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The Opacity of Real-time Automata
Lingtai Wang, Naijun Zhan, and Jie An

Abstract—Opacity is an important property on information
flow to guarantee that a system under attack keeps its “secrets”,
possibly subsets of traces (language-based opacity) or subsets of
states (state-based opacity), opaque to the outside intruder with
partial observability. In this paper, we investigate the opacity
problems of real-time automata (RTA), which is a popular model
for real-time systems. In order to prove that the language-
opacity problem of RTA is decidable, we introduce the notion
of trace-equivalence and then translate RTA into finite-state
automata (FA) with timed alphabets. Besides, we also introduce
the notions of partitioned timed alphabet and language to
guarantee trace equivalence is preserved by complementation
and product operations over FA with timed alphabets. Thus, our
decision procedure can be sketched as follows: first, translate the
RTA to model a system under attack and the RTA to specify
the secret behaviour of the system into FA, respectively; then,
compute another FA, which accepts all traces accepted by the
first FA, but not by the second one; afterwards, project these FA
onto the given observable set; finally, unify the alphabets of these
FA such that for any two timed actions with the same event, their
time parts do not have any overlap. Thus, whether the original
system is language-opaque with respect to the secret RTA and
the observable set is reduced to the inclusion problem of regular
languages. Similarly, we can show decidability of initial-opacity
of RTA.

Index Terms—Real-time automata, language-opacity, initial-
state opacity, decidability, trace-equivalence

I. INTRODUCTION

AS network communications and online services are ubiq-
uitous in modern life, security and privacy have become

more and more important. Opacity is an information flow
property aiming at keeping the “secret” of a system opaque
to its outsider (called the intruder, who is believed to know
everything about the structure of the system, but only has
partial observability over it). Once the intruder has observed
the execution, he can get an estimation whether the execution
belongs to the secret. There are two types of secrets: subsets
of traces and subsets of states. Opacity properties are divided
into language-based opacity and state-based opacity, according
to in which type the secrets are.

A system is called language-opaque if an intruder with
partial observability can never determine whether a trace of
the system is secret no matter what he has observed, while a
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system is called initial-state opaque if the intruder is unable
to determine whether it starts from a secret state.

The notion of opacity was firstly introduced in the context
of security protocols in [1]. Opacity has then been modelled
in Petri nets (PNs), for example, in [2] it is proved that the
problems of initial-opacity, final-opacity and always-opacity
are all decidable if the set of all markings reachable from
any initial markings is finite. In [3], an approach based on
basis reachability graph (BRG) was proposed so that initial-
state opacity of bounded PNs can be verified. In [4], the
authors generalised opacity to labelled transition systems and
proved that opacity is undecidable in such systems. To this
end, they further proposed a decidable approximation to the
original opacity, which was named as under/over-opacity. In
the framework of automata, verification of initial-opacity is
PSPACE-complete [5]. State estimators are constructed in [5]–
[8] for verification of different kinds of state-based opacity.
Probabilistic models are also taken into consideration, such as
[9]–[12].

In [13], the notion of opacity was first extended to time
settings, with the result that the language-based opacity prob-
lem is already undecidable for a very restrictive class of event
recording timed automata (ERA).

As time is an important attack vector against secure systems,
we still would like to consider the language-based and initial-
state based opacity problems on a timed model. In this paper,
we concentrate on real-time automata (RTA) [14], a subclass
of timed automata with a single clock to be reset at each
transition, which can be regarded as finite automata with time
information for each transition. RTA is a popular model for
real-time systems. Note that RTA is not comparable with ERA
as pointed out in [14].

In this paper, we show that the language-opacity problem
of RTA is decidable by reduction to the inclusion problem of
regular languages, which is decidable from automata theory
[15]. The basic idea can be sketched as follows: First, we
introduce the notion of trace-equivalence between languages
of RTA and finite-state automata (FA) with timed alphabets.
Second, in order to guarantee trace-equivalence to be preserved
by the complementation and product operation over FA with
timed alphabets, we introduce the concepts of partitioned
timed alphabet and partitioned language. So refined FA with
partitioned timed alphabet are constructed. Third, we define a
projection operation on FA onto the given observable set Σo,
by removing all unobservable transitions and merging their
time durations into the subsequent observable transition.

Given A (the system under attack), As (specifying secret
behaviours) and Σo (the observables), the whole process is
shown below, where 0 stands for translation from RTA to FA,
1 for refinement by partition, 2 for complementation, 3 for
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production, and 4 for projection.

As
0 // Bs

1&2// Bc
s

3 // Bns
4 // Bns ↑Σo

1&2// (Bns ↑Σo)c

3

��
A 0 // B

1&3

::

4 // B ↑Σo
1&3 // Bfinal

Among those automata, Bns accepts the language trace-
equivalent to L(A) \ Lf (As), and Bfinal accepts the language
trace-equivalent to PΣo,t(L(A))\PΣo,t(L(A)\Lf (As)). Thus,
the original A is language-opaque with respect to Lf (As) and
Σo iff Lf (Bfinal) is empty.

Besides, the decidability of the initial-state opacity of RTA
can be proved by reduction to the inclusion problem of regular
languages similarly.

Related work: The technique used in our work is similar
to Dima’s in [14] to establish Kleene Theorem and Pumping
Lemma for RTA. In [14], the Floyd-Warshall algorithm and
partition are used for transforming an augmented RTA into
a stuttering-free one and then into a deterministic one, for
a given RTA, so that the resulted RTA is closed under
complementation, which can correspond to an FA. In our
work, we consider the opacity problems of RTA. To this
end, partition is used to eliminate overlap of time domains
so that a trace-equivalence between RTA and FA can be
preserved by their product and complementation operations; in
addition, the Floyd-Warshall algorithm is utilized only once for
merging successive unobservable transitions and constructing
the projection of FA. So, the complexity of Dima’s approach is
much higher than ours, with his approach, the number of states
in the stuttering-free one is n = 2|Σ| · |S|, and the number of
states in the deterministic one is at most 3n.

Organization: The remainder of this paper is orga-
nized as follows. In Section II, we recall preliminaries in-
cluding FA, regular expressions, RTA, and the problems of
language/initial-opacity of RTA. Translation from RTA to FA
preserving trace-equivalence is introduced in Section III. Sec-
tion IV provides the method to project an FA obtained in the
previous section onto an observable alphabet. In Section V we
come to the conclusion that the problems of language/initial-
opacity are decidable for RTA, and provide a very simple
example for illustration. A prototypical implementation is
presented in Section VI, and Section VII concludes this paper.

II. PRELIMINARIES

We use R≥0, Q≥0, and N to denote the set of nonnega-
tive real numbers, nonnegative rational numbers, and natural
numbers respectively.

Let Σ, a set of events, be the alphabet. A word or string
over Σ is a finite sequence w = σ1σ2 . . . σn, where σi ∈ Σ
for i = 1, 2, . . . , n. |w| = n is the length of w. ε is the empty
word, with |ε| = 0. Σ∗ is the set of all the finite words over
Σ including ε. L is a language over Σ if L ⊆ Σ∗.

Commonly-used operations on languages include union,
intersection, and difference as in set theory, as well as con-
catenation, Kleene closure and projection defined below:

Concatenation: Let L1, L2 ⊆ Σ∗, the concatenation L1 ·
L2 = {s1 · s2 | s1 ∈ L1 ∧ s2 ∈ L2}. The “·” can be omitted if
no confusion.

Kleene closure: Let L ⊆ Σ∗, and L0 = {ε}, Lk = (Lk−1)L
for k > 0, then the Kleene closure of L is L∗ =

⋃
k∈N L

k =
{ε} ∪ L ∪ LL ∪ · · · .

Projection: Given Σ and a subset Σo ⊆ Σ, we can define a
projection Po : Σ∗ → Σ∗o, where

Po(ε) = ε

Po(σs) =

{
σPo(s), if σ ∈ Σo

Po(s), otherwise
, for σ ∈ Σ and s ∈ Σ∗.

Given any B ⊆ Σ∗ and C ⊆ Σ∗o, the image of B under Po is
Po(B) = {Po(s) | s ∈ B} ⊆ Σ∗o and the inverse image of C
under Po is P−1

o (C) = {s ∈ Σ∗ | Po(s) ∈ C} ⊆ Σ∗.
Consider the alphabet Σ × R≥0. A timed word over Σ is

a finite word over the alphabet Σ × R≥0 with the form of
wt = (σ1, t1)(σ2, t2) . . . (σn, tn), where 0 ≤ t1 ≤ t2 ≤ · · · ≤
tn, meaning that σi occurs at ti successively for 1 ≤ i ≤ n.
TW∗(Σ) denotes the set of all timed words over Σ. A subset
of TW∗(Σ) is a timed language. If Σo ⊆ Σ is the observ-
able alphabet, PΣo,t denotes the projection from TW∗(Σ)
into TW∗(Σo). For example, if wt = (a, 2)(b, 3)(a, 5)(b, 8),
P{b},t(wt) = (b, 3)(b, 8) and P{a},t(wt) = (a, 2)(a, 5).

A. Finite-state automata and regular expressions

Automata is a kind of well-known and commonly used mod-
el to study discrete transition systems and their behaviours.
Finite-state automata (FA) are automata with finite states,
including deterministic and non-deterministic ones.

Definition 1: • A deterministic finite-state automaton
(DFA) is a 5-tuple Ad = (S,Σ, δ, s0, F ), where

– S is a finite set of states;
– Σ is a finite alphabet;
– δ : S × Σ → S is the transition relation, a partial

function on S × Σ;
– s0 ∈ S is the initial state; and
– F ⊆ S is the set of accepting states.

• A non-deterministic finite-state automaton (NFA) is a 5-
tuple An = (S,Σ ∪ {ε}, δ, Init, F ), where

– S is a finite set of states;
– Σ is a finite alphabet;
– δ : S × (Σ ∪ {ε})→ 2S is the transition function;
– Init ⊆ S is the set of initial states; and
– F ⊆ S is the set of accepting states.

Obviously, a DFA can be viewed as a special kind of NFA,
where there is only one initial state, one or zero state in each
δ(s, σ), and no ε-transition.

For an NFA A, (s1, σ, s2) is called a σ-transition if s2 ∈
δ(s1, σ). Preσ and Postσ denotes the set of states from which
and to which are σ-transitions respectively.

A run of A is either a single state s0 where s0 ∈ Init, or a
sequence s0

σ1−→ s1
σ2−→ · · · σn−−→ sn where n > 0, s0 ∈ Init,

σi ∈ Σ ∪ {ε} and si ∈ δ(si−1, σi−1) for 1 ≤ i ≤ n. An
accepting run is a run ending in a state sn ∈ F .

The trace of a run ρ is a finite word over Σ, written as
trace(ρ). trace(s0) is ε, and the trace of the sequence from
s0 to sn is a finite word obtained by projecting σ1σ2 . . . σn
onto Σ, that is, the string a1a2 . . . am obtained by removing
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each ε from σ1σ2 . . . σn; hence the length of the trace is m,
less than or equal to n.

Let Tr(s0) be the set of traces of runs from s0, and Tr(S0)
be the set of traces of runs from any state s0 ∈ S0.

The language generated by A, denoted by L(A), is the set
of traces of runs of A, i.e., L(A) = Tr(Init); the language
accepted by A, denoted by Lf (A), is the set of traces of
accepting runs. A language is said to be regular if it can be
accepted by a finite-state automaton.

Regular expressions is another way to define regular lan-
guages.

Definition 2: Regular expressions over alphabet Σ can be
defined recursively as follows:

1. (Base Clause.) ∅, ε, σ ∈ Σ are regular expressions, where
∅ denotes the empty set, ε denotes the set {ε}, and σ
denotes the set {σ} for σ ∈ Σ.

2. (Inductive Clause.) If r, r1, r2 are regular expressions, so
are r1 ·r2, r1 +r2, r∗. r1 ·r2 denotes the concatenation of
the languages defined by r1 and r2, r1 + r2 denotes the
union of the two languages, and r∗ denotes the Kleene
closure of the language defined by r.

3. (External Clause.) Regular expressions can only be con-
structed by applying 1 and 2.

Theorem 2.1 (Kleene’s Theorem): Any regular language is
accepted by an FA; any language accepted by an FA is regular.

1) Complementation and product over DFA: Two automa-
ta are called language-equivalent, or equivalent for short,
if they generate and accept the same languages. An NFA
An = (S,Σ, δ, Init, F ) can be transformed into an equivalent
DFA Ad = (S′,Σ, δ′, Init′, F ′) defined below. Let εR(s, ε)
denote the set of states which are reachable from state s via
no transitions or only ε-transitions, and εR(s, σ) the set of
states which are reachable from state s via one σ-transition
together with ε-transitions before and after it. Then in Ad,
S′ = 2S ; δ′(S1, σ) =

⋃
s1∈S1

εR(s1, σ); Init′ = εR(s0, ε);
F ′ = {S1 | S1 ∩ F 6= ∅}.

Consider a DFA A = (S,Σ, δ, s0, F ). The complement
automaton Acomp which accepts Lf (A)c = Σ∗ \ Lf (A) can
be constructed as follows:

1. Augment S with a new state snew /∈ S;
2. Augment δ such that it becomes a total function, denoted

as δcomp. For all (s, σ) ∈ S × Σ, if δ(s, σ) is defined,
let δcomp(s, σ) = δ(s, a); if δ(s, σ) is not defined, let
δcomp(s, σ) = snew. Also δ(snew, σ) = snew for each σ ∈
Σ. After that Σ∗ becomes the language generated, while
the language accepted keeps unchanged;

3. Let (S \ F ) ∪ {snew} be the set of accepting states.

To sum up, Acomp = (S ∪{snew},Σ, δcomp, s0, S \F ∪{snew}).
Given two DFA A1 = (S1,Σ1, δ1, s0,1, F1) and A2 = (S2,

Σ2, δ2, s0,2, F2) with S1 ∩ S2 = ∅, the product of A1 and A2

is Ap = A1 ×A2 = (Sp,Σp, δp, sp0, F
p), defined as follows:

Sp = S1 × S2; Σp = Σ1 ∩ Σ2; δp((s1, s2), σ) = (s′1, s
′
2) if

δ(s1, σ) = s′1 and δ(s2, σ) = s′2, and is not defined otherwise;
sp0 = (s0,1, s0,2); F p = F1 × F2.
Lf (A1 ×A2) = Lf (A1) ∩ Lf (A2).

B. Real-time automata (RTA)

RTA are very similar to classical automata despite their
taking time into account as well. We can easily get an RTA
by attaching time information to each transition of a given
automaton.

Definition 3: An RTA is a 6-tuple A = (S,Σ,∆, Init, F,
µ), where

- S is a finite set of states;
- Σ is a finite alphabet;
- ∆ ⊆ S × Σ× S is the transition relation;
- Init ⊆ S is the set of initial states;
- F ⊆ S is the set of accepting states; and
- µ : ∆→ 2R≥0 \ {∅} is the time labelling function.
Transitions (s1, σ, s2) ∈ ∆ are called σ-transitions. Preσ

and Postσ denotes the set of states from which and to which
are σ-transitions respectively.

A run of A is either a single initial state s0 ∈ Init or a
finite sequence ρ = s0

σ1−→
λ1

s1
σ2−→
λ2

· · · σn−−→
λn

sn where n > 0,

s0 ∈ Init, (si−1, σi, si) ∈ ∆, and λi ∈ µ(si−1, σi, si) for
1 ≤ i ≤ n.

The trace of a run ρ, denoted by trace(ρ), is a timed word
defined as follows: trace(s0) = εt where subscript “t” is used
to emphasize the time factor; if ρ = s0

σ1−→
λ1

s1
σ2−→
λ2

. . .
σn−−→
λn

sn,

trace(ρ) = (σ1, t1)(σ2, t2) . . . (σn, tn) where ti =
∑i
j=1 λj

for 1 ≤ i ≤ n.
Let Tr(s0) be the set of traces of runs from s0, and

Tr(S0) be the set of traces of runs from any state s0 ∈ S0.
Then languages generated and accepted by A can be defined:
L(A) = Tr(Init) =

⋃
s0∈Init Tr(s0), and Lf (A) = {trace(ρ) |

ρ starts from s0 ∈ S0 and ends in sf ∈ F}.
Example 1: Consider the two RTA in Figure 1. In A1,

Tr(s0) = {εt} ∪ {(a, ta) | ta ∈ [1, 2]} ∪ {(a, ta)(b, tb) |
ta ∈ [1, 2], tb − ta ∈ [2, 3]}, and Tr(s3) = {εt} ∪ {(b, tb) |
tb ∈ [3, 4]}. A1 generates L(A1) = Tr(s0) ∪ Tr(s3); and A1

accepts Lf (A1) = {(a, ta) · (b, tb) | ta ∈ [1, 2], tb − ta ∈
[2, 3]} ∪ {(b, tb) | tb ∈ [3, 4]}.

In A2, let a∗ = {ε} ∪⋃k≥1{(a, t1) . . . (a, tk) | ti − ti−1 ∈
[1, 2]} (t0 = 0), and a∗b = a∗ · (b, tb) where tb ∈ [3, 5]. Then
Tr(s′0) = a∗ ∪ a∗b; L(A2) = Tr(s′0); Lf (A2) = a∗b.

s0 s1

s2
s3

a

[1, 2] b

[2, 3]
b

[3, 4]

(a) A1

s′0 s′1

a [1,2]

b

[3, 5]

(b) A2

Fig. 1: RTA A1 and A2

C. Language and initial-state opacity of RTA

Given an RTA A = (S,Σ, ∆, Init, F, µ) and an observable
alphabet Σo ⊆ Σ, although L(A) is generated, intruders can
only observe timed words in PΣo,t(L(A)).
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Suppose we have a secret timed language, Lsecret, over Σ. In
this case, can intruders make sure that a trace of the system
falls into the secret set Lsecret according to what they have
observed? This is considered in the language-opacity problem.
Similarly, suppose we have some secret states, Ssecret ⊆ S.
The problem of initial-state opacity (initial-opacity for short)
considers whether intruders can make sure that a trace starts
from Ssecret. Formally,

Definition 4: Given an RTA A = (S,Σ, ∆, Init, F, µ), an
observable alphabet Σo ⊆ Σ, a secret timed language Lsecret

over Σ and a secret set of states Ssecret ⊆ S,
• Language-opacity: A is language-opaque with respect

to Lsecret and Σo iff for all wt ∈ L(A) ∩ Lsecret, ∃w′t ∈
L(A) \ Lsecret s.t.

PΣo,t(wt) = PΣo,t(w
′
t),

equivalently,

PΣo,t(L(A) ∩ Lsecret) ⊆ PΣo,t(L(A) \ Lsecret), or

PΣo,t(L(A)) ⊆ PΣo,t(L(A) \ Lsecret).

• Initial-state opacity: A is initial-state opaque with re-
spect to Ssecret and Σo iff for all s0 ∈ Init∩Ssecret and all
wt ∈ Tr(s0), ∃s′0 ∈ Init \ Ssecret, ∃w′t ∈ Tr(s′0) s.t.

PΣo,t(wt) = PΣo,t(w
′
t),

equivalently,

PΣo,t(Tr(Init ∩ Ssecret))) ⊆ PΣo,t(Tr(Init \ Ssecret)), or

PΣo,t(L(A)) ⊆ PΣo,t(Tr(Init \ Ssecret)).

• The language-opacity problem of RTA: Is an RTA A
= (S,Σ, ∆, Init, F, µ) language-opaque with respect to
some given secret timed language Lsecret and Σo ⊆ Σ?

• The initial-state opacity problem of RTA: Is an RTA
A = (S,Σ, ∆, Init, F, µ) initial-state opaque with respect
to some given secret set Ssecret ⊆ S and Σo ⊆ Σ?

Example 2: We still consider the automata A1 shown in
Figure 1(a). Let Σo = {b}, Lsecret = {(a, ta) · (b, tb) | 1 ≤
ta ≤ 3 ∧ 2 ≤ tb ≤ 5}, and Ssecret = {s3}.

Firstly, A1 is not language-opaque with respect to Lsecret

and Σo. This is because there only exists wt = (a, 2) · (b, 5)
in L(A1) satisfying PΣo,t(wt) = (b, 5) and wt is from Lsecret.
So if PΣo,t(wt) = (b, 5), we can easily know that the trace is
wt = (a, 2) · (b, 5) and the run is ρ = s0

a−→
2
s1

b−→
3
s2. Thus,

the secret is exposed in this case.
From another perspective, L(A1) ∩ Lsecret = {(a, ta) ·

(b, tb) | ta ∈ [1, 2], tb − ta ∈ [2, 3]}, and L(A1) \ Lsecret =
{εt} ∪ {(a, ta) | ta ∈ [1, 2]} ∪ {(b, tb) | tb ∈ [3, 4]}. The
projections are PΣo,t(L(A1) ∩ Lsecret) = {(b, t) | t ∈ [3, 5]},
PΣo,t(L(A1) \ Lsecret) = {εt} ∪ {(b, t) | t ∈ [3, 4]}, and
PΣo,t(L(A1)) = {εt} ∪ {(b, t) | t ∈ [3, 5]}. So A1 is not
language-opaque with respect to Lsecret and Σo.

Secondly, A1 is initial-opaque with respect to Ssecret and
Σo. This is because for any wt = (b, tb) in Tr(s3) with 3 ≤
tb ≤ 4, there always exists w′t = (a, 1) · (b, tb − 1) ∈ Tr(s0)

such that PΣo,t(w
′
t) = PΣo,t(wt), whose corresponding run is

ρ = s0
a−→
1
s1

b−−−→
tb−1

s2. Hence the secret is concealed.

From another perspective, PΣo,t(Tr(s0)) = {εt} ∪ {(b, t) |
t ∈ [3, 5]}, and PΣo,t(Tr(s3)) = {εt} ∪ {(b, t) | t ∈ [3, 4]}.
So A1 is initial-opaque with respect to Ssecret = {s3} and
Σo = {b}.

III. FROM RTA TO FA

In this section we construct FA from RTA, such that their
languages are “equivalent” in some sense, which is called
the trace-equivalence relation in this paper. Also, we put
some restriction on the alphabet of the derived FA, called
the partitioned alphabet, so that product and complementation
operations still work on those FA.

A. Trace-equivalence relation

RTA and FA are similar in their structure, except that
RTA maintain time information as well. Thus it is natural to
consider the transformation of an RTA into its corresponding
FA, by attaching time information to the respective event in
each transition, in order to utilize the existing results of FA.

We first introduce the concept of trace-equivalence between
a timed language over a finite alphabet Σ and a language over
the alphabet Σt =

⋃
σ∈Σ{σ} × Tσ where each Tσ is a finite

subset of 2R≥0 . Σt is called a timed alphabet. Σt is finite as
Σ is finite and Tσ is finite for each σ ∈ Σ.

Given a fixed word w = (σ1,Λ1) · (σ2,Λ2) · . . . · (σn,Λn),
where Λi ⊆ R≥0 and Λi 6= ∅, we write [w] to denote the set
of all the timed words of the form wt = (σ1, t1) · (σ2, t2) · . . . ·
(σn, tn) with t1 ∈ Λ1 and (ti − ti−1) ∈ Λi for 1 < i ≤ n.

Definition 5: Given L1, a timed language over Σ, and L2,
a language over Σt =

⋃
σ∈Σ{σ} × Tσ , where each Tσ is a

finite subset of 2R≥0 , L2 is said to be trace-equivalent to L1,
denoted by L2 ≈tr L1, if
• εt ∈ L1 iff ε ∈ L2;
• if any timed word wt = (σ1, t1) · (σ2, t2) · . . . · (σn, tn) ∈
L1, then there exists some w = (σ1,Λ1) · (σ2,Λ2) · . . . ·
(σn,Λn) ∈ L2 such that wt ∈ [w];

• if w = (σ1,Λ1) · (a2,Λ2) · . . . · (an,Λn) ∈ L2, then all
timed words wt ∈ [w] are in L1, i.e., [w] ⊆ L1.

B. A first trial: directly derived FA

Given an RTA A = (S,Σ,∆, Init, F, µ), an FA B = (S′,Σt,
δ, Init′, F ′) can be directly built which has the same sets
of states, initial states and accepting states as A, that is,
S′ = S, Init′ = Init, and F ′ = F . The difference is that
time information of each transition described by µ in A is
transferred into its label in B. Formally, Σt =

⋃
σ∈Σ{σ}×Tσ ,

where Tσ = {µ(s, σ, s′) | ∃(s, σ, s′) ∈ ∆}, and δ(s, (σ,Λ)) =
{s′ | ∃(s, σ, s′) ∈ ∆∧µ(s, σ, s′) = Λ}. B constructed as above
is called the directly derived FA from A. B0 is constructed
same as B except that its accepting states is set to be S. This
means that B0 accepts L(B).

Lemma 3.1: L(B) ≈tr L(A), and Lf (B) ≈tr Lf (A).
Proof: If εt ∈ L(A), a possible run is s0 ∈ Init. Thus,

s0 ∈ Init′. It means that B has a run s0 whose trace is ε,
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i.e., ε ∈ L(B). On the other hand, suppose ε ∈ L(B), which
implies there exists an initial state s0 ∈ Init′. It follows that
s0 ∈ Init. Hence, εt ∈ L(A).

If wt = (σ1, t1)·(σ2, t2)·. . .·(σn, tn) ∈ L(A), there exists a
run of A, say ρ = s0

σ1−→
t1

s1
σ2−−−→

t2−t1
· · · σn−−−−−→

tn−tn−1

sn, such that

s0 ∈ Init, (si−1, σi, si) ∈ ∆ and ti − ti−1 ∈ µ(si−1, σi, si)
for 1 ≤ i ≤ n. So there exists a run of B from s0 ∈ Init′,
that is, ρ′ = s0

(σ1,Λ1)−−−−−→ s1
(σ2,Λ2)−−−−−→ · · · (σn,Λn)−−−−−→ sn, where

Λi = µ(si−1, σi, si) for 1 ≤ i ≤ n. Thus, there exists a trace
w = (σ1,Λ1)·(σ2,Λ2)·. . .·(σn,Λn) ∈ L(B) such that t1 ∈ Λ1

and (ti− ti−1) ∈ Λi for 1 < i ≤ n, in other words, wt ∈ [w].
Given a word w = (σ1,Λ1) · (σ2,Λ2) · . . . · (σn,Λn) ∈

L(B), there must be a run of the form s0
(σ1,Λ1)−−−−−→ s1

(σ2,Λ2)−−−−−→
· · · (σn,Λn)−−−−−→ sn, where s0 ∈ Init′. Hence (si−1, σi, si) ∈ ∆
and µ(si−1, σi, si) = Λi for 1 ≤ i ≤ n. It follows that for
any t1, t2, ..., tn such that t1 ∈ Λ1 and (ti − ti−1) ∈ Λi for
1 < i ≤ n, there exists a run s0

σ1−→
t1

s1
σ2−−−→

t2−t1
· · · σn−−−−−→

tn−tn−1

sn; therefore wt = (σ1, t1) · (σ2, t2) · . . . · (σn, tn) ∈ L(A).
Hence, [w] ⊆ L(A).

The proof for Lf (B) ≈tr Lf (A) is similar, except that the
considered run should end in an accepting state.

However, such trace-equivalence relationship may not be
preserved by intersection and complementation operations. For
instance, let Σ = {a} and Σt = {(a, [2, 4]), (a, [3, 5])},
and L11 = {(a, t) | t ∈ [3, 5]}, L12 = {(a, t) | t ∈
[2, 4]}, L21 = {(a, [3, 5])} and L22 = {(a, [2, 4])}. Clearly,
L21 ≈tr L11 and L22 ≈tr L12, but it can easily follow
that L21 ∩ L22 is not trace-equivalent to L11 ∩ L12, since
L11 ∩ L12 = {(a, t) | t ∈ [3, 4]}, while L21 ∩ L22 = ∅.
This is because (a, [2, 4]) and (a, [3, 5]) are different events
in the timed alphabet Σt, but the actual timed words they
represent overlap. As for the complementation operation, we
only choose and compare subsets of words/timed words with
length 1. Timed words in TW∗(Σ) \ L11 with length 1 is
{(a, t) | t ∈ [0, 3) ∪ (5,+∞)}, while words in Σ∗t \ L21 with
length 1 is {(a, [2, 4])}. This is because the union of [3, 5]
and [2, 4] does not cover R≥0 and the intersection of [3, 5]
and [2, 4] is not empty.

C. Partitioned timed alphabet and partitioned language

As a consequence, restrictions should be placed on the timed
alphabet. Suppose the timed alphabet under consideration is
Σt =

⋃
σ∈Σ{σ}×Tσ . There are two main restrictions on each

Tσ:
• any two different elements of Tσ should be disjoint;
• the union of all elements of Tσ should be equal to R≥0.

Hence the concept of partition in mathematics can be exploited
here. A partition of a nonempty set B is a set of B’s non-empty
subsets satisfying each element x ∈ B is in one and only one
of those subsets. Tσ satisfies the two restrictions above if it is
a partition of R≥0. We introduce the definition of partitioned
alphabet and partitioned language below.

Definition 6: A finite timed alphabet Σt =
⋃
σ∈Σ{σ}× Tσ

is called partitioned if for any σ ∈ Σ, Tσ is a partition of
R≥0.

A language L over a timed alphabet Σt is called partitioned
if Σt is a partitioned alphabet.

Partitioned languages can guarantee that the relation of
trace-equivalence is preserved by language complementation
and intersection.

Lemma 3.2: If L1 is a timed language over Σ, L2 is
a partitioned language over Σt =

⋃
σ∈Σ

(
{σ} × Tσ

)
with

L2 ≈tr L1, then we have (Σ∗t \ L2) ≈tr (TW∗(Σ) \ L1).
Proof: Firstly, εt ∈ TW∗(Σ) \ L1 ⇔ εt /∈ L1 ⇔ ε /∈ L2

⇔ ε ∈ Σ∗t \ L2.
Secondly, suppose wt = (σ1, t1) · (σ2, t2) · . . . · (σn, tn) ∈

TW∗(Σ)\L1, then there must be a unique Λi ∈ Tσi containing
ti − ti−1 for each σi (t0 is deemed to be 0 here), as Tσi is
a partition of R≥0. Thus, it follows (σ1,Λ1) · (σ2,Λ2) · . . . ·
(σn,Λn) ∈ Σ∗t . We can easily know (σ1,Λ1) · (σ2,Λ2) · . . . ·
(σn,Λn) is not in L2, otherwise wt would be in L1, which
is a contradiction. So (σ1,Λ1) · (σ2,Λ2) · . . . · (σn,Λn) is in
Σ∗t \ L2.

On the other hand, suppose w = (σ1,Λ1) · (σ2,Λ2) · . . . ·
(σn,Λn) ∈ Σ∗t \L2. Let wt = (σ1, t1) · (σ2, t2) · . . . · (σn, tn)
be any timed word with t1 ∈ Λ1 and ti − ti−1 ∈ Λi for
i = 2, . . . , n. It holds that wt /∈ L1, otherwise there would
exist some w′ = (σ1,Λ

′
1) · (σ2,Λ

′
2) · . . . · (σn,Λ′n) ∈ L2 such

that t1 ∈ Λ′1 and ti−ti−1 ∈ Λ′i for 1 < i ≤ n since L2 ≈tr L1.
The fact that Λi and Λ′i are both in a partition Tσi of R≥0

and Λi∩Λ′i 6= ∅ indicates that Λi = Λ′i and therefore w = w′,
which results in a contradiction. Hence wt ∈ TW∗(Σ) \ L1.

To sum up, (Σ∗t \ L2) ≈tr (TW∗(Σ) \ L1) by Def. 5.
Lemma 3.3: If L11 and L12 are timed languages over Σ,

L21 and L22 are partitioned languages over the same timed
alphabet Σt =

⋃
σ∈Σ

(
{σ}×Tσ

)
, and L21 ≈tr L11 and L22 ≈tr

L12, then it follows that (L21 ∩ L22) ≈tr (L11 ∩ L12).
Proof: Firstly, εt ∈ L11 ∩L12 ⇔ εt ∈ L11 ∧ εt ∈ L12 ⇔

ε ∈ L21 ∧ ε ∈ L22 ⇔ ε ∈ L21 ∩ L22 by Def. 5.
Secondly, if wt = (σ1, t1) · (σ2, t2) · . . . · (σn, tn) ∈ L11 ∩

L12, then wt ∈ L11 ∧ wt ∈ L12. As wt ∈ L11, there exists
a w1 = (σ1,Λ

1
1) · (σ2,Λ

1
2) · . . . · (σn,Λ1

n) ∈ L21 such that
ti−ti−1 ∈ Λ1

i for each i (here t0 = 0). Similarly, as wt ∈ L12,
there exists a w2 = (σ1,Λ

2
1) · (σ2,Λ

2
2) · . . . · (σn,Λ2

n) ∈ L22

such that ti − ti−1 ∈ Λ2
i for each i (also t0 = 0). Since

L21 and L22 are over a common alphabet Σt, Λ1
i and Λ2

i are
both in Tσi , a partition of R≥0. Λ1

i ∩ Λ2
i 6= ∅ means that

Λ1
i = Λ2

i , for i = 1, . . . , n. Therefore w1 = w2. So there
exists a w = w1 = w2 such that w ∈ L21 ∧ w ∈ L22, i.e.,
w ∈ L21 ∩ L22.

On the other hand, if w = (a1,Λ1)(a2,Λ2) . . . (an,Λn) ∈
L21∩L22, obviously w ∈ L21 and w ∈ L22. This implies that
[w] ⊆ L11 and [w] ⊆ L12, and therefore [w] ⊆ L11 ∩ L12.

To sum up, (L21 ∩ L22) ≈tr (L11 ∩ L12) by Def. 5.
According to the above lemmas, if timed languages over

an alphabet Σ are represented by FA accepting their trace-
equivalent languages over a partitioned timed alphabet Σt,
then the trace-equivalence relationship can be preserved under
complementation and intersection over these FA.

D. Refined FA over partitioned timed alphabets
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In this section we construct another FA B′ with a partitioned
timed alphabet Σ′t, such that Lf (B′) is also trace-equivalent
to Lf (A).

The key point is to obtain the partitioned timed alphabet
Σ′t. Each transition of B, say (s1, (σ,Λ), s2), should be split
into finite transitions in B′, with the same pre- and post-states:
(s1, (σ,Λ1), s2), (s1, (σ,Λ2), s2), . . . , (s1, (σ,Λk), s2), such
that

⋃k
j=1 Λj = Λ and Λi ∩ Λj = ∅ for any i 6= j.

The finite set Tσ of B contains time labels of all σ-
transitions for each σ. Then T ′σ meeting the above require-
ments can be computed from Tσ . The alphabet of B′ is thus
constructed as Σ′t = {σ} × T ′σ .

An auxiliary function P is recursively defined here to
compute a finite partition given a finite set C ⊆ 2R≥0 .
• P(C) = {R≥0} if |C| = 0, i.e., C = ∅.
• P(C ∪Λ) = ({Λ1∩Λ, . . . ,Λm∩Λ}∪{Λ1 \Λ, . . . ,Λm \

Λ}) \ {∅}, if P(C) = {Λ1, . . . ,Λm} and Λ /∈ C.
Additionally, |P(C)| is no more than 2|C|.

By the definition of P, each nonempty Λ ∈ C is partitioned
into several subsets which are mutually disjoint, and the set
of these subsets is denoted as PC,Λ, or PΛ if there is no
ambiguity. For instance, given C = {[2, 5], [3, 6]}, we can
construct P(C) = {[3, 5], [2, 3), (5, 6], [0, 2) ∪ (6,+∞)},
satisfying [2, 5] = [2, 3) ] [3, 5], and [3, 6] = [3, 5] ] (5, 6].

Now given an FA B = (S,Σt, δ, Init, F ) whose alphabet
Σt =

⋃
σ∈Σ{σ} × Tσ is finite, we can obtain another FA

B′ = (S′,Σ′t, δ
′, Init′, F ′) such that Σ′t is partitioned. We

fix the set T+
σ , a finite superset of Tσ in advance, and let

T ′σ = P(T+
σ ) for each σ. The selection strategy of T+

σ is
discussed at the end of this section.

Definition 7: Given B and {T ′σ}σ∈Σ as above, the refined
FA, also called the refinement of B, B′ = (S′,Σ′t, δ

′, Init′, F ′)
is as follows:

- S′ = S, Init′ = Init, F ′ = F ;
- Σ′t =

⋃
σ∈Σ{σ} × T ′σ;

- δ′(s1, (σ,Λ
′)) = {s2 | s2 ∈ δ(s1, (σ,Λ)) ∧ Λ′ ⊆ Λ} =⋃{δ(s1, (σ,Λ)) | Λ′ ⊆ Λ}.

Lemma 3.4: Let B′ be a refinement of B, then L(B′) is
trace-equivalent to a timed language Lt if L(B) is trace-
equivalent to Lt. And Lf (B′) is trace-equivalent to a timed
language Lt,f if Lf (B) is trace-equivalent to Lt,f .

Proof: If εt ∈ Lt (resp. Lt,f ), ε ∈ L(B) (resp. Lf (B)). A
possible run is s0, where s0 ∈ Init (resp. Init∩F ). So s0 ∈ Init′

(resp. Init′ ∩ F ′) and ε ∈ L(B′) (resp. Lf (B)). On the other
hand, suppose ε ∈ L(B) (resp. Lf (B)), which implies there
exists s0 ∈ Init′ (resp. Init′ ∩ F ′). It follows that s0 ∈ Init
(resp. Init∩F ); therefore ε ∈ L(B) (resp. Lf (B)) and εt ∈ Lt
(resp. Lt,f ).

Suppose wt = (σ1, t1) · . . . · (σn, tn) ∈ Lt (resp. Lt,f )
where n ≥ 1, so there exists a word w = (σ1,Λ1) · (σ2,Λ2) ·
. . . · (σn,Λn) ∈ L(B) (resp. Lf (B)) such that t1 ∈ Λ1 and
(ti − ti−1) ∈ Λi for 1 < i ≤ n. Thus, there exists some
w′ = (σ1,Λ

′
1) · (σ2,Λ

′
2) · . . . · (σn,Λ′n) ∈ L(B′) (resp. Lf (B′))

such that t1 ∈ Λ′1 and (ti−ti−1) ∈ Λ′i for 1 < i ≤ n according
to the construction above.

Given a word w′ = (σ1,Λ
′
1)·(σ2,Λ

′
2)·. . .·(σn,Λ′n) ∈ L(B′)

(resp. Lf (B′)), there exists a word w = (σ1,Λ1) · (σ2,Λ2) ·

. . . · (σn,Λn) ∈ L(B) (resp. Lf (B)) such that Λ′ ⊆ Λ for
1 ≤ i ≤ n. So any word in [w] is also in Lt (resp. Lt,f ).
Since [w′] ⊆ [w], all words in [w′] is in Lt (resp. Lt,f ).

Now let’s come back to the selection strategy of T+
σ for

each σ. Suppose the FA under consideration are B, B1 and B2

which have n, n1, n2 states respectively. Let Tσ (resp. Tσ,1
and Tσ,2) be the duration parts of σ-transitions in B (resp.
in B1 and B2), and kσ , kσ,1 and kσ,2 be their cardinalities,
respectively.

If we need to get the “complement” of Lf (B), we should
choose T+

σ = Tσ , as T ′σ = P(Tσ) is sufficient for each σ.
Accordingly, the refined FA B′ has n states, at most

∑
σ∈Σ 2kσ

timed events and at most
∑
σ∈Σ kσ2kσ transitions.

If we need to get the “intersection” , “union”, or “minus”
of Lf (B1) and Lf (B2), we should choose T+

σ = Tσ,1 ∪ Tσ,2
for all of them. Thus T ′σ = P(Tσ,1 ∪ Tσ,2). Bi has ni
states, at most

∑
σ∈Σ(2kσ,1+kσ,2) timed events and at most∑

σ∈Σ kσ,i(2
kσ,1+kσ,2) transitions for i = 1, 2.

Note that the idea of partition is similar to the proof
of Theorem 4.4 in [14]. But our calculation of partition
of nonnegative reals is more flexible by choosing different
parameters for P for different operations, that can reduce the
number of states and/or transitions essentially.

By translating RTA into FA, further into refined FA, we can
get a better understanding of their timed languages. Moreover,
the trace-equivalence relationship allows to compute comple-
mentation and intersection of such languages.

IV. PROJECTION

In this section we concentrate on projection of FA over
timed alphabets. Given B and a timed language Lt satisfying
Lf (B) ≈tr Lt, we would like to build B ↑Σo from B, such that
Lf (B ↑Σo) ≈tr PΣo,t(Lt), where Σo denotes the observable
alphabet.

We use symbols a, b, c, ... (with or without subscripts) to
denote the observable symbols from Σo, and the single symbol
τ (with or without subscripts) to denote all the unobservable
ones from Σ \ Σo in the following discussions.

A. Projection of languages

We start our analysis with an arbitrary timed word

w′t = (a1, t1)(a2, t2) . . . (an, tn) (1)

in the timed language PΣo,t(Lt). The case where w′t is εt is
also contained in the form (1), by letting n = 0. There must
exist some wt in Lt such that PΣo,t(wt) = w′t. Without loss
of generality, wt is of the form

wt = u1
t · (a1, t1) · u2

t · (a2, t2) · · ·unt · (an, tn) · un+1
t (2)

where for 1 ≤ j ≤ n+ 1, ujt is either εt or an “unobservable”
timed word (τ, tj1) . . . (τ, tjmj ) with tj−1 ≤ tj1 ≤ . . . ≤
tjmj ≤ tj (t0 and tn+1 are deemed to be 0 and +∞
respectively).

As Lf (B) ≈tr Lt, there also exists in Lf (B) some w similar
to wt in the structure, that is,

w = u1 · (a1,Λ1) · u2 · (a2,Λ2) · · ·un · (an,Λn) · un+1 (3)
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where for 1 ≤ j ≤ n + 1, uj is either ε or a timed word
(τ,Λj1) . . . (τ,Λjmj ) such that for 1 ≤ j ≤ n+1, tj− tjkj ∈
Λj and for 1 ≤ k ≤ mi tjk − tj(k−1) ∈ Λjk (t0 and tn+1 are
deemed to be 0 and +∞ respectively, and each tj0 is tj−1 for
1 ≤ j ≤ n+ 1).

Although the projection of a timed word wt as in (2) over
Σo is PΣo,t(wt) = (a1, t1)(a2, t2) . . . (an, tn) = w′t, this is
not suitable for the projection of w as in (3). If we delete all
the unobservable uj roughly, the result would be (a1,Λ1) ·
(a2,Λ2) · . . . · (an,Λn), which does not satisfy w′t ∈ [w′]
any more, because in a timed word wt, each time stamp is
the amount of time elapsed since the beginning of wt (i.e.,
the physical time when the event occurs), while in w, each
duration contains all the possibilities of time elapsed since
the occurrence of its previous action (i.e., the logical time
related to its previous event). In other words, each symbol-
duration pair, no matter observable or not, plays a part both
in w and in its projection. The projection of w, denoted as
w′ = P↑Σo(w) and to guarantee {P↑Σo(w)} ≈tr PΣo,t([w]),
will be defined below. We use a different notation here to
avoid confusion with the projection of normal words and timed
words. And slightly overloading the notation, P↑Σo(L) denotes
the set {P↑Σo(w) | w ∈ L}.

There still remains one thing to do before formally defining
the function P↑Σo , to recall the addition operation “+” (and
“Σ”) on sets of nonnegative real numbers. Let Λ1, Λ2, ..., Λm
be subsets of R≥0. Λ1 + Λ2 := {λ1 + λ2 | λ1 ∈ Λ1 ∧ λ2 ∈
Λ2}, and

∑m
j=1 Λj = Λ1 + Λ2 + · · ·+ Λm. This operation is

commutative and associative. Moreover the star operation can
be defined: Λ∗ =

⋃
k∈N kΛ, where 0Λ = {0} and (k+ 1)Λ =

kΛ + Λ.
For w as in (3), P↑Σo(w) is inductively defined based on

the number of observable symbol-duration pairs in w:

P↑Σo(u
1) = ε;

P↑Σo(u
1(a1,Λ1)) =

{
(a1,Λ1), if u1 = ε

(a1,
∑m1

k=1 Λ1k + Λ1), otherwise

P↑Σo((u
1(a1,Λ1)) · wsuffix) = P↑Σo(u

1(a1,Λ1)) · P↑Σo(wsuffix)

where u1 is either ε or (τ,Λ11) . . . (τ,Λ1m1
). According to its

definition, if we factorise the duration word w into w1 · . . . ·
wn · un+1 where wj = uj · (aj ,Λj) for each 1 ≤ j ≤ k, we
will have P↑Σo(w) = P↑Σo(w1) · P↑Σo(w2) · . . . · P↑Σo(wn) ·
P↑Σo(u

n+1) = P↑Σo(w1) · P↑Σo(w2) · . . . · P↑Σo(wn).
Lemma 4.1: {P↑Σo(w)} ≈tr PΣo,t([w]).

Proof: Firstly, P↑Σo(w) = ε if w is either ε or (τ,Λ11) ·
. . . · (τ,Λ1m1

). In either case, PΣo,t(wt) = ε for each wt in
[w], so [w] = {εt}. Then {P↑Σo(w)} ≈tr PΣo,t([w]).

Secondly, let w = w1 · . . . ·wn ·un+1, and w′ = P↑Σo(w) =
P↑Σo(w1) ·P↑Σo(w2) · . . . ·P↑Σo(wn) ·P↑Σo(un+1) = (a1,Λ

′
1) ·

(a2,Λ
′
2) · . . . · (an,Λ′n).

For any wt ∈ [w], wt = (τ, t11) · . . . ·(τ, t1m1) ·(a1, t1) · . . . ·
(τ, tn1)·. . .·(τ, tnmn)·(an, tn)·(τ, t(n+1)1)·. . . (τ, t(n+1)mn+1

),
and w′t = (a1, t1) · . . . · (an, tn). If uj = ε, tj − tj−1 ∈
Λj = Λ′j . If uj is not an empty word, as tj − tjkj ∈ Λj and
tjk − tj(k−1) ∈ Λjk for 1 ≤ j ≤ n + 1 and 1 ≤ k ≤ mi,
tj − tj−1 ∈ Λj +

∑mj
k=1 Λjk = Λ′j .

Similarly, for any w′t = (a1, t1) · (a2, t2) · . . . · (an, tn) ∈
PΣo,t([w]), it holds that each tj − tj−1 ∈ Λ′j (t0 = 0).

To sum up, {P↑Σo(w)} ≈tr PΣo,t([w]).

B. Projection of FA

We show how to construct B ↑Σo .
Suppose the FA under consideration is B =

(S,Σt, δ, Init, F ), where Σt =
⋃
σ∈Σ{σ} × Tσ and

Σ = Σo ] {τ} is partitioned into an observable set Σo
and an unobservable set {τ}. Fix a run ρ of B, whose trace
is w ∈ Lf (B), such that w = w1 · . . . · wn · un+1, where
wj = uj · (aj ,Λj) for each 1 ≤ j ≤ k. Its projection is w′ =
P↑Σo(w) = P↑Σo(w1)·P↑Σo(w2)·. . .·P↑Σo(wn)·P↑Σo(un+1).
Although P↑Σo(u

n+1) = ε, un+1 still matters since the trace
is an accepted one. Hence we can deal with each segment
wj separately and finally put them together. Each wj also
comprises two parts: the first is uj which is unobservable or
empty, and the second is observable (aj ,Λj) meaning that
there is a transition (sjmj , (aj ,Λj), s

′
jmj

).
1) Sum of successive unobservable transitions: We first

deal with the case where uj is a sequence of unobservable
transitions, that is, uj = (τ,Λj1) . . . (τ,Λjmj ). So the corre-

sponding segment of the run ρ is sj0
(τ,Λj1)−−−−→ sj1 · · ·

(τ,Λjmj )
−−−−−−→

sjmj
(aj ,Λj)−−−−−→ s′jmj . If j = 1, the starting state s10 should

be an initial state of B. If j > 1, sj0 should be the
same as the ending state of its previous segment, that is,
sj0 = s′(j−1)mj−1

is also the post-state of the observable
transition (s(j−1)mj−1

, (aj−1,Λj−1), s′(j−1)mj−1
).

In the case where uj = ε, the corresponding segment of ρ is

therefore sj0
(aj ,Λj)−−−−−→ s′j0, such that sj0 is initial if j = 1 and

is the post-state of (s(j−1)mj−1
, (aj−1,Λj−1), s′(j−1)mj−1

) if
j > 1.

As a consequence, we should delete all the unobserv-
able transitions from B, and add new transitions with labels
P↑Σo(wj).

A new transition (s, (aj ,Λ
′
j), s

′) with an observable label
should be subject to the following restrictions:
• Its pre-state s is an initial state, or the post-state of an

observable transition;
• its post-state s′ is the post-state of an observable transition

with symbol aj , say (sjmj , (aj ,Λj), s
′
jmj

);

• there is a segment of run sj0
(τ,Λj1)−−−−→ sj1 · · ·

(τ,Λjmj )
−−−−−−→

sjmj
(aj ,Λj)−−−−−→ s′jmj , where mj ≥ 1 such that s = sj0,

s′ = s′jmj and Λ′j =
∑mj
k=1 Λjk + Λj .

In the sequel we explain the steps to obtain such new
transitions based on B.

Firstly we calculate the sum of durations of a sequence of
unobservable transitions, of which the first starts in either an
initial state of B or the post-state of an observable transition,
and of which the last ends in the pre-state of an observable
transition. Slightly overloading the notation, Prea and Posta
denote the set of states which are pre- and post-states of
transitions with the observable symbol “a” in its label. To
this end, a new FA Bτ is constructed according to B.

Definition 8: Bτ = (Sτ ,Στ , δτ , Initτ , Fτ ), where
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- Sτ = S;
- Στ = Tτ , the set of the duration parts of τ -transitions in
B;

- δt(s1,Λ) = {s2 | s2 ∈ δ(s1, (τ,Λ))}, in other words,
(s1,Λ, s2) is a transition in Bτ iff (s1, (τ,Λ), s2) is a
transition in B;

- Initτ = Init ∪⋃a∈Σo
Posta, and

- Fτ = F ∪⋃a∈Σo
Prea.

Below is shown how to calculate regular expressions cor-
responding to traces in Bτ from one state to another and
to transform each regular expression into a duration, i.e., a
subset of nonnegative real numbers. This can be done by
following the Floyd-Warshall algorithm (a well-known method
for proving the Kleene’s Theorem).

We first rename states in Sτ as s1, ... , s|Sτ |, since Sτ is
finite.

Suppose si → . . . → sj is a run from si to sj whose
labels above the right arrows are omitted for simplicity here.
If there is no state between si and sj , the set of all such
runs is denoted as Runi,j(0), and REi,j(0) is used to denote
the regular expression expressing all the traces of runs in
Runi,j(0). If all the states between si and sj have subscripts
less or equal to k, the set of all such runs is denoted as
Runi,j(k), and REi,j(k) is defined similarly. It is trivial that
Runi,j(k) ⊆ Runi,j(k + 1) for 0 ≤ k < |Sτ |; therefore
REi,j(k) can be calculated inductively for 0 ≤ k ≤ |Sτ |.
Thus we can finally obtain the required REi,j(|Sτ |) for each
pair of (s0, sf ) ∈ Initτ × Fτ .

In the base case, we compute REi,j(0) for each pair (si, sj)
as: 1) If si 6= sj and there is no transition from si to sj ,
REi,j(0) = ∅. 2) If si 6= sj and the set of labels of transitions
from si to sj , Σi,j = {Λ | sj ∈ δt(si,Λ)} is nonempty,
we rename those labels as Λ1, ..., Λ|Σi,j |. Then REi,j(0) =
Λ1 + . . . + Λ|Σi,j |. 3) If si = sj and there is no transition
from si to sj , REi,j(0) = ε. 4) If si = sj and the set of
labels of transitions from si to sj , Σi,j = {Λ | sj ∈ δt(si,Λ)}
is nonempty, we rename those labels as Λ1, ..., Λ|Σi,j |. Then
REi,j(0) = ε+ Λ1 + . . .+ Λ|Σi,j |.

In the step case, we recursively compute REi,j(k + 1) =
REi,j(k) +REi,k+1(k) · REk+1,k+1(k)∗ · REk+1,j(k). This is
because any run ρ in Runi,j(k + 1) is either in Runi,j(k) or
is a run where the state sk+1 occurs at least once. If the state
sk+1 occurs at least once in a run ρ, this run can also be split
into three segments: the first part is from its start si to the first
sk+1, the second part is from the first sk+1 to the last sk+1,
and the third one is from the last sk+1 to its end sj . Also the
second part is split into at least one segments, each of which
starts in sk+1, ends in sk+1, and has no states with subscripts
larger than k in between.

Finally we can obtain REi,j(|Sτ |) for each pair of states
(si, sj), which expresses all the possible traces of runs from
si to sj .

After regular expressions have been obtained, it is necessary
to transform them into appropriate durations, i.e., subsets of
R≥0. For the base clause, ∅ is transformed into the empty set ∅,
ε into the set {0}, and Λ into the set Λ itself. For the inductive
clause, if r, r1, r2 are regular expressions transformed into Λ,
Λ1, Λ2 respectively, then r1 ·r2 is transformed into Λ1+Λ2 :=

{λ1 + λ2 | λ1 ∈ Λ1 ∧ λ2 ∈ Λ2}, r1 + r2 into Λ1 ∪ Λ2 :=
{λ | λ ∈ Λ1 ∨ λ ∈ Λ2}, and r∗ into Λ∗ :=

⋃
k∈N kΛ, where

0Λ = {0} and (k + 1)Λ = kΛ + Λ.
In conclusion, for each pair of states (si, sj) ∈ Initτ × Fτ ,

we can obtain Λsi,sj from REi,j(|Sτ |), so as to determine
i) whether si can reach sj via unobservable transitions by
checking whether Λsi,sj is nonempty; ii) the time duration
from si to sj if it is reachable. In this step the complexity is
O(|Sτ |3).

2) Merging unobservable durations into observable transi-
tions: After the analysis of all the uj above, we would like to
consider wj by merging the duration on uj into the observable
(aj ,Λj) so as to build the automaton B ↑Σo= (Sp,Σp, δp,
Initp, Fp).

The states and initial states of B ↑Σo can be set to be the
same as those of the original B.

Transitions of B ↑Σo are all of the form (si, (a,Λnew), sk).
A new transition (si, (a,Λnew), sk) should be included if there

exists sj and Λ such that sk
(a,Λ)−−−→ sj , si can reach sj via

unobservable transitions in B, and Λnew = Λ+Λsi,sj . Formally
δp is defined such that δp(si, (a,Λnew)) = {sk | ∃sj∃Λ

(
sk ∈

δ(sj , (a,Λ)) ∧ Λsi,sj 6= ∅ ∧ Λnew = Λ + Λsi,sj
)
}.

And the alphabet can be derived from the transitions. That
is, Σp = {(a,Λ) | ∃s

(
δp(s, (a,Λ)) 6= ∅

)
}.

The accepting states needs special attention. sk is an ac-
cepting state if and only if i) sk is an initial state or the
post-state of some observable transition, and ii) sk can reach
an accepting state via zero or more unobservable transitions.
Formally, let Freach = {sk | ∃sf ∈ F

(
Λsk,sf 6= ∅

)
}, so

Fp = (Init ∪⋃a∈Σo
Posta) ∩ Freach.

Thus, the construction of B ↑Σo is done. B ↑Σo has the
same number of states as the original B and the unobservable
Bτ , and at most |δo| ∗ |Sτ |2 transitions, where δo stands for
restricting δ, the set of transitions of B, to the observable set.

Theorem 4.1: The accepting language of B ↑Σo is exactly
the projection language P↑Σo(Lf (B)).

Proof: Follows from the construction in this section.
Note that the proposed scheme in our work of projection is

similar to [14] in that the Floyd-Warshall algorithm is utilized
in both work to compute the “sum” of a sequel of nonnegative
(resp. positive) sets.

Besides, as there is no special constraints on the time
labelling function in our definition of RTA, i.e., any nonempty
subset of R≥0 is allowed, so normal form of sets in K(Int)
can be circumvented in our theoretical analysis. But in our
implementation, we utilize normal forms to obtain a finite
subset of 2R≥0 for any regular expression over finite subsets
of 2R≥0 .

V. DECIDABILITY

Now let’s come back to the language-opacity and initial-
opacity problems for RTA, and fix an RTA A with an alphabet
Σ.

First we focus on language-opacity. Let a “secret” RTA
Asecret accept the secret language. A and Asecret are assumed
to share a common alphabet Σ, as we can always expand the
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alphabet to the union of their alphabets. We need to determine
whether PΣo,t(L(A)) ⊆ PΣo,t(L(A) \L(Asecret)).

The following theorem indicates that the language-opacity
problem of RTA is decidable.

Theorem 5.1: The language-opacity problem of RTA is
decidable.

Proof: Consider an RTA A and a “secret” RTA Asecret

accepting the secret language.
According to Section III, two FA, say B and Bns, can be

constructed such that they respectively accept languages trace-
equivalent to L(A) and L(A) \ L(Asecret).

According to Section IV, it is natural to obtain B ↑Σo
and Bns ↑Σo which accept P↑Σo(Lf (B)) and P↑Σo(Lf (Bns))
respectively.

Finally, we can apply the complementation and product op-
erations on them again, and obtain Bfinal = B ↑Σo ×(Bns ↑Σo
)comp. Clearly, A is language-opaque with respect to Asecret

and Σo if and only if Lf (Bfinal) is empty. It is well-known
that the latter is decidable [15].

In the following theoretical complexity in the worst case
is discussed. Suppose the common alphabet Σ comprises l
events, A has n states and m transitions (kσ transitions for
each σ), and Asecret has n′ states and m′ transitions (k′σ
transitions for each σ).

Firstly B has n states and m transitions, while Bns has
n(n′ + 1) states and n(n′ + 1)2kσ+k′σ σ-transitions for each
σ. Secondly, for their projections, B ↑Σo has n states and
n22kσ+k′σ σ-transitions for each σ ∈ Σo, and Bsecret ↑Σo
has n(n′ + 1) states and (n(n′ + 1))32kσ+k′σ transitions
for each σ ∈ Σo. When we unify alphabets of the two
projections, it’s possible to obtain two NFA, so we must
transform B ↑Σo into DFA, whose number of states becomes
2n(n′+1). Thus the final result Bfinal has n(2n(n′+1) +1) states,
and 2O(n4n′42kσ+k′σ ) transitions for each σ ∈ Σo. The last thing
is to check emptiness of Bfinal, in linear time with respect to
|Bfinal.S| · |Bfinal.δ|.

In practise the numbers of states and transitions are much
smaller, since we can simplify the resulted automata and prune
useless states and transitions.

Then we turn to initial-opacity. Let Ssecret be a secret set of
states, and we use Ls(A) and Lns(A) as the abbreviations of
Tr(Init ∩ Ssecret) and Tr(Init \ Ssecret) respectively.

Let Lsecret = L(A) \Lns(A). Then A is initial-state opaque
with respect to Ssecret and Σo iff PΣo,t(L(A)) ⊆ PΣo,t(L(A)\
Lsecret) iff A is language-opaque with respect to Lsecret and Σo.
Therefore the initial-opacity problem of RTA is also decidable.

Theorem 5.2: The initial-state opacity problem for RTA is
decidable.

A. A simple example of language-opacity

We illustrate our method with a simple example.
The two RTA under study are as in Figure 2(a) and Figure

2(b). L(A) is {εt} ∪ {(a, t1) | t1 ∈ [2, 5]} ∪ {(b, t1) | t1 ∈
[2, 4]} ∪ {(a, t1)(a, t2) | t1 ∈ [2, 5] ∧ (t2 − t1) ∈ [1, 3]} ∪
{(a, t1)(b, t2) | t1 ∈ [2, 5]∧(t2−t1) ∈ [3, 4]}∪{(b, t1)(a, t2) |
t1 ∈ [2, 4] ∧ (t2 − t1) ∈ [1, 3]} ∪ {(b, t1)(b, t2) | t1 ∈ [2, 4] ∧
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According to Section III, two FA, say B and Bns, can be
constructed such that they respectively accept languages trace-
equivalent to L(A) and L(A) \ L(Asecret).

According to Section IV, it is natural to obtain B ↑Σo
and Bns ↑Σo which accept P↑Σo(Lf (B)) and P↑Σo(Lf (Bns))
respectively.

Finally, we can apply the complementation and product op-
erations on them again, and obtain Bfinal = B ↑Σo ×(Bns ↑Σo
)comp. Clearly, A is language-opaque with respect to Asecret

and Σo if and only if Lf (Bfinal) is empty. It is well-known
that the latter is decidable [15].

In the following theoretical complexity in the worst case
is discussed. Suppose the common alphabet Σ comprises l
events, A has n states and m transitions (kσ transitions for
each σ), and Asecret has n′ states and m′ transitions (k′σ
transitions for each σ).

Firstly B has n states and m transitions, while Bns has
n(n′ + 1) states and n(n′ + 1)2kσ+k′σ σ-transitions for each
σ. Secondly, for their projections, B ↑Σo has n states and
n22kσ+k′σ σ-transitions for each σ ∈ Σo, and Bsecret ↑Σo
has n(n′ + 1) states and (n(n′ + 1))32kσ+k′σ transitions
for each σ ∈ Σo. When we unify alphabets of the two
projections, it’s possible to obtain two NFA, so we must
transform B ↑Σo into DFA, whose number of states becomes
2n(n′+1). Thus the final result Bfinal has n(2n(n′+1) +1) states,
and 2O(n4n′42kσ+k′σ ) transitions for each σ ∈ Σo. The last thing
is to check emptiness of Bfinal, in linear time with respect to
|Bfinal.S| · |Bfinal.δ|.

In practise the numbers of states and transitions are much
smaller, since we can simplify the resulted automata and prune
useless states and transitions.

Then we turn to initial-opacity. Let Ssecret be a secret set of
states, and we use Ls(A) and Lns(A) as the abbreviations of
Tr(Init ∩ Ssecret) and Tr(Init \ Ssecret) respectively.

Let Lsecret = L(A) \Lns(A). Then A is initial-state opaque
with respect to Ssecret and Σo iff PΣo,t(L(A)) ⊆ PΣo,t(L(A)\
Lsecret) iff A is language-opaque with respect to Lsecret and Σo.
Therefore the initial-opacity problem of RTA is also decidable.

Theorem 5.2: The initial-state opacity problem for RTA is
decidable.

A. A simple example of language-opacity

We illustrate our method with a simple example.

s1 s2 s3
a

[2, 5]

b

[2, 4]

b

[3, 4]
a

[1, 3]

(a) A

s′1 s′2 s′3
a

[4, 5]

b

[3, 5]

(b) Asecret

Fig. 2: A and Asecret

The two RTA under study are as in Figure 2(a) and Figure
2(b). L(A) is {εt} ∪ {(a, t1) | t1 ∈ [2, 5]} ∪ {(b, t1) | t1 ∈
[2, 4]} ∪ {(a, t1)(a, t2) | t1 ∈ [2, 5] ∧ (t2 − t1) ∈ [1, 3]} ∪
{(a, t1)(b, t2) | t1 ∈ [2, 5]∧(t2−t1) ∈ [3, 4]}∪{(b, t1)(a, t2) |
t1 ∈ [2, 4] ∧ (t2 − t1) ∈ [1, 3]} ∪ {(b, t1)(b, t2) | t1 ∈ [2, 4] ∧
(t2− t1) ∈ [3, 4]}. And Lsecret = Lf (Asecret) is {(a, t1)(b, t2) |
t1 ∈ [4, 5] ∧ (t2 − t1) ∈ [3, 5]}.

The whole process is as follows.
Firstly we construct B and Bns which accept languages

trace-equivalent to L(A) and L(A) \ L(Asecret) respectively.
(1) Construct B.
This can be done directly, and the resulting B is

depicted in Figure 3(a). Its timed alphabet Σt1 is
{(a, [1, 3]), (a, [2, 5]), (b, [2, 4]), (b, [3, 4])}.

s1 s2 s3(a, [2, 5])

(b, [2, 4]) (b, [3, 4])

(a, [1, 3])

(a) B

s′1 s′2 s′3
(a, [4, 5]) (b, [3, 5])

(b) Bsecret

Fig. 3: FA directly derived from A and Asecret

(2) Construct Bcomp
secret.

We first construct Bsecret as in Figure 3(b). Then we refine
Bsecret into B′secret, which looks the same as Bsecret, whose
timed alphabet is Σt2 is {(a, [4, 5]), (a, [0, 4) ∪ (5,+∞))} ∪
{(b, [3, 5]), (b, [0, 3) ∪ (5,+∞))} instead. Hence Bcomp

secret can
be constructed, as shown in Figure 4. Elements in Σt2 are
abbreviated to a′, a′′, b′, b′′ respectively.

s′1 s′2 s′3

s′4

a′

a′′, b′, b′′

b′

a′, a′′, b′′

a′, a′′, b′, b′′

a′, a′′, b′, b′′

Fig. 4: Bcomp
secret, the complement of B′secret

(3) Construct Bns.
We first refine B and Bcomp

secret by the partitioned timed alphabet
{(a, [1, 2)), (a, [2, 3]), (a, (3, 4)), (a, [4, 5]), (a, [0, 1) ∪
(5,+∞)), (b, [2, 3)), (b, [3, 4]), (b, (4, 5]), (b, [0, 2) ∪
(5,+∞))} obtained from Σt1 and Σt2. We use a1, a2,
a3, a4, a5, b1, b2, b3, b4 as abbreviations for the nine labels
in order. And the resulting automata are in Figure 5(a) and
Figure 5(b).

By constructing the product of B′ and Bcomp
secret, we can obtain

FA Bp, as shown in Figure 6(a). Then Bns is constructed, by
simplifying Bp, depicted in Figure 6(b).

(a) A
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According to Section III, two FA, say B and Bns, can be
constructed such that they respectively accept languages trace-
equivalent to L(A) and L(A) \ L(Asecret).

According to Section IV, it is natural to obtain B ↑Σo
and Bns ↑Σo which accept P↑Σo(Lf (B)) and P↑Σo(Lf (Bns))
respectively.

Finally, we can apply the complementation and product op-
erations on them again, and obtain Bfinal = B ↑Σo ×(Bns ↑Σo
)comp. Clearly, A is language-opaque with respect to Asecret

and Σo if and only if Lf (Bfinal) is empty. It is well-known
that the latter is decidable [15].

In the following theoretical complexity in the worst case
is discussed. Suppose the common alphabet Σ comprises l
events, A has n states and m transitions (kσ transitions for
each σ), and Asecret has n′ states and m′ transitions (k′σ
transitions for each σ).

Firstly B has n states and m transitions, while Bns has
n(n′ + 1) states and n(n′ + 1)2kσ+k′σ σ-transitions for each
σ. Secondly, for their projections, B ↑Σo has n states and
n22kσ+k′σ σ-transitions for each σ ∈ Σo, and Bsecret ↑Σo
has n(n′ + 1) states and (n(n′ + 1))32kσ+k′σ transitions
for each σ ∈ Σo. When we unify alphabets of the two
projections, it’s possible to obtain two NFA, so we must
transform B ↑Σo into DFA, whose number of states becomes
2n(n′+1). Thus the final result Bfinal has n(2n(n′+1) +1) states,
and 2O(n4n′42kσ+k′σ ) transitions for each σ ∈ Σo. The last thing
is to check emptiness of Bfinal, in linear time with respect to
|Bfinal.S| · |Bfinal.δ|.

In practise the numbers of states and transitions are much
smaller, since we can simplify the resulted automata and prune
useless states and transitions.

Then we turn to initial-opacity. Let Ssecret be a secret set of
states, and we use Ls(A) and Lns(A) as the abbreviations of
Tr(Init ∩ Ssecret) and Tr(Init \ Ssecret) respectively.

Let Lsecret = L(A) \Lns(A). Then A is initial-state opaque
with respect to Ssecret and Σo iff PΣo,t(L(A)) ⊆ PΣo,t(L(A)\
Lsecret) iff A is language-opaque with respect to Lsecret and Σo.
Therefore the initial-opacity problem of RTA is also decidable.

Theorem 5.2: The initial-state opacity problem for RTA is
decidable.

A. A simple example of language-opacity

We illustrate our method with a simple example.

s1 s2 s3
a

[2, 5]

b

[2, 4]

b

[3, 4]
a

[1, 3]

(a) A

s′1 s′2 s′3
a

[4, 5]

b

[3, 5]

(b) Asecret

Fig. 2: A and Asecret

The two RTA under study are as in Figure 2(a) and Figure
2(b). L(A) is {εt} ∪ {(a, t1) | t1 ∈ [2, 5]} ∪ {(b, t1) | t1 ∈
[2, 4]} ∪ {(a, t1)(a, t2) | t1 ∈ [2, 5] ∧ (t2 − t1) ∈ [1, 3]} ∪
{(a, t1)(b, t2) | t1 ∈ [2, 5]∧(t2−t1) ∈ [3, 4]}∪{(b, t1)(a, t2) |
t1 ∈ [2, 4] ∧ (t2 − t1) ∈ [1, 3]} ∪ {(b, t1)(b, t2) | t1 ∈ [2, 4] ∧
(t2− t1) ∈ [3, 4]}. And Lsecret = Lf (Asecret) is {(a, t1)(b, t2) |
t1 ∈ [4, 5] ∧ (t2 − t1) ∈ [3, 5]}.

The whole process is as follows.
Firstly we construct B and Bns which accept languages

trace-equivalent to L(A) and L(A) \ L(Asecret) respectively.
(1) Construct B.
This can be done directly, and the resulting B is

depicted in Figure 3(a). Its timed alphabet Σt1 is
{(a, [1, 3]), (a, [2, 5]), (b, [2, 4]), (b, [3, 4])}.

s1 s2 s3(a, [2, 5])

(b, [2, 4]) (b, [3, 4])

(a, [1, 3])

(a) B

s′1 s′2 s′3
(a, [4, 5]) (b, [3, 5])

(b) Bsecret

Fig. 3: FA directly derived from A and Asecret

(2) Construct Bcomp
secret.

We first construct Bsecret as in Figure 3(b). Then we refine
Bsecret into B′secret, which looks the same as Bsecret, whose
timed alphabet is Σt2 is {(a, [4, 5]), (a, [0, 4) ∪ (5,+∞))} ∪
{(b, [3, 5]), (b, [0, 3) ∪ (5,+∞))} instead. Hence Bcomp

secret can
be constructed, as shown in Figure 4. Elements in Σt2 are
abbreviated to a′, a′′, b′, b′′ respectively.

s′1 s′2 s′3

s′4

a′

a′′, b′, b′′

b′

a′, a′′, b′′

a′, a′′, b′, b′′

a′, a′′, b′, b′′

Fig. 4: Bcomp
secret, the complement of B′secret

(3) Construct Bns.
We first refine B and Bcomp

secret by the partitioned timed alphabet
{(a, [1, 2)), (a, [2, 3]), (a, (3, 4)), (a, [4, 5]), (a, [0, 1) ∪
(5,+∞)), (b, [2, 3)), (b, [3, 4]), (b, (4, 5]), (b, [0, 2) ∪
(5,+∞))} obtained from Σt1 and Σt2. We use a1, a2,
a3, a4, a5, b1, b2, b3, b4 as abbreviations for the nine labels
in order. And the resulting automata are in Figure 5(a) and
Figure 5(b).

By constructing the product of B′ and Bcomp
secret, we can obtain

FA Bp, as shown in Figure 6(a). Then Bns is constructed, by
simplifying Bp, depicted in Figure 6(b).

(b) Asecret

Fig. 2: A and Asecret

(t2− t1) ∈ [3, 4]}. And Lsecret = Lf (Asecret) is {(a, t1)(b, t2) |
t1 ∈ [4, 5] ∧ (t2 − t1) ∈ [3, 5]}.

The whole process is as follows.
Firstly we construct B and Bns which accept languages

trace-equivalent to L(A) and L(A) \ L(Asecret) respectively.
(1) Construct B.
This can be done directly, and the resulting B is

depicted in Figure 3(a). Its timed alphabet Σt1 is
{(a, [1, 3]), (a, [2, 5]), (b, [2, 4]), (b, [3, 4])}.
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According to Section III, two FA, say B and Bns, can be
constructed such that they respectively accept languages trace-
equivalent to L(A) and L(A) \ L(Asecret).

According to Section IV, it is natural to obtain B ↑Σo
and Bns ↑Σo which accept P↑Σo(Lf (B)) and P↑Σo(Lf (Bns))
respectively.

Finally, we can apply the complementation and product op-
erations on them again, and obtain Bfinal = B ↑Σo ×(Bns ↑Σo
)comp. Clearly, A is language-opaque with respect to Asecret

and Σo if and only if Lf (Bfinal) is empty. It is well-known
that the latter is decidable [15].

In the following theoretical complexity in the worst case
is discussed. Suppose the common alphabet Σ comprises l
events, A has n states and m transitions (kσ transitions for
each σ), and Asecret has n′ states and m′ transitions (k′σ
transitions for each σ).

Firstly B has n states and m transitions, while Bns has
n(n′ + 1) states and n(n′ + 1)2kσ+k′σ σ-transitions for each
σ. Secondly, for their projections, B ↑Σo has n states and
n22kσ+k′σ σ-transitions for each σ ∈ Σo, and Bsecret ↑Σo
has n(n′ + 1) states and (n(n′ + 1))32kσ+k′σ transitions
for each σ ∈ Σo. When we unify alphabets of the two
projections, it’s possible to obtain two NFA, so we must
transform B ↑Σo into DFA, whose number of states becomes
2n(n′+1). Thus the final result Bfinal has n(2n(n′+1) +1) states,
and 2O(n4n′42kσ+k′σ ) transitions for each σ ∈ Σo. The last thing
is to check emptiness of Bfinal, in linear time with respect to
|Bfinal.S| · |Bfinal.δ|.

In practise the numbers of states and transitions are much
smaller, since we can simplify the resulted automata and prune
useless states and transitions.

Then we turn to initial-opacity. Let Ssecret be a secret set of
states, and we use Ls(A) and Lns(A) as the abbreviations of
Tr(Init ∩ Ssecret) and Tr(Init \ Ssecret) respectively.

Let Lsecret = L(A) \Lns(A). Then A is initial-state opaque
with respect to Ssecret and Σo iff PΣo,t(L(A)) ⊆ PΣo,t(L(A)\
Lsecret) iff A is language-opaque with respect to Lsecret and Σo.
Therefore the initial-opacity problem of RTA is also decidable.

Theorem 5.2: The initial-state opacity problem for RTA is
decidable.

A. A simple example of language-opacity

We illustrate our method with a simple example.

s1 s2 s3
a
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b

[2, 4]
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[3, 4]
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[1, 3]

(a) A

s′1 s′2 s′3
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(b) Asecret

Fig. 2: A and Asecret

The two RTA under study are as in Figure 2(a) and Figure
2(b). L(A) is {εt} ∪ {(a, t1) | t1 ∈ [2, 5]} ∪ {(b, t1) | t1 ∈
[2, 4]} ∪ {(a, t1)(a, t2) | t1 ∈ [2, 5] ∧ (t2 − t1) ∈ [1, 3]} ∪
{(a, t1)(b, t2) | t1 ∈ [2, 5]∧(t2−t1) ∈ [3, 4]}∪{(b, t1)(a, t2) |
t1 ∈ [2, 4] ∧ (t2 − t1) ∈ [1, 3]} ∪ {(b, t1)(b, t2) | t1 ∈ [2, 4] ∧
(t2− t1) ∈ [3, 4]}. And Lsecret = Lf (Asecret) is {(a, t1)(b, t2) |
t1 ∈ [4, 5] ∧ (t2 − t1) ∈ [3, 5]}.

The whole process is as follows.
Firstly we construct B and Bns which accept languages

trace-equivalent to L(A) and L(A) \ L(Asecret) respectively.
(1) Construct B.
This can be done directly, and the resulting B is

depicted in Figure 3(a). Its timed alphabet Σt1 is
{(a, [1, 3]), (a, [2, 5]), (b, [2, 4]), (b, [3, 4])}.

s1 s2 s3(a, [2, 5])

(b, [2, 4]) (b, [3, 4])

(a, [1, 3])

(a) B

s′1 s′2 s′3
(a, [4, 5]) (b, [3, 5])

(b) Bsecret

Fig. 3: FA directly derived from A and Asecret

(2) Construct Bcomp
secret.

We first construct Bsecret as in Figure 3(b). Then we refine
Bsecret into B′secret, which looks the same as Bsecret, whose
timed alphabet is Σt2 is {(a, [4, 5]), (a, [0, 4) ∪ (5,+∞))} ∪
{(b, [3, 5]), (b, [0, 3) ∪ (5,+∞))} instead. Hence Bcomp

secret can
be constructed, as shown in Figure 4. Elements in Σt2 are
abbreviated to a′, a′′, b′, b′′ respectively.

s′1 s′2 s′3

s′4

a′

a′′, b′, b′′

b′

a′, a′′, b′′

a′, a′′, b′, b′′

a′, a′′, b′, b′′

Fig. 4: Bcomp
secret, the complement of B′secret

(3) Construct Bns.
We first refine B and Bcomp

secret by the partitioned timed alphabet
{(a, [1, 2)), (a, [2, 3]), (a, (3, 4)), (a, [4, 5]), (a, [0, 1) ∪
(5,+∞)), (b, [2, 3)), (b, [3, 4]), (b, (4, 5]), (b, [0, 2) ∪
(5,+∞))} obtained from Σt1 and Σt2. We use a1, a2,
a3, a4, a5, b1, b2, b3, b4 as abbreviations for the nine labels
in order. And the resulting automata are in Figure 5(a) and
Figure 5(b).

By constructing the product of B′ and Bcomp
secret, we can obtain

FA Bp, as shown in Figure 6(a). Then Bns is constructed, by
simplifying Bp, depicted in Figure 6(b).

(a) B
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According to Section III, two FA, say B and Bns, can be
constructed such that they respectively accept languages trace-
equivalent to L(A) and L(A) \ L(Asecret).
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and Bns ↑Σo which accept P↑Σo(Lf (B)) and P↑Σo(Lf (Bns))
respectively.

Finally, we can apply the complementation and product op-
erations on them again, and obtain Bfinal = B ↑Σo ×(Bns ↑Σo
)comp. Clearly, A is language-opaque with respect to Asecret

and Σo if and only if Lf (Bfinal) is empty. It is well-known
that the latter is decidable [15].

In the following theoretical complexity in the worst case
is discussed. Suppose the common alphabet Σ comprises l
events, A has n states and m transitions (kσ transitions for
each σ), and Asecret has n′ states and m′ transitions (k′σ
transitions for each σ).

Firstly B has n states and m transitions, while Bns has
n(n′ + 1) states and n(n′ + 1)2kσ+k′σ σ-transitions for each
σ. Secondly, for their projections, B ↑Σo has n states and
n22kσ+k′σ σ-transitions for each σ ∈ Σo, and Bsecret ↑Σo
has n(n′ + 1) states and (n(n′ + 1))32kσ+k′σ transitions
for each σ ∈ Σo. When we unify alphabets of the two
projections, it’s possible to obtain two NFA, so we must
transform B ↑Σo into DFA, whose number of states becomes
2n(n′+1). Thus the final result Bfinal has n(2n(n′+1) +1) states,
and 2O(n4n′42kσ+k′σ ) transitions for each σ ∈ Σo. The last thing
is to check emptiness of Bfinal, in linear time with respect to
|Bfinal.S| · |Bfinal.δ|.

In practise the numbers of states and transitions are much
smaller, since we can simplify the resulted automata and prune
useless states and transitions.

Then we turn to initial-opacity. Let Ssecret be a secret set of
states, and we use Ls(A) and Lns(A) as the abbreviations of
Tr(Init ∩ Ssecret) and Tr(Init \ Ssecret) respectively.

Let Lsecret = L(A) \Lns(A). Then A is initial-state opaque
with respect to Ssecret and Σo iff PΣo,t(L(A)) ⊆ PΣo,t(L(A)\
Lsecret) iff A is language-opaque with respect to Lsecret and Σo.
Therefore the initial-opacity problem of RTA is also decidable.

Theorem 5.2: The initial-state opacity problem for RTA is
decidable.
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We illustrate our method with a simple example.
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The two RTA under study are as in Figure 2(a) and Figure
2(b). L(A) is {εt} ∪ {(a, t1) | t1 ∈ [2, 5]} ∪ {(b, t1) | t1 ∈
[2, 4]} ∪ {(a, t1)(a, t2) | t1 ∈ [2, 5] ∧ (t2 − t1) ∈ [1, 3]} ∪
{(a, t1)(b, t2) | t1 ∈ [2, 5]∧(t2−t1) ∈ [3, 4]}∪{(b, t1)(a, t2) |
t1 ∈ [2, 4] ∧ (t2 − t1) ∈ [1, 3]} ∪ {(b, t1)(b, t2) | t1 ∈ [2, 4] ∧
(t2− t1) ∈ [3, 4]}. And Lsecret = Lf (Asecret) is {(a, t1)(b, t2) |
t1 ∈ [4, 5] ∧ (t2 − t1) ∈ [3, 5]}.

The whole process is as follows.
Firstly we construct B and Bns which accept languages

trace-equivalent to L(A) and L(A) \ L(Asecret) respectively.
(1) Construct B.
This can be done directly, and the resulting B is

depicted in Figure 3(a). Its timed alphabet Σt1 is
{(a, [1, 3]), (a, [2, 5]), (b, [2, 4]), (b, [3, 4])}.
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Fig. 3: FA directly derived from A and Asecret

(2) Construct Bcomp
secret.

We first construct Bsecret as in Figure 3(b). Then we refine
Bsecret into B′secret, which looks the same as Bsecret, whose
timed alphabet is Σt2 is {(a, [4, 5]), (a, [0, 4) ∪ (5,+∞))} ∪
{(b, [3, 5]), (b, [0, 3) ∪ (5,+∞))} instead. Hence Bcomp

secret can
be constructed, as shown in Figure 4. Elements in Σt2 are
abbreviated to a′, a′′, b′, b′′ respectively.
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(3) Construct Bns.
We first refine B and Bcomp

secret by the partitioned timed alphabet
{(a, [1, 2)), (a, [2, 3]), (a, (3, 4)), (a, [4, 5]), (a, [0, 1) ∪
(5,+∞)), (b, [2, 3)), (b, [3, 4]), (b, (4, 5]), (b, [0, 2) ∪
(5,+∞))} obtained from Σt1 and Σt2. We use a1, a2,
a3, a4, a5, b1, b2, b3, b4 as abbreviations for the nine labels
in order. And the resulting automata are in Figure 5(a) and
Figure 5(b).

By constructing the product of B′ and Bcomp
secret, we can obtain

FA Bp, as shown in Figure 6(a). Then Bns is constructed, by
simplifying Bp, depicted in Figure 6(b).
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Fig. 3: FA directly derived from A and Asecret

(2) Construct Bcomp
secret.

We first construct Bsecret as in Figure 3(b). Then we refine
Bsecret into B′secret, which looks the same as Bsecret, whose
timed alphabet is Σt2 is {(a, [4, 5]), (a, [0, 4) ∪ (5,+∞))} ∪
{(b, [3, 5]), (b, [0, 3) ∪ (5,+∞))} instead. Hence Bcomp

secret can
be constructed, as shown in Figure 4. Elements in Σt2 are
abbreviated to a′, a′′, b′, b′′ respectively.
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for each σ ∈ Σo. When we unify alphabets of the two
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The two RTA under study are as in Figure 2(a) and Figure
2(b). L(A) is {εt} ∪ {(a, t1) | t1 ∈ [2, 5]} ∪ {(b, t1) | t1 ∈
[2, 4]} ∪ {(a, t1)(a, t2) | t1 ∈ [2, 5] ∧ (t2 − t1) ∈ [1, 3]} ∪
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(t2− t1) ∈ [3, 4]}. And Lsecret = Lf (Asecret) is {(a, t1)(b, t2) |
t1 ∈ [4, 5] ∧ (t2 − t1) ∈ [3, 5]}.

The whole process is as follows.
Firstly we construct B and Bns which accept languages

trace-equivalent to L(A) and L(A) \ L(Asecret) respectively.
(1) Construct B.
This can be done directly, and the resulting B is

depicted in Figure 3(a). Its timed alphabet Σt1 is
{(a, [1, 3]), (a, [2, 5]), (b, [2, 4]), (b, [3, 4])}.

s1 s2 s3(a, [2, 5])

(b, [2, 4]) (b, [3, 4])

(a, [1, 3])

(a) B

s′1 s′2 s′3
(a, [4, 5]) (b, [3, 5])
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Fig. 3: FA directly derived from A and Asecret

(2) Construct Bcomp
secret.

We first construct Bsecret as in Figure 3(b). Then we refine
Bsecret into B′secret, which looks the same as Bsecret, whose
timed alphabet is Σt2 is {(a, [4, 5]), (a, [0, 4) ∪ (5,+∞))} ∪
{(b, [3, 5]), (b, [0, 3) ∪ (5,+∞))} instead. Hence Bcomp

secret can
be constructed, as shown in Figure 4. Elements in Σt2 are
abbreviated to a′, a′′, b′, b′′ respectively.
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Fig. 4: Bcomp
secret, the complement of B′secret

(3) Construct Bns.
We first refine B and Bcomp

secret by the partitioned timed alphabet
{(a, [1, 2)), (a, [2, 3]), (a, (3, 4)), (a, [4, 5]), (a, [0, 1) ∪
(5,+∞)), (b, [2, 3)), (b, [3, 4]), (b, (4, 5]), (b, [0, 2) ∪
(5,+∞))} obtained from Σt1 and Σt2. We use a1, a2,
a3, a4, a5, b1, b2, b3, b4 as abbreviations for the nine labels
in order. And the resulting automata are in Figure 5(a) and
Figure 5(b).

By constructing the product of B′ and Bcomp
secret, we can obtain

FA Bp, as shown in Figure 6(a). Then Bns is constructed, by
simplifying Bp, depicted in Figure 6(b).

Fig. 4: Bcomp
secret, the complement of B′secret

(3) Construct Bns.
We first refine B and Bcomp

secret by the partitioned timed alphabet
{(a, [1, 2)), (a, [2, 3]), (a, (3, 4)), (a, [4, 5]), (a, [0, 1) ∪
(5,+∞)), (b, [2, 3)), (b, [3, 4]), (b, (4, 5]), (b, [0, 2) ∪
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(5,+∞))} obtained from Σt1 and Σt2. We use a1, a2,
a3, a4, a5, b1, b2, b3, b4 as abbreviations for the nine labels
in order. And the resulting automata are in Figure 5(a) and
Figure 5(b).
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′

Fig. 5: refined FA of B and Bcomp
secret
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a2, a3, b1, b2
a1, a2, b2

b2

(a) Bp, the product of B′ and Bcomp
secret

s11′ s22′

s24′ s34′

(a, [4, 5])

(a, [1, 3])
(a, [2, 4))
(b, [2, 4])

(a, [1, 3])

(b, (3, 4))

(b) Bns

Fig. 6: Bp and Bns

Secondly we compute the projection of B and Bns, denoted
as B ↑Σo and Bns ↑Σo respectively, with respect to Σo = {b}.

(4) Construct B ↑Σo .
We first construct Bτ with two transitions: (s1, [2, 4], s2) and

(s2, [3, 4], s3). All the three states are initial and accepting.
Λs1s2 = [2, 4], Λs2s3 = [3, 4], Λs1s3 = [5, 8], and all the
others are equal to {0}. Then in our B ↑Σo , the transitions are
(s1, (a, [2, 5]), s2), (s2, (a, [1, 3]), s3) and (s1, (a, [3, 7]), s3).
S = Fp = {s1, s2, s3}, and Initp = {s1}.

s1 s2 s3

(a, [2, 5])

(a, [3, 7])

(a, [1, 3])

Fig. 7: B ↑Σo , the projection FA from B

(5) Construct Bns ↑Σo .
The construction is similar to that of B ↑Σo , shown in Figure

8.

s11′ s22′

s24′ s34′

(a, [4, 5])

(a, [1, 3])(a, [2, 4))
(a, [3, 7])

(a, [1, 3])

Fig. 8: Bns ↑Σo , the projection FA from Bns

(6) Construct another FA (B′ ↑Σo)× (B′ns ↑Σo)comp in order
to compare languages accepted by B ↑Σo and Bns ↑Σo . This is
similar to the steps (2) and (3), so we omit the details here.

As (B′ ↑Σo)× (B′ns ↑Σo)comp accepts nothing, the RTA A is
language-opaque with respect to L(Asecret) and Σo.

VI. IMPLEMENTATION

Based on the theory part above, we have developed a
prototypical tool for deciding the language-opacity problem
of RTA. The tool is implemented with Python and thus can
run on Linux, Window and MAC smoothly.

The tool needs two input files: one is the sys-
tem model (a.json) and the other is the secret one
(a_secret.json). Both models are json files of RTA
models.

A json file of an RTA model consists of seven parts:
• “name” is the name of the RTA model,
• “s” is the list of states’ names,
• “sigma” is the alphabet,
• “tran” is the list of transitions of the RTA model, where

each transition is of the key-value form “id: [source, label,
guard, target]”. The key “id” is the index of the transition,
and the value consists of four parts:

– “source” is the name of the pre-state of the transition,
– “target” is the name of the post-state of the transition,
– “label” is one of the letters in the alphabet, and
– “guard” is the union of the time intervals, represented

in Dima’s normal forms [14],
• ”init” is the name of the initial state, and
• ”observable” is the list of observable letters.

Specially, the json file of the system model A in Subsection
V-A is in Listing 1 below.

Listing 1: The json file of A (a.json)
1 {
2 "name": "A",
3 "s": ["s1", "s2", "s3"],
4 "sigma": ["a", "b"],
5 "tran": {
6 "0": ["s1", "b", "[2,4]", "s2"],
7 "1": ["s1", "a", "[2,5]", "s2"],
8 "2": ["s2", "b", "[3,4]", "s3"],
9 "3": ["s2", "a", "[1,3]", "s3"]

10 },
11 "init": "s1",

(a) B′
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– “label” is one of the letters in the alphabet, and
– “guard” is the union of the time intervals, represented

in Dima’s normal forms [14],
• ”init” is the name of the initial state, and
• ”observable” is the list of observable letters.

Specially, the json file of the system model A in Subsection
V-A is in Listing 1 below.

Listing 1: The json file of A (a.json)
1 {
2 "name": "A",
3 "s": ["s1", "s2", "s3"],
4 "sigma": ["a", "b"],
5 "tran": {
6 "0": ["s1", "b", "[2,4]", "s2"],
7 "1": ["s1", "a", "[2,5]", "s2"],
8 "2": ["s2", "b", "[3,4]", "s3"],
9 "3": ["s2", "a", "[1,3]", "s3"]

10 },
11 "init": "s1",
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′

Fig. 5: refined FA of B and Bcomp
secret

By constructing the product of B′ and Bcomp
secret, we can obtain

FA Bp, as shown in Figure 6(a). Then Bns is constructed, by
simplifying Bp, depicted in Figure 6(b).
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Secondly we compute the projection of B and Bns, denoted
as B ↑Σo and Bns ↑Σo respectively, with respect to Σo = {b}.

(4) Construct B ↑Σo .
We first construct Bτ with two transitions: (s1, [2, 4], s2) and

(s2, [3, 4], s3). All the three states are initial and accepting.
Λs1s2 = [2, 4], Λs2s3 = [3, 4], Λs1s3 = [5, 8], and all the
others are equal to {0}. Then in our B ↑Σo , the transitions are
(s1, (a, [2, 5]), s2), (s2, (a, [1, 3]), s3) and (s1, (a, [3, 7]), s3).
S = Fp = {s1, s2, s3}, and Initp = {s1}.
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(5) Construct Bns ↑Σo .
The construction is similar to that of B ↑Σo , shown in Figure

8.
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(6) Construct another FA (B′ ↑Σo)× (B′ns ↑Σo)comp in order
to compare languages accepted by B ↑Σo and Bns ↑Σo . This is
similar to the steps (2) and (3), so we omit the details here.

As (B′ ↑Σo)× (B′ns ↑Σo)comp accepts nothing, the RTA A is
language-opaque with respect to L(Asecret) and Σo.

VI. IMPLEMENTATION

Based on the theory part above, we have developed a
prototypical tool for deciding the language-opacity problem
of RTA. The tool is implemented with Python and thus can
run on Linux, Window and MAC smoothly.

The tool needs two input files: one is the sys-
tem model (a.json) and the other is the secret one
(a_secret.json). Both models are json files of RTA
models.

A json file of an RTA model consists of seven parts:
• “name” is the name of the RTA model,
• “s” is the list of states’ names,
• “sigma” is the alphabet,
• “tran” is the list of transitions of the RTA model, where

each transition is of the key-value form “id: [source, label,
guard, target]”. The key “id” is the index of the transition,
and the value consists of four parts:

– “source” is the name of the pre-state of the transition,
– “target” is the name of the post-state of the transition,
– “label” is one of the letters in the alphabet, and
– “guard” is the union of the time intervals, represented

in Dima’s normal forms [14],
• ”init” is the name of the initial state, and
• ”observable” is the list of observable letters.

Specially, the json file of the system model A in Subsection
V-A is in Listing 1 below.

Listing 1: The json file of A (a.json)
1 {
2 "name": "A",
3 "s": ["s1", "s2", "s3"],
4 "sigma": ["a", "b"],
5 "tran": {
6 "0": ["s1", "b", "[2,4]", "s2"],
7 "1": ["s1", "a", "[2,5]", "s2"],
8 "2": ["s2", "b", "[3,4]", "s3"],
9 "3": ["s2", "a", "[1,3]", "s3"]

10 },
11 "init": "s1",
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Secondly we compute the projection of B and Bns, denoted
as B ↑Σo and Bns ↑Σo respectively, with respect to Σo = {b}.

(4) Construct B ↑Σo .
We first construct Bτ with two transitions: (s1, [2, 4], s2) and

(s2, [3, 4], s3). All the three states are initial and accepting.
Λs1s2 = [2, 4], Λs2s3 = [3, 4], Λs1s3 = [5, 8], and all the
others are equal to {0}. Then in our B ↑Σo , the transitions are
(s1, (a, [2, 5]), s2), (s2, (a, [1, 3]), s3) and (s1, (a, [3, 7]), s3).
S = Fp = {s1, s2, s3}, and Initp = {s1}.
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(5) Construct Bns ↑Σo .
The construction is similar to that of B ↑Σo , shown in Figure

8.
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(6) Construct another FA (B′ ↑Σo)× (B′ns ↑Σo)comp in order
to compare languages accepted by B ↑Σo and Bns ↑Σo . This is
similar to the steps (2) and (3), so we omit the details here.

As (B′ ↑Σo)× (B′ns ↑Σo)comp accepts nothing, the RTA A is
language-opaque with respect to L(Asecret) and Σo.

VI. IMPLEMENTATION

Based on the theory part above, we have developed a
prototypical tool for deciding the language-opacity problem
of RTA. The tool is implemented with Python and thus can
run on Linux, Window and MAC smoothly.

The tool needs two input files: one is the sys-
tem model (a.json) and the other is the secret one
(a_secret.json). Both models are json files of RTA
models.

A json file of an RTA model consists of seven parts:
• “name” is the name of the RTA model,
• “s” is the list of states’ names,
• “sigma” is the alphabet,
• “tran” is the list of transitions of the RTA model, where

each transition is of the key-value form “id: [source, label,
guard, target]”. The key “id” is the index of the transition,
and the value consists of four parts:

– “source” is the name of the pre-state of the transition,
– “target” is the name of the post-state of the transition,
– “label” is one of the letters in the alphabet, and
– “guard” is the union of the time intervals, represented

in Dima’s normal forms [14],
• ”init” is the name of the initial state, and
• ”observable” is the list of observable letters.

Specially, the json file of the system model A in Subsection
V-A is in Listing 1 below.

Listing 1: The json file of A (a.json)
1 {
2 "name": "A",
3 "s": ["s1", "s2", "s3"],
4 "sigma": ["a", "b"],
5 "tran": {
6 "0": ["s1", "b", "[2,4]", "s2"],
7 "1": ["s1", "a", "[2,5]", "s2"],
8 "2": ["s2", "b", "[3,4]", "s3"],
9 "3": ["s2", "a", "[1,3]", "s3"]

10 },
11 "init": "s1",
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Secondly we compute the projection of B and Bns, denoted
as B ↑Σo and Bns ↑Σo respectively, with respect to Σo = {b}.

(4) Construct B ↑Σo .
We first construct Bτ with two transitions: (s1, [2, 4], s2) and

(s2, [3, 4], s3). All the three states are initial and accepting.
Λs1s2 = [2, 4], Λs2s3 = [3, 4], Λs1s3 = [5, 8], and all the
others are equal to {0}. Then in our B ↑Σo , the transitions are
(s1, (a, [2, 5]), s2), (s2, (a, [1, 3]), s3) and (s1, (a, [3, 7]), s3).
S = Fp = {s1, s2, s3}, and Initp = {s1}.

(5) Construct Bns ↑Σo .
The construction is similar to that of B ↑Σo , shown in Figure

8.

10

s1 s2 s3
a2, a3, a4

b1, b2

a1, a2

b2

(a) B′

s′1 s′2 s′3

s′4

a4

a1, a2, a3, a5,
b1, b2, b3, b4

b2, b3

a1, a2, a3, a4, a5,

b1, b4
a1, a2, a3, a4, a5,
b1, b2, b3, b4

a1, a2, a3, a4, a5, b1, b2, b3, b4

(b) Bcomp
secret

′

Fig. 5: refined FA of B and Bcomp
secret

s11′ s22′

s24′ s34′

s33′
a4

a1, a2

a2, a3, b1, b2
a1, a2, b2

b2

(a) Bp, the product of B′ and Bcomp
secret

s11′ s22′

s24′ s34′

(a, [4, 5])

(a, [1, 3])
(a, [2, 4))
(b, [2, 4])

(a, [1, 3])

(b, (3, 4))

(b) Bns

Fig. 6: Bp and Bns

Secondly we compute the projection of B and Bns, denoted
as B ↑Σo and Bns ↑Σo respectively, with respect to Σo = {b}.

(4) Construct B ↑Σo .
We first construct Bτ with two transitions: (s1, [2, 4], s2) and

(s2, [3, 4], s3). All the three states are initial and accepting.
Λs1s2 = [2, 4], Λs2s3 = [3, 4], Λs1s3 = [5, 8], and all the
others are equal to {0}. Then in our B ↑Σo , the transitions are
(s1, (a, [2, 5]), s2), (s2, (a, [1, 3]), s3) and (s1, (a, [3, 7]), s3).
S = Fp = {s1, s2, s3}, and Initp = {s1}.
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(5) Construct Bns ↑Σo .
The construction is similar to that of B ↑Σo , shown in Figure

8.
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(6) Construct another FA (B′ ↑Σo)× (B′ns ↑Σo)comp in order
to compare languages accepted by B ↑Σo and Bns ↑Σo . This is
similar to the steps (2) and (3), so we omit the details here.

As (B′ ↑Σo)× (B′ns ↑Σo)comp accepts nothing, the RTA A is
language-opaque with respect to L(Asecret) and Σo.

VI. IMPLEMENTATION

Based on the theory part above, we have developed a
prototypical tool for deciding the language-opacity problem
of RTA. The tool is implemented with Python and thus can
run on Linux, Window and MAC smoothly.

The tool needs two input files: one is the sys-
tem model (a.json) and the other is the secret one
(a_secret.json). Both models are json files of RTA
models.

A json file of an RTA model consists of seven parts:
• “name” is the name of the RTA model,
• “s” is the list of states’ names,
• “sigma” is the alphabet,
• “tran” is the list of transitions of the RTA model, where

each transition is of the key-value form “id: [source, label,
guard, target]”. The key “id” is the index of the transition,
and the value consists of four parts:

– “source” is the name of the pre-state of the transition,
– “target” is the name of the post-state of the transition,
– “label” is one of the letters in the alphabet, and
– “guard” is the union of the time intervals, represented

in Dima’s normal forms [14],
• ”init” is the name of the initial state, and
• ”observable” is the list of observable letters.

Specially, the json file of the system model A in Subsection
V-A is in Listing 1 below.

Listing 1: The json file of A (a.json)
1 {
2 "name": "A",
3 "s": ["s1", "s2", "s3"],
4 "sigma": ["a", "b"],
5 "tran": {
6 "0": ["s1", "b", "[2,4]", "s2"],
7 "1": ["s1", "a", "[2,5]", "s2"],
8 "2": ["s2", "b", "[3,4]", "s3"],
9 "3": ["s2", "a", "[1,3]", "s3"]

10 },
11 "init": "s1",

Fig. 7: B ↑Σo , the projection FA from B
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Secondly we compute the projection of B and Bns, denoted
as B ↑Σo and Bns ↑Σo respectively, with respect to Σo = {b}.

(4) Construct B ↑Σo .
We first construct Bτ with two transitions: (s1, [2, 4], s2) and

(s2, [3, 4], s3). All the three states are initial and accepting.
Λs1s2 = [2, 4], Λs2s3 = [3, 4], Λs1s3 = [5, 8], and all the
others are equal to {0}. Then in our B ↑Σo , the transitions are
(s1, (a, [2, 5]), s2), (s2, (a, [1, 3]), s3) and (s1, (a, [3, 7]), s3).
S = Fp = {s1, s2, s3}, and Initp = {s1}.
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(5) Construct Bns ↑Σo .
The construction is similar to that of B ↑Σo , shown in Figure
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(6) Construct another FA (B′ ↑Σo)× (B′ns ↑Σo)comp in order
to compare languages accepted by B ↑Σo and Bns ↑Σo . This is
similar to the steps (2) and (3), so we omit the details here.

As (B′ ↑Σo)× (B′ns ↑Σo)comp accepts nothing, the RTA A is
language-opaque with respect to L(Asecret) and Σo.

VI. IMPLEMENTATION

Based on the theory part above, we have developed a
prototypical tool for deciding the language-opacity problem
of RTA. The tool is implemented with Python and thus can
run on Linux, Window and MAC smoothly.

The tool needs two input files: one is the sys-
tem model (a.json) and the other is the secret one
(a_secret.json). Both models are json files of RTA
models.

A json file of an RTA model consists of seven parts:
• “name” is the name of the RTA model,
• “s” is the list of states’ names,
• “sigma” is the alphabet,
• “tran” is the list of transitions of the RTA model, where

each transition is of the key-value form “id: [source, label,
guard, target]”. The key “id” is the index of the transition,
and the value consists of four parts:

– “source” is the name of the pre-state of the transition,
– “target” is the name of the post-state of the transition,
– “label” is one of the letters in the alphabet, and
– “guard” is the union of the time intervals, represented

in Dima’s normal forms [14],
• ”init” is the name of the initial state, and
• ”observable” is the list of observable letters.

Specially, the json file of the system model A in Subsection
V-A is in Listing 1 below.

Listing 1: The json file of A (a.json)
1 {
2 "name": "A",
3 "s": ["s1", "s2", "s3"],
4 "sigma": ["a", "b"],
5 "tran": {
6 "0": ["s1", "b", "[2,4]", "s2"],
7 "1": ["s1", "a", "[2,5]", "s2"],
8 "2": ["s2", "b", "[3,4]", "s3"],
9 "3": ["s2", "a", "[1,3]", "s3"]

10 },
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(6) Construct another FA (B′ ↑Σo)× (B′ns ↑Σo)comp in order
to compare languages accepted by B ↑Σo and Bns ↑Σo . This is
similar to the steps (2) and (3), so we omit the details here.

As (B′ ↑Σo)× (B′ns ↑Σo)comp accepts nothing, the RTA A is
language-opaque with respect to L(Asecret) and Σo.

VI. IMPLEMENTATION

Based on the theory reported above, we have developed a
prototypical tool for deciding the language-opacity problem of
RTA. The tool is implemented with Python and thus can run
on Linux, Window and MAC smoothly.

The tool needs two input files: one is the sys-
tem model (a.json) and the other is the secret one
(a_secret.json). Both models are json files of RTA
models.

A json file of an RTA model consists of seven parts:
• “name” is the name of the RTA model,
• “s” is the list of states’ names,
• “sigma” is the alphabet,
• “tran” is the list of transitions of the RTA model, where

each transition is of the key-value form “id: [source, label,
guard, target]”. The key “id” is the index of the transition,
and the value consists of four parts:

– “source” is the name of the pre-state of the transition,
– “target” is the name of the post-state of the transition,
– “label” is one of the letters in the alphabet, and
– “guard” is the union of the time intervals, represented

in Dima’s normal forms [14],
• ”init” is the name of the initial state, and
• ”observable” is the list of observable letters.

Specifically, the json file of the system model A in Subsection
V-A is in Listing 1 below.

Firstly, we load the json files of two RTA models A
and Asecret, and transform them into two FA B and Bns
respectively. These two FA accept languages trace-equivalent
to L(A) and Lf (A) \ L(Asecret) respectively.

Secondly, we obtain B ↑Σo and Bns ↑Σo which are the
projections B and Bns respectively based on the observable
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action set Σo, by constructing Bτ and calculating the regular
expressions REs corresponding to traces in Bτ . Union, in-
tersection, complement, addition and Kleene star operations
of Dima’s normal forms are implemented according to [14].
The well-known Floyd-Warshall-Kleene Algorithm [16]–[18]
is utilized to construct the matrix of regular expressions REi,j .
For calculating and simplifying the k + 1 round formula
REi,j(k + 1) = REi,j(k) + REi,k+1(k) · REk+1,k+1(k)∗ ·
REk+1,j(k), the Horner’s Rule [19] is applied where the
addition operation, union operation, {0} and ∅ in Dima’s
normal forms are treated as the production operation, addition
operation, 1 and 0 in the polynomials in rational number
domain respectively.

Finally, after transforming the two finite automata into DFA,
we apply the complement and production operations on them
again, and obtain B ↑Σo ×(Bns ↑Σo)comp. Clearly, A is
language-opaque with respect to Asecret and Σo if and only
if Lf (B ↑Σo ×(Bns ↑Σo)comp) is empty.

The output of the tool is as follows: it returns “language-
opaque: true” if the RTA A is language-opaque with respect to
Lf (Asecret) and Σo; otherwise, it returns “language-opaque:
false”. Intermediate automata during the computation are also
printed, including A, Asecret, B, Bns, B ↑Σo , Bns ↑Σo and
the final automaton B ↑Σo ×(Bns ↑Σo)comp. Besides, after
the deciding procedure, the total elapsed time will be given
(in seconds).

The simple example of language-opacity in Subsection V-A
is as a demo in the tool and the result of the example is
language-opaque with taking 1.67 seconds in our test envi-
ronment (Inter Core i3-5005U at 2.0GHz and 4GB DDR3L-
1600MHz RAM). The prototypical tool and its information
can be found at https://github.com/Leslieaj/RTAOpacity.

Listing 1: The json file of A (a.json)
1 {
2 "name": "A",
3 "s": ["s1", "s2", "s3"],
4 "sigma": ["a", "b"],
5 "tran": {
6 "0": ["s1", "b", "[2,4]", "s2"],
7 "1": ["s1", "a", "[2,5]", "s2"],
8 "2": ["s2", "b", "[3,4]", "s3"],
9 "3": ["s2", "a", "[1,3]", "s3"]

10 },
11 "init": "s1",
12 "accept": ["s3"],
13 "observable": ["a"]
14 }

VII. CONCLUSION

In this paper we investigate the opacity problems of RTA,
including language opacity and initial-state opacity. We prove
the two opacity problems both are decidable by reduction to
the language inclusion problem of FA. To this end, we first
translate a given RTA into an FA with the corresponding timed
alphabet, such that the language accepted by the FA and that

generated by the RTA are equivalent in the sense of trace-
equivalence proposed in this paper. Then, in order to guarantee
trace-equivalence relation is preserved by the complement and
product operation over translated FA, we propose the notions
of partitioned timed alphabet and partitioned language. Based
on them, we further refine the translated FA to an FA with
partitioned timed alphabet, of which the accepted language is
still trace-equivalent to the generated language of the original
RTA. Then, we define a projection operation on refined FA
with partitioned timed alphabets onto the given observable set
by removing all unobservable transitions and merging their
time durations into the subsequent observable transition. With
such projection, we can show that the accepted language of
the projection of the refined FA onto the observable set is still
trace-equivalent to the projection of the language generated by
the original RTA onto the same set. Thus, the decidability of
the language and initial-state opacity problems of RTA can be
reduced to the regular language inclusion problem.

Applicability: In [4], Bryans et al. investigated how to
formalize security properties like anonymity, non-interference,
etc., which can be essentially reduced to opacity problems,
using labelled transition systems. In [20], Gardey, Mullins and
Roux generalized these notions to timed setting in the formal-
ism of timed automata, and proved that non-interference is still
decidable. However, unlike in untimed setting, Cassez proved
that for the very restrictive class of event recording timed
automata (ERA), the language opacity problem is already
undecidable in [13], that leaves little hope for an algorithmic
solution to the opacity problem in dense-time. In [14], Dima
pointed out that ERA is incomparable with RTA. Fortunately,
in this paper, we prove that the language and initial-state
opacity problems of RTA both are decidable, which reembarks
the hope to automatically verify security properties in timed
settings. Actually, many commonly used communication pro-
tocols with time can be modeled using RTA, for example, in
[21], Denning and Sacco extended Needham and Schroeder’s
key distribution protocols for both single key and public
key systems with timestamps in order to avoid replays. It
is not hard to model the extended protocols with RTA as
all timing constraints are of the form |clock − T | ∈ [a, b],
where clock stands for a local clock, and T is the given
timestamp. Furthermore, it is possible to model the commonly
used authentication technology Kerberos [22] using RTA, as
its timing part is essentially based on the extended Needham
and Schroeder’s protocols. As one of major future work, we
will investigate how to apply RTA to model more security
protocols.

Another interesting future work is to extend HCSP [23]–
[25] and HHL [25], [26] to security for modeling and reason-
ing about more general security properties, and to investigate
automatic verification techniques for them based on the work
reported in this paper.
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[1] R. Bailliage and L. Mazaré, “Using unification for opacity properties,”
in Proceedings of the Workshop on Issues in the Theory of Security
(WITS’04), 2004, pp. 165–176.



TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. ?, NO. ?, ?? ???? 12

[2] J. Bryans, M. Kounty, and P. Ryan, “Modelling opacity using petri nets,”
Electronic Notes in Theoretical Computer Science, vol. 121, pp. 101–
115, 2005.

[3] Y. Tong, Z. Li, C. Seatzu, and A. Giua, “Verification of state-based
opacity using petri nets,” IEEE Transactions on Automatic Control,
vol. 62, no. 6, pp. 2823–2837, 2017.
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