
from membership queries for timed words, the learner can build a DFA M . Then the learner transforms
it to a CRTA as a hypothesis H with a partition function mapping time values to several timing intervals.
For an equivalence query, if the answer is positive, it indicates that the CRTA H recognizes the target
language represented by a DRTA originally. Otherwise, the learner receives a counterexample. For the
counterexamples which have non-integer time values, we define a refinement function g to normalize these
time values. The learner adds the prefixes of the counterexample to the real-time observation table to
construct a new hypothesis. The procedure continues until getting the positive answer for an equivalence
query. Note that Dima [13] pointed out that RTAs can be determinized. Hence, our method can be
applied to both deterministic and nondeterministic RTAs.

To solve the active learning problem for RTAs, we make the following extensions to the traditional L∗

algorithm. First, in Subsection 3.2, we modify Angluin’s observation table to the real-time observation
table. The conditions of the real-time observation table are more complex than the conditions of the
observation table in the L∗ algorithm. Second, the operations on the real-time observation table are
different. Third, two partition functions are introduced to handle infinite timed actions in Subsection 3.3.
Fourth, an additional refinement function is used for solving the conflicts caused by the miss-distributions
in Subsection 3.4. Finally, in Subsection 3.4, our method for deciding the language equivalence of two
RTAs is totally different from the decision method for two DFAs in the L∗ algorithm.

Related work. There are several existing studies on learning timed systems. Passive learning al-
gorithms were presented in [12, 14, 23] for real-time automata and timed automata with one clock in
discrete-time semantics. A passive learning method tries to learn a model from a given data set. There
is no more information that can be gathered, except for the labeled timed words in the data set. The
basic idea of the passive learning method for RTAs is as follows. First, the labeled traces in the data
set are organized as a tree named prefix tree acceptor. Then the algorithm attempts to merge the nodes
of the tree, guided by some heuristics. In the merging process, it needs to protect consistency with
the data set. The model learned by such passive learning methods just accepts the positive labeled
timed words, and rejects the negative labeled timed words of the given set of timed words respectively.
Hence, it cannot guarantee that the generated model recognizes the target language. The discrete-time
semantics means that the time values are non-negative integers, while the time value is real numbers in
continuous-time semantics. The method for learning event-recording automata (ERAs) is prohibitively
complex [16]. Dima [13] pointed out that ERAs are incomparable with RTAs. Genetic programming
and machine learning methods are also used to learn timed systems [24, 25]. In this paper, depending
on the decision method for the language equivalence problem of DRTAs, our active learning algorithm
can efficiently generate correct DRTAs from a reliable teacher in both discrete-time and continuous-time
semantics by making use of partition functions and a refinement function.

Structure. The remainder of this paper is organized as follows. In Section 2, we recall preliminaries
including the L∗ algorithm and real-time automata. The learning algorithm for deterministic real-time
automata is introduced in Section 3 including the definitions of the partition functions and the refinement
function. Section 4 presents the complexity analysis. Following the implementation of the algorithm and
some experiments in Section 5, Section 6 concludes this paper.

2 Preliminaries

We utilize R>0 and N to denote the set of non-negative real numbers and natural numbers, respectively.
We fix a finite set Σ of letters, called alphabet. The discrete-time semantics and continuous-time semantics
mean that the time values are in N and R>0, respectively.

An J, et al. Sci China Inf Sci September 2021 Vol. 64 192103:3

2.1 Learning deterministic finite automaton

We start by briefly reviewing Angluin’s L∗ algorithm [1] for learning regular sets from membership queries
and equivalence queries. She proved that the class of regular languages could be learned efficiently (i.e.,
in time polynomial in the size of the canonical deterministic finite automaton for this language).

Definition 1 (DFA). A DFA is a 5-tuple A = (Q,Σ, δ, q0, F), where Q is a non-empty finite set of
states; Σ is a finite alphabet; δ : Q×Σ → Q is the transition relation, a partial function on Q×Σ; q0 ∈ Q
is the initial state and F ⊆ Q is the set of accepting (final) states.

A word over Σ is a finite sequence ω = σ1σ2 · · ·σn, where σi ∈ Σ for i = 1, 2, . . . , n. |ω| = n is the
length of ω. ǫ is the empty word with length |ǫ| = 0. A word ω is called an action if |ω| = 0 or |ω| = 1.

Σ∗ is the set of words over Σ. The transition function δ can be extended to δ̂ : Q × Σ∗ → Q, where
δ̂(q, ǫ) = q, and δ̂(q, ω · σ) = δ̂(δ̂(q, ω), σ) for q ∈ Q, σ ∈ Σ, and ω ∈ Σ∗. A word ω ∈ Σ∗ is accepted by A

if δ̂(q0, ω) ∈ F . Without causing ambiguity, we also denote δ(q, σ) = q′ as (q, σ, q′) ∈ δ. For a transition
(q, σ, q′) ∈ δ, q and q′ are called the source state and target state of the transition, respectively.

In the L∗ algorithm, a learner is designed to construct a DFA which recognizes the unknown target
language L by asking a reliable teacher questions. The teacher knows the target language L represented by
a DFA and can answer the learner’s questions. These questions are two types of queries: (1) membership
query, i.e., “Is the word ω in L ?”, and (2) equivalence query, i.e., “Is the recognized language L′ of my
current hypothesis DFA equal to L ?”. The learner first makes multiple membership queries to gather
enough information to construct a hypothesis. Then he makes an equivalence query. If the teacher’s
answer is positive, the learner will be sure that the hypothesis indeed recognizes the target language L
and the algorithm terminates. Otherwise, the learner receives a counterexample word ctx miss-classified
by the hypothesis. The learner should make membership queries guided by the counterexample to gather
more information to construct a new hypothesis. This continues until termination. The observation table
contains all information that the learner knows about L at any stage.

Definition 2 (Observation table). An observation table for a DFAA is a 6-tuple T = (Σ, S, R,E, f, row),
where Σ is a finite alphabet; S,R,E ⊂ Σ∗ are finite sets, S is called the set of prefixes, R is called the
boundary, and E is called the set of suffixes; s · σ ∈ R for all s ∈ S and σ ∈ Σ; S,R are disjoint1):
S ∪R = S ⊎R; S ∪R is a prefix-closed set; f : (S ∪R) ·E → {−,+} is a classification function such that
for a word ω · e ∈ (S ∪ R) · E, f(ω · e) = − if ω · e /∈ L(A), and f(ω · e) = + if ω · e ∈ L(A); row is a
function that returns the vector of f(ω · e) indexed by e ∈ E for ω ∈ S ∪R.

Before suggesting a hypothesis, the learner asks membership queries to make the observation table T
closed and consistent:

• closed if for every r ∈ R, there exists s ∈ S such that row(s) = row(r).
• consistent if for every ω1, ω2 ∈ S, row(ω1) = row(ω2) implies row(ω1 · σ) = row(ω2 · σ) for ∀σ ∈ Σ.
If the table is not closed, there is some r ∈ R such that row(r) is different from row(s) for all s ∈ S.

The learner moves r from R to S, adds all words r · σ for σ ∈ Σ to R, and makes membership queries to
fill the extended observation table.

If the table is not consistent, one inconsistency is resolved through finding two words ω1, ω2 ∈ S, σ ∈ Σ
and e ∈ E such that row(ω1) = row(ω2) and f(ω1σ · e) 6= f(ω2σ · e) and adding this new suffix σ · e to
E. The learner also needs to fill the extended observation table by making membership queries. The
observation table is consistent when no more such words can be found.

If the observation table T = (Σ, S, R,E, f, row) is closed and consistent, the learner can construct a
hypothesis DFA HA = (Q,Σ, δ, q0, F), where Q = {row(s)|s ∈ S}, F = {row(s)|f(s ·ǫ) = +}, q0 = row(ǫ)
and δ(row(s), σ) = row(s · σ). When receiving a counterexample ctx, the learner adds all prefixes of ctx
to S and the possible inconsistency should be fixed.

2.2 Real-time automata

Real-time automata are very similar to classical finite automata despite that they take time into account
as well. RTAs can be defined under continuous-time semantics and discrete-time semantics. We recall
the definitions of timed automata and real-time automata in continuous-time semantics as follows.

Definition 3 (Timed automaton [19]). A timed automaton is a 6-tuple A = (Q,Σ, C, q0, F, E) that
consists of the following components:

1) ⊎ : disjoint union of two sets.

An J, et al. Sci China Inf Sci September 2021 Vol. 64 192103:4

• Q is a finite set of states (locations);
• Σ is a finite set called an alphabet or actions of A;
• C is a finite set called the clocks of A;
• q0 is the initial state;
• F ⊆ Q is the set of accepting states;
• E ⊆ Q × Σ × B(C) × P(C) × Q is a set of transitions, where B(C) is the set of clock (timing)

constraints involving clocks from C, and P(C) is the power set of C. An edge (q, σ, φ, r, q′) from E is
a transition from state q to q′ with performing action σ, satisfying guard (timing constraints) φ and
reseting the clocks in the set r.

Let C be the finite set of real-valued clocks, denoted by x, y, z, etc. We define the set of clock (timing)
constraints over C via the following grammar, where k ∈ N stands for any non-negative integer, and
⋄ ∈ {=, <,>,6,>} is a comparision operator: φ ::= true | x⋄k | ¬φ | φ∧φ. Hence, we can also represent
the timing constraints as real number intervals with endpoints in N.

Definition 4 (RTA). An RTA is a 6-tuple A = (Q,Σ,∆, q0, F, λ
c), where

• Q is a finite set of states (locations);
• Σ is a finite alphabet;
• ∆ ⊆ Q× Σ×Q is the transition relation;
• q0 ∈ Q is the initial state;
• F ⊆ Q is the set of accepting states;
• λc : ∆ → 2R>0 is the continuous-time labelling function which assigns a guard (timing constraint)

to each transition. We assume that the range λc (µ ∈ ∆) is a finite union of intervals whose endpoints
are in N ∪ {+∞}. λc is replaced by λd : ∆ → 2N in discrete-time situation.

A timed word over Σ × R>0 is a finite sequence ω = (σ1, τ1)(σ2, τ2) · · · (σn, τn), where σi ∈ Σ and
τi ∈ R>0 for 1 6 i 6 n. |ω| = n is the length of a timed word ω. We abbreviate (ǫ, t) to ǫ as the empty
word for all t ∈ R>0 and let |ǫ| = 0. A timed word ω is called a timed action if |ω| = 0 or |ω| = 1. The
real number in a timed action represents the time when the action is performed. As to real-time systems,
the time can be represented by either the global time or the local time. The global time means wall clock
time (or physical time) and the local time means the delay time between two actions, which is measured
by the local clock of the considered system.

A run of an RTA A is either a single initial state q0 or a finite sequence

ρ = q0
σ1−→
τ1

q1
σ2−→
τ2

· · ·
σn−−→
τn

qn,

where n > 0, (qi−1, σi, qi) ∈ ∆, and τi ∈ λc((qi−1, σi, qi)) for 1 6 i 6 n. For the sake of simplicity, we
denote λc((qi−1, σi, qi)) as λ

c(qi−1, σi, qi) for (qi−1, σi, qi) ∈ ∆ in this paper.
The trace of a run ρ, is a timed word defined as follows: trace(q0) = ǫ; if

ρ = q0
σ1−→
τ1

q1
σ2−→
τ2

· · ·
σn−−→
τn

qn, trace(ρ) = (σ1, t1)(σ2, t2) · · · (σn, tn),

where ti =
∑i

k=1 τk for 1 6 i 6 n. Here τi can be interpreted as the local delay time before σi happens
and ti is the global time when the action σi happens, so trace(ρ) is also called the global-timed trace
denoted as traceg(ρ). Owing to RTAs’ specialization that the single clock resets at every transition,
actually, τi is the clock valuation of the local time when the action σi happens. We therefore define the
local-timed trace of ρ as a timed word: tracel(q0) = ǫ and tracel(ρ) = (σ1, τ1)(σ2, τ2) · · · (σn, τn) if

ρ = q0
σ1−→
τ1

q1
σ2−→
τ2

· · ·
σn−−→
τn

qn

for 1 6 i 6 n. For an RTA A, the recognized language can be defined on local-timed traces as L(A) =
{tracel(ρ) | ρ starts from q0 and ends in qn ∈ F}.

Given a global-timed word ω
g = (σ1, t1)(σ2, t2) · · · (σn, tn), it can be easily transformed to an unique

local-timed word ω
l = (σ1, τ1)(σ2, τ2) · · · (σn, τn), where τ1 = t1 and τi = ti − ti−1 for 2 6 i 6 n.

For example, if ω1 = (a, 1.2)(b, 3)(a, 4) is a global-timed word, the corresponding local-timed word is
ω2 = (a, 1.2)(b, 1.8)(a, 1).

An RTA A is a DRTA if and only if there is at most one run for a given timed word

ω = (σ1, τ1)(σ2, τ2) · · · (σn, τn).

An J, et al. Sci China Inf Sci September 2021 Vol. 64 192103:5

q
0

q
0

q
1

q
1

Start
a, (5,7)

a, (5,7)

b, [2,4)

b, [2,4)

b, [2,4) [4,+∞)

a, [0,5] [7,+∞)
b, [0,+∞)

b, [0,+∞)

a, [0,+∞)

a, [0,+∞)

b, [0,+∞)

Start

(a) (b)

q
2

Figure 1 (Color online) (a) A DRTA A and (b) the corresponding CRTA A. An initial state is indicated by ‘Start’ and an

accepting state is represented by a double cycle in this paper.

Example 1. In Figure 1, the automaton on the left is a DRTA A. The state or location set Q =
{q0, q1}, the alphabet Σ = {a, b}, the initial state is q0, the set of accepting states F = {q1}, and the
transition relation ∆ = {(q0, b, q0), (q0, a, q1), (q1, b, q1)} with λc(q0, b, q0) = [2, 4), λc(q0, a, q1) = (5, 7)
and λc(q1, b, q1) = [0,+∞). For the self-transition on the state q0, the guard or timing constraint [2, 4)
means that the transition can only be fired when there is an action b performed after 2 to 4 time units
(except for the integer 4). Given a local-timed word ω1 = (b, 2.3)(a, 6), it corresponds to an accepting run
in A. For the first timed action (b, 2.3), the self-transition on state q0 can be fired, because 2.3 satisfies
the timing constraint [2, 4). After that, the local clock is reset and the transition from q0 to q1 can be
fired after 6 additional time units, because 6 satisfies the guard (timing interval) (5, 7). The automaton
stops at an accepting state q1. However, the local-timed word ω2 = (b, 2.3) is the trace of an unaccepting
run in A, because the automaton stops at q0 which is not an accepting state.

3 Learning real-time automata

For a target language recognized by a DRTA A, we transform the problem of learning a DRTA A to
the problem of learning a canonical real-time automaton A with the same recognized language. First,
we give the definition of the canonical real-time automata in continuous-time semantics. The difference
between continuous-time semantics and discrete-time semantics is still the difference between the labelling
functions λc and λd. After that, we represent our methods under continuous-time semantics in the
remainder of this paper.

3.1 Canonical real-time automata

Definition 5 (CRTA). A CRTA A = (Q,Σ,∆, q0, F, λ
c) is a DRTA such that:

• For all q ∈ Q, ΨΣ
q = {σ| q1 = q for (q1, σ, q2) ∈ ∆} has the restriction that ΨΣ

q = Σ;

• For all q ∈ Q and σ ∈ Σ, Ψλc

q,σ = {λc(q1, σ, q2)| q1 = q ∧ σ′ = σ for (q1, σ
′, q2) ∈ ∆} has two

restrictions: (1) the union of all elements of Ψλc

q,σ should be R>0, (2) the intersection of any two elements

of Ψλc

q,σ should be ∅.

Hence, for every state q ∈ Q of a CRTA A = (Q,Σ,∆, q0, F, λ
c), ΨΣ

q is equal to Σ. Each Ψλc

q,σ is a
partition of R>0 for every q ∈ Q, σ ∈ Σ.

Given a DRTAA = (Q,Σ,∆, q0, F, λ
c), the corresponding CRTA can be constructed as follows: (1) aug-

ment Q with a “sink” state qs /∈ Q, and qs is not an accepting state; (2) for every q ∈ Q, let (q, σ, qs)
be a new transition with λc(q, σ, qs) = [0,+∞) for every σ ∈ Σ \ΨΣ

q ; (3) for every q ∈ Q and σ ∈ Σ, let
(q, σ, qs) be a new transition with λc(q, σ, qs) = R>0 \

⋃

I∈Ψλc
q,σ

I, if
⋃

I∈Ψλc
q,σ

I 6= R>0.

Example 2. Figure 1 shows a DRTA A and the corresponding CRTA A. qs = q2 is the “sink” state
which is not accepting. The blue transitions are added by operation (2) and the red transitions are added
by operation (3). For the DRTA A, ΨΣ

q0
= {a, b} = Σ and ΨΣ

q1
= {b} 6= {a, b} = Σ. For the state q1,

let (q1, a, q2) be a new transition and λc(q1, a, q2) = [0,+∞). We get the blue transition from q1 to q2.
After conducting the operation (2) on the new state q2, we generate the two blue self transitions on state
q2. For the states q0, q1 and q2, Ψ

λc

q0,a
= {(5, 7)}, Ψλc

q0,b
= {[2, 4)}, Ψλc

q1,a
= {[0,+∞)}, Ψλc

q1,b
= {[0,+∞)},

Ψλc

q2,a
= {[0,+∞)}, and Ψλc

q2,b
= {[0,+∞)}. Because

⋃

I∈Ψλc
q0,a

I = (5, 7) 6= [0,+∞), let (q0, a, q2) be a

An J, et al. Sci China Inf Sci September 2021 Vol. 64 192103:6

new transition and λc(q0, a, q2) = [0, 5]∪ [7,+∞). Because
⋃

I∈Ψλc

q0,b
I = [2, 4) 6= [0,+∞), let (q0, b, q2) be

a new transition and λc(q0, b, q2) = [0, 2) ∪ [4,+∞). We get the two red transitions from q0 to q2.

Theorem 1. Given a DRTA A, there is a CRTA A such that L(A) = L(A).
Proof. With the above transformation process from a DRTA to a CRTA, the proof is straightforward.

3.2 Membership query and real-time observation table

In this subsection, we introduce the membership query for timed words and adapt the observation table
to the real-time setting. It is similar to the situation in L∗ algorithm except the additional notion of
timed words and fewer restrictions on the boundary R.

For simplicity, all time values in timed words are local time values in the remainder of this paper. In
RTAs cases, the mutual conversion between global-timed words and local-timed words is easily achieved,
as described in Subsection 2.2. The learner can construct a unique local-timed word for any global-timed
word which she wants to query. We also suppose that the counterexamples given by the teacher are also
local-timed words.

To gather enough information to construct a hypothesis, the learner makes membership queries like
“Is the timed word ω in target language L?”. In practice, a membership query is often conducted by
testing. In theory, we assume that the teacher has an oracle to answer the membership queries. In this
paper, when the learner asks whether timed words ω = (σ1, τ1)(σ2, τ2) · · · (σn, τn) is in target language
L, the teacher gives a positive answer if there is a run

ρ = q0
σ1−→
τ1

q1
σ2−→
τ2

· · ·
σn−−→
τn

qn

and qn is a final state. Otherwise, the teacher gives a negative answer. Information gathered by mem-
bership queries is stored in a real-time observation table T defined below.

Definition 6 (Real-time observation table). A real-time observation table for an RTA A is a 7-tuple
T = (Σ,Σ,S,R,E, f, row), where Σ is a finite alphabet; Σ = Σ×R>0 is the infinite set of timed actions;
S,R,E ⊂ Σ∗ are three finite sets, S is called the set of prefixes, R is called the boundary, and E is
called the set of suffixes; f and row are two functions.

• S,R are disjoint: S ∪R = S ⊎R;
• The empty timed word ǫ ∈ E and ǫ ∈ S;
• f : (S ∪R) ·E → {−,+} is a classification function such that for a timed word ω · e ∈ (S ∪R) ·E,

f(ω · e) = − if ω · e /∈ L(A), and f(ω · e) = + if ω · e ∈ L(A);
• row : a function that returns the vector of f(ω · e) indexed by e ∈ E for ω ∈ S ∪R.
The elements in the sets S,R,E are timed words and R has no restriction that s ·σ ∈ R for all s ∈ S

and σ ∈ Σ. Actually, the set Σ is an infinite set. The learner cannot query and add all timed words s ·σ
for s ∈ S and σ ∈ Σ to the table as in the setting of the L∗ observation table.

Before constructing a hypothesis H based on the real-time observation table T , the learner must ensure
that the table T satisfies five conditions:

• Closed if ∀r ∈ R, ∃s ∈ S such that row(s) = row(r).
• Reduced if ∀s1, s2 ∈ S, row(s1) 6= row(s2).
• Consistent if ∀ω1,ω2 ∈ S ∪ R, σ ∈ Σ, ω1 · σ,ω2 · σ ∈ S ∪ R and row(ω1) = row(ω2), then

row(ω1 · σ) = row(ω2 · σ).
• Prefix-closed if S ∪R is a prefix-closed set.
• Evidence-closed if ∀s ∈ S and ∀e ∈ E, s · e ∈ S ∪R.
The operations to make the table closed, evidence-closed, prefix-closed, and consistent are as follows.
Making T closed. If the table T is not closed, there is some r ∈ R such that row(r) is different from

row(s) for all s ∈ S. The learner need to move the r from R to S. What’s more, r · σ should be added
to R, where σ = (σ, 0) for all σ ∈ Σ. The operation adding r ·σ to R is important because it guarantees
to deal with all actions σ ∈ Σ for every state like the operation of L∗ algorithm and give a bottom value
0 to the time value of the timed actions. It helps to form a precondition of the partition functions which
we will describe at Subsection 3.3.

Making T evidence-closed. If the table T is not evidence-closed, the learner needs to add s · e to
R for all s ∈ S and e ∈ E, if s · e /∈ S ∪ R. After that, the learner fills the table using membership
queries.

An J, et al. Sci China Inf Sci September 2021 Vol. 64 192103:7

T
7 (a,5.2)

(a,5.2) a, (5,7)
(a,5.2)

(a,5.2)(b,0)

(a,0)(a,5.2)

(a,0)(a,5.2)

(a,0)(a,5.2)

(a,0)(a,7)

(a,5.2)(a,5.2)

(a,5.2)(a,0)

(a,0)

(a,0)(a,0)
(a,0)(b,0)

(a,7)

(b,0)

(b,0)

(b,0)

(b,0)

− +

+ −

−

−

−

+

−

−

−
−

−

q
−+ q

−+

q
−−

q
+−

q
+−Start

q−−M
7

Start

b, [0,+∞)

b, [0,+∞)

b, [0,+∞)

H
7

−

−

−

−

−

−

−
−

−

a, [0,5] [7,+∞)

a, [0,5] (5,+∞)

a, [0,5] (5,+∞)

(a) (b) (c)

∋

∋

Figure 2 The real-time observation table T7, the corresponding DFA M7, and the hypothesis H7 in Examples 3 and 4.

Making T prefix-closed. If the table T is not prefix-closed, the learner should add any necessary
prefixes of ω ∈ S ∪ R to R so that S ∪ R is prefix-closed. The learner also needs to fill the extended
observation table by asking membership queries.

Making T consistent. If the table T is not consistent, one inconsistency is resolved by adding σ · e
to E through finding two timed words ω1,ω2 ∈ S ∪R and ω1 · σ,ω1 · σ ∈ S ∪R for some σ ∈ Σ such
that row(ω1) = row(ω2) but row(ω1 · σ) 6= row(ω2 · σ), and utilizing a timed word e ∈ E such that
f(ω1σ · e) 6= f(ω2σ · e). After that, the learner fills the table by membership queries.

An reduced table will be guaranteed by the above operations and the counterexample processing
described in Subsection 3.4. If the table satisfies the five conditions, we call the table prepared. A table
may need several rounds to conduct the operations before it is prepared, because inconsistencies and
unclosed conditions may not be solved at once according to the above operations.

3.3 Hypothesis construction

When the real-time observation table T is prepared, a hypothesis can be generated. Hypothesis construc-
tion is divided into two steps. The learner first attempts to build a DFA M = (QM ,ΣM , δM , q0, FM)
based on the information in the table. Then the learner transforms M to an hypothesis H.

Given a prepared real-time observation table T = (Σ,Σ,S,R,E, f, row), the learner builds a DFA
M = (QM ,ΣM , δM , q0, FM) as follows:

• QM = {qrow(s)|s ∈ S};
• The initial state q0 = qrow(ǫ) for ǫ ∈ S;
• The set of accepting states F = {qrow(s) | f(s · ǫ) = + for s ∈ S and ǫ ∈ E};
• If ω · σ ∈ S ∪R for ω ∈ Σ∗ and σ ∈ Σ, then σ ∈ ΣM ;
• If ω · σ ∈ S ∪R for ω ∈ Σ∗ and σ ∈ Σ, then (qrow(ω),σ, qrow(ω·σ)) ∈ δM .

Example 3. Consider the table T7 in Figure 2, we describe the construction of the DFA M7 =
(QM7 ,ΣM7 , δM7 , q0, FM7). Because there are three timed words ǫ, (a, 5.2) and (a, 0) in S, the states
set QM7 = {q−+, q+−, q−−} for row(ǫ) = −+, row((a, 5.2)) = +− and row((a, 5.0)) = −−. The initial
state q0 = q−+; the set of accepting states FM7 = {q+−} as f((a, 5.2) · ǫ) = +; the alphabet ΣM7 =
{(a, 0), (a, 5.2), (a, 7), (b, 0)}; and the transition relation δM7 = {(q−+, (a, 5.2), q+−), (q−+, (a, 0), q−−),
(q−+, (a, 7), q−−), (q−+, (b, 0), q−−), (q+−, (a, 0), q−−), (q+−, (b, 0), q+−), (q−−, (a, 0), q−−), (q−−, (a, 5.2),
q−−), (q−−, (b, 0), q−−)}. We combine some transitions if they have the same source state, the same
action in Σ and the same target state.

Lemma 1. Given a prepared real-time observation table T = (Σ,Σ,S,R,E, f, row), the constructed
DFA M = (QM ,ΣM , δM , q0, FM) preserves the condition that it accepts the timed word ω ·e for ∀ω ·e ∈
(S∪R)·E if f(ω ·e) = + and does not accept any timed word ω ·e for ∀ω ·e ∈ (S∪R)·E if f(ω ·e) = −.
Proof. Given a timed word ω ∈ S ∪ R, there are two conditions: ω ∈ S or ω ∈ R. For the first
condition, if ω ∈ S, then ω · e ∈ S ∪ R for ∀e ∈ E because the table T is evidence-closed. In other
words, there is a timed words ω

′ ∈ S ∪ R such that ω
′ = ω · e. If f(ω · e) = +, then f(ω′ · ǫ) = +

which means that the ω
′ ends in qrow(ω′) ∈ FM . Therefore the constructed DFA M accepts ω′ = ω · e.

If f(ω · e) = −, then f(ω′ · ǫ) = − which means that the ω
′ ends in qrow(ω′) /∈ FM . Therefore the

constructed DFA M does not accept ω · e. For the second condition, if ω ∈ R, then there is a ω
′ ∈ S

with that row(ω′) = row(ω) because the table T is closed. row(ω′) = row(ω) ensures f(ω ·e) = f(ω′ ·e)
for ∀e ∈ E. Then we find a ω

′ ∈ S to represent ω and it comes to the first condition.

An J, et al. Sci China Inf Sci September 2021 Vol. 64 192103:8

After constructing the DFAM , the learner transformsM to an RTA hypothesisH = (Q,Σ,∆, q0, F, λ
c).

The set of states Q of the hypothesis is equal to the set of states QM of M . According to the operations
making the table prepared (i.e., we add r · σ to R, where σ = (σ, 0) for all σ ∈ Σ, if r is moved to S),
we can ensure that ΨΣ

q = Σ for all q ∈ QM . Then we need to compute each set Ψλc

q,σ for all q ∈ QM and
σ ∈ Σ.

Every action σ in ΣM is a timed word (σ, τ), where σ ∈ Σ and τ ∈ R>0. Ψq,σ = {τ | q1 = q ∧ σ′ =
σ for (q1, (σ

′, τ), q2) ∈ δM} is the set of time values for a state q ∈ QM and a word σ ∈ Σ. We can define
a partition function P c which maps the time values in Ψq,σ to several intervals under continuous-time
semantics (a partition function P d is also defined in discrete-time semantics). These intervals form the
partition Ψλc

q,σ.

Definition 7 (Partition function in continuous-time semantics). Given a monotone increasing list ℓ =
τ0, τ1, . . . , τn, where τ0 = 0, τi ∈ R>0 for 1 6 i 6 n, and ⌊τi⌋ 6= ⌊τj⌋ if τi, τj ∈ R>0 \ N and i 6= j for
1 6 i 6 n, 1 6 j 6 n, the partition function P c(ℓ) = Ψ = I0, I1, I2, . . . , In, where Ii ∈ 2R>0 for 0 6 i 6 n
such that:

•
⋃

Ii∈Ψ
Ii = [0,+∞);

• Ii ∩ Ij = ∅ if i 6= j for 0 6 i 6 n, 0 6 j 6 n;
• τi ∈ Ii for 0 6 i 6 n;
• for 0 6 i 6 n,

Ii =

[τi, τi+1) or [τn,+∞), if τi ∈ N ∧ τi+1 ∈ N,

(⌊τi⌋, τi+1) or (⌊τn⌋,+∞), if τi ∈ R>0 \ N ∧ τi+1 ∈ N,

[τi, ⌊τi+1⌋] or [τn,+∞), if τi ∈ N ∧ τi+1 ∈ R>0 \ N,

(⌊τi⌋, ⌊τi+1⌋] or (⌊τn⌋,+∞), if τi ∈ R>0 \ N ∧ τi+1 ∈ R>0 \N.

Definition 8 (Partition function in discrete-time semantics). Given a monotone increasing list ℓ =
τ0, τ1, . . . , τn, where τ0 = 0, τi ∈ N>0 for 1 6 i 6 n, the partition function P d(ℓ) = Ψ = I0, I1, I2, . . . , In,
where Ii ∈ 2N for 0 6 i 6 n such that:

•
⋃

Ii∈Ψ
Ii = [0,+∞);

• Ii ∩ Ij = ∅ if i 6= j for 0 6 i 6 n, 0 6 j 6 n;
• τi ∈ Ii for 0 6 i 6 n;
• for 0 6 i 6 n, Ii = [τi, τi+1 − 1] or [τn,+∞).
Note that the two definitions of partition functions are modified from the paper [18] in order to adapt

to both continuous-time semantics and discrete-time semantics.
For every q ∈ QM and σ ∈ Σ, we can generate a set Ψq,σ = {τ | q1 = q∧σ′ = σ for (q1, (σ

′, τ), q2) ∈ δM}
and a monotone increasing list ℓq,σ = Quicksort(Ψq,σ). ℓq,σ = τ0, τ1, τ2, . . . , τn satisfies the preconditions
of the partition function P c owing to the operations making the real-time observation table prepared and
the refinement function described in Subsection 3.4.

Now we can transform a DFA M to a hypothesis H as follows. The states set Q is equal to QM

as we described before. The initial state q0 and the set of accepting states F are also equal to the
corresponding items of M respectively. For every ℓq,σ = τ0, τ1, τ2, . . . , τn, Ψ

λc

q,σ = P c(ℓq,σ). For every
(q1, (σ

′, τ), q2) ∈ δM , let (q1, σ
′, q2) ∈ ∆ be a new transition with λc(q1, σ

′, q2) = I if q1 = q, σ′ = σ, τ ∈ I
where I ∈ Ψλc

q,σ = P c(ℓq,σ).

Example 4. In Figure 2, for the DFA M7 = (QM7 ,ΣM7 , δM7 , q0, FM7), we transform it to a hypothesis
H7 = (Q,Σ,∆, q0, F, λ

c). The set of states Q, the initial state q0 and the set of accepting states F are
equal to the corresponding items of M7, respectively. For the state q−+, Ψ

Σ
q−+

= {a, b} and Ψq−+,σ =

{0, 7, 5.2}, so ℓq−+,σ = 0, 5.2, 7 and Ψλc

q−+,σ = P c(ℓq−+,σ) = {[0, 5], (5, 7), [7,+∞)}. Then for the transition
(q−+, (a, 0), q−−) ∈ δM7 , let (q−+, a, q−−) be a new transition with λc(q−+, a, q−−) = [0, 5]. For the
transition (q−+, (a, 5.2), q−−), let (q−+, a, q+−) be a new transition with λc(q−+, a, q+−) = (5, 7). For
the transition (q−+, (a, 7), q−−), let (q−+, a, q−−) be a new transition with λc(q−+, a, q−−) = [7,+∞).
Note that we combine the first and third new transitions. With the same methods, we can finish the
transformation.

Lemma 2. Given a DFA M = (QM ,ΣM , δM , q0, FM) which is generated from a prepared real-time
table T , if a hypothesis RTA H = (Q,Σ,∆, q0, F, λ

c) is transformed from M , then H preserves that it
accepts the timed word ω · e for all ω · e ∈ (S ∪R) ·E if f(ω · e) = + and does not accept any timed
word ω · e for all ω · e ∈ (S ∪R) ·E if f(ω · e) = −.

An J, et al. Sci China Inf Sci September 2021 Vol. 64 192103:9

Proof. Given a DFA M , we map the time values in the timed actions to time value intervals. For a
transition (q1, (σ1, τ1), q2) ∈ δM , we build a corresponding transition (q1, σ1, q2) with λc(q1, σ1, q2) = I
and τ1 ∈ I ∈ Ψλc

q,σ in the hypothesis H. Given a timed words (σ1, τ1) · · · (σn, τn), H accepts the timed
words if M accepts it and vice versa. With Lemma 1, ω ·e ends in an accepting state in FM if f(ω ·e) = +.
Hence, H accepts the timed words ω · e if f(ω · e) = +. The same reasoning process for the condition
f(ω · e) = − is omitted.

Theorem 2. A hypothesis RTA H is a CRTA.
Proof. When we move an element r ∈ R to S, we add timed words r · (σ, 0) for every σ ∈ Σ to R.
It helps to distribute the actions in alphabet Σ to the transitions of which the source state is qrow(r). It

ensures that Ψqrow(r),σ = Σ. The partition function guarantees that Ψλc

qrow(r),σ
is a partition of R>0 for

each σ ∈ Σ. Hence, the hypothesis H satisfies the CRTA definition in Subsection 3.1.

3.4 Equivalence query and counterexample processing

Now we introduce the equivalence query and the counterexample processing. The learner submits a
hypothesis H to the teacher for an equivalence query “Is the recognized language L(H) equal to the
target language L ?”. In practice, teachers with complete knowledge of the target language are often
not available, so other methods (such as conformance testing [26]) are used. In theory, just like the
L∗ algorithm, the teacher is assumed to have an oracle to easily answer the question and to give a
counterexample if the answer is negative. In this paper, the oracle knows exactly the DRTA A which
recognizes the target language and has the capacity to answer the language-equivalence problem whether
L(H) = L(A).

According to Theorem 1, there exists a CRTA A such that L(A) = L(A). Hence, the language
equivalence problem whether L(H) = L(A) can be converted to the problem whether L(H) = L(A),
where H and A are two CRTAs. This can be divided into two language inclusion problems whether
L(H) ⊆ L(A) and L(A) ⊆ L(H). The most of decision procedures for language inclusion proceed by
complementation and emptiness checking of the intersection [27]: L(A) ⊆ L(B) iff L(A) ∩ L(B) = ∅.
There is an important result that the language inclusion problem of timed automata with one clock is
decidable by converting it to a reachability problem on an infinite graph [28]. So the language inclusion
problem of real-time automata is decidable. But we also know that the timed automata with a single
clock cannot be complemented [19]. However, real-time automata can be complemented [13, 29]. Hence,
for real-time automata, we can decide the language inclusion problem by complementation and emptiness
checking of the intersection. A timed word ω ∈ L(H) ∩ L(A) is a negative counterexample (i.e., ctx− =
(ω,−)) if L(H) ∩ L(A) 6= ∅ and a timed word ω

′ ∈ L(H) ∩ L(A) is a positive counterexample (i.e.,
ctx+ = (ω′,+)) if L(H) ∩ L(A) 6= ∅. The teacher gives a positive answer (i.e., YES) for the equivalence
query if L(H) ∩ L(A) = ∅ and L(H) ∩ L(A) = ∅. Otherwise, the teacher gives a negative answer (i.e.,
NO) with a counterexample ctx either positive or negative. The algorithm for the equivalence query is
described in Algorithm 1.

Algorithm 1 equivalence query(H)

Input: a hypothesis H.

Output: equivalent : a Boolean value to identify whether L(H) = L(A), where CRTA A recognizes the target language;

ctx : a counterexample.

1: equivalent ← false; ctx ← ǫ;

2: flag
−
, flag+ ← true;

3: if L(H) ∩ L(A) 6= ∅ then

4: flag
−
← false;

5: Select a timed word ω from L(H) ∩ L(A); //Negative counterexample

6: ctx− ← (ω,−);

7: end if

8: if L(H) ∩ L(A) 6= ∅ then

9: flag+ ← false;

10: Select a timed word ω
′ from L(H) ∩ L(A); //Positive counterexample

11: ctx+ ← (ω′,+);

12: end if

13: equivalent ← flag
−
∧ flag+;

14: if equivalent = false then

15: ctx ← select a counterexample from ctx+ and ctx−;

16: end if

17: return equivalent, ctx.

An J, et al. Sci China Inf Sci September 2021 Vol. 64 192103:10

In lines 5, 10 and 15, the teacher selects a timed word randomly and does not always need to select
a counterexample with exact endpoints of the intervals. The inexact intervals of the partitions will be
corrected by our partition function step by step because the teacher can always indicate the difference
between the current hypothesis and the target.

When receiving a counterexample ctx = (ω,+) or (ω,−), where ω = (σ1, τ1)(σ2, τ2) · · · (σn, τn), we
utilize a refinement function g to normalize τi to a “symbolic” number g(τi) if τi ∈ R>0 \N for 1 6 i 6 n
under continuous-time semantics.

Definition 9 (Refinement function). A refinement function g : R>0\N → R>0\N such that g(c) = ⌊c⌋+θ
where θ is a constant in (0, 1) and g(c1) = g(c2) if ⌊c1⌋ = ⌊c2⌋ for all c1, c2 ∈ R>0 \ N.

Given a constant θ ∈ (0, 1), for the timed word ω with non-integer time values, we transform it to
ωr = · · · (σi, g(τi)) · · · if τi ∈ R>0 \N for 1 6 i 6 n. The main reason of the refinement is as follows. We
need to solve the conflict caused by the miss-distributions in the generated DFA where there exist two
timed actions (σ, c1) and (σ, c2) with the same action σ and c1, c2 ∈ R>0 \N and ⌊c1⌋ = ⌊c2⌋, but located
on two transitions which have the same source state and different target states. Such miss-distributions
also cause the violation of the precondition of the partition function, which cannot be rectified. We give
an illustrated explanation in Example 5.

Theorem 3. Given a counterexample ctx = (ω,+/−) where ω = (σ1, τ1)(σ2, τ2) · · · (σn, τn), ctx
′ =

(ωr,+/−) is also a counterexample, where ωr = · · · (σi, g(τi)) · · · if τi ∈ R>0 \ N for 1 6 i 6 n.
Proof. We first consider a positive counterexample (ω,+). It means that the hypothesis has a run

ρ = q0
σ1−→
τ1

q1
σ2−→
τ2

· · ·
σn−−→
τn

qn

with qn /∈ F and the target automaton has a run

ρ′ = q′0
σ1−→
τ1

q′1
σ2−→
τ2

· · ·
σn−−→
τn

q′n

with q′n ∈ F ′. For each

qi−1
σi−→
τi

qi,

where τi ∈ R>0 \ N and 1 6 i 6 n, there exist a transition (qi−1, σi, qi) such that τi ∈ λc(qi−1, σi, qi)
in the hypothesis and a transition (q′i−1, σi, q

′
i) such that τi ∈ λc(q′i−1, σi, q

′
i) in the target automaton.

Because λc(qi−1, σi, qi) is a union of intervals whose endpoints are in N∪ {+∞} and ⌊τi⌋ = ⌊g(τi)⌋, then
g(τi) ∈ λc(qi−1, σi, qi). Hence, there exists a timed action (σi, g(τi)) such that

qi−1
σi−−−→

g(τi)
qi

in the hypothesis and
q′i−1

σi−−−→
g(τi)

q′i

in the target automaton. For the timed word ωr, there exist a run

ρr = q0 · · · qi−1
σi−−−→

g(τi)
qi · · · qn

in the hypothesis and a run
ρ′r = q′0 · · · q

′
i−1

σi−−−→
g(τi)

q′i · · · q
′
n

in the target automaton. Then ctx′ = (ωr,+) is still a positive counterexample. The proof for a negative
counterexample proceeds similarly.

Owing to Theorem 3, θ can be any number in (0, 1). In the remainder of this paper, let θ = 0.2.
Given a refined counterexample (ωr,+/−), we add all prefixes of ωr to R except those already in

S ∪R. Note that we do not need the refinement function g under discrete-time semantics.

Example 5. Consider the prepared table T4 and the corresponding hypothesis H4 in Figure 3, the
recognized language of H4 is not the same as that for the target automaton A in Figure 1. The teacher
gives a counterexample ((a, 0)(a, 5.8),−). If we add the prefixes of (a, 0)(a, 5.8) to R directly, the table
T
′
5 is shown in Figure 3. T

′
5 is prepared and we build a DFA M ′5. We find that the time value 5.8 is

An J, et al. Sci China Inf Sci September 2021 Vol. 64 192103:11

−

+

−

−

−

+

−

−

+

−

−

−

+

−

−

q
−

q
−

q
+

q
+Start

Start

T
4

T
5

(a, 5.2)
(a, 5.2)

(a, 5.2)

(a, 0), (a, 5.8), (a, 7)

(a, 0)
(a, 0)

(a, 7)
(a, 7)

(b, 0)
(b, 0)

(b, 0)

(b, 0)

(a, 0)

(a, 5.2)(a, 0)
(a, 5.2)(a, 0)

(a, 0)(a, 5.8)

(a, 0)(a, 5.8), −

(a, 5.2)(b, 0)
(a, 5.2)(b, 0)

′ a, [0,5] [7,+∞) b, [0,+∞)

b, [0,+∞)

a, [0,+∞)

a, (5,7)

H
4

M
5
′

(a) (b)

∋

∋
∋

∋

Figure 3 The new table T
′

5 after adding the counterexample ((a, 0)(a, 5.8),−) directly and the generated DFA M ′

5.

−

−

−

g (5.1)=5.2

g (5.8)=5.2

−

−

−

+

Closed

−

+

−

−

−

+

−

+

−

−

−

+

−

−

+

−

−

−

+

−

−

Consistent, evidence-closed

− +

+ −

−

−

−

+

−

−

−

−

−

−

−

−

−

−

Closed

− +

+ −

−−

−

−

−

−

+ −

−

−

−

−

−

−

−

−

−

−

− +

+ −

−−

−

−

+ −

−

−

−

−

−

− +

+ −

− +

+ −

−

−

−

−

−

−−

−

−

−

−

−

−

−

−

−

−

+ −

−

−

−

−

−

−

−

−

− +

+ −

−

−

T
1

T
2

T
3

T
4

T
6T

5

(a, 0)
(a, 0)

(a, 5.1), + (a, 5.2), +

(b, 0)
(a, 5.2)

(a, 5.2)
(a, 5.2)

(a, 5.2)

(a, 5.2)

(a, 0)

(a, 5.2)

T
9

(a, 5.2)

T
8 (a, 5.2)

(a, 7)

(b, 0)

(a, 0)
(a, 7), −

(b, 0)

>

> > >

>

>

>

>

> >

>

(a, 5.2)(a, 0)

(a, 5.2)(b, 0)

(a, 0)

(b, 0)

(a, 5.2)(a, 0)

(a, 5.2)(a, 0)

(a, 5.2)(b, 0)

(a, 7)

(a, 7)

(b, 2)

(b, 4)

(a, 0)

(b, 0)

(a, 0)(a, 5.2)

(a, 5.2)(a, 5.2)

(a, 0)(a, 5.2)

(a, 0)(a, 5.2), −

(b, 4)(a, 5.2), −

(a, 0)(a, 5.8), −

(b, 2)(a, 5.2), +

(a, 0)(a, 0)

(a, 0)(b, 0)

(a, 5.2)(a, 5.2)

(b, 2)(a, 5.2)

(b, 4)(a, 5.2)

(a, 5.2)(b, 0)

(a, 5.2)

(a, 5.2)(a, 0)

(a, 7)

(a, 0)

(b, 0)

(a, 0)(a, 5.2)

(a, 5.2)(b, 0)

(a, 5.2)(a, 0)

(b, 0)

(a, 5.2)(b, 0)

(a, 5.2)

(a, 0)

T
7 (a, 5.2)

(a, 7)

(b, 2)

(a, 0)(a, 5.2)

(a, 0)(a, 0)

(a, 0)(b, 0)

(a, 5.2)(a, 5.2)

(b, 2)(a, 5.2)

(a, 5.2)(a, 0)

(b, 0)

(a, 5.2)(b, 0)

(a, 5.2)

(a, 0)

(a, 7)

(a, 0)(a, 5.2)

(a, 0)(a, 0)

(a, 0)(b, 0)

(a, 5.2)(a, 5.2)

(a, 5.2)(a, 0)

(b, 0)

(a, 5.2)(b, 0)

∋

∋

∋

∋

∋

∋
∋

∋

∋

∋
∋

∋

∋

∋
∋

∋

∋

∋

Figure 4 The real-time observation tables for the illustrative example.

miss-distributed to a wrong transition, because the timed action (a, 5.8) should be accepted. Hence, the
time actions (a, 5.2) and (a, 5.8) should be in the same transition with the source state q−. The monotone
increasing list ℓq−,a = 0, 5.2, 5.8, 7 violates the precondition of the partition function. It cannot be handled
by our partition function. So, the whole learning process is unable to continue and the miss-distributed
situation will never be solved. However, we will get a refined counterexample ((a, 0)(a, 5.2),−) by using
a refinement function g with θ = 0.2. The new table T5 shown in Figure 4 is not consistent, which will
be solved by the operations for restoring consistency.

An J, et al. Sci China Inf Sci September 2021 Vol. 64 192103:12

3.5 Learning algorithm

The initial real-time observation table is T = (Σ,Σ,S,R,E, f, row), where S = {ǫ}, E = {ǫ} and
R = {(σ, 0) |σ ∈ Σ}. The table is filled by membership queries for timed words ω · e where ω ∈ (S ∪R)
and e ∈ E. If the table is not prepared, we check which conditions the table violates and conduct the
corresponding operations described in Subsection 3.2. When the table is prepared, we build a hypothesis
H and ask an equivalence query. If the answer is positive, the recognized language L(H) of the current
hypothesis is equal to the target language L. Otherwise, we receive a counterexample and conduct the
counterexample processing described in Subsection 3.4. The whole procedure repeats until the teacher
gives a positive answer for an equivalence query. The learning algorithm can be represented as pseudo-
code in Algorithm 2. In a way analogous to [18, Theorem 1], we show the following.

Algorithm 2 Learning real-time automaton

Input: the real-time observation table T = (Σ,Σ,S,R,E, f, row).

Output: the hypothesis H recognizing the target language.

1: S ← {ǫ}; R← {(σ, 0) |σ ∈ Σ}; E ← {ǫ};

2: Fill T by membership queries;

3: equivalent ← false;

4: while equivalent = false do

5: prepared ← is prepared(T); // Whether the table is prepared

6: while prepared = false do

7: if T is not closed then

8: make closed(T);

9: end if

10: if T is not consistent then

11: make consistent(T);

12: end if

13: if T is not evidence-closed then

14: make evidence closed(T);

15: end if

16: if T is not prefixed-closed then

17: make prefix closed(T);

18: end if

19: prepared ← is prepared(T);

20: end while

21: H ← build hypothesis(T); // Constrcuting a hypothesis H

22: equivalent, ctx ← equivalence query(H);

23: if equivalent = false then

24: ctx processing(T , ctx); //The counterexample processing

25: end if

26: end while

27: return H.

Theorem 4. Algorithm 2 terminates and returns a minimal CRTA H which recognizes the target
language.
Proof. By Lemmas 1 and 2, Theorems 2 and 3, the algorithm always constructs CRTAs as hypotheses.
S indicates the states and we always add a new element to S when a new state is needed. The learning
algorithm can be thought of as a product of a L∗ process for the alphabet Σ and a L∗ process with
partition and refinement steps for the interval R>0. Hence, the algorithm terminates and returns a
CRTA which has a minimal number of states and recognizes the target language.

3.6 Illustrative example

Let us illustrate the learning process for a target language L defined over Σ = Σ×R>0 where Σ = {a, b}.
L is recognized by the DRTA A and is also recognized by the CRTA A in Figure 1. The real-time
observation tables, the corresponding DFAs and hypotheses constructed during the learning process are
shown in Figures 4 and 5.

We initialize the real-time observation table T = (Σ,Σ,S,R,E, f, row) with S = {ǫ}, R = {(a, 0),
(b, 0)} and E = {ǫ} as described in Algorithm 2. We denote it as T1 in Figure 4. Fortunately, T1 is
prepared. We build a DFA M1 and transform it to a hypothesis H1. We make an equivalence query and
get a counterexample ctx1 = ((a, 5.1),+). With the refinement function g(5.1) = 5.2, we get a refined
counterexample ((a, 5.2),+). We add the prefixes of the refined counterexample to R and then get the
table T2. T2 is not closed because (a, 5.2) ∈ R with row((a, 5.2)) = + but there is no s ∈ S such that

An J, et al. Sci China Inf Sci September 2021 Vol. 64 192103:13

q
−

q
−

q
−

q
−

q
+

q
−

q
+

q
−

q
+

q
+

Start

(a, 0)

(a, 0), (a, 7)

(a, 0)

(a, 0)

(a, 0)

(a, 5.2)

(b, 0)

(b, 2) (b, 0)

(b, 2) (b, 0)

(b, 0)

(b, 0)

(a, 0), (a, 7)

(a, 0), (a, 5.2)

(a, 0), (a, 5.2)

(a, 0), (a, 5.2)(b, 0), (a, 4)

(a, 0), (a, 7)

(a, 0), (a, 7)

(a, 0), (a, 5.2)

(a, 0), (a, 5.2)

(a, 0), (a, 5.2)
(b, 0)

(b, 0)

(b, 0)

(b, 0)

(a, 5.2)

(a, 5.2)

(a, 5.2)

(b, 0)

(b, 0)

M
1

M
8

M
9

M
7

M
4

M
3

Start Start

Start Start Start

Start

(b,0)

q
− +

q
+ −

q
− +

q
+ −q

− +

q
− −

q
− − q

− −

q
− +

q
+ −

q
− −

q
− +

q
+ −

q
− −

q
− +

q
+ −

q
− −

q
+ − Start Start

Start Start Start

a, [0,+∞)

a, [0,+∞) a, [0,+∞)

a, [0,5]

b, [0,+∞)

b, [0,+∞)

b, [0,+∞)

b, [0,+∞)

b, [0,+∞)

b, [0,+∞)

b, [0,+∞)

b, [0,+∞)

b, [0,+∞)

b, [2,+∞)

b, [0,2)

b, [0,+∞)

b, [0,+∞)

b, [2,4)

b, [0,+∞)

a, (5,+∞)

H
1

H
3

H
7

H
8 H

9

H
4

a, [0,5] [7,+∞)

a, (5,7)

a, (5,7)

a, (5,7)

a, (5,7)

a, (5,7)

a, [0,5] [7,+∞)

a, [0,5] [7,+∞)
a, [0,5] [5,+∞)

a, [0,5] [5,+∞)

a, [0,5] [7,+∞)

a, [0,5] [5,+∞)

a, [0,5] [5,+∞)

a, [0,5] [5,+∞)

b, [0,2] [4,+∞)

a, [0,5] [5,+∞)

Figure 5 The DFAs and hypotheses for the illustrative example.

row(s) = +. We move (a, 5.2) to S and add two timed words (a, 5.2)(a, 0), (a, 5.2)(b, 0) to R. The table
T3 is prepared and we build M3 and H3. After an equivalence query, we add the counterexample ctx2 =
((a, 7),−) to R. Because T4 is prepared, we build M4 and H4. Note that we combine the transitions
which have the same source state, the same action in Σ and the same target state. Hence, in M4, there is a
transition with two actions (a, 0), (a, 7) ∈ ΣM4 . The hypothesis H4 cannot recognize the target language
L. After receiving a counterexample ctx3 = ((a, 0)(a, 5.8),−), we generate a refined counterexample
((a, 0)(a, 5.2),−). We need to add all prefixes of (a, 0)(a, 5.2) to R. Because the prefixes ǫ and (a, 0) have
been already in S ∪R, we just add the prefix (a, 0)(a, 5.2) to R. The table T5 is not consistent because
row(ǫ) = − = row((a, 0)) while row(ǫ · (a, 5.2)) = row((a, 5.2)) = + 6= − = row((a, 0) · (a, 5.2)). It
means that ǫ and (a, 0) actually lead to different states and we need a new state to handle this. Because
f(ǫ · (a, 5.2) · ǫ) = + 6= − = f((a, 0) · (a, 5.2) · ǫ), we add a new timed word e = (a, 5.2) · ǫ = (a, 5.2) to E

to solve the inconsistency. After adding (a, 5.2)(a, 5.2) to R to make the table evidence-closed, we get the
table T6. T6 is not closed because row((a, 0)) = −− and there is no timed word σ ∈ S with row(σ) = −−.
Hence, (a, 0) is moved to S. Then the table T7 is prepared. We add the prefixes (b, 2) and (b, 2)(a, 5.2)
of the counterexample ctx4 = ((b, 2)(a, 5.2),+) to the table after an equivalence query for H7. T8 is also
prepared. We generate the automata M8 and H8. The counterexample ctx4 just adds new evidences to
approach the right partitions. After adding the prefixes of the counterexample ctx5 = ((b, 4)(a, 5.2),−)
to the table, we get a prepared table T9. Finally, we get a positive answer after submitting the generated
hypothesis H9 to the teacher. The whole process terminates and the last hypothesis H9 is the same as
the CRTA A in Figure 1 after computing the unions of time intervals on two transitions (q−−, a, q−−)
and (q+−, a, q−−).

4 Complexity

Given a target language L which is recognized by the minimal CRTA A, let the state sets size |Q| = n,
the alphabet size |Σ| = k and the maximal partition size m > |Ψλc

q,σ| for ∀q ∈ Q, σ ∈ Σ.
In our algorithm, S indicates the states and E distinguishes the states. The number of the timed

An J, et al. Sci China Inf Sci September 2021 Vol. 64 192103:14

Table 1 The information of the experiments in which the alphabet size |Σ| = k = 4 and the maximal partition size m = 4 > |Ψλc

q,σ |

and the number of states |Q| = n ranges in {5, 7, 9, 11, 13, 15}

Case ID |Q| |∆|mean

Membership Equivalence
tmean

Nmin Nmean Nmedian Nmax Nmin Nmean Nmedian Nmax

4 4 4 5 35.8 248 295.5 278 376 17 28.1 28 38 3.4

6 4 4 7 54.6 505 699.8 708 948 33 45.4 46 65 29.0

8 4 4 9 68.0 888 1138.2 1130 1488 40 54.0 54 66 40.7

10 4 4 11 83.7 1225 1824.6 1864 2560 50 68.4 69 90 145.1

12 4 4 13 99.6 1561 2476.8 2620 3278 64 79.9 79 97 280.0

14 4 4 15 117.6 2376 3258.7 3050 4914 78 97.9 98 114 500.1

words in E is bounded by n (actually a number between ⌈log2 n⌉ and n).
Every counterexample helps to approach A in two ways: one for refining the partitions and the other

for adding a new state. There are k×m×n intervals of partitions at most. We need O(kmn) equivalence
queries for refining the partitions, because the teacher may not give a counterexample to identify an
exact interval of a partition every time. Because the number of states is n, we need at most n equivalence
queries for adding new states. Therefore, the number of equivalence queries is bounded by O(kmn).

Obviously, we need at most n2 membership queries to fill the table rows in S. Depending the operation
making table closed, we add at most kn timed words in R. We also add O(kmn) prefixes of counterex-
amples in R. What’s more, the evidence-closed operation adds O(n2) timed words in R. Totally, we
need O(kn2 + kmn2 + n3) membership queries to fill the table rows in R. Therefore, the number of the
membership queries is bounded by O(kn2 + kmn2 + n3) at most.

5 Implementation and experiments

Based on the methods reported above, we have developed a prototypical tool for learning deterministic
real-time automata. The tool is implemented in Python. All of the experiments have been evaluated on
a 3.6 GHz Intel Core-i7 processor with 8 GB RAM running 64-bit Ubuntu 16.04.

Our method is the first work on active learning for RTAs and guarantees to generate a correct DRTA
when given a target language which can be represented by a DRTA. In Angluin’s framework, if the correct
model can always be learned, the evaluation for the active automaton learning is not correctness, but the
number of the two kinds of queries is used to generate a correct automaton. Hence, the main goal of the
experiments is to support the complexity analysis in Section 4. We randomly generate 340 DRTAs without
redundant states (i.e., (1) the unreachable states from the initial state and (2) the states from which the
automaton has no run to reach any final state) as the target automata. These automata are all learned by
our tool successfully. The information of the experiments is compressed in three tables. Each table has 6
cases and each case includes 20 different DRTAs. The case 7 4 4 is reused in Tables 2 and 3. Every case
ID is composed by three numbers. They present the state number of every DRTA in the case, the size of
the alphabet |Σ| and the maximal partition size m > |Ψλc

q,σ| respectively. |∆|mean is the mean number of
the transitions of the corresponding CRTAs in a case. The membership and equivalence columns contain
the statistical data of membership queries and equivalence queries to learn a corresponding CRTA in a
case respectively. Each of them has four elements Nmin, Nmean, Nmedian and Nmax which denote the
minimal number, mean number, median number and maximal number respectively. tmean is the mean
value of wall-clock time in seconds. We also conduct other experiments with larger scale of RTAs2).
Besides, it takes 0.07 s to learn the illustrative example.

In Table 1, we fix the size of the alphabet |Σ| = k = 4 and the maximal partition size m = 4.
The number of states of the DRTAs range in set {4, 6, 8, 10, 12, 14}. These DRTAs have no redundant
states. Hence the number of states |Q| = n of the corresponding CRTA is in the set {5, 7, 9, 11, 13, 15}.
Figure 6(a) shows the relation between the number of states |Q| = n and the number of membership
queries MEM QUERY, and Figure 6(d) presents the relation between the number of states |Q| = n
and the number of equivalence queries EQ QUERY. We find that the number of membership queries is
bounded by O(n3) and the number of equivalence queries is bounded by O(n).

In Table 2, we fix the size of the alphabet |Σ| = k = 4 and the number of states of all corresponding
CRTA to |Q| = n = 8. The maximal partition size m ranges from 2 to 7. Figures 6(b) and (e) show that

2) More experiments can be found at the tool page: https://github.com/Leslieaj/RTALearning.

An J, et al. Sci China Inf Sci September 2021 Vol. 64 192103:15

MIN
MAX
MEAN
MEDIAN

5 7 9 11 13 15

1000

2000

3000

4000

5000

M
E

M
_
Q

U
E

R
Y

M
E

M
_
Q

U
E

R
Y

M
E

M
_
Q

U
E

R
Y

M
E

M
_
Q

U
E

R
Y

MIN
MAX
MEAN
MEDIAN

2 3 4 5 6 7

500

1000

1500

MIN
MAX
MEAN
MEDIAN

2 3 4 5 6 7

500

1000

1500

MIN
MAX
MEAN
MEDIAN

5 7 9 11 13 15

20

40

60

80

100

120

E
Q

_
Q

U
E

R
Y

E
Q

_
Q

U
E

R
Y

MIN
MAX
MEAN
MEDIAN

2 3 4 5 6 7

20

40

60

80

100

120
MIN
MAX
MEAN
MEDIAN

2 3 4 5 6 7

20

40

60

80

100

|Q|

|Q|
k

m

m k

(a) (b)

(c) (d)

(e) (f)

Figure 6 (Color online) (a) The relation between |Q| and the number of membership queries; (b) the relation between m

and the number of membership queries; (c) the relation between k and the number of membership queries; (d) the rela-

tion between |Q| and the number of equivalence queries; (e) the relation between m and the number of equivalence queries;

(f) the relation between k and the number of equivalence queries.

Table 2 The information of the experiments in which the alphabet size |Σ| = k = 4 and the number of states |Q| = n = 8 and

the maximal partition size m > |Ψλc

q,σ | ranges from 2 to 7

Case ID m |∆|mean

Membership Equivalence
tmean

Nmin Nmean Nmedian Nmax Nmin Nmean Nmedian Nmax

7 4 2 2 45.7 435 629.0 629 861 18 22.8 22 29 8.9

7 4 3 3 51.1 495 666.4 654 861 26 31.0 30 38 14.9

7 4 4 4 58.1 575 787.8 771 1022 36 45.4 45 66 30.1

7 4 5 5 60.6 610 864.9 837 1162 34 49.7 49 67 28.2

7 4 6 6 78.6 715 1160.6 1167 1554 58 83.0 83 106 97.5

7 4 7 7 83.2 900 1322.7 1357 1694 70 93.4 95 124 142.4

the number of membership queries and the number of equivalence queries increase linearly as a function
of the maximal partition size. We find that the statistical data are similar when the maximal partition
size m is 4 and 5. This is likely owing to randomness.

In Table 3, we fix the number of states of all corresponding CRTA to |Q| = n = 8 and the maximal
partition size to m = 4. The size of the alphabet |Σ| = k ranges from 2 to 7. Figure 6(c) and (f) show that
the number of membership queries and the number of equivalence queries increase linearly as a function
of the alphabet size.

An J, et al. Sci China Inf Sci September 2021 Vol. 64 192103:16

Table 3 The information of the experiments in which the number of states |Q| = n = 8 and the maximal partition size m = 4 >

|Ψλc

q,σ | and the alphabet size |Σ| = k ranges from 2 to 7

Case ID k |∆|mean

Membership Equivalence
tmean

Nmin Nmean Nmedian Nmax Nmin Nmean Nmedian Nmax

7 2 4 2 33.7 296 568.7 570 798 23 31.0 33 37 7.8

7 3 4 3 45.1 420 649.0 648 980 25 36.9 36 56 14.2

7 4 4 4 58.1 575 787.8 771 1022 36 45.4 45 66 30.1

7 5 4 5 73.1 695 1034.6 1060 1428 43 56.3 53 79 83.7

7 6 4 6 86.0 870 1127.5 1104 1589 48 64.1 62 89 88.4

7 7 4 7 100.8 1020 1308.7 1299 1743 48 74.0 77 99 202.2

6 Conclusion

In this paper, we present an efficient Angluin-style learning algorithm for deterministic real-time au-
tomata. We convert the problem of learning a DRTA A to the problem of learning a canonical real-time
automaton A with the same recognized language, i.e., L(A) = L(A). With the help of the partition
functions and the refinement function, we can learn a correct model in both continuous-time semantics
and discrete-time semantics. We also implement a prototypical tool and utilize it to learn a number of
randomly generated RTAs. The experiments provide support for the correctness of our algorithm and
the complexity analysis.

Acknowledgements Jie AN and Miaomiao ZHANG have been supported partly by National Natural Science Foundation of

China (Grant Nos. 61972284, 61472279). Jie AN, Lingtai WANG, Bohua ZHAN and Naijun ZHAN have been supported partly

by National Natural Science Foundation of China (Grant Nos. 61625206, 61732001, 61872341). Bohua ZHAN has been partly

supported by CAS Pioneer Hundred Talents Program (Grant No. Y9RC585036). The authors would like to thank the anonymous

reviewers for their insightful comments and suggestions raised in the reviewing process.

References

1 Angluin D. Learning regular sets from queries and counterexamples. Inf Computat, 1987, 75: 87–106

2 Aarts F, Vaandrager F W. Learning I/O automata. In: Proceedings of the 21st International Conference on Concurrency

Theory, Paris, 2010. 71–85

3 Howar F, Steffen B, Jonsson B, et al. Inferring canonical register automata. In: Proceedings of the 13th International

Conference on Verification, Model Checking, and Abstract Interpretation, Philadelphia, 2012. 251–266

4 Aarts F, Fiterau-Brostean P, Kuppens H, et al. Learning register automata with fresh value generation. In: Proceedings of

the 12th International Colloquium on Theoretical Aspects of Computing, 2015. 165–183

5 Cassel S, Howar F, Jonsson B, et al. Active learning for extended finite state machines. Form Asp Comput, 2016, 28: 233–263

6 Bollig B, Habermehl P, Kern C, et al. Angluin-style learning of NFA. In: Proceedings of the 21st International Joint Conference

on Artificial Intelligence, Pasadena, 2009. 1004–1009

7 Farzan A, Chen Y, Clarke E M, et al. Extending automated compositional verification to the full class of omega-regular

languages. In: Proceedings of the 14th International Conference on Tools and Algorithms for the Construction and Analysis

of Systems, Budapest, 2008. 2–17

8 Li Y, Chen Y, Zhang L J, et al. A novel learning algorithm for büchi automata based on family of dfas and classification

trees. In: Proceedings of the 23rd International Conference on Tools and Algorithms for the Construction and Analysis of

Systems, Uppsala, 2017. 208–226

9 Bollig B, Katoen J, Kern C, et al. libalf: the automata learning framework. In: Proceedings of the 22nd International

Conference on Computer Aided Verification, Edinburgh, 2010. 360–364

10 Isberner M, Howar F, Steffen B. The open-source learnlib—a framework for active automata learning. In: Proceedings of the

27th International Conference on Computer Aided Verification, San Francisco, 2015. 487–495

11 Fiterau-Brostean P, Janssen R, Vaandrager F W. Combining model learning and model checking to analyze TCP implemen-

tations. In: Proceedings of the 28th International Conference on Computer Aided Verification, Toronto, 2016. 454–471

12 Verwer S, de Weerdt M, Witteveen C. Efficiently identifying deterministic real-time automata from labeled data. Mach Learn,

2012, 86: 295–333

13 Dima C. Real-time automata. J Autom Languages Combinat, 2001, 6: 3–23

14 Verwer S, Weerdt M, Witteveen C. The efficiency of identifying timed automata and the power of clocks. Inf Comput, 2011,

209: 606–625

15 Alur R, Fix L, Henzinger T A. Event-clock automata: a determinizable class of timed automata. Theor Comput Sci, 1999,

211: 253–273

16 Grinchtein O, Jonsson B, Leucker M. Learning of event-recording automata. Theor Comput Sci, 2010, 411: 4029–4054

17 Maler O, Mens I. Learning regular languages over large alphabets. In: Proceedings of the 20th International Conference on

Tools and Algorithms for the Construction and Analysis of Systems, Grenoble, 2014. 485–499

18 Drews S, D’Antoni L. Learning symbolic automata. In: Proceedings of the 23rd International Conference on Tools and

Algorithms for the Construction and Analysis of Systems, Uppsala, 2017. 173–189

19 Alur R, Dill D L. A theory of timed automata. Theor Comput Sci, 1994, 126: 183–235

20 Stigge M, Ekberg P, Guan N, et al. The digraph real-time task model. In: Proceedings of the 17th IEEE Real-Time and

Embedded Technology and Applications Symposium, Chicago, 2011. 71–80

21 Abdullah J, Dai G, Mohaqeqi M, et al. Schedulability analysis and software synthesis for graph-based task models with

resource sharing. In: Proceedings of the 24th IEEE Real-Time and Embedded Technology and Applications Symposium,

Porto, 2018. 261–270

https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1007/s00165-016-0355-5
https://doi.org/10.1007/s10994-011-5265-4
https://doi.org/10.1016/j.ic.2010.11.023
https://doi.org/10.1016/S0304-3975(97)00173-4
https://doi.org/10.1016/j.tcs.2010.07.008
https://doi.org/10.1016/0304-3975(94)90010-8

An J, et al. Sci China Inf Sci September 2021 Vol. 64 192103:17

22 Denning D E, Sacco G M. Timestamps in key distribution protocols. Commun ACM, 1981, 24: 533–536

23 Verwer S, Weerdt M D, Witteveen C. An algorithm for learning real-time automata. In: Proceedings of the 18th Annual

Machine Learning Conference of Belgium and the Netherlands, Amsterdam, 2007. 57–64

24 Tappler M, Aichernig B K, Larsen K G, et al. Learning timed automata via genetic programming. 2018. ArXiv: 1808.07744

25 Schmidt J, Ghorbani A, Hapfelmeier A, et al. Learning probabilistic real-time automata from multi-attribute event logs. Intell

Data Anal, 2013, 17: 93–123

26 Berg T, Grinchtein O, Jonsson B, et al. On the correspondence between conformance testing and regular inference. In:

Proceedings of the 8th International Conference on Fundamental Approaches to Software Engineering, Edinburgh, 2005.

175–189

27 Hopcroft J E, Ullman J D. Introduction to Automata Theory, Languages, and Computation. Boston: Addison-Wesley Pub-

lishing Company, 1979

28 Ouaknine J, Worrell J. On the language inclusion problem for timed automata: closing a decidability gap. In: Proceedings of

the 19th IEEE Symposium on Logic in Computer Science, Turku, 2004. 54–63

29 Wang L T, Zhan N J, An J. The opacity of real-time automata. IEEE Trans Comput-Aided Des Integr Circ Syst, 2018, 37:

2845–2856

https://doi.org/10.1145/358722.358740
https://arxiv.org/abs/1808.07744
https://doi.org/10.3233/IDA-120569
https://doi.org/10.1109/TCAD.2018.2857363

	Introduction
	Preliminaries
	Learning deterministic finite automaton
	Real-time automata

	Learning real-time automata
	Canonical real-time automata
	Membership query and real-time observation table
	Hypothesis construction
	Equivalence query and counterexample processing
	Learning algorithm
	Illustrative example

	Complexity
	Implementation and experiments
	Conclusion

