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Abstract. Interpolation-based techniques become popular in recent years,
as they can improve the scalability of existing verification techniques
due to their inherent modularity and local reasoning capabilities. Syn-
thesizing Craig interpolants is the cornerstone of these techniques. In
this paper, we investigate nonlinear Craig interpolant synthesis for two
polynomial formulas of the general form, essentially corresponding to
the underlying mathematical problem to separate two disjoint semial-
gebraic sets. By combining the homogenization approach with existing
techniques, we prove the existence of a novel class of non-polynomial in-
terpolants called semialgebraic interpolants. These semialgebraic inter-
polants subsume polynomial interpolants as a special case. To the best of
our knowledge, this is the first existence result of this kind. Furthermore,
we provide complete sum-of-squares characterizations for both polyno-
mial and semialgebraic interpolants, which can be efficiently solved as
semidefinite programs. Examples are provided to demonstrate the effec-
tiveness and efficiency of our approach.

Keywords: Craig interpolation · Separating semialgebraic sets · Ho-
mogenization · Sum-of-squares · Semidefinite programming

1 Introduction

Background. Craig interpolant is a fundamental concept in formal verification
and automated theorem proving. It was introduced by William Craig in the
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1950s as a tool for reasoning about logical formulas and their satisfiability. Craig
interpolation techniques possess excellent modularity and local reasoning ca-
pabilities, making them effective tools for enhancing the scalability of formal
verification methods, like theorem proving [24,36], model-checking [32], abstract
interpretation [15,33], program verification [20,27] and so on.

Efficient generation of Craig interpolants is crucial in interpolation-based
techniques, and therefore has garnered increasing attention. Formally, a formula
I is called a Craig interpolant for two mutually exclusive formulae ϕ and ψ in
a background theory T , if it is defined on the common symbols of ϕ and ψ,
implied by ϕ in the theory T , and inconsistent with ψ in the theory T . Due to
the diversity of background theories and their integration, researchers have been
dedicated to developing efficient interpolation synthesis algorithms. Currently,
numerous effective algorithms for automatic synthesis of interpolants have been
proposed for various fragments of first-order logic, e.g., linear arithmetic [15],
logic with arrays [16,34], logic with sets [21], equality logic with uninterpreted
functions (EUF) [33,6], etc., and their combinations [43,23,39]. Moreover, D’Silva
et al. [10] explored how to compare the strength of various interpolants.

However, interpolant generation for nonlinear arithmetic and its combination
with the aforementioned theories is still in infancy, although nonlinear polyno-
mial inequalities are quite common in software involving number theoretic func-
tions as well as hybrid systems [44,45]. In addition, when the formulas ϕ and ψ
are defined by polynomial inequalities, generating an interpolant is essentially
equivalent to the mathematical problem of separating two disjoint semialgebraic
sets, which has a long history and is a challenging mathematical problem [1].

In [8], Dai et al. attempted to generate interpolants for conjunctions of mutu-
ally contradictory nonlinear polynomial inequalities without unshared variables.
They proposed an algorithm based on Stengle’s Positivstellensatz [42], which
guarantees the existence of a witness and can be computed using semidefinite
programming (SDP). While their algorithm is generally incomplete, it becomes
complete when all variables are bounded, known as the Archimedean condition
(see in Sect. 2.1).

In [11], Gan et al. introduced an algorithm for generating interpolants specif-
ically for quadratic polynomial inequalities. Their approach is based on the in-
sight that analyzing the solution space of concave quadratic polynomial inequal-
ities can be achieved by linearizing them, using a generalization of Motzkin’s
transposition theorem. Additionally, they discussed generating interpolants for
a combination of the theory of quadratic concave polynomial inequalities and
EUF using a hierarchical calculus proposed in [40] and employed in [39].

In [12], Gan et al. further extended the problem from the case of quadratic
concave inequalities to the more general Archimedean case. To accomplish this,
they utilized Putinar’s Positivstellensatz and proposed a Craig interpolation gen-
eration method based on SDP. This method allows to generate interpolants in
a broader class of situations involving nonlinear polynomial inequalities. How-
ever, the Archimedean condition still imposes a limitation on the method, as it
requires bounded domains.
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In [5], Chen et al. proposed a counterexample-guided framework based on
support vector machines for synthesizing nonlinear interpolants. Later in [28],
Lin et al. combined this framework and deep learning for synthesizing neural
interpolants. In [19], Jovanović and Dutertre also designed a counterexample-
guided framework based on cylindrical algebraic decomposition (CAD) for syn-
thesizing interpolants as boolean combinations of constraints. However, these
approaches rely on quantifier elimination to ensure completeness and conver-
gence, which terribly affects their efficiency due to its doubly exponential time
complexity [9].

For theories including non-polynomial expressions, the general idea is to ab-
stract non-polynomial expressions into polynomial or linear expressions. In [14],
Gao and Zufferey presented an approach for extracting interpolants for nonlin-
ear formulas that may contain transcendental functions and differential equa-
tions. They accomplished this by transforming proof traces from a δ-decision
procedure [13] based on interval constraint propagation (ICP) [3]. Like the
Archimedean condition, δ-decidability also imposes the restriction that variables
are bounded (in a hyper-rectangle). A similar idea was also reported in [25]. In
[41] and [7], Srikanth et al. and Cimatti et al. proposed approaches to abstract
nonlinear formulas into the theory of linear arithmetic with uninterpreted func-
tions.

Contributions. In this paper, we consider how to synthesize an interpolant func-
tion h(x) for two polynomial formulas ϕ(x,y) and ψ(x, z) such that ϕ(x,y) |=
h(x) > 0 and ψ(x, z) |= h(x) < 0 without assuming the Archimedean condition,
i.e., the variables in ϕ and ψ can have an unbounded range of values. Here, un-
common variables of ϕ and ψ are allowed, and the description of formulas may
involve any polynomial of any degree. Hence the problem is more general than
the ones discussed in [8,11,12], and is also more difficult as polynomial inter-
polants may not exist [1]. To address this problem, we first utilize homogeniza-
tion techniques to elevate the descriptions of ϕ and ψ to the homogeneous space.
In this homogeneous space, we can impose the constraint that the variables lie
on a unit sphere, thus reviving the Archimedean condition. Combining this idea
with the work in [12], we can prove the existence of a semialgebraic function
h(x) = h1(x) + h2(x)

√
∥x∥2 + 1 such that h(x) > 0 serves as an interpolant,

where h1, h2 are polynomials (h becomes a polynomial when h2 = 0). Fur-
thermore, we provide sum-of-squares (SOS) programming procedures for finding
such semialgebraic interpolants as well as polynomial interpolants. Under certain
assumptions, we prove that the SOS procedures are sound and complete.

Organization. The rest of the paper is organized as follows. Preliminaries are
introduced in Sect. 2. Sect. 3 proves the existence of an interpolant for two mutu-
ally contradictory polynomial formulas. Sect. 4 derives an SOS characterization
for the interpolant. Sect. 5 presents an SDP-based method for computation and
provides examples with portraits. Finally, Sect. 6, we conclude this paper and
discuss some future works. Omitted proofs are given in the Appx. A.
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2 Preliminaries

We first fix some basic notations. Let N and R be the sets of integers and
real numbers, respectively. By convention, we use boldface letters to denote
vectors. Fixing a vector of indeterminates x := (x1, . . . , xr), let R[x] denote the
polynomial ring in variables x over real numbers. We use Σ[x] := {

∑m
i=1 p

2
i |

pi ∈ R[x],m ∈ N} to denote the set of SOS polynomials in variables x. A basic
semialgebraic set S ⊆ Rr is of the form {x ∈ Rr | p1(x)▷0, . . . , pm(x)▷0}, where
pi(x) ∈ R[x] and ▷ ∈ {≥, >} (each of the inequalities can be either strict or non-
strict). A basic semialgebraic set is said to be closed if it is defined by non-strict
inequalities. Semialgebraic sets are formed as unions of basic semialgebraic sets.
i.e., T =

⋃n
i=1 Si is a semialgebraic set, where each Si is a basic semialgebraic set.

For any (semialgebraic) set S ⊆ Rr, let cl(S) denote the closure of S. Let⊥ and⊤
stand for false and true, respectively. For a vector x ∈ Rr, let ∥x∥ :=

√∑r
i=1 x

2
i

denote the standard Euclidean norm.
In the following, we give a brief introduction on important notions used

throughout the rest of this paper and then describe the problem of interest.

2.1 Quadratic Module

Definition 1 (Quadratic Module [31]). A subset M of R[x] is called a
quadratic module if it contains 1 and is closed under addition and multiplication
with squares, i.e.,

1 ∈ M,M+M ⊆ M, and p2M ⊆ M for all p ∈ R[x].

Definition 2. Let p := {p1, . . . , pm} be a finite subset of R[x]. The quadratic
module Mx(p), or simply M(p), generated by p is the smallest quadratic module
containing all pi, i.e.,

Mx(p) := {σ0 +
m∑
i=1

σipi | σ0, σi ∈ Σ[x]}.

Let S be a closed basic semialgebraic set described by p ≥ 0, i.e.,

S := {x ∈ Rr | p1(x) ≥ 0, . . . , pm(x) ≥ 0}. (1)

Since SOS polynomials are non-negative, it is easy to verify that the quadratic
moduleM(p) is a subset of polynomials that are nonnegative on S. In fact, under
the so-called the Archimedean condition, the quadratic module M(p) contains
all polynomials that are strictly positive over S. Both the condition and the
statement are formalized as follows.

Definition 3 (Archimedean [31]). Let M be a quadratic module of R[x]. M
is said to be Archimedean if there exists some a > 0 such that a − ∥x∥2 ∈ M.
Furthermore, if M(p) is Archimedean, we say that the semialgebraic set S as
defined in Eq. (1) is of the Archimedean form.
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Theorem 1 (Putinar’s Positivstellensatz [37]). Let p := {p1, . . . , pm} and
S be defined in Eq. (1). Assume that the quadratic module M(p) is Archimedean.
If f(x) > 0 over S, then f ∈ M(p).

The above theorem serves as a key result in real algebraic geometry, as it
provides a simple characterization of polynomials that are locally positive on
closed basic semialgebraic sets. Because of this, Thm. 1 is widely used in the
field of polynomial optimization, referring to [26,31] for an in-depth treatment
of this topic.

Though powerful, Thm. 1 relies on the Archimedean condition. Note that
the inclusion a − ∥x∥2 ∈ M implies that a − ∥x∥2 ≥ 0 over S, deducing that
S is contained in a ball with radius

√
a. As a result, in case that the set S is

unbounded, Thm. 1 is not directly applicable.

2.2 Homogenization

Let x = (x1, . . . , xr) ∈ Rr be an r-tuple of variables and x0 a fresh variable.
Suppose that f(x) ∈ R[x] is a polynomial of degree df . We denote by f̃(x0,x) ∈
R[x0,x] the homogenization of f(x) which is obtained by substituting x1

x0
for x1,

..., xrx0
for xr in f(x) and then multiplying with x

df
0 , that is,

f̃(x0,x) := x
df
0 f(

x1
x0
, . . . ,

xr
x0

). (2)

For example, if f(x) = x31 + 2x1x2 + 3x2 + 4, then f̃(x0,x) = x31 + 2x0x1x2 +
3x20x2+4x30. In what follows, we always use the variable x0 as the homogenizing
variable.

Let S be defined as in Eq. (1). We define the following set related to S by
homogenizing polynomials in the description of S:

S̃h := {(x0,x) ∈ Rr+1 | p̃1(x0,x) ≥ 0, . . . , p̃m(x0,x) ≥ 0, x0 > 0, x20 + ∥x∥2 = 1}.
(3)

Obviously, the following property holds.

Property 1. Let S be as in Eq. (1) and S̃h be defined as above. Then, x ∈ S if
and only if (

1√
1 + ∥x∥2

,
x1√

1 + ∥x∥2
, . . . ,

xr√
1 + ∥x∥2

)
∈ S̃h.

Moreover, (x0,x) ∈ S̃h if and only if (x1

x0
, . . . , xrx0

) ∈ S.

Proof. It is straightforward to verify.

Property 1 shows that there exists a one-to-one correspondence between
points in S ∈ Rn and those in S̃h ∈ Rn+1.
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We also define the set S̃ by replacing x0 > 0 in Eq. (3) with x0 ≥ 0:

S̃ := {(x0,x) ∈ Rr+1 | p̃1(x0,x) ≥ 0, . . . , p̃m(x0,x) ≥ 0, x0 ≥ 0, x20 + ∥x∥2 = 1}.
(4)

To capture the relation between S̃h and S̃, we introduce the following definition
and a related useful lemma.

Definition 4. A closed basic semialgebraic set S is closed at ∞ if cl(S̃h) = S̃.

Lemma 1 ([18]). Let f ∈ R[x] and S be a closed basic semialgebraic set. Then
f ≥ 0 on S if and only if f̃ ≥ 0 on cl(S̃h). Moreover, assuming that S is closed
at ∞, then f ≥ 0 on S if and only if f̃ ≥ 0 on S̃.

Let us define

S(∞) := {x ∈ Rr | p(∞)
1 (x) ≥ 0, . . . , p(∞)

m (x) ≥ 0, ∥x∥2 = 1}, (5)

where p(∞)(x) denotes the highest degree homogeneous part of a polynomial
p(x) ∈ R[x], e.g., if p = x21+2x1x2+3x22+4x1+5x2, then p

(∞) = x21+2x1x2+3x22.

Property 2. Let S̃h, S̃ and S(∞) be defined as above. If S(∞) is empty, then
S̃h = S̃.

Proof. It is straightforward to verify.

2.3 Problem Description

Given two formulas ϕ and ψ in a first-order theory T s.t. ϕ |= ψ, Craig
showed that there always exists an interpolant I over the common symbols of ϕ
and ψ s.t. ϕ |= I and I |= ψ. In the context of verification, we slightly abuse the
terminology following [33]: A reverse interpolant (as coined in [23]) I over the
common symbols of ϕ and ψ is defined as follows.

Definition 5 (Interpolant). Given two formulas ϕ and ψ in a theory T s.t.
ϕ ∧ ψ |=T ⊥, a formula I is an interpolant of ϕ and ψ if (1) ϕ |=T I; (2)
I ∧ ψ |=T ⊥; and (3) I only contains common symbols and free variables shared
by ϕ and ψ.

The interpolant synthesis problem of interest in this paper is formulated as
follows.

Problem 1. Let ϕ(x,y) and ψ(x, z) be two polynomial formulas of the form

ϕ(x,y) :=

Kϕ∨
k=1

mk∧
i=1

fk,i(x,y) ≥ 0, (6)

ψ(x, z) :=

Kψ∨
k′=1

nk′∧
j=1

gk′,j(x, z) ≥ 0, (7)



Title Suppressed Due to Excessive Length 7

where x ∈ Rr1 , y ∈ Rr2 , z ∈ Rr3 are variable vectors, r1, r2, r3 ∈ N, and fk,i, gk′,j
are polynomials in the corresponding variables. We aim to find a function h(x)
such that h(x) > 0 is an interpolant for ϕ and ψ, i.e.,

ϕ(x,y) |= h(x) > 0 and ψ(x, z) |= h(x) < 0.

Here h(x) is called an interpolant function. Specifically, we are interested in two
scenarios where

1. Polynomial interpolants: the function h(x) is a polynomial in R[x];
2. Semialgebraic interpolants6: the function h(x) can be expressed as

h(x) = h1(x) +
√

∥x∥2 + 1 · h2(x), (8)

with h1(x), h2(x) ∈ R[x].

Obviously, the second case degenerates to the first case when h2(x) = 0.

Remark 1. Like in [12,13], we require ϕ and ψ to be defined by non-strict poly-
nomial inequalities, mainly for two reasons: (1) Theoretically, our approach re-
lies on Thm. 1, which necessitates a closed underlying basic semialgebraic set.
(2) Numerically, we employ numerical solvers incapable of distinguishing ≥ from
>. In the coming sections, we will see the significance of both closedness and
closedness at ∞ for the existence of interpolants.

3 Existence of Interpolant

In this section, we prove the existence of a semialgebraic interpolant function
h(x) of the form Eq. (8), under certain conditions on ϕ and ψ. In Sect. 3.1, we
begin by focusing on the scenario where both ϕ and ψ exclusively involve the
variable x. Subsequently, in Sect. 3.2, we expand our scope to the case where
unshared variables, y and z, emerge.

3.1 Interpolant between ϕ(x) and ψ(x)

In this part, we prove the existence of a semialgebraic interpolant function
of the form in Eq. (8) that separates the two closed semialgebraic sets in Rr
corresponding to ϕ(x) and ψ(x). The basic idea goes as follows: First, we consider
the problem of finding a semialgebraic function h(x) such that h(x) = 0 separates
two closed basic semialgebraic sets S1 and S2 in Rr. Using the homogenization
technique, we prove that there exists a polynomial g ∈ R[x0,x] with g(x0,x) = 0
separating S̃1 and S̃2, and the existence of h(x) is directly induced by that of
g (see Prop. 2). After that, we extend the result to the case where S1 becomes
a closed semialgebraic set (see Lem. 3) and when both S1 and S2 are closed
semialgebraic sets (see Thm. 2).

We begin by recapping an existing result from [12].

6 A function f(x) is called semialgebraic if its graph {(x, f(x)) | x ∈ Rr} is a semi-
algebraic set. The graph of h(x) is {x ∈ Rr | ∃w. h(x) = h1(x) + w · h2(x) ∧ w2 =
1 + ∥x∥2 ∧ w ≥ 0}.
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Proposition 1 ([12, Lem. 2]). Let S1 = {x ∈ Rr | p1(x) ≥ 0, . . . , pm(x) ≥
0}, S2 = {x ∈ Rr | q1(x) ≥ 0, . . . , qn(x) ≥ 0} be two closed basic semialgebraic
sets of the Archimedean form. Assuming that S1 ∩ S2 = ∅, then there exists a
polynomial h(x) ∈ R[x] such that

∀x ∈ S1. h(x) > 0 and ∀x ∈ S2. − h(x) > 0. (9)

It is important to emphasize that the proof of Prop. 1 relies on Thm. 1 and
hence is limited to the case where the sets S1 and S2 are of the Archimedean
form. In the following Prop. 2, we show how to remove this restriction.

Proposition 2. Let S1 = {x ∈ Rr | p1(x) ≥ 0, . . . , pm(x) ≥ 0}, S2 = {x ∈
Rr | q1(x) ≥ 0, . . . , qn(x) ≥ 0} be closed basic semialgebraic sets. Assuming that
S̃1∩S̃2 = ∅, then there exists a semialgebraic function h(x) of the form in Eq. (8)
such that

∀x ∈ S1. h(x) > 0 and ∀x ∈ S2. − h(x) > 0. (10)

Proof. By the definition of S̃ in Eq. (4), we know that S̃1 and S̃2 are two basic
semialgebraic sets of the Archimedean form (as 1 − x20 − ∥x∥2 belongs to the
corresponding quadratic modules). Since S̃1∩ S̃2 = ∅, by invoking Prop. 1, there
exists a polynomial g ∈ R[x0,x] such that

∀(x0,x) ∈ S̃1. g(x0,x) > 0 and ∀(x0,x) ∈ S̃2. − g(x0,x) > 0. (11)

Note that for any x ∈ S1 (resp. S2), by Property 1 we have ( 1√
∥x∥2+1

, x√
∥x∥2+1

) ∈

S̃1 (resp. S̃2). Let

h(x) := (
√

∥x∥2 + 1)deg(g)g(
1√

∥x∥2 + 1
,

x√
∥x∥2 + 1

). (12)

Since (
√
∥x∥2 + 1)deg(g) ≥ 1, combining with Eq. (11), we have that h(x) satisfies

Eq. (10).
To see that h(x) admits the form in Eq. (8), we expand the right-hand side of

Eq. (12) and simplify the terms with power of
√
∥x∥2 + 1 greater than or equal

to 2. After simplification, we collect the terms with and without
√

∥x∥2 + 1

into two groups so that h(x) can be expressed as h1(x) +
√

∥x∥2 + 1 · h2(x) for
h1(x), h2(x) ∈ R[x].

In order to check whether the condition S̃1 ∩ S̃2 = ∅ in Prop. 2 holds, one
can use the following lemma.

Lemma 2. Given two closed basic semialgebraic set S1 and S2, if S1 ∩ S2 = ∅
and S

(∞)
1 ∩ S(∞)

2 = ∅, then S̃1 ∩ S̃2 = ∅.

Now, we extend the result in Prop. 2 to the case when S1 and S2 are two
closed semialgebraic sets. A closed semialgebraic set, say T , is a union of some
closed basic semialgebraic sets, i.e., T = ∪ai=1Si with

Si = {x ∈ Rr | pi1(x) ≥ 0, . . . , pimi(x) ≥ 0}, i = 1, . . . , a,
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where pik(x) ∈ R[x], mi ∈ N, k = 1, ...,mi, i = 1, . . . , a. Mirroring the definition

of S(∞) and S̃, we define T (∞) :=
⋃a
i=1 S

(∞)
i and T̃ :=

⋃a
i=1 S̃i. In the following

lemma, we deal with the case when S1 in Prop. 2 becomes a union of closed
basic semialgebraic sets.

Lemma 3. Let T1 = ∪ai=1Si be a closed semialgebraic set with Si = {x ∈ Rr |
pi1(x) ≥ 0, . . . , pimi(x) ≥ 0}, and let T2 = {x ∈ Rr | q1(x) ≥ 0, . . . , qn(x) ≥ 0}
be a closed basic semialgebraic set. Assume that T̃1 ∩ T̃2 = ∅. Then there exists
a polynomial g ∈ R[x0,x] such that

∀(x0,x) ∈ T̃1. g(x0,x) > 0 and ∀(x0,x) ∈ T̃2. − g(x0,x) > 0. (13)

Then, we use Lem. 3 to prove the case where both sets are unions of closed
basic semialgebraic sets.

Theorem 2. Let T1 = ∪ai=1Si and T2 = ∪bj=1S
′
j be closed semialgebraic sets,

where Si and S
′
j are closed basic semialgebraic sets for i = 1, . . . , a, j = 1, . . . , b.

Assume T̃1∩ T̃2 = ∅. Then there exists a semialgebraic function h(x) of the form
in Eq. (8) such that

∀x ∈ T1. h(x) > 0 and ∀x ∈ T2. − h(x) > 0. (14)

Similarly to Lem. 2, the condition T̃1 ∩ T̃2 = ∅ can be verified by checking

whether T1 ∩ T2 = ∅ and T
(∞)
1 ∩ T (∞)

2 = ∅. As a direct inference of Thm. 2, we
know that there exists a semialgebraic function h(x) of the form in Eq. (8) such
that h(x) > 0 is an interpolant of ϕ(x) and ψ(x).

3.2 Interpolant between ϕ(x, y) and ψ(x, z)

Let ϕ(x,y) and ψ(x, z) be given in Problem 1. We denote by Tϕ ⊆ Rr1+r2
and Tψ ⊆ Rr1+r3 the semialgebraic sets corresponding to ϕ and ψ, i.e.,

Tϕ :=

Kϕ⋃
k=1

Sk, with Sk := {(x,y) ∈ Rr1+r2 |
mk∧
i=1

fk,i(x,y) ≥ 0}, (15)

Tψ :=

Kψ⋃
k′=1

S′
k′ , with S

′
k′ := {(x, z) ∈ Rr1+r3 |

nk′∧
j=1

gk′,j(x, z) ≥ 0}. (16)

Since an interpolant contains only common symbols of ϕ and ψ, Problem 1
can be reduced to finding a function h(x) such that h(x) = 0 separates the two
projection sets Px(Tϕ) := {x ∈ Rr1 | ∃y. (x,y) ∈ Tϕ} and Px(Tψ) := {x ∈
Rr1 | ∃z. (x, z) ∈ Tψ}. We have the following theorem as a direct consequence
of Thm. 2.

Theorem 3. Let ϕ(x,y) and ψ(x, z) be defined in Problem 1, and let Px(Tϕ)
and Px(Tψ) be defined above. Let T1 = cl(Px(Tϕ)) and T2 = cl(Px(Tψ)). Assume
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T̃1 ∩ T̃2 = ∅. Then there exists a semialgebraic function h(x) of the form in
Eq. (8) such that

∀x ∈ Px(Tϕ). h(x) > 0 and ∀x ∈ Px(Tψ). − h(x) > 0. (17)

As a consequence, h(x) > 0 is a semialgebraic interpolant of ϕ(x,y) and ψ(x, z).

Remark 2. Note that in Thm. 3, we need to consider the closures cl(Px(Tϕ))
and cl(Px(Tψ)) rather than Px(Tϕ) and Px(Tψ) themselves. The reason lies in
that the projections of closed semialgebraic sets are not necessarily closed. For
example, consider ϕ(x,y) := x1x2 − 1 ≥ 0 ∧ x2 ≥ 0 with x = x1 and y = x2.
Then Px(Tϕ) = {x1 | x1 > 0} is an open set.

4 Sum-of-Squares Formulation

In this section, we provide SOS characterizations for polynomial and semial-
gebraic interpolants. For simplicity, we will focus on the case where ϕ and ψ are
conjunctions of polynomial inequalities given by

ϕ(x,y) :=

m∧
i=1

fi(x,y) ≥ 0 and ψ(x, z) :=

n∧
j=1

gj(x, z) ≥ 0, (18)

where x ∈ Rr1 , y ∈ Rr2 , and z ∈ Rr3 . Extending to the general case is straight-
forward.

4.1 SOS Characterization for Polynomial Interpolants

In this part, we provide an SOS characterization for polynomial interpolants
based on homogenization. We prove that the characterization is sound and
weakly complete. Furthermore, we provide a concrete example to show that
our new characterization is strictly more expressive than the one in [12].

Theorem 4 (Weak Completeness). Let ϕ, ψ be defined as in Eq. (18) and
let Sϕ, and Sψ be the basic semialgebraic sets corresponding to ϕ and ψ. Let

f̃m+1 = x0, g̃n+1 = x0, f̃m+2 = x20 + ∥x∥2 + ∥y∥2 − 1, and g̃n+2 = x20 + ∥x∥2 +
∥z∥2 − 1. If h(x) ∈ R[x] is a polynomial interpolant function of ϕ and ψ, then
the homogenized polynomial h̃(x0,x) satisfies, for arbitrarily small ϵ > 0,

h̃(x0,x) + ϵ = σ0 +

m+2∑
i=1

σif̃i(x0,x,y),

−h̃(x0,x) + ϵ = τ0 +

n+2∑
j=1

τj g̃j(x0,x, z),

(19)

for some σi ∈ Σ[x0,x,y], i = 0, . . . ,m + 1, σm+2 ∈ R[x0,x,y], τi ∈ Σ[x0,x, z],
i = 0, . . . , n+ 1, τn+2 ∈ R[x0,x, z].



Title Suppressed Due to Excessive Length 11

Remark 3. In Eq. (19), we add a small quantity ϵ > 0 to the left-hand sides in
order to invoke Thm. 1. The ideal case is ϵ = 0. Fortunately, in most practice
circumstances, we can safely set ϵ = 0 when the finite convergence property [35,
Thm. 1.1] holds. Indeed, the finite convergence property is generically true and
is violated only when h and Sϕ (or Sψ) are of certain singular forms.

Theorem 5 (Soundness). Let ϕ and ψ be defined as in Eq. (18). Suppose
that h(x) is a polynomial such that its homogenization h̃(x0,x) satisfies Eq. (19)
with ϵ = 0. Assume ϕ ∧ h(x) = 0 |= ⊥ and ψ ∧ h(x) = 0 |= ⊥. Then h(x) is an
interpolant function of ϕ and ψ.

Now we compare our characterization Eq. (19) with [12, Thm. 5] which states
that if Sϕ and Sψ are of the Archimedean form, then a polynomial interpolant
function h(x) can be expressed as

h(x)− 1 = σ0 +

m∑
i=0

σifi(x,y),

−h(x)− 1 = τ0 +

n∑
j=0

τjgj(x, z),

(20)

for some σi ∈ Σ[x,y], i = 0, . . . ,m and τj ∈ Σ[x, z], j = 0, . . . , n. Clearly, since
Thm. 4 removes the restriction of the Archimedean condition, our characteriza-
tion is strictly more expressive.

Let M(x1, x2) := x41x
2
2 + x21x

4
2 − 3x21x

2
2 + 1 be the Motzkin polynomial. It is

well known that M(x1, x2) is nonnegative but is not an SOS.

Proposition 3. The polynomial M(x1, x2) + 1 is positive but is not an SOS.

Example 1. Let ϕ := 1 ≥ 0(= ⊤) and ψ := −1 ≥ 0(= ⊥). By Prop. 3, the
polynomial M(x1, x2) + 1 is an interpolant function of ϕ and ψ but does not
admit a representation as in Eq. (20), i.e., the program

find σ0 ∈ Σ[x1, x2]

s.t. x41x
2
2 + x21x

4
2 − 3x21x

2
2 + 2 = σ0

is not feasible. However, a numerical solution to the following program:

find σ0, σ1 ∈ Σ[x0, x1, x2], σ2 ∈ R[x0, x1, x2]
s.t. x41x

2
2 + x21x

4
2 − 3x21x

2
2x

2
0 + 2x60 = σ0 + σ1x0 + σ2(1− x20 − x21 − x22).

can be obtained by employing the Julia package TSSOS [29] and the SDP solver
Mosek [2]. Therefore, the polynomial M(x1, x2) + 1 admits a representation as
in Eq. (19) with ϵ = 0.
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4.2 SOS Characterization for Semialgebraic Interpolants

Let h(x) be a semialgebraic interpolant function of the form in Eq. (8) and
let w be a fresh variable. Though h(x) is not a polynomial, it can be equivalently
represented by a polynomial l(x, w) = h1(x)+w ·h2(x) ∈ R[x, w] with additional
polynomial constraints w2 = 1 + ∥x∥2 and w ≥ 0. Adopting this idea, we have
the following completeness theorem. The soundness result for the semialgebraic
case is omitted, as it is essentially the same as Thm. 5.

Theorem 6 (Completeness). Let ϕ, ψ be defined as in Eq. (18) and let Sϕ,
and Sψ be the basic semialgebraic sets corresponding to ϕ and ψ. Let S1 =

cl(Px(Sϕ)), S2 = cl(Px(Sψ)), f̃m+1 = g̃n+1 = x0, f̃m+2 = g̃m+2 = w, f̃m+3 =

x20+∥x∥2+w2+∥y∥2−1, and g̃n+3 = x20+∥x∥2+w2+∥z∥2−1, f̃m+4 = g̃n+4 =
x20+∥x∥2−w2. Assume that the following two conditions hold: (1) S̃1∩S̃2 = ∅; (2)
Sϕ and Sψ are closed at ∞. Then there exists a semialgebraic interpolant function
h(x) of the form in Eq. (8) such that the polynomial l(x, w) = h1(x)+w ·h2(x) ∈
R[x, w] satisfies, for arbitrarily small ϵ > 0,

l̃(x0,x, w) + ϵ = σ0 +

m+4∑
i=1

σif̃i(x0,x,y),

−l̃(x0,x, w) + ϵ = τ0 +

n+4∑
j=1

τj g̃j(x0,x, z),

(21)

for some σi ∈ Σ[x0,x,y, w], i = 0, . . . ,m + 2, σm+3, σm+4 ∈ R[x0,x,y, w],
τi ∈ Σ[x0,x, z, w], i = 0, . . . , n+ 2, τn+3, τn+4 ∈ R[x0,x, z, w].

We want to emphasize that Thm. 6 is a stronger result than Thm. 4, in the
sense that Thm. 6 guarantees the existence of a semialgebraic interpolant (as
per Thm. 3), which is not the case for polynomial interpolants in Thm. 4.

5 Synthesizing Interpolant via SOS Programming

In this section, we propose an SOS programming procedure to synthesize
polynomial and semialgebraic interpolants. Concrete examples are provided to
demonstrate the effectiveness and efficiency of our method. For all examples,
existing approaches [8,11,13] are not applicable due to their restrictions on for-
mulas, and the method in [12] also fails to produce interpolants of specified
degrees. All experiments were conducted on a Mac lap-top with Apple M2 chip
and 8GB memory. We use the Julia package TSSOS [29] to formulate SOS pro-
grams and rely on the SDP solver Mosek [2] to solve them. All numerical results
are symbolically verified using Mathematica to be real interpolants and the
portraits can be found in Appx. B. The scripts are publicly available 7.

Synthesizing Polynomial Interpolants: Let Tϕ, Tψ, Sk, and Sk′ be de-
fined as in Eq. (15) and Eq. (16). By treating Sk and S′

k respectively as Sϕ and

7 https://github.com/EcstasyH/Interpolation.

https://github.com/EcstasyH/Interpolation
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Sψ in Thm. 4, the problem of synthesizing a polynomial interpolant for ϕ and ψ
is reduced to solving the following SOS program:

find h(x)

s.t. h̃(x0,x) = σk,0 +

mk+2∑
i=1

σk,if̃k,i for k = 1, . . . ,Kϕ,

− h̃(x0,x) = τk′,0 +

nk′+2∑
j=1

τk′,j g̃k′,j for k′ = 1, . . . ,Kψ,

σk,0, ..., σk,m+1 ∈ Σ[x0,x,y], σk,m+2 ∈ R[x0,x,y],
for k = 1, . . . ,Kϕ,

τk′,0, ..., τk′,n+1 ∈ Σ[x0,x, z], τk′,n+2 ∈ R[x0,x,y],
for k = 1, . . . ,Kψ,

(22)

where f̃k,m+1 = g̃k′,n+1 = x0, f̃k,m+2 = x20 + ∥x∥2 + ∥y∥2 − 1, g̃k′,n+2 = x20 +
∥x∥2 + ∥z∥2 − 1 for k = 1, . . . ,Kϕ and k′ = 1, . . . ,Kψ.

As Thm. 5 suggests, a solution h(x) to the above program only ensures that
ϕ |= h(x) ≥ 0 and ψ |= −h(x) ≤ 0. Nevertheless, since numerical solvers are
unable to distinguish ≥ from >, the equalities are usually not attainable for
a numerical solution8. Therefore, we can view the SOS program Eq. (22) as a
sound approach for computing h(x), while completeness follows from verifying
the conditions discussed in Remark 3.

In practice, we solve the program Eq. (22) by solving a sequence of SDP
relaxations which are obtained by restricting the highest degree of involved
polynomials. Concretely speaking, suppose that we would like to find a poly-
nomial interpolant function h(x) of degree d, we set the template of h(x) to be
h(x) =

∑
|α|≤d cαx

α, where α = (α1, ..., αr1) ∈ Nr1 , |α| = α1 + · · ·αr1 , and
cα ∈ R are coefficients to be determined. Then, the homogenization of h(x) is

h̃(x0,x) =
∑

|α|≤d cαx
d−|α|
0 xα.

Given a relaxation order s ∈ N with 2s ≥ d, we set the degrees of the re-
maining unknown polynomials σi, τj appropriately to ensure that the maximum
degree of polynomials involved in Eq. (22) equals 2s. We refer to the resulting
program as the s-th relaxation of Eq. (22), which can be translated into an SDP
and can be numerically solved in polynomial time. If the s-th relaxation is solv-
able, it yields a solution h(x) that serves as a polynomial interpolant function of
ϕ and ψ. If it is not solvable, we then increase the relaxation order s to obtain
a tighter relaxation, or alternatively, we can increase the degree d of h(x) to
search for interpolants of higher degree.

Example 2 (adapted from [5]). Let x = (x, y) and y = z = ∅, i.e., there is no
uncommon variables. We define the following polynomials:

f1 = 11− x4 + 0.1y4, f2 = y3,

8 For example, SDP solvers based on interior-point methods typically return strictly
feasible solutions.
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f3 = 0.9025− (x− 1)4 − y4, f4 = (x− 1)4 + y4 − 0.09,

f5 = (x+ 1)4 + y4 − 1.1025, f6 = 0.04− (x+ 1)4 − y4,

g1 = 11− x4 + 0.1y4, g2 = −y3,
g3 = 0.9025− (x+ 1)4 − y4, g4 = (x+ 1)4 + y4 − 0.09,

g5 = (x− 1)4 + y4 − 1.1025, g6 = 0.04− (x− 1)4 − y4.

Let ϕ and ψ be defined by

ϕ := (f1 ≥ 0 ∧ f2 ≥ 0 ∧ f4 ≥ 0 ∧ f5 ≥ 0) ∨ (f3 ≥ 0 ∧ f4 ≥ 0 ∧ f5 ≥ 0) ∨ (f6 ≥ 0),

ψ := (g1 ≥ 0 ∧ g2 ≥ 0 ∧ g4 ≥ 0 ∧ g5 ≥ 0) ∨ (g3 ≥ 0 ∧ g4 ≥ 0 ∧ g5 ≥ 0) ∨ (g6 ≥ 0).

Set the degree of the polynomial interpolation function h(x, y) to 7. It takes 0.16
seconds to solve the 4-th relaxation Eq. (22), yielding the solution

h(x, y) = −0.00153942y + 0.03053692x+ · · ·+ 0.06109453x6y + 0.01643640x7,

where the coefficients have been scaled so that the largest absolute value is 1.

Synthesizing Semialgebraic Interpolants: Similarly, the synthesis of a
semialgebraic interpolant is reduced to solving the following SOS program:

find h1(x), h2(x)

s.t. l(x, w) = h1(x) + w · h2(x),

l̃(x0,x, w) = σk,0 +

mk+4∑
i=1

σk,if̃k,i for k = 1, . . . ,Kϕ,

− l̃(x0,x, w) = τk′,0 +

nk′+4∑
j=1

τk′,j g̃k′,j for k′ = 1, . . . ,Kψ,

σk,0, ..., σk,m+2 ∈ Σ[x0,x,y], σk,m+3, σk,m+4 ∈ R[x0,x,y],
for k = 1, . . . ,Kϕ,

τk′,0, ..., τk′,n+2 ∈ Σ[x0,x, z], τk′,n+3, τk′,n+4 ∈ R[x0,x,y],
for k = 1, . . . ,Kψ,

(23)

where f̃k,m+1 = g̃k′,n+1 = x0, f̃k,m+2 = g̃k′,n+2 = w, f̃k,m+3 = x20 + ∥x∥2 +w2 +

∥y∥2−1, g̃k′,n+3 = x20+∥x∥2+w2+∥z∥2−1, f̃k,m+4 = g̃k′,n+4 = x20+∥x∥2−w2,
for k = 1, . . . ,Kϕ and k′ = 1, . . . ,Kψ.

By Thm. 6, if a feasible solution (h1, h2) of Eq. (23) is found, then h(x) =
h1(x) +

√
∥x∥2 + 1 · h2(x) is a semialgebraic interpolant function for ϕ and ψ.

In practice, w.l.o.g., we can assume that h1 and h2 are of the same degree d
and solve SDP relaxations of Eq. (23). The soundness result is similar to that of
Eq. (22), requiring that h(x) = 0 is not attainable over Tϕ and Tψ.

Example 3. Let x = (x, y), y = z = ∅. We define

ϕ(x, y) = 8xy − (x2 − y3)2 ≥ 0 ∧ x2 + y2 − 1 ≥ 0,
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ψ(x, y) = −12.5xy − (x2 + y2)2 ≥ 0 ∧ x2 + y2 − 1 ≥ 0.

Let the degree of h1(x) and h2(x) to be 3, a solution to the 2-th relaxation of
Eq. (23) is found in 0.02 seconds:

h1 = −0.04402209− 0.00093184y + 0.01446436x+ · · · − 0.03703461x3,

h2 = 0.05644318− 0.01305178y + 0.02407258x+ · · ·+ 0.23199837x2.

As a comparison, solving Eq. (22) fails to produce a polynomial interpolant
function of degree 3, but succeeds at degree 4.

Example 4. Let x = (x, y, z), y = ∅, and z = (r,R). We define

ϕ(x, y, z) := 1 + 0.1z4 − x4 − y4 ≥ 0 ∧ 10z4 − x4 − y4 ≥ 0,

ψ(x, y, z, r, R) := 4R2(x2 + y2)− (x2 + y2 + z2 +R2 − r2)2 ≥ 0

∧ 6 ≥ R ≥ 4 ∧ 1 ≥ r ≥ 0.5,

where ∃r, ∃R. ψ(x, y, z, r, R) describes the set of interior points of a 3-dimensional
torus with unknown minor radius r ∈ [0.5, 1] and major radius R ∈ [4, 6]. By
solving Eq. (22) and Eq. (23), we obtain a polynomial interpolant

hp(x, y, z) = 1.0− 0.35507338x2 − 0.35507338y2 + 0.45264895z2,

and a semialgebraic interpolant function with

h1(x, y, z) = 0.98004189− 0.26291972x2 − 0.26291978y2 + 0.417581644z2,

h2(x, y, z) = 1.0− 0.51670759x2 − 0.51670759y2 + 0.60569150z2.

As a comparison, [12] fails to produce an interpolant of degree less than 4.

6 Conclusions and Future Work

In this paper, we have addressed the problem of synthesizing Craig inter-
polants for two general polynomial formulas. By combining the polynomial ho-
mogenization techniques with the approach from [12], we have presented a com-
plete SOS characterization of semialgebraic (and polynomial) interpolants. Com-
pared with existing works, our approach removes the restrictions on the form
of formulas and is applicable to any polynomial formulas, especially when vari-
ables have unbound domains. Moreover, sparsity of polynomial formulas can be
exploited to improve the scalability of our approach [17,30].

Our Craig interpolation synthesis technique offers broad applicability in vari-
ous verification tasks. It can be used as a sub-procedure, for example, in CEGAR-
based model checking for identifying counterexamples [33], in bounded model
checking for generating proofs [22], in program verification for squeezing invari-
ants [27], and in SMT for reasoning about nonlinear arithmetic [19]. Compared
with existing algorithms, our SDP-based algorithm is efficient and provides a
relative completeness guarantee. However, the practical implementation is not a
trivial undertaking, as it requires suitable strategies for storing numerical inter-
polants and taming numerical errors [38]. This remains an ongoing work of our
research.
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A Omitted Proofs

Proof of Lem. 2

Proof. Suppose S1 = {x ∈ Rr | p1(x) ≥ 0, . . . , pm(x) ≥ 0}, S2 = {x ∈ Rr |
q1(x) ≥ 0, . . . , qn(x) ≥ 0}. Then, the intersection S1 ∩ S2 is the set

S = {x ∈ Rr | p1(x) ≥ 0, . . . , pm(x) ≥ 0, q1(x) ≥ 0, . . . , qn(x) ≥ 0}.

By the definitions in Eq. (4) and Eq. (5), it is easy to see S(∞) = S
(∞)
1 ∩S(∞)

2 and
S̃ = S̃1 ∩ S̃2. From the conditions in this lemma, we have S = ∅ and S(∞) = ∅.
Therefore, from Property 2 we have S̃ = S̃h and from Property 1 we have S̃h = ∅,
which gives S̃1 ∩ S̃2 = S̃ = ∅.

Proof of Lem. 3

Proof. For each i = 1, . . . , a, we invoke the proof of Prop. 2 by treating Si and
T2 respectively as S1 and S2, obtaining a polynomial gi ∈ R[x0,x] such that

∀(x0,x) ∈ S̃i. gi(x0,x) > 0 and ∀(x0,x) ∈ T̃2. − gi(x0,x) > 0.

Since T̃2 is compact, using arguments similar to those in [12, Lem. 3], we can
construct a new polynomial g ∈ R[x0,x] satisfying Eq. (13) from g1, . . . , ga.

Proof of Thm. 2

Proof. By Lem. 3, there exists a polynomial gj(x0,x) such that

∀(x0,x) ∈ T̃1. gj(x0,x) > 0 and ∀(x0,x) ∈ S̃′
j . − gj(x0,x) > 0,

for j = 1, . . . , b. Since T̃1 is compact, using arguments similar to those for [12,
Lem. 3], we can show that there exists a polynomial g ∈ R[x0,x] such that

∀(x0,x) ∈ T̃1. g(x0,x) > 0 and ∀(x0,x) ∈ T̃2. − g(x0,x) > 0.

Using similar arguments as in the proof of Prop. 2, we find that the semialgebraic
function h(x) := (

√
∥x∥2 + 1)deg(g)g( 1√

∥x∥2+1
, x√

∥x∥2+1
) is of the desired form

and satisfies (14).

Proof of Thm. 3

Proof. According to the Tarski-Seidenberg theorem [4], the projection of a semi-
algebraic set is also a semialgebraic set. This indicates that Px(Tϕ) and Px(Tψ)
are both semialgebraic sets. By treating cl(Px(Tϕ)) and cl(Px(Tψ)) respectively
as T1 and T2 and invoking Thm. 2, we obtain the desired result.

Proof of Thm. 4

Proof. Since h(x) is an interpolant function, we have h(x) > 0 over Sϕ and

h(x) < 0 over Sψ. By Lem. 1, we know h̃(x) ≥ 0 on S̃ϕ and −h̃(x) ≥ 0 on S̃ψ.

The desired conclusion then follows from the fact that both S̃ϕ and S̃ψ are of
the Archimedean form and Thm. 1.
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Proof of Thm. 5

Proof. Since h̃(x0,x) satisfies Eq. (19), we have h̃(x0,x) ≥ 0 on S̃ϕ and h̃(x0,x) ≤
0 on S̃ψ. By Property 1, we have h(x) ≥ 0 on Sϕ and h(x) ≤ 0 on Sψ, where
the assumption ensures that = is not attainable. Therefore, the theorem is
proved.

Proof of Prop. 3

Proof. Suppose on the contrary thatM(x1, x2)+1 =
∑
i p

2
i . SinceM(x1, x2)+1

has degree 4 in x1 and in x2, monomials with the power of x1 or x2 greater than
or equal to 3 cannot occur in pi. Similarly, since x41x

4
2, x

2
1, x

2
2 do not occur in

M(x1, x2) + 1, the monomials x21x
2
2, x1, x2 cannot occur in pi. Therefore, each

pi contains only a subset of the monomials x21x2, x1x
2
2, xy and 1. However, this

implies that the coefficient of x21x
2
2 in M(x1, x2)+1 must be nonnegative, which

is a contradiction.

Proof of Thm. 6

Proof. According to Thm. 3, the existence of h(x) is ensured by the first con-
dition. So we have h(x) > 0 over Sϕ, which implies that l(x, w) > 0 over the
semialgebraic set Sw := {(x,y, w) ∈ Rr1+r2+1 | ϕ(x,y), w2 = ∥x∥2 + 1, w ≥ 0}.
By Lem. 1, we obtain l̃(x0,x, w) ≥ 0 over S̃w. Since S̃w is of the Archimedean
form, the first equation of Eq. (21) is obtained by applying Thm. 1. The proof
of the second equation is similar.
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green region: projection of ϕ; red region: projection of ψ; light blue/yellow region:
polynomial/semialgebraic interpolant. For Exmp. 4, ψ is plotted for r = 0.75 and R = 5.

Fig. 1: Portraits of Examples.
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