
Modelling and Verifying
Dependability of Hybrid Systems in

HCSP
SHULING WANG1 , FLEMMING NIELSON2 , HANNE RIIS NIELSON2 AND

NAIJUN ZHAN1

1State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, China
2DTU Compute, Technical University of Denmark, Denmark

Email: {wangsl,znj}@ios.ac.cn

Hybrid systems are dynamic systems with interacting discrete computation and continuous physical
processes. They have become ubiquitous in our daily life, e.g., automotive, aerospace, medical
systems and so on, particular, many of them are safety-critical. For these safety critical systems,
it is demanded to guarantee not only the correctness (safety normally), i.e., its functions satisfying
the given requirements, but also the dependability, i.e., the resistance to the unexpected behaviour
from its environment, as many of them are deployed in highly uncertain environment, and the
unexpected behaviour from the environment may result in a correct system malfunctioning. For
example, the interactions between a controller and a physical processes are possibly realised via
(wireless) communications. In case that the communications fail, the expected control from the
controller may get lost and as a consequence the physical processes cannot behave as expected. In
the literature, how to guarantee the correctness of hybrid systems has been extensively investigated,
but there is little work on dependability of hybrid systems. To address this issue, this paper proposes
a formal framework by extending HCSP, a formal modeling language for hybrid systems, for
modelling and verification of hybrid systems in the presence of communication failure. Thus, safety
and dependability of hybrid systems can be considered in the unform framework. Furthermore, by
leveraging the expressivity and efficiency, we present two inference systems for the extension, and
correspondingly implement two theorem provers in Isabelle/HOL. To illustrate our approach, we
consider a case study on train control system originating from Chinese Train Control System, for

which the two theorem provers are applied separately and the proof results are compared.

Keywords: Hybrid Systems, HCSP, HHL, Dependability, Communication Fault Tolerance, Safety
Verification, Inference System

Received ; revised

1. INTRODUCTION

Hybrid systems, also known as cyber-physical systems,
are dynamic systems with interacting discrete computation
and continuous-time physical processes. Many hybrid
systems in real applications, such as avionics, the traffic
control systems, are required to conform to a higher
safety standard. In hybrid systems, the physical processes
evolve continuously with respect to time, and the discrete
computers monitor and control the physical processes, to
meet the safety requirement. The correct functioning of
the control from the controllers is essential to guarantee the
safety of hybrid systems. In the literature, this issue has been
studied extensively through system verification or controller
synthesis. For a hybrid system with a given controller,
the verification of hybrid systems, i.e., whether under the
given controller the hybrid system can achieve the desired
safety requirement, can be done either through model-
checking mainly depending on reachability computation

[1, 2, 3, 4, 5, 6, 7] or through deductive way mainly
depending on invariant generation [8, 9, 10, 11, 12]. As
an alternative, given an incomplete hybrid system and a
specification, one can synthesize a correct controller which
ensures the given specification is satisfied by the system
by restricting its behaviour. There are many approaches
proposed for controller synthesis of hybrid systems, e.g.,
[13, 14, 15, 16, 17, 18].

However, a correct implementation of a hybrid system
cannot guarantee that its functionality always works well
as it may be deployed in a highly uncertainty environment,
so it is impossible to predict all possible behaviours of
the environment during the design, and some unexpected
behaviour of the environment may make the system
malfunctioning. Therefore, dependability, resistance to
the unexpected behaviour of the environment, is another
important issue in the design of safety-critical hybrid
systems. But people have not paid enough attention
on it so far. In addition, most of modern computer

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

2 S. WANG, F. NIELSON, H. R. NIELSON AND N. ZHAN

controlled systems are remotely controlled via (wireless)
communications, thus communication failure is the most
common unexpected behaviour of the environment of a
safety-critical hybrid system. In this paper, we will try
to address this issue by investigating when communication
fails and thus the controllers fail to behave as expected,
how to still guarantee that the functionality of the system
works correctly. In another word, we aim to develop hybrid
systems with communication fault tolerance.

A Motivating Example We illustrate our motivation by
a train control system that originates from Chinese Train
Control System (CTCS) [19]. The system is depicted in
Fig. 1. It consists of three inter-communicating components:
Train, Driver and on board vital computer (VC). We assume
that the train owns arbitrarily long movement authority,
within which the train is allowed to move only, and must
conform to a safety requirement, i.e. the velocity must be
non-negative and cannot exceed a maximum limit. The
train acts as a continuous plant, and moves with a given
acceleration; both the driver and the VC act as controllers,
in such a way that, either of them observes the velocity
of the train periodically, and then according to the safety
requirement, computes the new acceleration for the train to
follow in the next period. According to the specification
of the system, the message from the VC always takes high
priority over the one from the driver.

..Train.

Driver

.

VC

.

trd

.

dr

.

vc

.

trv

FIGURE 1. The structure of train control example

However, the expected monitoring and control from VC
or driver may fail due to communication failure, that may
be caused by many reasons, e.g. if the driver falls asleep,
or if the VC gets malfunction. As a consequence, the train
may get no response from any of them within a duration
of time. The safety requirement of the train will then be
violated easily. This poses the problem of how to build a
safe hybrid system in the presence of losing control due to
communication failure.

Comparison with The Conference Paper

In our previous work [20], we proposed a programming
notation for formally modeling hybrid systems in the
presence of communication failure. Meanwhile, for
specifying and verifying such programs, we defined a
deductive inference system for reasoning about whether
the program satisfies the annotated safety property. In
subsequence, an interactive theorem prover is implemented
based on the inference system and has been applied to the
train control example. As a direct application, a safe system

for the example is built such that:

(F1) the error configurations where neither driver nor VC is
available are not reachable;

(F2) the velocity of the train keeps always in the safe range,
although in the presence of denial of control from the
driver or the VC due to communication failure.

However, as seen from the result, the proof of the case
study is done manually, rather lengthy about 900 lines of
code. In this paper, we extend the previous work [20] in the
following aspects:

• By leveraging the expressivity of the inference system
and the efficiency of proof, we propose a more
lightweight inference system. In [20], we use the
interval temporal logic, i.e. duration calculus, to
specify the interval property of the system. Here
instead, we use first-order logic to specify the invariant
property that holds for all reachable states of the
system. Different from the interval property, the
invariant property is independent on time. Thus we call
them time aware and time oblivious inference systems
respectively.

• We add a new general rule (SHF) in the time aware
inference system, to strengthen the history formula for
processes by adding the history for the termination
point.

• We prove that the time oblivious inference system is
an over-approximation of the time aware inference sys-
tem: if a specification is proved by the time oblivious
inference system, then an equivalent specification can
be proved by the time aware inference system. Thus,
the time aware inference system is more expressive than
the time oblivious one.

• We implement a subsequent theorem prover based on
the new inference system.

• We re-investigate the case study on train control system
by applying the new prover. The same result stated
above is obtained. The proof in the prover based
on the time oblivious inference system allows more
automation, and the length of the proof in it is reduced
to about 300 lines of code. From this point of view, the
time oblivious inference system is more efficient than
the time aware one.

Although the time oblivious inference system is less
expressive, it is more preferred in real applications because
of its efficiency. Actually, it can obtain the same results as
the time aware one in many cases.

Structure of This Paper

The rest of the paper is organized as follows. The related
work is listed at the end of this section. In Section 2 and
Section 3, we present the syntax and semantics for the formal
modeling language. It is a combination of Hybrid CSP
(HCSP) [21, 22], a process algebra based modeling language
for describing hybrid systems, and the binders from Quality
Calculus [23], a process calculus that allows one to take

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

MODELLING AND VERIFYING DEPENDABILITY OF HYBRID SYSTEMS 3

measures in case of unreliable communications. We call
it bHCSP for simplicity. With the introducing of binders,
bHCSP is capable of programming a safe system to be
executed in an open environment that does not always live
up to expectations.

In Section 4, we revisit the time aware inference system
presented in [20] for reasoning about bHCSP. For each
construct P , the specification is of the form {φ} P {ψ,HF},
where φ and ψ are the precondition and postcondition
recording the initial and terminating states of P respectively,
and HF the interval property held throughout the whole
execution history of P . Different from [20], the inference
system is strengthened by addition of a general rule, which
adds the history of the single termination point into the
history formula of a process. In Section 5, we present the
time oblivious inference system for reasoning about bHCSP.
The specification is of the same form, but the formula HF
is in the form of first-order logic, specifying the invariant
property of P . The comparison between the two inference
systems is also given. In Section 6, the theorem provers
implemented based on the inference systems are introduced.
In Section 7, we apply the two theorem provers separately
to the train control case study, and verify the properties (F1)
and (F2) respectively. At last, we conclude the paper and
address the future work.

Contribution to Development of Cyber-physical Systems

The development of cyber-physical systems is widely recog-
nized as a highly complex and challenging task [24, 25]. To
develop complex systems, model-based design is proposed
and has been successfully applied in industry, especially for
embedded systems and cyber-physical systems [24, 26]. In
the model-based design approach, first of all, an abstract
model of the system to be developed is built, and then ex-
tensive analysis and verification are conducted on the model,
so that errors can be detected and corrected at early stages of
design of the system. Afterwards, model transformations are
applied iteratively to generate more concrete models at dif-
ferent levels of granularity, even to implemental code. This
paper aims to study the first topic of model-based design of
cyber-physical systems.

The first challenge faced is to have an expressive
modelling language which can model all kinds of features
of cyber-physical systems such as continuous and discrete
dynamics, and the interaction between them. Meanwhile,
to realize the correct control to the continuous process, it is
extremely important to have a system with communication
fault tolerance, i.e. it is still able to behave in a safe
manner in case that the interactions between the controller
and the plant fail due to communication failure. The bHCSP
modelling language proposed in this work meet all the above
requirements. Furthermore, the verification of the models is
aided by the two inference systems and the corresponding
theorem provers in Isabelle/HOL. As a consequence, the
correctness of the system can be checked in the early design
stage.

Related Work There have been numerous work on formal
modeling and verification of hybrid systems. The most
popular model for hybrid systems is hybrid automata [1,
27, 28]. For automata-based approaches, the verification
of hybrid systems is reduced to computing reachable sets,
which is conducted either by model checking [1] or by
the decision procedure of Tarski algebra [2]. However,
the verification based on reachability computation is not
scalable and only applicable to some specific linear hybrid
systems. For the first approach based on model checking,
it requires the decidability of the problem and therefore can
only be applied to some simple hybrid systems, e.g. timed
automata [29], multirate automata [30], and rectangular
automata [31, 32]. The second approach can apply to a
wider range of hybrid systems [2], however, it still can not
be applied to general linear hybrid systems and nonlinear
systems. Applying abstraction or (numeric) approximation
[33, 3, 4] can improve the scalability, but as a price we have
to sacrifice the precision.

In contrast, deductive methods increasingly attract more
attention in the verification of hybrid systems as it can scale
up to complex systems. Differential invariant generation for
differential equations is at the core of deductive verification
of hybrid systems. Invariants for linear hybrid systems
are first studied [34, 35, 36]. For polynomial systems,
the method based on constraint solving is proposed to
generate polynomial invariants [37, 38, 5, 39]. The basic
idea of these methods is to reduce the invariant generation
problem to a constraint solving problem using techniques
from polynomial ideal theory. Another method is based on
the SOS-relaxation approach [8, 40], to compute barrier
certificates for polynomial hybrid systems. The work on
generating non-polynomial invariants for polynomial hybrid
systems are also studied recently [41, 42]. For elementary
hybrid systems, some ideas on generating invariants for them
are investigated in [39, 43]. In [44], the author proposed
a change-of-bases method to transform elementary hybrid
systems to polynomial and linear systems. In [45], the
elementary hybrid systems are reduced to polynomial hybrid
systems for verification, by replacing all non-polynomial
terms with newly introduced variables based on symbolic
abstraction.

Based on the differential invariants, the deductive
verification method can be extended to hybrid systems. A
differential-algebraic dynamic logic for hybrid programs
[46] was proposed by extending dynamic logic with
continuous statements, and has been applied for safety
checking of European Train Control System [47]. The
hybrid programs proposed in [46] are a textual encoding
of hybrid automata. In [48], Hybrid Event-B is proposed
by extending Event-B with continuous behaviors, and
furthermore, a suite of proof obligations is defined for
semantics and verification of Hybrid Event-B. In [49, 50,
51], the Hoare logic is extended to hybrid systems modeled
by Hybrid CSP [21, 22], and then used for safety checking
of Chinese Train Control System.

All the work mentioned above focus on safety without
considering denial-of-service security attacks from the

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

4 S. WANG, F. NIELSON, H. R. NIELSON AND N. ZHAN

environment. Quality Calculus [23, 52] for the first time
proposed a programming notation for expressing denial-of-
service in communication systems, but is currently limited
to discrete time world.

2. SYNTAX

We first choose Hybrid CSP (HCSP) [21, 22] as the mod-
elling language for hybrid systems. HCSP inherits from C-
SP the explicit communication model and concurrency, thus
is expressive enough for describing distributed components
and the interactions among them. Moreover, it extends CSP
with differential equations for representing continuous evo-
lution, and provides several forms of interrupts to continuous
evolution for realizing communication-based discrete con-
trol. On the other hand, Quality Calculus [23, 52] is recent-
ly proposed to programming software components and their
interactions in the presence of unreliable communications.
With the help of binders specifying the success or failure of
communications and the communications to be performed
before continuing, it becomes natural in Quality Calculus to
plan for reasonable behavior in case the ideal behavior fail-
s due to communication failure and thereby to increase the
quality of the system.

In our approach, we will extend HCSP with the notion
of binders from Quality Calculus, for modelling hybrid
systems in the presence of unreliable communications. The
overall modelling language, called bHCSP, is given by the
following syntax:

e ::= c | x | fk(e1, ..., ek)
b ::= ch!e{u1} | ch?x{u2} | &q(b1, · · · , bn)
P,Q ::= skip | x := e | b | ⟨F(ṡ, s) = 0&B⟩

| ⟨F(ṡ, s) = 0&B⟩� b→ Q
| P∥Q | P ;Q | ω → P | P ∗

Expressions e are used to construct data elements and
consist of constants c, data variables x, and function
application fk(e1, ..., ek).

Binders b specify the inputs and outputs to be performed
before continuing. The output ch!e{u1} expects to
send message e along channel ch, with u1 being the
acknowledgement in case the communication succeeds, and
the dual input ch?x{u2} expects to receive a message
from ch and assigns it to variable x, with u2 being
the acknowledgement similarly. We call both u1 and
u2 acknowledgment variables, and assume in syntax that
for each input or output statement, there exists a unique
acknowledgement variable attached to it. In the sequel,
we will use V and A to represent the set of data variables
and acknowledgement variables respectively, and they are
disjoint. For the general form &q(b1, · · · , bn), the quality
predicate q specifies the sufficient communications among
b1, · · · , bn for the following process to proceed. In
syntax, q is a logical combination of quality predicates
corresponding to b1, · · · , bn recursively (denoted by
q1, · · · , qn respectively below). For example, the quality
predicates for ch!e{u1} and ch?x{u2} are boolean formulas
u1 = 1 and u2 = 1. There are two special forms of quality

predicates, abbreviated as ∀ and ∃, with the definitions:

∀(q1, · · · , qn)
def
= q1 ∧ · · · ∧ qn and ∃(q1, · · · , qn)

def
=

q1 ∨ · · · ∨ qn. More forms of quality predicates can be found
in [23].

EXAMPLE 1. For the train example, let binder b0 be
&∃(dr?xa{ua}, vc?ya{wa}), the quality predicate of which
amounts to ua = 1 ∨ wa = 1. It expresses that, the
train is waiting for the acceleration from the driver and the
VC, via dr and vc respectively, and as soon as one of the
communications succeeds (i.e., when the quality predicate
becomes true), the following process will be continued
without waiting for the other if it is not ready to occur.
P,Q define processes. The skip and assignment x := e

are defined as usual, taking no time to complete. Binders b
are explained above. The continuous evolution ⟨F(ṡ, s) =
0&B⟩, where s represents a vector of continuous variables
and ṡ the corresponding first-order derivative of s, forces s
to evolve according to the differential equations F as long
as B, a boolean formula of s that defines the domain of
s, holds, and terminates when B turns false. Without loss
of generality, we assume B is open, e.g. s < 2. The
communication interrupt ⟨F(ṡ, s) = 0&B⟩ � b → Q
behaves as ⟨F(ṡ, s) = 0&B⟩ first, and if b occurs before
the continuous terminates, the continuous will be preempted
and Q will be executed instead.

The rest of the constructs define compound processes.
The parallel composition P∥Q behaves as if P and Q
run independently except that the communications along
the common channels connecting P and Q are to be
synchronized. In syntax, P and Q in parallel are restricted
not to share variables, nor input or output channels. The
sequential composition P ;Q behaves as P first, and if it
terminates, as Q afterwards. The conditional ω → P
behaves as P if ω is true, otherwise terminates immediately.
The condition ω can be used for checking the status of data
variables or acknowledgement, thus in syntax, it is a boolean
formula on data and acknowledgement variables (while for
the above continuous evolution, B is a boolean formula
on only data variables). The repetition P ∗ executes P for
arbitrarily finite number of times.

Some constructs of HCSP in [21, 22] are derivable from
the above syntax, e.g.,

wait d
def
= t := 0; ⟨ṫ = 1&t < d⟩

⟨F(ṡ, s) = 0&B⟩�d Q
def
= (t := 0);

⟨(F(ṡ, s) = 0 ∧ ṫ = 1)&(t < d ∧B)⟩; (t ≥ d→ Q)

Especially the timeout ⟨F(ṡ, s) = 0&B⟩ �d Q executes
according to the continuous evolution ⟨F(ṡ, s) = 0&B⟩
for the first d time units, then Q afterwards. Furthermore,
with the addition of binders, it is able to derive a number of
other known constructs of process calculi, e.g., internal and
external choice [23].

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

MODELLING AND VERIFYING DEPENDABILITY OF HYBRID SYSTEMS 5

EXAMPLE 2. Following Example 1, the following model

t := 0; 1⟨ṡ = v, v̇ = a, ṫ = 1&t < T ⟩� b0
2 →

(wa = 13 → a := ya;wa = 0 ∧ ua = 14 → a := xa;
wa = 0 ∧ ua = 05 → skip)

denoted by P0, expresses that, the train moves with velocity
v and acceleration a, and as soon as b0 occurs within T time
units, i.e. the train succeeds to receive a new acceleration
from either the driver or the VC, then its acceleration a
will be updated correspondingly by case analysis. It can be
seen that the acceleration from VC will be used in higher
priority. For later reference we have annotated the program
with labels (e.g. 1, 2, etc.).

3. TRANSITION SEMANTICS

We first introduce a variable now to record the global time
during process execution, and then define the set V+ =
V ∪ A ∪ {now}. A state, ranging over σ, σ′, is a mapping
from variables in V+ to their respective values, and we
will use Σ to represent the set of states. A flow, ranging
over h, h′, defined on a closed time interval [r1, r2] with
0 ≤ r1 ≤ r2, or an infinite interval [r,∞) with some r ≥ 0,
assigns a state in Σ to each point in the interval. Given a state
σ, an expression e is evaluated to a value under σ, denoted
by σ(e).

Each transition relation has the form (P, σ)
α−→

(P ′, σ′, h), where P is a process, or ϵ introduced for
representing the terminal process, σ, σ′ are states, h is a
flow, and α is an event. It represents that starting from initial
state σ, P evolves into P ′ and ends with state σ′ and flow h,
while performing event α. When the above transition takes
no time, it produces a point flow, i.e. σ(now) = σ′(now)
and h = {σ(now) 7→ σ′}, and we will call the transition
discrete and write (P, σ)

α−→ (P ′, σ′) instead without losing
any information. The label α represents events, which are
classified into the following cases:

• a discrete internal event, including skip, assignment,
evaluation of boolean conditions, or termination of a
continuous evolution, and so on, uniformly denoted by
τ ;
• an external communication, including ch!c or ch?c
with c ∈ R, meaning that an output or an input along ch
occurs, to be synchronized with the compatible input
or output from the external environment in parallel
respectively;
• an internal communication, denoted by ch†c, meaning
that a synchronized communication occurs along
channel ch. More precisely, when both ch!c and ch?c
occur, ch†c occurs as a consequence;
• a time delay d for some positive real d > 0

We call the events but the time delay discrete events, and
will use β to range over them. For simplicity, we will use
(P, σ)

α−→ as an abbreviation of the following definition:

∃P ′, σ′, h.(P, σ)
α−→ (P ′, σ′, h)

meaning that, starting from state σ, P is able to take a
transition by performing event α.

The transition relations for binders are defined in Table 1.
The input ch?x{u} may perform an external communication
ch?c, and as a result x will be bound to c and u set to 1,
or it may keep waiting for d time. For the second case, a
flow hd over [σ(now), σ(now) + d] is produced, satisfying
that for any t in the domain, hd(t) = σ[now 7→ t], i.e.
no variable but the clock now in V+ is changed during the
waiting period. Similarly, there are two rules for output
ch!e{u}. Here σ[now + d] is an abbreviation for σ[now 7→
σ(now) + d].

Before defining the semantics of general binders, we
introduce two auxiliary functions. Assume (b1, · · · , bn)
is an intermediate tuple of binders that occurs during
execution (thus some of bis might contain ϵ), q a quality
predicate, and σ a state. The function [[q]](b1, · · · , bn)
defines the truth value of q under (b1, · · · , bn), which is
calculated by replacing each sub-predicate qi corresponding
to bi in q by bi ≡ ϵ respectively (here ≡ represents
the structural equality); and function ⟨|(b1, b2, · · · , bn)|⟩σ
returns a state that fully reflects the failure or success
of binders b1, · · · , bn, and can be constructed from σ by
setting the acknowledgement variables corresponding to
the failing inputs or outputs among b1, · · · , bn to be 0.
Based on these definitions, binder &q(b1, · · · , bn) executes
according to the following cases: it may keep waiting for
d time when q is false under (b1, · · · , bn), or it performs
a communication event β that is enabled for some bi, or it
performs a τ transition and terminates, when q turns true
under (b1, · · · , bn), and moreover, no communication event
is enabled for all bis. Notice the special case that q turns
true, but there is still communication event enabled for some
bi. For this case, the binder will not terminate until all the
enabled communication events are taken.

EXAMPLE 3. Starting from σ0, the execution of b0 in
Example 1 may lead to three possible states at termination:

• σ0[now + d, xa 7→ ca, ua 7→ 1, wa 7→ 0], indicating
that the train succeeds to receive ca from the driver after
d time units have passed, but fails for the VC;
• σ0[now + d, ya 7→ da, wa 7→ 1, ua 7→ 0], for the
opposite case of the first;
• σ0[now + d, xa 7→ ca, ua 7→ 1, ya 7→ da, wa 7→ 1],
indicating that the train succeeds to receive messages
from the driver as well as the VC after d time.

The transition relations for other processes are defined in
Table 2 and Table 3. The rules for skip and assignment
can be defined as usual. The idle rule represents that the
process can stay at the terminating state ϵ for arbitrary d
time units, with nothing changed but only the clock progress.
For continuous evolution, for any d > 0, it evolves for
d time units according to F if B evaluates to true within
this period (the right end exclusive). A flow hd,s over
[σ(now), σ(now) + d] will then be produced, such that
for any o in the domain, hd,s(o) = σ[now 7→ o, s 7→
S(o − σ(now))], where S(t) is the solution as defined in

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

6 S. WANG, F. NIELSON, H. R. NIELSON AND N. ZHAN

(Input)
(ch?x{u}, σ) ch?c−−−→ (ϵ, σ[x 7→ c, u 7→ 1])

(ch?x{u}, σ) d−→ (ch?x{u}, σ[now + d], hd)

(Output)

(ch!e{u}, σ) ch!σ(e)−−−−→ (ϵ, σ[u 7→ 1])

(ch!e{u}, σ) d−→ (ch!e{u}, σ[now + d], hd)

(Auxiliary functions)
[[q]](b1, · · · , bn) = q[(b1 ≡ ϵ)/q1, · · · , (bn ≡ ϵ)/qn]

⟨|()|⟩σ = σ ⟨|(ϵ, b2, · · · , bn)|⟩σ = ⟨|(b2, · · · , bn)|⟩σ
⟨|(ch?x{u}, b2, · · · , bn)|⟩σ = ⟨|(b2, · · · , bn)|⟩(σ[u 7→ 0])

⟨|(ch!e{u}, b2, · · · , bn)|⟩σ = ⟨|(b2, · · · , bn)|⟩(σ[u 7→ 0])

⟨|(&qk(bk1, · · · , bkm), b2, · · · , bn)|⟩σ =

⟨|(bk1, · · · , bkm, b2, · · · , bn)|⟩σ

(Binder-1)
[[q]](b1, · · · , bn) = false

(&q(b1, · · · , bn), σ) d−→ (&q(b1, · · · , bn), σ[now + d], hd)

(Binder-2)

(bi, σ)
β−→ (b′i, σ

′) β ∈ {ch?c, ch!c}
(&q(b1, · · · , bi, · · · , bn), σ)

β−→ (&q(b1, · · · , b′i, · · · , bn), σ′)

(Binder-3)

[[q]](b1, · · · , bn) = true ¬∃β ∈ {ch?c, ch!c}.((bi, σ)
β−→)

⟨|(b1, · · · , bn)|⟩σ = σ′

(&q(b1, · · · , bn), σ)
τ−→ (ϵ, σ′)

TABLE 1. The transition relations for binders

the rule. Otherwise, the continuous evolution terminates at a
point if B evaluates to false at the point.

For communication interrupt, the process may evolve for
d time units if both the continuous evolution and the binder
can progress for d time units, and then reach the same
state and flow as the continuous evolution does. It may
perform a discrete event over b, and if the resulting binder
b′ is not ϵ, then the continuous evolution is kept, otherwise,
the continuous evolution will be interrupted and Q will be
followed to execute, and for both cases, will reach the same
state and flow as the binder does. Finally, it may perform a τ
event and terminate immediately, if the continuous evolution
terminates with a τ event and b is not able to terminate by
taking a τ event. Notice that the final state σ′′ needs to
be reconstructed from σ′ by resetting the acknowledgement
variables of those unsuccessful binders occurring in b to be
0.

Before defining the semantics of parallel composition, we
need to introduce some notations. Two states σ1 and σ2 are
disjoint, iff dom(σ1) ∩ dom(σ2) = {now} and σ1(now) =
σ2(now). For two disjoint states σ1 and σ2, σ1 ⊎ σ2 is
defined as a state over dom(σ1) ∪ dom(σ2), satisfying that
σ1 ⊎ σ2(v) is σ1(v) if v ∈ dom(σ1), otherwise σ2(v) if
v ∈ dom(σ2). We lift this definition to flows h1 and h2

(Skip) (skip, σ) τ−→ (ϵ, σ)

(Ass) (x := e, σ)
τ−→ (ϵ, σ[x 7→ σ(e)])

(Idle) (ϵ, σ)
d−→ (ϵ, σ[now + d], hd)

(Continuous-1)
For any d > 0, S(t) is a solution of F(ṡ, s) = 0

over [0, d] satisfying that S(0) = σ(s)

and ∀t ∈ [0, d).hd,s(t+ σ(now))(B) = true

(⟨F(ṡ, s) = 0&B⟩, σ) d−→ (⟨F(ṡ, s) = 0&B⟩,
σ[now + d, s 7→ S(d)], hd,s)

(Continuous-2)
σ(B) = false

(⟨F(ṡ, s) = 0&B⟩, σ) τ−→ (ϵ, σ)

(Interrupt-1)
(⟨F(ṡ, s) = 0&B⟩, σ) d−→ (⟨F(ṡ, s) = 0&B⟩, σ′, h)

(b, σ)
d−→ (b, σ′′, h′′)

(⟨F(ṡ, s) = 0&B⟩� b→ Q, σ)
d−→

(⟨F(ṡ, s) = 0&B⟩� b→ Q, σ′, h)

(Interrupt-2)

(b, σ)
β−→ (b′, σ′) b′ ̸= ϵ

(⟨F(ṡ, s) = 0&B⟩� b→ Q, σ)
β−→

(⟨F(ṡ, s) = 0&B⟩� b′ → Q, σ′)

(Interrupt-3)

(b, σ)
β−→ (ϵ, σ′)

(⟨F(ṡ, s) = 0&B⟩� b→ Q, σ)
β−→ (Q, σ′)

(Interrupt-4)
(⟨F(ṡ, s) = 0&B⟩, σ) τ−→ (ϵ, σ′) ¬((b, σ) τ−→ (ϵ,−))

b ≡ &q(b1, · · · , bn) ⟨|(b1, · · · , bn)|⟩σ′ = σ′′

(⟨F(ṡ, s) = 0&B⟩� b→ Q, σ)
τ−→ (ϵ, σ′′)

TABLE 2. The transition relations for atomic processes

satisfying dom(h1) = dom(h2), and define h1 ⊎ h2 to be a
flow such that h1⊎h2(t) = h1(t)⊎h2(t). For P∥Q, assume
σ1 and σ2 represent the initial states forP andQ respectively
and are disjoint. The process will perform a communication
along a common channel of P andQ, if P andQ get ready to
synchronize with each other along the channel. Otherwise,
it will perform a discrete event, that can be τ , an internal
communication of P , or an external communication along
some non-common channel of P and Q, if P can progress
separately on this event (and the symmetric rule for Q is left
out here). When neither internal communication nor τ event
is enabled for P ||Q, it may evolve for d time units if both
P and Q can evolve for d time units. Finally, the process
will perform a τ event and terminate as soon as both the
components terminate.

At last, the rules for conditional, sequential, and repetition
are defined as usual.

EXAMPLE 4. Starting from state σ0, the execution of P0

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

MODELLING AND VERIFYING DEPENDABILITY OF HYBRID SYSTEMS 7

(Parallel-1)

(P, σ1)
ch?c−−−→ (P ′, σ′

1) (Q,σ2)
ch!c−−→ (Q′, σ′

2)

(P ∥ Q, σ1 ⊎ σ2)
ch†c−−−→ (P ′||Q′, σ′

1 ⊎ σ′
2)

(Parallel-2)

(P, σ1)
β−→ (P ′, σ′

1) β ∈ {τ, ch†c, ch?c, ch!c |

ch /∈ Chan(P) ∩ Chan(Q)}

∀ch, c.(¬((P, σ1)
ch?c−−−→ ∧(Q, σ2)

ch!c−−→)

∧¬((P, σ1)
ch!c−−→ ∧(Q, σ2)

ch?c−−−→))

(P ∥ Q, σ1 ⊎ σ2)
β−→ (P ′||Q,σ′

1 ⊎ σ2)

(Parallel-3)

(P, σ1)
d−→ (P ′, σ′

1, h1) (Q, σ2)
d−→ (Q′, σ′

2, h2)

∀ch, c.¬((P ∥ Q, σ1 ⊎ σ2)
ch†c−−−→)

¬((P ∥ Q, σ1 ⊎ σ2)
τ−→)

(P ∥ Q,σ1 ⊎ σ2)
d−→ (P ′||Q′, σ′

1 ⊎ σ′
2, h1 ⊎ h2)

(Parallel-4)

(ϵ∥ϵ, σ) τ−→ (ϵ, σ)

(Alternation)
σ(ω) = true (P, σ)

α−→ (P ′, σ′, h)

(ω → P, σ)
α−→ (P ′, σ′, h)

σ(ω) = false

(ω → P, σ)
τ−→ (ϵ, σ)

(Sequential composition)
(P, σ)

α−→ (P ′, σ′, h) P ′ ̸= ϵ

(P ;Q, σ)
α−→ (P ′;Q, σ′, h)

(P, σ)
α−→ (ϵ, σ′, h)

(P ;Q, σ)
α−→ (Q, σ′, h)

(Repetition)
(P, σ)

α−→ (P ′, σ′, h) P ′ ̸= ϵ

(P ∗, σ)
α−→ (P ′;P ∗, σ′, h)

(P, σ)
α−→ (ϵ, σ′, h)

(P ∗, σ)
α−→ (P ∗, σ′, h)

(P ∗, σ)
τ−→ (ϵ, σ)

TABLE 3. The transition relations for composite processes

in Example 2 leads to the following cases (let v0 denote
σ0(v) below):

• P0 terminates without the occurrence of b0, the final
state is σ0[now + T, t + T, v + aT, s + v0T +
0.5aT 2, ua 7→ 0, wa 7→ 0];
• b0 occurs after d time units for some d ≤ T , and as a
result P0 executes to location 2, with state σ0[now +
d, t + d, v + ad, s + v0d + 0.5ad2, ua, wa, xa, ya],
where ua, wa, xa and ya have 3 possible evaluations
as defined in Example 3, and then depending on
the values of ua and wa, executes to location 3
or 4 respectively, and finally terminates after a
corresponding acceleration update.

Flow of a Process Given two flows h1 and h2 defined
on [r1, r2] and [r2, r3] (or [r2,∞)) respectively, we define
the concatenation ha1 h2 as the flow defined on [r1, r3] (or
[r1,∞)) such that ha1 h2(t) is equal to h1(t) if t ∈ [r1, r2),
otherwise h2(t). Given a process P and an initial state σ, if

we have the following sequence of transitions:

(P, σ)
α0−→ (P1, σ1, h1) (P1, σ1)

α1−→ (P2, σ2, h2)

. . . (Pn−1, σn−1)
αn−1−−−→ (Pn, σn, hn)

then we define ha1 . . .
a hn as the flow from P to Pn

with respect to the initial state σ, and furthermore, write
(P, σ)

α0···αn−1−−−−−−→ (Pn, σn, h
a
1 . . .

a hn) to represent the
whole transition sequence (and for simplicity, the label
sequence can be omitted sometimes). When Pn is ϵ, we call
ha1 . . .

a hn a complete flow of P with respect to σ.

4. A TIME AWARE INFERENCE SYSTEM

In this section, we define a time aware inference system for
reasoning about both discrete and continuous properties of
bHCSP, which are considered for an isolated time point and
a time interval respectively.

History Formulas In order to describe the interval-related
properties, we introduce history formulas, that are defined by
duration calculus (DC) [53, 54]. DC is a first-order interval-
based real-time logic with one binary modality known as
chop a. History formulas HF are defined by the following
subset of DC:

HF ::= ℓ ◦ T | ⌈S⌉0 | ⌈S⌉ | HF1
aHF2

| HF1 ∧HF2 | HF1 ∨HF2

where ℓ is a special temporal variable of DC denoting the
length of the considered interval, ◦ ∈ {<,>,=} is a
relation, T is a non-negative real, and S is a first-order state
formula over process variables.

State formulas S can be interpreted over states, and
history formulas HF can be interpreted over flows and
intervals. We define the judgements σ |= S to represent
that S holds under state σ, and h, [a, b] |= HF to represent
that HF holds under h and [a, b]. We have

h, [a, b] |= ℓ ◦ T iff (b− a) ◦ T
h, [a, b] |= ⌈S⌉0 iff a = b ∧ h(a) |= S
h, [a, b] |= ⌈S⌉ iff ∀t ∈ [a, b).h(t) |= S
h, [a, b] |= HF1

aHF2 iff ∃c.a ≤ c ≤ b ∧ h, [a, c] |= HF1

∧h, [c, b] |= HF2

As defined above, ℓ indicates the length of the considered
interval; ⌈S⌉0 asserts that the interval contains only one
point and S holds for the point, and it is called singleton
formula; ⌈S⌉ asserts that S holds everywhere except for the
right endpoint in the considered interval3; and HFa

1 HF2

asserts that the interval can be divided into two sub-intervals
such that HF1 holds for the first and HF2 for the second.
The first-order connectives ∧ and ∨ can be explained as
usual.

For the history formulas, all axioms and inference rules
for DC presented in [54] can be applied here, such as

True ⇔ ℓ ≥ 0 ⌈S⌉a⌈S⌉ ⇔ ⌈S⌉ HFaℓ = 0 ⇔ HF
⌈S1⌉ ⇒ ⌈S2⌉ if S1 ⇒ S2 is valid in FOL

3This is a stronger version of the operator ⌈S⌉ in [20], which requires
that S holds almost everywhere, i.e. S can be 0 at at most a finite number
of time points in the interval.

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

8 S. WANG, F. NIELSON, H. R. NIELSON AND N. ZHAN

Specification The specification for process P takes form
{φ} P {ψ,HF}, where the precondition/postcondition φ
and ψ, defined by FOL, specify properties of variables that
hold at the beginning and termination of the execution of P
respectively, and the history formula HF, specifies properties
of variables that hold throughout the execution interval of
P . The specification of P is defined with no dependence
on the behavior of its environment. The specification is
valid, denoted by |= {φ} P {ψ,HF}, iff for any state σ,
if (P, σ) −→ (ϵ, σ′, h), then σ |= φ implies σ′ |= ψ and
h, [σ(now), σ′(now)] |= HF.

Acknowledgement of Binders In order to define the
inference rules for binders b, we first define an auxiliary
typing judgement ⊢ b I φ, where the first-order formula φ
describes the acknowledgement corresponding to successful
passing of b, and is defined without dependence on the
precondition of b. We say b I φ valid, denoted by |= b I φ,
iff given any state σ, if (b, σ) −→ (ϵ, σ′, h), then σ′ |= φ
holds.

The typing judgement for binders is defined as follows:

⊢ ch?x{u} I u = 1 ⊢ ch!e{u} I u = 1
⊢ b1 I φ1, · · · , ⊢ bn I φn

⊢ &q(b1, · · · , bn) I [{q}](φ1, · · · , φn)

As indicated above, for input ch?x{u}, the successful
passing of it gives rise to formula u = 1, and similarly
for output ch!e{u}; for binder &q(b1, · · · , bn), it gives
rise to formula [{q}](φ1, · · · , φn), which encodes the effect
of quality predicate q to the sub-formulas φ1, . . . , φn

corresponding to b1, . . . , bn respectively.

EXAMPLE 5. For binder b0 in Example 1, we have ⊢ b0 I
ua = 1 ∨ wa = 1, indicating that, if the location after b0 is
reachable, then at least one of the communications with the
driver or the VC succeeds.

4.1. Inference Rules

Before presenting the inference system, we introduce some
notations first. Given a binder b, we define a function mv(b)
to return the variables that may be modified by b. It can be
defined directly by structural induction on b:

mv(b)
def
=

{x, u1} if b ≡ ch?x{u1}
{u2} if b ≡ ch!e{u2}∪

1≤i≤nmv(bi) if b ≡ &q(b1, · · · , bn)

Given a history formulaHF , we define a function Inr(HF)
to return the internal of HF , which is same to HF except
that each singleton formula of the right endpoint in HF
is replaced by ℓ = 0 if it exists. Inr(HF) is defined by

(Skip-A) {φ} skip {φ, ⌈φ⌉0}
(Ass-A) {ψ[e/x]} x := e {ψ, ⌈ψ⌉0}
(In-A) {φ} ch?x{u} {(∃x, u.φ) ∧ u = 1, ⌈φ⌉}
(Out-A) {φ} ch!e{u} {(∃u.φ) ∧ u = 1, ⌈φ⌉}
(Binder-A)

⊢ &q(b1, · · · , bn) I α

{φ} &q(b1, · · · , bn) {
(∃mv(&q(b1, · · · , bn)).φ) ∧ α,
⌈∃mv(&q(b1, · · · , bn)).φ⌉

}

(Con-A)

{φ} ⟨F(ṡ, s) = 0&B⟩ { (∃s.φ) ∧ ¬B ∧ Inv,
⌈(∃s.φ) ∧B ∧ Inv⌉ }

(Int-A)
⊢ &q(b1, · · · , bn) I α

{(∃mv(b).(∃s.φ) ∧ Inv) ∧ α} Q {ψ1,HF1}
{φ}⟨F(ṡ, s) = 0&B⟩� b→ Q

{(∃mv(b).(∃s.φ) ∧ ¬B ∧ Inv) ∨ ψ1,

⌈∃mv(b).(∃s.φ) ∧B ∧ Inv⌉a(ℓ = 0 ∨ HF1)}
(Par-A)

{φ} P {ψ1,HF1} {φ} Q {ψ2,HF2}

{φ} P∥Q { ψ1 ∧ ψ2,

((HFa
1 ⌈ψ1⌉) ∧ HF2) ∨ (HF1 ∧ (HFa

2 ⌈ψ2⌉))
}

(Seq-A)
{φ} P {ψ1,HF1} {ψ1} Q {ψ2,HF2}

{φ} P ;Q {ψ2, Inr(HF1)
aHF2}

(Alt-A)
{φ ∧ ω} P {ψ1,HF1}

{φ} ω → P {(φ ∧ ¬ω) ∨ ψ1, ℓ = 0 ∨ HF1}
(Rep-A)

{φ} P {φ, InvH} InvHaInvH ⇒ InvH
{φ} P ∗ {φ, InvH ∨ ℓ = 0}

(SHF) {φ} P {ψ,HF}
{φ} P {ψ,HFa⌈ψ⌉0}

TABLE 4. A time aware inference system for processes

structural induction on HF as follows:

Inr(HF)
def
=

ℓ = 0 if HF ≡ ⌈S⌉0
HF1

aInr(HF2)
if HF ≡ HF1

aHF2 ∧HF2 ⇒ ℓ > 0
Inr(HF1)

aInr(HF2)
if HF ≡ HF1

aHF2 ∧HF2 ⇒ ℓ = 0
Inr(HF1) ∨ Inr(HF2) if HF ≡ HF1 ∨HF2

Inr(HF1) ∧ Inr(HF2) if HF ≡ HF1 ∧HF2

HF otherwise

The internal of history formulas is proposed specially
for handling the super-dense computation in sequential
composition.

The inference rules for deducing the specifications of al-
l constructs are presented in Table 4. Statements skip and
assignment terminate simultaneously, as indicated by the
history formula. For each form of the binders b, the post-
condition is the conjunction of the quantified precondition
φ over variables in mv(b) and the acknowledgement corre-
sponding to the successful passing of b. For both ch?x{u}

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

MODELLING AND VERIFYING DEPENDABILITY OF HYBRID SYSTEMS 9

and ch!e{u}, φ will hold everywhere in the waiting inter-
val, i.e. the execution interval by excluding the right end-
point, at which the communication occurs and variables
might be changed correspondingly. For &q(b1, · · · , bn), on-
ly the quantified φ over variables in mv(b) is guaranteed to
hold everywhere throughout the waiting interval, since some
binders bis that make q true might occur at sometime during
the interval and as a consequence variables in φ might get
changed.

For continuous evolution, the notion of differential
invariants is used instead of explicit solutions. A differential
invariant of ⟨F(ṡ, s) = 0&B⟩ for given initial values of s
is a first-order formula of s, which is satisfied by the initial
values and also by all the values reachable by the trajectory
of s defined by F within the domain B. The problem of
differential invariant generation for polynomial differential
equations has been studied in [10, 11]. Here we assume
Inv is a differential invariant with respect to precondition
φ for the continuous evolution (more details on using Inv
will be shown in the later example proof in Section 7). For
the postcondition, the quantified φ over the only modified
variables s, ¬B, and Inv hold. For the history formula, the
quantified φ over s,B and Inv holds everywhere throughout
the execution interval except for the right endpoint.

For communication interrupt, if b fails to occur before
the continuous evolution terminates, the effect of the whole
statement is almost equivalent to the continuous evolution,
except that some variables in b may get changed because of
occurrences of some communications during the execution
of the continuous evolution. Otherwise, if b succeeds
within the termination of the continuous evolution, the
continuous evolution will be interrupted and Q will start
to execute from the interrupting point. At the interrupting
point, the acknowledgement of b holds, and moreover,
because s and variables in mv(b) may have been modified,
∃mv(b).((∃s.φ) ∧ Inv) holds. For the second case, the
postcondition is defined as the one for Q, and the history
formula as the chop of the one for the continuous evolution
before interruption and the one for Q afterwards. Finally, as
indicated by the rule, the postcondition and history formula
for the whole statement are defined as the disjunction of the
above two cases.

For P∥Q, because P and Q do not share variables, the
rule is defined by conjunction as usual. The disjunction in
the history formula is due to the case that P and Q may
terminate at different time. If P terminates before Q, as
shown by the first disjunctive clause, the postcondition of
P will always holds till the termination of Q; the contrary
case is defined by the second clause. For P ;Q, the history
formula is defined by the concatenation of the internal of the
history formula of of P and the history formula of Q. As
a result, the super-dense computation problem can be well
handled: when there are multiple discrete actions occurring
at a time point, which is here the termination time of P , also
the starting time of Q, only the final state according to the
execution order is recorded in the final history formula of the
sequential composition. This is consistent with the definition
of the concatenation of flows given in Section 3. The rule for

ω → P includes two cases depending on whether ω holds or
not. For P ∗, we need to find the invariants, i.e. φ and InvH ,
for both the postcondition and history formula.

The last defines a general inference rule to strengthen the
history formula of a process by adding the postcondition
as a singleton formula at the end. We denote it by (SHF)
for further reference. Other general inference rules that are
applicable to all constructs, like monotonicity, case analysis
etc., can be defined as usual and are omitted here.

We have proved the following soundness theorem:

THEOREM 4.1. Given a process P , if {φ} P {ψ,HF}
can be deduced from the inference rules, then |=
{φ} P {ψ,HF}.

Proof. We need to prove that, for any state σ, if
(P, σ) −→ (ϵ, σ′, h), then σ |= φ implies σ′ |= ψ
and h, [σ(now), σ′(now)] |= HF. The proof is given by
structural induction on P as follows.

• The proof for skip and x := e is trivial.
• Cases binders b: For b ≡ ch?x{u}, according to the
transition system, there exist some d ≥ 0 and c such
that σ′ = σ[σ(now) 7→ σ(now) + d][x 7→ c, u 7→ 1]
and h defined on [σ(now), σ(now) + d] satisfies that
h(t) = σ[now 7→ t] for each t in [σ(now), σ(now)+d)
and h(σ(now) + d) = σ′. Thus, from σ |= φ,
σ′ |= ∃x, u.φ and h, [σ(now), σ′(now)] |= ⌈φ⌉ must
hold (notice that now does not occur in assertions). The
case for b ≡ ch!e{u} can be proved similarly.
For b ≡ &q(b1, · · · , bn), according to the transition
system, there must exist some d ≥ 0 such that
σ′(now) = σ(now) + d, and for each bi evolving
to ϵ at termination, there must be σ′(ui) = 1, and
for any variable x that is not mv(b), for any t ∈
[σ(now), σ(now′)], h(t)(x) = σ(x). Thus σ′ |=
∃mv(b).φ and h, [σ(now), σ′(now)] |= ⌈∃mv(b).φ⌉
hold. And, from [[q]](b′1, · · · , b′n) = true, where
b′1, · · · , b′n represent the final form of b1, · · · , bn during
the execution of b, we have σ′ |= α proved.
• Case ⟨F(ṡ, s) = 0&B⟩: According to the transition
system, there must exist d ≥ 0 such that σ′ =
σ[now 7→ σ(now) + d, s 7→ S(d)] and h defined over
[σ(now),
σ(now) + d] satisfies that for any o in the domain,
h(o) = σ[now 7→ o, s 7→ S(o − σ(now))], where
S is the solution of the continuous with respect to
σ(s) as defined in the rule. Moreover, for any o ∈
[σ(now), σ(now) + d), h(o) |= B, and σ′ |= ¬B.
Obviously, σ′ |= (∃s.φ) ∧ ¬B. According to the
definition of Inv, then for any o ∈ [σ(now), σ(now)+
d), h(o) |= Inv, thus σ′ |= Inv and h, [σ(now),
σ′(now)] |= ⌈Inv⌉ hold. Plus the fact that h, [σ(now),
σ′(now)] |= ⌈(∃s.φ) ∧B⌉, the result is proved.
• Case ⟨F(ṡ, s) = 0&B⟩ � b → Q: According to the
transition system, there are two cases for termination,
by applying the fourth and the third transition rules for
it respectively. For the first case, there must exist d
such that σ′(now) = σ(now) + d, and for any variable

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

10 S. WANG, F. NIELSON, H. R. NIELSON AND N. ZHAN

x except for s and the ones in mv(b), σ′(x) = σ(x)
and for any o ∈ [σ(now), σ(now) + d], h(o)(x) =
σ(x). Plus the semantics of continuous, we have
σ′ |= ∃mv(b).(∃s.φ) ∧ ¬B ∧ Inv and h, [σ(now),
σ′(now)] |= ⌈∃mv(b).(∃s.φ) ∧ B ∧ Inv⌉ proved.
For the second case, there must exist d1 such that
σ′′(now) = σ(now)+d1, and for any variable x except
for s and the ones in mv(b), σ′′(x) = σ(x) and for
any o ∈ [σ(now), σ(now) + d], h′(o)(x) = σ(x), and
σ′′ |= (∃mv(b).(∃s.φ) ∧ Inv) ∧ α, and (Q, σ′′) →
(ϵ, σ′, h′′), and h = h′ah′′. The fact is proved based
on the inductive hypothesis on Q.
• Cases P1∥Q1, P1;Q1 and ω → P1: According to
the transition system, for P1∥Q1, suppose P1 and Q1

terminate at the same time, then there must exist σ1, h1,
and σ2, h2 such that (P1, σ) → (ϵ, σ1, h1), (Q1, σ) →
(ϵ, σ2, h2), σ′ = σ1 ⊎ σ2 and h = h1 ⊎ h2. The fact
is proved by induction hypothesis on P1 and Q1. The
other cases can be proved easily.
According to the transition semantics, there must ex-
ist σ1, h1, and σ2, h2 such that (P1, σ) → (ϵ, σ1, h1),
(Q1, σ1) → (ϵ, σ2, h2), and h = h1

ah2. By induc-
tion hypothesis, we have the facts σ1 |= ψ1 and h1,
[σ(now), σ1(now)] |= HF1 for P1, and then σ2 |= ψ2

and h2, [σ1(now), σ2(now)] |= HF2 for Q1. Accord-
ing to the definition of h1ah2, h is equal to h1 on
the right open interval [σ(now), σ1(now)), while not at
the point σ1(now). According to the definition of the
internal of history formulas, h, [σ(now), σ1(now)] |=
Inr(HF1). On the other hand, h is equal
to h2 on the closed interval [σ1(now), σ2(now)],
thus h, [σ1(now), σ2(now)] |= HF2. The fac-
t h, [σ(now), σ2(now)] |= Inr(HF1)

aHF2 is proved.
At the end, the rule for ω → P1 can be proved easily
by induction hypothesis, and we omit the details here.
• Case P ∗

1 : According to the transition system, we have

σ′ = σ h = {σ(now) 7→ σ′}

or there exists an integer k > 0 such that σk = σ′,
h = h1

ah2a · · ·ahk, and a sequence of transitions as
follows:

(P1, σ) → (ϵ, σ1, h1)
(P1, σ1) → (ϵ, σ2, h2)

· · · , (P1, σk−1) → (ϵ, σk, hk)

For the first case, the fact holds trivially. For the second
case, suppose the fact holds when k < n for some
n > 0, next we prove that the fact holds for k = n.
According to the transition rule, we have

(P, σn−1) → (ϵ, σn, hn), σn−1 |= φ
h1

a · · ·ahn−1, [σ(now), σn−1(now)] |= InvH ∨ ℓ = 0

By induction hypothesis on P1, σn |= φ and hn,
[σn−1(now), σn(now)] |= InvH must hold. Then
h1

a · · ·ahn, [σ(now), σn(now)] |= (InvH ∨ ℓ =
0)aInvH , plus InvHaInvH ⇒ InvH , we have
h1

a · · ·ahn, [σ(now), σn(now)] |= InvH proved.

• Case rule (SHF): Suppose (P, σ) −→ (ϵ, σ′, h) and
σ |= φ. By induction hypothesis, σ′ |= ψ and
h, [σ(now), σ′(now)] |= HF are obtained. Plus
h(σ′(now)) = σ′, we have h, [σ′(now), σ′(now)] |=
⌈ψ⌉0. Thus h, [σ(now), σ′(now)] |= HFa⌈ψ⌉0 is
proved.

4.2. Application: Reachability Analysis

The inference system can be applied directly for reachability
analysis. Given a labelled process S (a process annotated
with integers denoting locations), a precondition φ and a
location l in S, by applying the inference system, we can
deduce a property ψ such that if S reaches l, ψ must hold at l,
denoted by ⊢ S, l, φ I ψ. In another word, If ⊢ S, l, φ I ψ
and ψ is not satisfiable, then l will not be reachable in S
with respect to φ. We have the following facts based on the
structural induction of S:

• for any process P , ⊢ lP, l, φ I φ and ⊢ P l, l, φ I ψ
provided {φ} P {ψ,−};
• ⊢ ⟨F(ṡ, s) = 0&B⟩� lb→ S′, l, φ I φ.
⊢ ⟨F(ṡ, s) = 0&B⟩ � bl → S′, l, φ I
(∃mv(b).(∃s.φ)∧Inv)∧α (denoted by φ′), if ⊢ b I α
holds.
⊢ ⟨F(ṡ, s) = 0&B⟩ � b → S′, l, φ I ψ if l ∈ S′ and
⊢ S′, l, φ′ I ψ hold;
• ⊢ S1;S2, l, φ I ψ if l ∈ S1 and ⊢ S1, l, φ I ψ hold.
⊢ S1;S2, l, φ I ψ′ if l ∈ S2, {φ} S1 {ψ,−} and
⊢ S2, l, ψ I ψ′ hold;
• ⊢ ωl → S′, l, φ I φ ∧ ω.
⊢ ω → S′, l, φ I ψ if l ∈ S′ and ⊢ S′, l, φ ∧ ω I ψ;
• ⊢ S′∗, l, φ I ψ, if l ∈ S′, ⊢ S′, l, φ I ψ and
{φ} S′ {φ,−} hold.

Obviously, the monotonicity holds: if ⊢ S, l, φ I ψ and
ψ ⇒ ψ′, then ⊢ S, l, φ I ψ′.

EXAMPLE 6. Consider P0 in Example 2. Given
precondition φ , we have ⊢ P0, 1, φ I (∃t.φ) ∧
t = 0, denoted by φ1. Moreover, ⊢ P0, 5, φ I
(∃mv(b0).(∃s, v, t.φ1)∧t ≤ T)∧(ua = 1∨wa = 1)∧(ua =
0 ∧ wa = 0), the formula is un-satisfiable, thus location 5 is
not reachable. Other locations can be considered similarly.

5. A TIME OBLIVIOUS INFERENCE SYSTEM

In this section, we define a more lightweight inference
system for bHCSP. Different from the previous one
presented in Sec.4, we characterize the continuous behavior
of bHCSP by an invariant defined in FOL, thus FOL will be
the only assertion language of the inference system.

Specification The specification for process P takes form
{φ} P {ψ, I}, where φ, ψ and I are FOL formulas.
In particular, the precondition/postcondition φ and ψ are
defined as in the previous inference system, and the invariant
I , specifies the property that holds throughout the whole

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

MODELLING AND VERIFYING DEPENDABILITY OF HYBRID SYSTEMS 11

(Skip-O) {φ} skip {φ,φ}
(Ass-O) {ψ[e/x]} x := e {ψ,ψ}
(In-O) {φ} ch?x{u} {(∃x, u.φ) ∧ u = 1, ∃x, u.φ}
(Out-O) {φ} ch!e{u} {(∃u.φ) ∧ u = 1,∃u.φ}
(Binder-O)

⊢ &q(b1, · · · , bn) I α

{φ} &q(b1, · · · , bn) {
(∃mv(&q(b1, · · · , bn)).φ) ∧ α,
∃mv(&q(b1, · · · , bn)).φ

}

(Con-O)
{φ} ⟨F(ṡ, s) = 0&B⟩ {(∃s.φ) ∧ ¬B ∧ Inv, (∃s.φ) ∧ Inv}
(Int-O) ⊢ &q(b1, · · · , bn) I α

{(∃mv(b).(∃s.φ) ∧ Inv) ∧ α} Q {ψ1, I1}

{φ}⟨F(ṡ, s) = 0&B⟩� b→ Q

{(∃mv(b).(∃s.φ) ∧ ¬B ∧ Inv) ∨ ψ1,

(∃mv(b).(∃s.φ) ∧ Inv) ∨ I1}

(Par-O) {φ} P {ψ1, I1} {φ} Q {ψ2, I2}
{φ} P∥Q {ψ1 ∧ ψ2, I1 ∧ I2}

(Seq-O) {φ} P {ψ1, I1} {ψ1} Q {ψ2, I2}
{φ} P ;Q {ψ2, I1 ∨ I2}

(Alt-O) {φ ∧ ω} P {ψ1, I1}
{φ} ω → P {(φ ∧ ¬ω) ∨ ψ1, φ ∨ I1}

(Rep-O) {φ} P {φ, I}
{φ} P ∗ {φ,φ ∨ I}

TABLE 5. A time oblivious inference system for processes

execution interval of P . Formally, given a FOL formula
I , a flow h, and two reals c ≤ d, I is an invariant of h
throughout the interval [c, d], denoted by h, [c, d] |= I , iff for
any time point t ∈ [c, d], h(t) |= I holds. In another word,
I holds everywhere in the interval [c, d]. The specification
is valid, denoted by |= {φ} P {ψ, I}, iff for any state σ,
if (P, σ) −→ (ϵ, σ′, h), then σ |= φ implies σ′ |= ψ and
h, [σ(now), σ′(now)] |= I .

5.1. Inference Rules

The new inference rules for deducing the specifications of
all constructs are presented in Table 5. For each inference
rule, the precondition and postcondition are the same as in
the previous one in Table 4, and we will only explain the
invariant part.

For the discrete statements including skip and x := e,
they both terminate without taking time, thus the invariant
is same as the postcondition. For each case of binders,
the invariant is the quantified precondition over the may-
modified variables. For instance, for input ch?x{u}, all
the variables are kept unchanged except that x and u may
get changed at termination. For continuous evolution, as
indicated by the rule, except for the quantified precondition
over s, the differential invariant Inv also preserves as

invariant during the whole continuous evolution. For
communication interrupt, there are two cases depending on
whether b occurs or not before the continuous evolution
terminates. For the case when b fails, some communications
among b may have occurred (although not strong enough
to make b occur), thus the invariant is the invariant of the
continuous evolution quantified over mv(b). For the other
case when b succeeds, Q will be followed to execute, and
the invariant is the disjunction of the ones before and after
b occurs. By making disjunction of these two cases, the
invariant of the communication interrupt is defined.

The invariant of P∥Q is defined as the conjunction of
the ones of P and Q. For P ;Q, the invariant is defined as
the disjunction of the ones of P and Q. The invariant of
ω → P includes two cases depending on whether ω holds
or not: for the first case, the precondition φ preserves, and
for the second case, the invariant of P holds. At last, for
P ∗, we need to find the invariants, i.e. φ and I , for both
the postcondition and the invariant. Notice that the φ in
the invariant indicates the special case that the repetition
terminates immediately, i.e. P executes for zero time.

The general inference rules that are applicable to all
constructs, like monotonicity, case analysis etc., can be
defined as usual and are omitted here.

5.2. Properties

We have proved two theorems below. First, we prove
that the new inference system is sound with respect to the
operational semantics, stated by the following theorem:

THEOREM 5.1. Given a process P , if {φ} P {ψ, I} can
be deduced from the inference rules, then |= {φ} P {ψ, I}.

Proof. We need to prove that, for any state σ, if
(P, σ) −→ (ϵ, σ′, h), then σ |= φ implies σ′ |= ψ
and h, [σ(now), σ′(now)] |= I . Consider that the proof
for the postcondition σ′ |= ψ has already been given in
Theorem 4.1. We only give the proof for the invariant part
here.

The proof is given by structural induction on P as follows.

• The proof for skip and x := e is trivial.
• Cases binders b: For b ≡ ch?x{u}, according to the
transition system, there exist some d ≥ 0 and c such
that σ′ = σ[now 7→ σ(now) + d][x 7→ c, u 7→ 1]
and h defined on [σ(now), σ(now) + d] satisfies that
h(t) = σ[now 7→ t] for each t in [σ(now), σ(now)+d)
and h(σ(now) + d) = σ′. Thus, from σ |= φ,
h, [σ(now), σ′(now)] |= (∃x, u.φ) must hold (notice
that now does not occur in assertions). The case for
b ≡ ch!e{u} can be proved similarly.
For b ≡ &q(b1, · · · , bn), according to the transition
system, there must exist some d ≥ 0 such that
σ′(now) = σ(now) + d, and for each bi evolving
to ϵ at termination, there must be σ′(ui) = 1,
and for any variable x that is not mv(b), for any
t ∈ [σ(now), σ(now′)], h(t)(x) = σ(x). Thus
h, [σ(now), σ′(now)] |= ∃mv(b).φ hold.

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

12 S. WANG, F. NIELSON, H. R. NIELSON AND N. ZHAN

• Case ⟨F(ṡ, s) = 0&B⟩: According to the transition
system, there must exist d ≥ 0 such that σ′ =
σ[now 7→ σ(now) + d, s 7→ S(d)] and h defined over
[σ(now),
σ(now) + d] satisfies that for any o in the domain,
h(o) = σ[now 7→ o, s 7→ S(o − σ(now))], where S
is the solution of the continuous with respect to σ(s) as
defined in the rule. According to the definition of Inv,
then for any o ∈ [σ(now), σ(now) + d], h(o) |= Inv,
thus h, [σ(now), σ′(now)] |= Inv hold. Plus the
fact that h, [σ(now), σ′(now)] |= (∃s.φ), the result is
proved.
• Case ⟨F(ṡ, s) = 0&B⟩ � b → Q: According to the
transition system, there are two cases for termination,
by applying the fourth and the third transition rules
for it respectively. For the first case, there must exist
d such that σ′(now) = σ(now) + d, and for any
variable x except for s and the ones in mv(b), for
any o ∈ [σ(now), σ(now) + d], h(o)(x) = σ(x).
Plus the semantics of continuous, we have h, [σ(now),
σ′(now)] |= ∃mv(b).(∃s.φ) ∧ Inv proved. For the
second case, there must exist d1 such that σ′′(now) =
σ(now) + d1, and for any variable x except for s
and the ones in mv(b), σ′′(x) = σ(x) and for any
o ∈ [σ(now), σ(now) + d], h′(o)(x) = σ(x), and
σ′′ |= (∃mv(b).(∃s.φ) ∧ Inv) ∧ α, and (Q, σ′′) →
(ϵ, σ′, h′′), and h = h′ah′′. The fact is proved based
on the inductive hypothesis on Q.
• Cases P∥Q, P ;Q and ω → P : According to the
transition system, for P∥Q, suppose P andQ terminate
at the same time, then there must exist σ1, h1, and
σ2, h2 such that (P, σ) → (ϵ, σ1, h1), (Q, σ) →
(ϵ, σ2, h2), σ′ = σ1 ⊎ σ2 and h = h1 ⊎ h2. The
fact is proved by induction hypothesis on P and Q.
The other cases can be proved similarly without any
essential difficulty.
Similarly, the rules for P ;Q and ω → P can be proved
by induction hypothesis, and we omit the details here.
• Case P ∗: According to the transition system, we have

σ′ = σ h = {σ(now) 7→ σ′}

or there exists an integer k > 0 such that σk = σ′,
h = h1

ah2a · · ·ahk, and a sequence of transitions as
follows:

(P, σ) → (ϵ, σ1, h1), (P, σ1) → (ϵ, σ2, h2)
· · · , (P, σk−1) → (ϵ, σk, hk)

For the first case, the fact holds trivially. For the second
case, suppose the fact holds when k < n for some
n > 0, next we prove that the fact holds for k = n.
According to the transition rule, we have

(P, σn−1) → (ϵ, σn, hn), σn−1 |= φ
h1

a · · ·ahn−1, [σ(now), σn−1(now)] |= I

By induction hypothesis on P , σn |= φ and hn,
[σn−1(now), σn(now)] |= I must hold. Then
h1

a · · ·ahn, [σ(now), σn(now)] |= I is proved.

We then establish the following theorem stating that the
time oblivious inference system is an over-approximation of
the time aware inference system.

THEOREM 5.2. Given a process P , if {φ} P {ψ, I} can
be deduced from the time oblivious inference system, then
{φ} P {ψ, ⌈I⌉a⌈I⌉0} can be deduced from the time aware
inference system.

Proof. The proof is given by induction on the structure of
P . The proof for most cases is direct, and below we present
the proof for some cases as an illustration.

• Cases skip and x := e: The facts can be proved
easily from the fact that for any formula φ, ⌈φ⌉0 ⇒
⌈φ⌉a⌈φ⌉0 holds.
• Cases binders b: By applying the time oblivious
inference system, we have

{φ} ch?x{u} {(∃x, u.φ) ∧ u = 1,∃x, u.φ}

We need to prove that

{φ} ch?x{u} {(∃x, u.φ)∧u = 1, ⌈∃x, u.φ⌉a⌈∃x, u.φ⌉0}

can be proved by applying the time aware inference
system. The fact is proved from the rule for ch?x{u}
and rule (SHF), and the fact that ⌈φ⌉a⌈∃x, u.φ ∧
u = 1⌉0 ⇒ ⌈∃x, u.φ⌉a⌈∃x, u.φ⌉0. The cases for
b ≡ ch!e{u} and b ≡ &q(b1, · · · , bn) can be proved
similarly.
• Case ⟨F(ṡ, s) = 0&B⟩: From the fact that

⌈(∃s.φ) ∧B ∧ Inv⌉a⌈(∃s.φ) ∧ ¬B ∧ Inv⌉0
⇒ ⌈(∃s.φ) ∧ Inv⌉a⌈(∃s.φ) ∧ Inv⌉0

the fact for the continuous evolution is proved.
• Case ⟨F(ṡ, s) = 0&B⟩ � b → Q: By
induction hypothesis on Q, we obtain HF1

a⌈ψ1⌉0 ⇒
⌈I1⌉a⌈I1⌉0. Thus HF1 ⇒ ⌈I1⌉ and ψ1 ⇒ I1 hold.
Denote the postcondition and the history formula of
⟨F(ṡ, s) = 0&B⟩ � b → Q in Table 4 by ψ2 and HF2

respectively. It is easy to prove that HF2
a⌈ψ2⌉0 ⇒

⌈(∃mv(b).(∃s.φ) ∧ Inv) ∨ I1⌉a⌈(∃mv(b).(∃s.φ) ∧
Inv) ∨ I1⌉0. The proof is done.
• Case P∥Q: By induction hypothesis on P and Q, we
obtain the facts HFi

a⌈ψi⌉0 ⇒ ⌈Ii⌉a⌈Ii⌉0 for i = 1, 2,
thus HFi ⇒ ⌈Ii⌉ and ψi ⇒ Ii hold. Based on these
facts, the following implication is valid:

(((HFa
1 ⌈ψ1⌉) ∧ HF2) ∨ (HF1 ∧ (HFa

2 ⌈ψ2⌉))
a⌈ψ1 ∧ ψ2⌉0) ⇒ ⌈I1 ∧ I2⌉a⌈I1 ∧ I2⌉0

The proof is finished.
• Case P ;Q: By induction hypothesis on P and Q, we
obtain the facts HFi

a⌈ψi⌉0 ⇒ ⌈Ii⌉a⌈Ii⌉0 for i = 1, 2,
thus HFi ⇒ ⌈Ii⌉ andψi ⇒ Ii hold. From the definition
of Inr(·), it is easy to prove that Inr(HF1) ⇒ ⌈I1⌉.
The following implication is then valid:

Inr(HF1)
aHF2

a⌈ψ2⌉0 ⇒ ⌈I1 ∨ I2⌉a⌈I1 ∨ I2⌉0

The proof is finished.

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

MODELLING AND VERIFYING DEPENDABILITY OF HYBRID SYSTEMS 13

5.3. Comparison Between The Two Inference Systems

In the communication-based mechanism, the behavior of a
process heavily relies on its environment. Especially in the
synchronized setting, a communication of a process occurs
only when its dual communication event in the environment
gets ready, and it needs to exchange messages with the
environment for the following process to proceed. The
binder mechanism in bHCSP to some extent alleviates the
dependence of a process upon its environment. It can be used
to construct a system with communication fault tolerance.
Using binders, a process can still behave in the correct way
when some communication fails under some circumstance.
We reflect this idea when defining the specifications of
bHCSP, i.e. the specification of a process is defined without
dependance on the environment. For instance, as shown by
the rule of input ch?x in both inference systems, the new
value of x received from the partner is not considered in the
postcondition.

In the time aware inference system, the interval property
of a process is defined by an interval formula in the form of
Duration Calculus. Compared with the time oblivious one,
the main difference can be seen from the rule for sequential
composition:

{φ} P {ψ1,HF1} {ψ1}Q {ψ2,HF2}
{φ} P ;Q {ψ2, Inr(HF1)

aHF2}

where the interval property of P ;Q is defined by the
concatenation of the ones for (the internal of) P and Q in
sequence. While in time oblivious inference system, the
interval property of P ;Q is defined by a weaker invariant,
i.e. the disjunction of the ones for P and Q. As shown
by Theorem 5.2, the time aware inference system is more
expressive than the time oblivious one: For any process P ,
if {φ} P {ψ, I} is proved by the time oblivious inference
system, then {φ} P {ψ, ⌈I⌉a⌈I⌉0} can be proved by the
time aware inference system, while the inverse is not true.

However, in real applications of bHCSP, the time
oblivious inference system is more preferred, due to the
following two reasons:

• Due to the uncertain environment, the execution time
of a bHCSP process with external communications
involved is not known. As a result, the concatenation
of two interval formulas is without time constraints
between them. This makes the concatenation less
meaningful in real applications. In many cases, we find
that it is good enough to consider the invariant property
that holds for all reachable states of a process.
• The last but not the least, for tool support, the FOL-
based inference system is much easier to implement.
Especially, with the help of existing SMT solvers
for solving FOL formulas, more automation can be
achieved for the proof. It is easier for the users. We
will discuss this in more detail in Sec. 7.

Both of the above points are reflected in the verification
of the same train control case study by applying the two
inference systems in Sec. 7.

We have considered getting rid of the postcondition, or
even both the precondition and the postcondition, with only
the invariant left in the specification of bHCSP. But the
expressiveness of the inference system will then become
inadequate. As seen from the rules given in Table 5,
for many constructs, the postcondition strictly implies the
invariant. As a special evidence, the safety property of the
case study cannot be proved with the simpler definition.

In the differential dynamic logic proposed by Platzer [46],
the main specification triple is A→ [P]B. It corresponds to
a Hoare triple for hybrid systems, stating that if A holds in
the initial state, then for all states reachable by following the
hybrid program P ,B holds. Compared to our work, theB is
not global for P and only records the invariant property that
holds for the last atomic process in P .

6. BHCSP THEOREM PROVERS

Based on each of the inference systems, we implement a
bHCSP theorem prover, which aims to verify whether a
bHCSP process conforms to its specification in a machine-
checkable way. The implementation of bHCSP theorem
prover requires to embed the inference system of bHCSP
in Isabelle/HOL. There are two different ways for the
embedding: shallow or deep. The shallow embedding
defines the assertions of bHCSP (i.e. FOL or DC formulas)
by HOL predicates on process states or flows, while in deep
embedding, it defines the assertions as new datatypes. We
will adopt the approach of shallow embedding, to be able to
apply the powerful proof tactics of Isabelle/HOL to conduct
the proofs. The shallow embedding of bHCSP inference
system includes the following aspects:

• Embedding of bHCSP syntax. We implement
the bHCSP processes by a new datatype bproc,
each constructor of which corresponds to a bHCSP
construct;
• Embedding of bHCSP assertions. We define the FOL
and DC formulas as predicates on states and flows. As
a result, the FOL and DC formulas can be derived as
specific Isabelle functions from state to bool, and from
flow and timed interval Intv to bool, respectively;
• Embedding of bHCSP semantics. We define the
meaning of bproc processes in terms of the operational
semantics.
• Embedding of bHCSP inference systems. We define
the inference rules as new theorems of Isabelle/HOL
for the proofs of bHCSP.

At the end, all the theorems corresponding to the inference
rules of bHCSP together constitute a verification condition
generator for proving bHCSP specifications. The proof
is performed according to the following process: first, by
applying the bHCSP theorems, a bHCSP specification is
transformed step by step to a set of DC or FOL formulas
in the form of HOL predicates, i.e. verification conditions;

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

14 S. WANG, F. NIELSON, H. R. NIELSON AND N. ZHAN

TR = MV(t1, T1)�
0&∃(trd!v{uv}, trv!v{wv})7

→ (uv = 1 ∧ wv = 1 →
(MV(t2, T2)�&∃(dr?xa{ua}, vc?ya{wa}) →
(wa = 1 → (V A(v, ya) → a := ya;

¬V A(v, ya) → SC);
ua = 1 ∧ wa = 0 → (V A(v, xa) → a := xa;

¬V A(v, xa) → SC);
ua = 0 ∧ wa = 0 → 2skip); t2 ≥ T2 → SC;

uv = 1 ∧ wv = 0 →
(MV(t2, T2)�&∃(dr?xa{ua}) →
(ua = 1 → (V A(v, xa) → a := xa;

¬V A(v, xa) → SC);
ua = 0 → 3skip); t2 ≥ T2 → SC;

uv = 0 ∧ wv = 1 →
(MV(t2, T2)�&∃(vc?ya{wa}) →
(wa = 1 → (V A(v, ya) → a := ya;

¬V A(v, ya) → SC);
wa = 0 → 4skip); t2 ≥ T2 → SC;

uv = 0 ∧ wv = 0 → 1skip); t1 ≥ T1 → SC;
MV (t, T) = t := 0; ⟨ṡ = v, v̇ = a, ṫ = 1&t < T ⟩
SC = a := −c; ⟨ṡ = v, v̇ = a&v > 0⟩; a := 0

TABLE 6. The model of train

and then, by applying proof tactics and rules of HOL, the
validity of verification conditions, that is equivalent to the
correctness of the original bHCSP specification, is proved.

From now on, we will call the two theorem provers
implemented based on the inference systems in Sec. 4 and
Sec. 5 the prover I and II respectively. We will separately
apply the two provers to the train control example in next
section, and moreover compare the proof results.

7. TRAIN CONTROL EXAMPLE

We apply our approach to the train control system depicted
in Fig. 1. In Sec. 7.1, we construct the formal model for
the whole system, including the train, the driver and the VC.
In Sec. 7.2, we prove that the train is safe against denial-
of-service security attack with respect to properties (F1) and
(F2), without considering the control from VC and driver.
In Sec. 7.3, we investigate the behavior of the whole train
control system, especially, how the control parameter from
the driver or VC will affect the train behavior.

7.1. Models of the Train Control System

Before giving the models, we introduce some variables and
constants. The variables s, v and a represent the distance,
the velocity and the acceleration of the train respectively.
For the train, we assume that its acceleration a ranges over
[−c, c] for some c > 0, and the maximum speed is limited to
be vmax.

The model of the train is given in Table 6. There are two
auxiliary processes: MV (t, T) models that the train moves
with velocity v and acceleration a for up to T time units,
where t is the clock variable recording the moving time and
T is the time limit; and SC defines the feedback control of
the train when the services from the driver or the VC fail:

DR = wait T3;
5&∃trd?vd{uv}; 8uv = 1

→ (vd ≥ (vmax − cT1 − cT2)
→ 8l∈[−c,0)da := l;

vd < (cT1 + cT2) → 8l∈[0,c]da := l;
vd ∈ [cT1 + cT2, vmax − cT1 − cT2)

→ 8l∈[−c,c]da := l;
&∃(dr!da{ua}, tick?o{uc}) →

12(ua = 1 ∧ uc = 1 → skip;
ua = 1 ∧ uc = 0 → tick?o{uc};
ua = 0 ∧ uc = 1 → skip;
ua = 0 ∧ uc = 0 → skip)

∥CK);
uv = 0 → skip

CK = wait T5; tick!X
VC = wait T4;

6&∃trv?vr{wv}; 9wv = 1
→ (vr ≥ (vmax − cT1 − cT2)

→ ra := −c;
vr < (cT1 + cT2) → ra := c;
vr ∈ [cT1 + cT2, vmax − cT1 − cT2)

→ 8l∈[−c,c]ra := l;
&∃(vc!ra{wa}, tick?o{wc}) →

(wa = 1 ∧ wc = 1 → skip;
wa = 1 ∧ wc = 0 → tick?o{wc};
wa = 0 ∧ wc = 1 → skip;
wa = 0 ∧ wc = 0 → skip)

∥CK);
wv = 0 → skip

TABLE 7. The models of driver and VC

it performs an emergency brake by setting a to be −c , and
as soon as v is decreased to 0, resets a to be 0, thus the
train keeps still finally. The main process TR models the
movement of a train. The train first moves for at most T1
time units, during which it is always ready to send v to the
driver as well as the VC along trd and trv respectively. If
neither of them responses within T1, indicated by t1 ≥ T1,
the self control is performed. Otherwise, if at least one
communication occurs, the movement is interrupted and a
sequence of case analysis is followed to execute.

The first case, indicated by uv = 1 andwv = 1, represents
that the driver as well as the VC succeed to receive v
simultaneously. The train will wait for at most T2 time
units for receiving the new acceleration from the driver or
the VC along dr and vc respectively, and during the waiting
time, it continues to move with the original acceleration.
It can be easily seen that the maximum time for keeping
a same acceleration is T1 + T2, as a result, the maximum
change of velocity is cT1 + cT2. Thus, in order to keep
the velocity always in the safe range [0, vmax], the new
acceleration received is expected to satisfy the following
boundary condition V A(v, a):
(v > vmax − cT1 − cT2 ⇒ −c ≤ a < 0)
∧(v < cT1 + cT2 ⇒ c ≥ a ≥ 0)
∧(cT1 + cT2 ≤ v ≤ vmax − cT1 − cT2) ⇒ (−c ≤ a ≤ c)

which implies the boundaries for setting a to be positive or
negative. Otherwise, it will be rejected by the train and the

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

MODELLING AND VERIFYING DEPENDABILITY OF HYBRID SYSTEMS 15

self control is performed.
If both the driver and the VC fail to response within

T2, indicated by t2 ≥ T2, the self control is performed.
Otherwise, the following case analysis is taken: If the train
receives a value (i.e. ya) from VC, indicated bywa = 1, then
sets ya to be the acceleration if it satisfies V A, otherwise,
performs self control; if the train receives a value (i.e. xa)
from the driver but not from the VC, updates the acceleration
similarly as above; if the train receives no value from both
(in fact never reachable), the skip is performed.

The other three cases, indicated by uv = 1 ∧ wv = 0,
uv = 0 ∧ wv = 1, and uv = 0 ∧ wv = 0, can be understood
similarly.

Next we present the model of the environment of the train,
i.e. the driver and VC. One possible implementation for
driver and VC, denoted by DR and VC respectively, is given
in Table 7. In process DR, the driver asks the velocity of
the train every T3 time units, and as soon as it receives
vd, indicated by uv = 1, it computes the new acceleration
as follows: if vd is almost reaching vmax (by the offset
cT1 + cT2), then chooses a negative in [−c, 0) randomly; if
vd is almost reaching 0, then chooses a non-negative in [0, c]
randomly; otherwise, chooses one in [−c, c] randomly. The
train then sends the value being chosen (i.e. da) to the train,
and if it fails to reach the train within T5 (i.e. the period of
the clock), it will give up. The auxiliary process clock is
introduced to prevent deadlock caused by the situation when
the driver succeeds to receive velocity vd from the train but
fails to send acceleration da to the train within a reasonable
time (i.e. T5 here). VC and DR have very similar structure,
except that VC has a different period T4, and it will choose
−c or c as the acceleration for the first two critical cases
mentioned above.

Finally, the whole train control system can be modeled
as the parallel composition: SYS = TR∗∥DR∗∥VC∗∥CK∗.
By using ∗, each component will be executed repeatedly.

7.2. Verification of The Train

We will prove that the train satisfies the safety properties
(F1) and (F2) in an open environment, i.e. no matter whether
the VC or the driver behaves in a correct manner or not. First
of all, assume that the precondition of the train, denoted by
φ0, is

V A(v, a) ∧ 0 ≤ v ≤ vmax ∧ −c ≤ a ≤ c

which indicates that in the initial state, v and a satisfy the
boundary condition and are both well-defined.

Secondly, we need to provide the differential invariants
for differential equations occurring in TR. Consider the
differential equation of MV(t1, T1), the precondition of it
with respect to φ0, denoted by φ1, can be simply calculated,
which is φ0 ∧ t1 = 0. By applying the method proposed
in [11], we obtain a candidate for the differential invariant of
the differential equation with respect to the initial state φ1,

which is(
0 ≤ t1 ≤ T1

)∧ (
a < 0 ⇒ (v ≥ cT2 + (at1 + cT1)) ∧ (v ≤ vmax)

)∧ (
a ≥ 0 ⇒ (v ≤ vmax − cT2 + (at1 − cT1)) ∧ (v ≥ 0)

)
denoted by Inv1. It is a conjunction of three parts, which
can be explained intuitively as follows: (1) t1 is always in
the range [0, T1]; (2) if a is negative (thus v is decreasing),
then v must be greater or equal than cT2 plus the maximum
possible decrease of the velocity rate in the remaining T1−t1
time units, which is −a(T1−t1) ≤ at1+cT1, and meanwhile
v ≤ vmax; and (3) on the contrary, if a is positive (thus v is
increasing), then v must be less or equal than vmax − cT2
minus the maximum possible increase of the velocity rate
in the remaining T1 − t1 time units, which is a(T1 − t1) ≤
cT1−at1, and meanwhile v ≥ 0. Obviously, this invariant is
strong enough for guaranteeing cT2 ≤ v ≤ vmax−cT2 after
the continuous escapes no matter whether a is in [−c, c].
Similarly, we can calculate the differential invariant of the
differential equation occurring in MV(t2, T2), which is(

0 ≤ t2 ≤ T2
)∧ (

a < 0 ⇒ (v ≥ 0 + (at2 + cT2)) ∧ (v ≤ vmax)
)∧ (

a ≥ 0 ⇒ (v ≤ vmax + (at2 − cT2)) ∧ (v ≥ 0)
)

denoted by Inv2. This invariant is strong enough for
guaranteeing 0 ≤ v ≤ vmax after the continuous escapes.
Finally, the differential invariant of the differential equation
of SC is 0 ≤ v ≤ vmax, and we denote it by Inv3.

Next, to prove (F1) and (F2), we can prove the following
facts instead:

• Locations 1, 2, 3, 4 are not reachable for TR∗;
• Throughout the execution of TR∗, the invariant 0 ≤
v ≤ vmax always holds.

By applying the bHCSP provers I and II respectively, we
have proved the following theorems for the train,

{φ0} TR∗ {φ0, ⌈0 ≤ v ≤ vmax⌉a⌈0 ≤ v ≤ vmax⌉0}

{φ0} TR∗ {φ0, 0 ≤ v ≤ vmax}

indicating that 0 ≤ v ≤ vmax always holds for the train.
According to the method introduced in Section 4.2, we
obtain the following fact for location 14,

⊢ TR∗, 1, φ0 I (uv ∨ wv) ∧ (¬uv ∧ ¬wv)

which is not satisfiable, thus location 1 is never reachable.
Similarly, we can deduce that locations 2, 3, 4 are not
reachable as well.

Comparison Between Two Inference Systems We have
proved the equivalent results for the train by using the two
bHCSP provers respectively. The length of the proof in
the prover I is about 900 lines of code (loc), while in the
prover II about 300 loc. The proof consists of a sequence of

4For simplicity, we use the boldface of an acknowledgment variable to
represent the corresponding formula, e.g., uv for uv = 1.

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

16 S. WANG, F. NIELSON, H. R. NIELSON AND N. ZHAN

rule applications, which can be classified to two kinds: the
inference rules of bHCSP, and the rules for proving logical
formulas. The proof of the second kind is the main reason
that leads to the different results of the two provers. The
formulas consist of FOL formulas and DC formulas in the
prover I, while only FOL formulas in prover II. In prover
II, most of the formulas can be proved automatically by
calling the proof tactics of Isabelle/HOL. Especially, the tool
sledgehammer, which is a certified integration of third-party
automated theorem provers and SMT solvers including Alt-
Ergo, Z3, CVC3, etc, is frequently used to search the proof
of formulas.

7.3. Analysis of The Train Control System

We can continue to investigate the behavior of the whole
control system SYS, which is a closed system. This needs
to take the communications between the components of
SYS into account. Consider the first loop of execution
of each component, by instantiating the values of the time
parameters, e.g. T1, T3, T4 etc, in different ways, we
obtain different results about the cooperation between the
components.

Suppose T4 = 1
2T3 < T1 and T4 = T5 hold. TR and VC

cooperate to execute, and the following sequence of events
will occur:

T4 · trv†V1 · vc†A1 · tick†X

in which, the variables V1 records the value of v at the
interrupting point and A1 the new acceleration provided by
VC. In sequence, the communication along trv occurs first
at time T4, with the velocity V1 being sent from TR to VC;
then the communication along vc occurs immediately, with
an accelerationA1 being sent from VC to TR; and at last the
communication along tick occurs. The execution of TR∥VC
terminates and takes T4 time units to complete.

Suppose T4 = T3 = T5 < T1 holds. TR, VC and DR
cooperate to execute, and one possible case for the occurring
event sequence is:

T3 · trv†V1 · trd†V1 · vc†A1 · dr†A2 · tick†X · tick’†X

in which, the variables V1 and A1 are defined as above,
and A2 represents the new acceleration provided by DR.
We rename the channel tick from either VC or DR as tick’
to avoid the sharing of the same input or output channels
in different components. The execution of TR∥VC∥DR
terminates and takes T3 time units to complete.

We can continue to consider the multiple loops of
execution, and obtain some results for the behavior of the
whole system SYS.

8. CONCLUSION AND FUTURE WORK

This paper proposes a formal modeling language, that is
a combination of hybrid CSP and binders from quality
calculus, for expressing hybrid systems with communication
fault tolerance. With the linguistic support, it is able to build
a safe hybrid system that behaves in a reasonable manner in

the presence of communication failure. As a result, when
the service from the controllers fails due to communication
failure, the physical system itself is able to provide feedback
control, to meet the safety requirements.

The paper develops two different inference systems for
verifying the safety of such systems, and subsequently
implement two theorem provers based on them. In the
first approach, the interval property of a bHCSP process
is specified by an interval temporal logic formula, which
results in an expressive reasoning system but meanwhile
brings the big proof burden in the corresponding prover.
In the second approach, the interval property is simplified
to an invariant property defined by first-order logic, that
holds for all reachable states of the process. Although,
the expressivity is less than the first one, it enables more
automation in the proof thus is more preferred in real
applications. Furthermore, as indicated by the application to
the train control case study, the second approach can actually
achieve the same result as the first one in many cases.

Future Work We will apply the framework based on
bHCSP to investigate more practical hybrid systems. In [55],
we modelled and verified the moving scenarios of Chinese
Train Control System (CTCS) with respect to CTCS
requirement specification, and in [56], we applied different
formal methods to the verification of a descent guidance
control program of a lunar lander. In both work, the systems
are assumed to always have well-behaved communications
between the continuous plant and the discrete controllers.
The assumptions can be loosen in the framework proposed
in this paper. On the other hand, as we mentioned at the
beginning, we hope eventually to apply this framework to the
model-based design of cyber-physical systems. However,
this work can only be considered as the first step of
the model-based design methodology. We will continue
to study model transformations from the abstract bHCSP
models to more concrete models, and to the implemental
code at the end. In this process, the discretization of
continuous evolution, and the extra efforts brought by the
complex interactions between continuous plants and discrete
computation via communications, are the key problems to be
studied.

REFERENCES

[1] Alur, R., Courcoubetis, C., Henzinger, T. A., and Ho,
P. (1992) Hybrid automata: An algorithmic approach
to the specification and verification of hybrid systems.
Hybrid Systems, LNCS 736, pp. 209–229. Springer Berlin
Heidelberg.

[2] Lafferrierre, G., Pappas, G. J., and Yovine, S. (2001)
Symbolic reachability computation for families of linear
vector fields. Journal of Symbolic Computation, 32, 231–
253.

[3] Alur, R., Dang, T., and Ivancic, F. (2006) Predicate
abstraction for reachability analysis of hybrid systems. ACM
Trasactions on Embedded Computing Systems, 5, 152–199.

[4] Asarin, E., Bournez, O., Dang, T., and Maler, O.
(2000) Approximate reachability analysis of piecewise-linear

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

MODELLING AND VERIFYING DEPENDABILITY OF HYBRID SYSTEMS 17

dynamical systems. Hybrid Systems: Computation and
Control (HSCC), LNCS 1790, PA, USA, March 23-25, pp.
21–31. Springer Berlin Heidelberg.

[5] Gulwani, S. and Tiwari, A. (2008) Constraint-based approach
for analysis of hybrid systems. Computer Aided Verification
(CAV), LNCS 5123, Princeton, NJ, USA, July 7-14, pp. 190–
203. Springer Berlin Heidelberg.

[6] Gan, T., Chen, M., Dai, L., Xia, B., and Zhan, N. (2015)
Decidability of the reachability for a family of linear vector
fields. ATVA 2015, Lecture Notes in Computer Science,
9364, pp. 482–499.

[7] Gan, T., Chen, M., Li, Y., Xia, B., and Zhan, N. Computing
reachable sets of linear vector fields revisited. ECC 2016. to
appear.

[8] Prajna, S. and Jadbabaie, A. (2004) Safety verification of
hybrid systems using barrier certificates. Hybrid Systems:
Computation and Control (HSCC), LNCS 2993, Philadelphia,
PA, USA, March 25-27, pp. 477–492. Springer.

[9] Sankaranarayanan, S., Sipma, H. B., and Manna, Z. (2007)
Constructing invariants for hybrid systems. Formal Methods
in System Design, 32, 25–55.

[10] Platzer, A. and Clarke, E. M. (2008) Computing differential
invariants of hybrid systems as fixedpoints. Computer Aided
Verification (CAV), LNCS 5123, Princeton, NJ, USA, pp. 176–
189. Springer-Verlag Berlin, Heidelberg.

[11] Liu, J., Zhan, N., and Zhao, H. (2011) Computing semi-
algebraic invariants for polynomial dynamical systems. The
ninth ACM international conference on Embedded software
(EMSOFT), Taipei, Taiwan, pp. 97–106. ACM New York,
USA.

[12] Dai, L., Gan, T., Xia, B., and Zhan, N. Barrier certificate
revisited. J. of Symbolic Computation , ? to appear.

[13] Asarin, E., Bournez, O., Dang, T., Maler, O., and Pnueli, A.
(2000) Effective synthesis of switching controllers for linear
systems. Proceedings of the IEEE, 88, 1011–1025.

[14] Lygeros, J., Godbole, D. N., and Sastry, S. (2000) A game
theoretic approach to controller design for hybrid systems.
Proceedings of the IEEE, 88, 949–970.

[15] Taly, A., Gulwani, S., and Tiwari, A. (2009) Synthesizing
switching logic using constraint solving. International
Journal on Software Tools for Technology Transfer, 13, 519–
535.

[16] Sturm, T. and Tiwari, A. (2011) Verification and synthesis
using real quantifier elimination. International Symposium
on Symbolic and Algebraic Computation (ISSAC), San Jose,
California, USA, June 8-11, pp. 329–336. ACM.

[17] Zhao, H., Zhan, N., Kapur, D., and Larsen, K. (2012) A
“hybrid” approach for synthesizing optimal controllers of
hybrid systems: A case study of the oil pump industrial
example. FM 2012, Lecture Notes in Computer Science,
7436, pp. 471–485.

[18] Zhao, H., Zhan, N., and Kapur, D. (2013) Synthesizing
switching controllers for hybrid systems by generating
invariants. Theories of Programming and Formal Methods
- Essays Dedicated to Jifeng He on the Occasion of His 70th
Birthday, Lecture Notes in Computer Science, 8051, pp. 354–
373.

[19] Zhang, S. (2008) CTCS-3 Technology Specification. China
Railway Publishing House. in Chinese.

[20] Wang, S., Nielson, F., and Nielson, H. R. (2014) Denial-
of-service security attack in the continuous-time world.
Formal Techniques for Distributed Objects, Components, and

Systems (FORTE), LNCS 8461, Berlin, Germany, June 3-5,
pp. 149–165. Springer Berlin Heidelberg.

[21] He, J. (1994) From CSP to hybrid systems. A classical mind,
pp. 171–189. Prentice Hall International (UK) Ltd.

[22] Zhou, C., Wang, J., and Ravn, A. P. (1996) A formal
description of hybrid systems. Hybrid systems III :
verification and control, LNCS 1066, pp. 511–530. Springer
Berlin Heidelberg.

[23] Nielson, H. R., Nielson, F., and Vigo, R. (2013) A calculus
for quality. Formal Aspects of Component Software (FACS),
LNCS 7684, CA, USA, September 12-14, pp. 188–204.
Springer Berlin Heidelberg.

[24] Henzinger, T. and Sifakis, J. (2006) The embedded systems
design challenge. Formal Methods (FM), LNCS 4085,
August 21-27, pp. 1–15. Springer, Hamilton, Canada.

[25] Lee, E. A. (2008) Cyber physical systems: Design challenges.
International Symposium on Object/Component/Service-
Oriented Real-Time Distributed Computing (ISORC), May.
Invited Paper.

[26] Sangiovanni-Vincentelli, A. (2007) Quo Vadis SLD: Reason-
ing about trends and challenges of system-level design. Pro-
ceedings of the IEEE, 95, 467–506.

[27] Manna, Z. and Pnueli, A. (1993) Verifying hybrid systems.
Hybrid Systems, LNCS 736, pp. 4–35. Springer Berlin
Heidelberg.

[28] Henzinger, T. A. (1996) The theory of hybrid automata.
Annual IEEE Symposium on Logic in Computer Science
(LICS), pp. 278–292.

[29] Alur, R. and Dill, D. L. (1994) A theory of timed automata.
Theoretical Computer Science, 126, 183–235.

[30] Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger,
T., Ho, P.-H., Nicollin, X., Olivero, A., Sifakis, J., and
Yovine, S. (1995) The algorithmic analysis of hybrid systems.
Theoretical Computer Science, 138, 3–34.

[31] Prajna, S. and Jadbabaie, A. (1994) Decidability of hybrid
systems with rectangular differential inclusions. Computer
Aided Verification (CAV), LNCS 818, California, USA, June
21-23, pp. 95–104. Springer Berlin Heidelberg.

[32] Henzinger, T. A., Kopke, P. W., Puri, A., and Varaiya, P.
(1995) What’s decidable about hybrid automata? Proceed-
ings of the twenty-seventh Annual ACM Symposium on Theory
of Computing (STOC), Las Vegas, USA, pp. 373–382. ACM,
New York, USA.

[33] Clarke, E. M., Fehnker, A., Han, Z., Krogh, B. H., Ouaknine,
J., Stursberg, O., and Theobald, M. (2003) Abstraction
and counterexample-guided refinement in model checking of
hybrid systems. Int. J. Found. Comput. Sci., 14, 583–604.

[34] Castelan, E. and Hennet, J. (1993) On invariant polyhedra of
continuous-time linear systems. IEEE Trans. Autom. Control,
38, 1680–1685.

[35] Rodrı́guez-Carbonell, E. and Tiwari, A. (2005) Generating
polynomial invariants for hybrid systems. Hybrid Systems:
Computation and Control (HSCC), LNCS 3414, Zurich,
Switzerland, March 9-11, pp. 590–605. Springer Berlin
Heidelberg.

[36] Sankaranarayanan, S., Dang, T., and Ivančić, F. (2008)
A policy iteration technique for time elapse over template
polyhedra. Hybrid Systems: Computation and Control
(HSCC), LNCS 4981, St. Louis, MO, USA, April 22-24, pp.
654–657. Springer Berlin Heidelberg.

[37] Sankaranarayanan, S., Sipma, H. B., and Manna, Z. (2004)
Constructing invariants for hybrid systems. Formal Methods
in System Design, 32, 25–55.

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

18 S. WANG, F. NIELSON, H. R. NIELSON AND N. ZHAN

[38] Sankaranarayanan, S. (2010) Automatic invariant generation
for hybrid systems using ideal fixed points. Hybrid Systems:
Computation and Control (HSCC), Stockholm, Sweden, pp.
221–230. ACM, New York, NY, USA.

[39] Platzer, A. and Clarke, E. M. (2009) Computing differential
invariants of hybrid systems as fixedpoints. Formal Methods
in System Design, 35, 98–120.

[40] Yang, Z., Lin, W., and Wu, M. (2015) Exact safety verification
of hybrid systems based on bilinear SOS representation.
ACM Trans. Embed. Comput. Syst., 14, 1–19.

[41] Rebiha, R., Matringe, N., and Moura, A. V. (2012)
Transcendental inductive invariants generation for non-
linear differential and hybrid systems. Hybrid Systems:
Computation and Control (HSCC), Beijing, China, April 17-
19, pp. 25–34. ACM, New York, NY, USA.

[42] Goubault, E., Jourdan, J.-H., Putot, S., and Sankara-
narayanan, S. (2014) Finding non-polynomial positive invari-
ants and Lyapunov functions for polynomial systems through
Darboux polynomials. 2014 American Control Conference
(ACC), Portland, Oregon, USA, June 4-6, pp. 3571–3578.

[43] Ghorbal, K. and Platzer, A. (2014) Characterizing algebraic
invariants by differential radical invariants. Tools and
Algorithms for the Construction and Analysis of Systems
(TACAS), LNCS 8413, Grenoble, France, April 5-13, pp. 279–
294. Springer Berlin Heidelberg.

[44] Sankaranarayanan, S. (2016) Change-of-bases abstractions
for non-linear hybrid systems. Nonlinear Analysis: Hybrid
Systems, 19, 107 – 133.

[45] Liu, J., Zhan, N., Zhao, H., and Zou, L. (2015) Abstraction
of elementary hybrid systems by variable transformation.
Formal Methods (FM), LNCS 9109, Oslo, Norway, June 24-
26, pp. 360–377. Springer Berlin Heidelberg.

[46] Platzer, A. (2010) Differential-algebraic dynamic logic for
differential-algebraic programs. J. Log. and Comput., 20,
309–352.

[47] Platzer, A. and Quesel, J. (2009) European Train Control
System: A case study in formal verification. Formal Methods
and Software Engineering (ICFEM), LNCS 5885, Shanghai,
China, November 28 - December 1, pp. 246–265. Springer
Berlin Heidelberg.

[48] Banach, R., Butler, M., Qin, S., Verma, N., and Zhu,
H. (2015) Core Hybrid Event-B I: Single Hybrid Event-B
machines. Science of Computer Programming, 105, 92 – 123.

[49] Liu, J., Lv, J., Quan, Z., Zhan, N., Zhao, H., Zhou, C., and
Zou, L. (2010) A calculus for hybrid CSP. Programming
Languages and Systems (APLAS), LNCS 6461, Rio de
Janeiro, Brazil, December 9-12, pp. 1–15. Springer.

[50] Zhan, N., Wang, S., and Zhao, H. (2013) Formal modelling,
analysis and verification of hybrid systems. Unifying
Theories of Programming and Formal Engineering Methods,
LNCS 8050, Shanghai, China, August 26-30, pp. 207–281.
Springer Berlin Heidelberg.

[51] Wang, S., Zhan, N., and Guelev, D. (2012) An assume/guar-
antee based compositional calculus for hybrid CSP. Theory
and Applications of Models of Computation (TAMC), LNCS
7287, Beijing, China, May 16-21, pp. 72–83. Springer Berlin
Heidelberg.

[52] Nielson, H. R. and Nielson, F. (2013) Probabilistic
analysis of the quality calculus. International Conference
FMOODS/FORTE 2013, LNCS 7892, Florence, Italy, June
3-5, pp. 258–272. Springer Berlin Heidelberg.

[53] Zhou, C., Hoare, C., and Ravn, A. P. (1991) A calculus of
durations. Information Processing Letters, 40, 269–276.

[54] Zhou, C. and Hansen, M. (2004) Duration Calculus —
A Formal Approach to Real-Time Systems Monographs in
Theoretical Computer Science. An EATCS Series. Springer-
Verlag Berlin Heidelberg.

[55] Zou, L., Lv, J., Wang, S., Zhan, N., Tang, T., Yuan, L., and
Liu, Y. (2013) Verifying Chinese train control system under a
combined scenario by theorem proving. VSTTE, LNCS 8164,
Menlo Park, CA, USA, May 17-19, pp. 262–280. Springer
Berlin Heidelberg.

[56] Zhao, H., Yang, M., Zhan, N., Gu, B., Zou, L., and Chen,
Y. (2014) Formal verification of a descent guidance control
program of a lunar lander. Formal Methods (FM), LNCS
8442, May 12-16, pp. 733–748. Springer Berlin Heidelberg,
Singapore.

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

