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Abstract. Linear duration invariants (LDIs) are important safety gedies of
real-time systems. In this paper, we reduce the problem rification of a net-
work of timed automata against an LDI to an equivalent pnobdé model check-
ing whether a failure state is never reached. Our approdirhtito transform each
component automatad; of the networkA4 to an automatog;. The transforma-
tion helps us to record entry and exit to critical locationattappear in the LDI.
We then introduce an auxiliary checker automasoand define a failure state to
verify the LDI on a given interval. Since a model checker &seexhaustively, a
failure of the checker automaton to find the failure staté pvibve that the LDI
holds.

1 Introduction

The invariants constructed from linear inequalities oegrated durations of system

states are important properties of real-time systems. kample, in a container un-

loading system, the required property has the form “for dvgeovation interval that is

longer than 60 seconds, the idle time for a device is at mastwantieth of the time”.
This kind of properties are often specifiedlmear duration invariantgLDIs) [13]

of the following form:

A<SU<B=)Y cfs<M (1)
ses

where [s is the duration of a state A, B, ¢, andM are real numbers. The duratigh

of a states and the lengtli are mappings from time intervals to reals. For an obsematio
time intervalb, e, [s defines the accumulated time for the presence of stawer|[b, €]
and/ is the lengthe — b of the interval. An LDID simply says that for any observation
time intervallb, ¢], if the length? of the interval satisfies the constraiit< ¢ < B then
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the durations of the system states over that interval sheatidfy the linear constraint
> ses Cs Js < M. We useX (D) to denote the sum of the duratiop$, ¢ ¢ [s.

In this paper we consider the problem of automatic verificatf a network of
timed automata against an LDI, where each automatologedanddiagonal-free To
address the issue, several algorithms have been proposesl literature e.g. [3, 10].
Different from the existing methods, in this paper, we deped technique to reduce the
problem of verification of a network of timed automata ageamsL DI to an equivalent
problem of model checking whether a failure state cannotbehred. This will allow
us to use existing model checkers, such as UPPAAL, to checkEH. Our approach
is first to transform each automatof; of the network.A to an automatory;. The
transformation helps us to record entry and exit to critioaations that appear in the
LDI.

Then we introduce an auxiliary timed automat®from .4 and the LDI.S is used
to calculate the observation time and the stiiD). In S we use a variablegc to record
observation time, and another variabléo calculate the durations of system states. To
approach the goal, the timed automat®is constructed in different ways according
to whether the constam in (1) is finite or not. Subsequently, we define a failure state
in S from the LDI D, and prove thaD is satisfied byA iff the failure state is never
reached.

The rest of the paper is organized as follows. Section 2Isesaine basic notions of
timed automaton and Duration Calculus. The main technicatribution is presented
in Section 3. We present algorithms on how to construct thesformed automaig;
from an LDI and.A4;, and the two kinds of automata respectively corresponding to
the cases when is finite and wherB is infinite, and prove the main theorems. A case
study is given in Section 4 to illustrate our technique. Becb gives a comparison
between our approach and related work, discusses futukeamolrconcludes the paper.

2 Preliminaries

In this section, we introduce the notions that will be useérlancluding the modelling
language of UPPAAL, and Linear Duration Invariants (LDIsfided in DC.

2.1 The modelling language

We first recall the notion of timed automata given in [1, 2]ivh¢d automaton is a finite
state machine equipped with a set of clocks. We use &sef real value variables
to represent the clocks and Bt X) be the set of clock constraints dfi, which are
conjunctions of the formulas of the form< ¢ or ¢ < x, wherez € X andc € N.
Formally,

Definition 1. A timed automatord is a tupleA = (L, 1y, X, X, E, I), where

— L is afinite set of locations,

— lg € L is the initial location,

— XY is afinite set of actions, co-actions and the internalctions,
— X is afinite set of clocks,



— Tisamapping that assigns each locatioa L with a clock constrainf(I) € ¢(X)
called the invariant af.

- ECLx®(X)x X x2X x Lis arelation among locations, whose elements are
called edges and labeled with an action, a guard and a setoukslto be reset.

Network of timed automataA set of N timed automatad; = (L;, Lo, Xi, X, Fi, I;),
1 =1...N, onthe same sets of clocks and actions, are often compatsea imetwork
A. A location for the network4 is a vectorl = (I1,...,0;,...,In) € L1 X ... X Ly
with the invariant/ (1) = A; 1; (1;).

Binary synchronisationChannels are declared alsan C. An edge labelled witlt'! is
synchronized with another labelled wi?. A synchronized pair is chosen nondeter-
ministically if several combinations are enabled.

Priorities on processedVe follow the definition of priority of processes given in UP-
PAAL [15]. Process priorities are specified on the systera, lirsing the separatet
to define a higher priority for processes to its right. If astémce of a template set is
listed, all processes in the set will have the same priority.

The semantics of timed automata, networks of timed autgrohtmnels are given
in [15] and the help file of the UPPAAL tool.

2.2 Duration calculus and linear duration invariants

Duration calculus DC [12] is a logic for reasoning about durations of stateseal-
time systems. A comprehensive introduction to DC is givethéxmonograph by Zhou
and Hansen [14]. In DC, a statés interpretedas a function from the time domalR™
to the boolean valuels 0, ands is 1 at timet if the system is in state and0 otherwise.
the duration of a state over the time intervalb, e] is defined as the integrg]s(¢)dt,
which is exactly the accumulated present timesah the interval(b, e]. ¢ is used to
denote the length of considered interval, which is definediloyVe have the following
measure laws on duratichs

1.0< [s</

2. [~s=l— s

3. fSl V §9= fSl + fSQ — fSl N S2

We consider the set of DC models that corresponds to all thaviers of the net-
work of timed automatad. A behaviorp of A is of the form(Sp, to)(S1,%1) . . ., where
eachs; is called a state afd which is a subset of the state variables/dfind¢;s are
incremental, i.et; < ¢;,1 for anyi € N. Each behaviour defines an interpretatioof
the DC formulas over the state variables4iffor any state variable of A, Z,(t) =1
iff 3i- (s € S; At € [t;, tiy1]). We also denote suchby (5, t) wheres = (S, S1, .. .)
andt = (to, 1, .. .) are respectively the sequence of staffeand the sequence of time

* There are six axioms on durations (see [14]), but here wdigiisome of them which are used
in this paper.



stampst; of p. Hence,(s, ¢, [b, e]) is a DC model representing an observationoin
the time intervalb, e]. We also calls, z, [b, e]) an.A-model of DC.

For a given network of timed automaié we define the set afi-models of DC
with integral observation intervals [11] as

Mi(A)={o|o=(51][be]) € M(A) andb,e € N,b < e}

Linear duration invariants A linear duration invariant(LDI) of a network of timed
automatad is a DC formulaD of the form

AgégB:>zcsfs§M
seL

whereA, B, c; andM are real numbers.

An LDI D is evaluated in atd-model(Z, [b, e]) to tt, denoted by(Z, [b, ¢]) = D,
iff A<e—b<B=> [, Zs(t)dt < M holds.Dis satisfied by4, denoted by
A =D, if (Z,[b,e]) = D holds for all.A-models(Z, [b, e]). We useX'(D) to denote
the the sum of the durations ., ¢, [s.

Digitization of LDIs w.r.t. timed automatohlenzinger et al. [5] studied the question of
which real-time properties can be verified by consideringeay behaviours featuring
only integer durations. These results are applied to tinnéohaata in [7], and it is shown
that an approach using digital clocks is applicable to thi#igation of closed, diagonal-
free timed automata. The digitization of duration calcutas also been studied in [6,
8, 9]. As to the digitization of an LDI, the following theoreinas been proved in [11],
whereA is closed and diagonal-free.

Theorem 1. M(A) =D < M;(A) = D.

Therefore only the set of integral models of DC are studied in [11]. In the rest of
the paper, we also only consider modek= (s, ¢, [b, ¢]) € M(A) that represents an
observation of an integral behavior &f (i.e behavior in which transitions take place
only at integer time) from an integer time point to an intetjgre point. So we will
restrict4 to be an integer-time model.

3 Verification of LDIs

In this section, we present our technique to reduce the eatiifin of the satisfaction of
an LDI D by a network of timed automatd to checking the property whether a failure
state cannot be reached. In what follows, each automdtda referred to an integer-
time model. We start with the calculation of the duration ¢deation of the composite
automaton of the network, i.e. a location vector.

3.1 Duration of a location vectors;

Let.A be a network ofV timed automatad; = (L, lio, X, Xi, Ei, I;), i =1,..., N.
A location of A is a vectorl = (Iy,...,l;...In), wherel; € L;.



A location can be seen as a state variable. In the followirgyrequire that each
state expressios; of a duration termys; in the LDI D is constructed by using logical
connectives from the locatiordsof the component automat4;. For examplel; A I
asserts thatl is in a location whered; and.A, are respectively in locatioh andis.
We are particularly interested in those state expressipo$the forml,, A... Al,,,
wherel,, € L, for {a1,...,ar} C {1,...,N}. We represent such a state expres-
sion by avector with free locationg € (L1 U {x1}) x ... x (Ly U{xxn}), such that
flai] = lg;and f[b] = xp, for b€ {1,...,N}\ {a,...,ax}. This defines the set of
vectors whoséth component;, can be any location ofl,,.

Using the axioms in Subsection 2.2, it is easy to equivajardinsform a general
LDl to an LDI in which all state expressions can be represthteeither a full location
vector.A or a vector with free locations. Thus, in the rest of the payepnly consider
LDls of this form.

We call eachs; that appears in an LDl eritical location vector of4 and useX to
denote the number afitical location vectors in the LDI. A locatiof) of an automaton
A; is calledp-critical location ofs; if [; occurs ins; as a non-free location and; is a
critical automaton tas;. A location!; of an automator; is calledp-critical location
if it is a p-critical location of somes;. We usell to denote the number gf-critical
locations.

Example 1.Consider the following LDI

sy [(li1, laz, I31) + csy [ (X1, X2, l31) + €y [ (X1, 121, 132) <M

Its critical location vectorsare respectively; = (111, l22,131), s2 = (X1, X2,131) and
s3 = (X1, l21,132), while its p-critical locationsarel; 1, I3, I31, l21 andis,. Obviously,
in this example X' = 3 andW = 5.

For acritical location vectos; of A, with the elapse of one time uniy stays ins;
for one time unit if each automato#; critical to s; stays in thep-critical location of
s; for one time unit. This one unit delay of in s; causes an increase@f to the sum
Y (D) of the LDI.

Main technigue With the above definitions, the main idea of the technique lzan
sketched as follows:

— Firstly, we construct a network of automafafrom .4 andD to record the entry
and exit of thep-critical locations.

— As we need to check from any reachable state, whenever theett@nt of the LDI
is true implies that its conclusion holds, we introdug¢o count the observation
time gc and the sums of the durations of tbetical location vectorsi from any
reachable state.

— Finally, we construct a failure state such tblat= D if and only if this failure state
is never reached i§.

3.2 Transformation of the network of automata

The network of automatd is first transformed to another network of automata to record
the entry and exit of the-critical locations. For this, we need to introduce a Boolean



arrayactive with sizeW to indicate whether thp-critical locations are entered. The
index k of this array denotes th@ + 1) p-critical location in the LDI. Initially the
value ofactive[k] is 0. It is set to 1 when th¢k + 1)!* p-critical location is entered,
and set to 0 when this location is exited.

We transform each automatoh) to an automatog;. G; is similar to.A; except that
for the entry and exit of eagh-critical location, the value odctive is updated byl and
0 respectively. Note here if the initial location & is the(k + 1) p-critical location,
then an additional urgent location is introducedjinto set the value ofictive[k] to
1. We callG = (Gy, || ..., || Gn) constructed by this procedure thetwork of trans-
formed automateof A for D.

Example 2.Fig.1 gives a case of the transformation framto G, wherel0 is the first
p-critical location andL2 is the thirdp-critical location. An additional urgent location
is introduced to set the value aftive[0] to 1.

active[O]:lIo active[0]=0
active[2]=1

1 —1
active[2]=0
O O

12

(b)

Fig. 1. Transformation from4, to G, a) .A: b) G1

3.3 Construction of the auxiliary automatonS

In order to check whether the LDI is satisfied, we check for pah from a reachable
state that the sum of the durations of tirétical location vectorsdoes not exceed/
within the time interval A, B]. For this, we build an auxiliary automatdh where the
following variables are introduced and initializedto

— gcis alocal variable ir§ to record the length of an observation interval freprin
a path ofG, and

— xis alocal clock variable i to record the elapse of one time unit, and

— dis alocal variable irS to record the sum of the durations of thetical location
vectors, i.e. the valu&'(D).

In the construction ofS, to bound the value off and gc, we need to use different
methods dependent on the const&nin an LDI is finite or infinite. For the update of
variablegc, we introduceB + 1-normalization wherB is finite andA-normalization
whenB is infinite. HereA is the other constant in the antecedent of the LDI.

Definition 2. (B + 1-normalization)



gc+1, ifge<B
normp+1(ge) = B+1, ifge>B

The intuitive intention is thagc records the length of the current observation inter-
val, and the LDID is satisfied trivially when it exceeds the const&nin the antecedent
of D. Hence, we do not need to record all the valuegathat are bigger tha. It is
sufficient to record3 + 1 when the length of the observation time exce8ds

Definition 3. (A-normalization)

c+1, ifge< A
womatg = {51 2 <4

Intuitively, the A normalization is dual to th&-normalization. With this normalization,
for checking LDI'D whengc equalsA, we only need to check whether there exists a
path along which the value df(D) is bigger than\/.

In both cases (wheB is finite andB is infinite), we require that the proceS<has
higher priority than any other process. This is declaredyten Gi,...,Gy < S,
which means that at a given time-point, a transitiog,iis enabled only if all transitions
of S are disabled.

y==1 x==1
A accum(),
x=0 x=0
x==1
x=0 1
pOO P
x<=1 x<=1

Fig. 2. Auxiliary automatonS

When B is finite Fig. 2 shows the automatadhwhen B is finite. There are two loca-
tionsp0 andp1 and initially S stays inp0. The trick thatS will nondeterministically
stay inp0 for any number of time units before movingpa ensures thagc andd will
start to count from any reachable state/bf

In locationpl of S, with the elapse of one time unit, the valuesgoefandd are
updated. These are implemented by the funciieeun() given in Fig 3, where we still
uses; to denote aritical location vector and( to denote the number afitical loca-
tion vectors. Inaccum(), the first assignment assiggpsthe value ofgc + 1 if gc < B
and the value3 + 1 otherwise, i.e. it is the implementation of tfe+ 1 normalization.

Note that with one time unit elapsed, may not stay in any of theritical location
vectors or may stay in severaiitical location vectors during the time unit. Therefore,
functionaccum() uses a “for” loop the latter case so that the updaté isfcorrect. By
the definitions of Subsection 3.1, checking if the duratiba oritical location vector



s; is 1 over the one time unit interval is equivalent to checkindé turation of each
p-critical location of this vector id. The following theorem is used to decide if the
duration of ap-critical location is1.

Theorem 2. LetG be the network of transformed automataténdsS be the auxiliary
automaton of4 defined above. With one time unit elapsed when function ggdam
executed, for thé'" p-critical locationl, if active[k — 1] = 1 then the duration of is

1 over this one time unit interval, otherwise the duratiord 0.

Proof. Since each automatad; we consider is an integer-time model, each discrete
transition of the transformed automat@pis therefore taken at integer time point. As
observed fron®, in locationp1 functionaccun() is enabled each one time unit. By the

declaration of process prioritgystem Gi,...,Gy < S, we have that any transition
that is enabled to exit or entempacritical location must be executed after the execution
of accum().

Let I be thek!" p-critical location of G;. Let 7, be the transition that enters the
p-critical location! with the assignmentctive[k — 1] = 1 and > be the transition
that exits locatiori with the assignmenictive[k — 1] = 0. In locationp1, consider
the one time unit intervalI = [S.z = 0,S.z = 1], wherez is the local clock inS.

At time pointS.x = 1, functionaccunm() is executed before any other enabled transi-
tion to check the duration dfover the intervall /. To do this, it checks the value of
activelk — 1].

— Whenactive[k — 1] = 1, suppose the duration éfis not1 over the intervall I,
that is, it is eithep or lies in the interva(0, 1). In the former case, it implies that at
the time pointS.z = 1, 7y is taken beforeccunm(), which violates the assumption
of process priority. In the latter case, it means that the tpuint that the action
71 takes place lies in the interval’ = (S.z = 0,S.z = 1). This also contradicts
the fact thatg; is an integer-time model. Therefore, whettive[k — 1] = 1, the
duration ofl is 1 overI1.

— Whenactive[k — 1] = 0, suppose the duration bfs not0 over the interval I, that
is, it is either 1 or lies in the intervdD, 1). If it is 1, then it must be the case that
g; stays inl for one time unit ands, is executed beforeccum(). This also violates
the assumption of process priority. If the duratiorl & in the interval(0, 1), then
the time point-, takes place lies inthe interval’ = (S.z = 0,S.z = 1). However
this kind of transition is not allowed if;. So whemctive[k — 1] = 1, the duration
of [is0 overII.

We conclude the proof. a

The above theorem allows the calculation of the duratiorovitezal location vector
in terms of the information of entry or exit of ifs-critical locations. Obviously, if the
duration of acritical location vectos; is 1 over one time unit interval, the value dfs
increased by the value of the coefficient of this vectord,e, So the construction &
correctly records the durations of thatical location vectors from any reachable state
of A. In addition, all the variables introduced are boundedsThbecause by assigning
0 to d whengc > B, the value of variablé€ is finite, alsogc is bounded byB + 1.



void accum()
{ gc=(gc < B?gc+1:B+1)
for(j=1,j<K,j++)
{ if eachp-critical location ofs; is entered
d=(gc < B%+cs; :0)
}

Fig. 3. Functionaccum() whenB is finite

The corresponding failure state The failure stateF is A < gc < BAd> M. We
checkF cannot be reached . This property can be expressed in CTL [4] as

Y1 =A] not F (2
We call F thefailure stateof D for A.

Lemma 1. Let D be an LDI of the network of timed automath G the network of
transformed automata ofl for D, S the auxiliary automaton o for D, G || S the
parallel composition of7 and S, P(G || S) the set of all paths of || S andy; the
failure state property. Then there exists a pathe P(G || S) such thatp, = ¢ iff

there exists a patp € P(A) such thafp = D.

Proof. From the construction procedure fgrand S, there is an obvious correspon-
dence between a pathof A and a patlp, of G || S starting from the initial locations,
that represents an observation of the system in the two moldet/(p) be the length
of p, which represents the time of the observation, &nd(p,) be the last node qf,.

1. When{(p) < B, the value ofgc atlast(p,) equalsl(p), and the value ofl at
last(py) is the value of the surk'(D).
2. Whenl(p) > B, the value ofyc atlast(py) is B + 1.

Consequently, the lemma follows immediately from the d&éiniof the satisfaction
relations= for LDIs and the definition of the failure state. O

Theorem 3. LetF be the failure state db for A. WhenB is finite, A |= D if and only
if state F is never reached ig || S.

Construction examplérig. 4 and Fig.5 give a case of the construction of the network
of transformed automaia from .4 and the correspondent automat®nThe LDI is of
the form:

A<U<B= co [(lj,lm) +cs, [(X1,0n) <M

Thecritical location vectors are; = (1;,1,,) andss = (1,1, ). The firstp-critical
location isl;, the secongb-critical location isl,,, and the thircdp-critical location isl,,.



A= Al Ay

. r==4
Ar z=0 A, z==2

r<5 r<4 r<1 x<2
G = Gil|Ga
. r==4 xr ==
o L G : wetiuelz] =0
activel0] = 0 active|s] =
x =0, =0,
®) | ~(In
l -
active[0] = 1 m active[l] =0,
r<5 active[2] = 1 z <2
active[l] =1
: r==1 T ==
s =0 =0, @

accum()

Voo
O——CQ)

<1
<1

Fig. 4. Case example of the network of transformed autorgaaadS when B is finite

void accum()
{
gc=(gc < B?gc+1:B+1)
if active[0] x active[l] == 1
d=(9c < B?d+cs :0)
if active[2] == 1
d= (g9c < B?d+cs, : 0)

Fig. 5. Functionaccum() of S



When B is infinite In terms of the automatofi constructed in the previous subsec-
tion, gc can increase infinitely and can take an arbitrary value 8 is infinite. The
above theorem does not apply anymore. To bound the value ofe will use “A-
normalization” introduced before. Now we introduce a numibebound the value of
d.

Definition 4. A critical location vectors,, in A is saidpositiveif c,, > 0. Let L, be
the set of all positive critical location vectors i, [; theith p-critical location of a
positive critical vectors, and u(l;) the maximum time units thad; stays inl;. We
defineu(s,) = min{u(l1),...,u(l),...,u(ly)}, and callQ = ZSF€L+ (s, X u(sp))
the maximum increment of.

Note thatu(s,) is themaximurtime thatA stays ins, because of the clock synchro-
nization. This value is used in the calculation@f and(@ is used to detect if a path
of A contains gositive loopthat takes non-zero time. If there is positive loopin a
path of A, the value ofd along that path can increase at m@stin other words, if the
value ofd along a path increases more th@nthen there must be a positive loop in the
path. It is in general difficult to calculate the actual vatie:(s,) as it requires all the
u(l;)’s. So usually we calculate a value that is bigger thés,) and assign it tai(s,)
when calculatingy.

Example Suppose for the case shown in Figc4, > 0 andc,, > 0. Then we can let
Q=4 X%Xcs; +2 X gy

The auxiliary automatos™ is similar to the one shown in Fig.2 except that the
updates of the value gfc andd are different. In other words, the functier cumn()
is different. For anycritical location vectors;, we make the variabld bounded by
updating it in different ways depending on whether the coieffitc,, of [s; in X (D)
is negative or not.

1. The update ofic is done by theA-normalization
2. For the accumulation of,
— if s; has a non-negative coefficient,
d=(9c>ANd> MM +1:d+cs,).
— if s; has a negative coefficient,,
d=(9c>ANd <M —Q?:d+cs;)

Whenc,, is non-negative, ific > A andd > M, by settingd to M + 1, the value
of d is finite. Moreover, whemc > A, gc remains as4, sogc is a bounded variable.
Since the states that satisfy > AAd = M + 1imply G || ST |~ D, itis obvious that
the update does not change the verification result.

If ¢, is negative, the value updatedfs d = (gc > ANd < M —Q?d : d +cs,).

It is not hard to see why we sétto d + ¢, if =(gc > AANd < M — Q): we have to
evaluate the value af precisely when we do not have enough information for veniyi
if D is satisfied.

Now we prove that ifjc > A A d < M — Q, the value ofd remaining unchanged
does not change the checking result of the LDI. To do so, waeeinother grap§*®



that is the same aS™ except that ifgc > A Ad < M — @ the assignment fod is
d = d + cs, in functionaccum().

Similar to the case whea is finite, we define théailure state?’: gc > A A d > M.
Still we use CTL to express th&' is never reached.

o ZA[] not F’ 3)

Lemma 2. Let P(G || St) be the set of pathes 6f || ST. There exists a path €
P(G || ST) such thatp [~ 1), if and only if there exists a path € P(G || S*) such

thatpl l;é 1[)2.

Proof. Notice that the topological structure 6ft and S* are the same. Each path
p=sg,...,s5inG | St correspondsto exactly one path= s, ...,s%, inG* || S.
Lets;” ands? be any two corresponding nodes respectively andp®. Then the value
of ge at vertexs; is the same as the value of that at vert@x Due to the different
updates ofl in p andp® for the negative coefficient of a vertex, we know that at verte
s;, the value ofi is bigger than or equal to the valuedét s. Hence, if a path’ = p*

in G || S* does not satisfyyo, then its corresponding pathin G || ST does not satisfy
Pa.

To prove the other direction, lgtin G | St be such thap F~ > andp starts
from the initial location. Ifp® [~ v, we are done. Otherwise, we need to show that
there will be a “positive cycle” irp, i.e. there is a cycle such that going along the
cycle will increase the value af properly by at least. We now give the illustration
for the casep £ ¥o A p* = 1. This case denotes that the valuesdobn p and
on p* are different and there should be a first ncs(jealongp where the condition
gc>ANd < M —QANcs; <0 holds. Thus, from;j*, the value ofl is increased by
at least) + 1 to makep H~ 1.

From the definition ofy, in p there must be a “positive cycle” along whidhwill
be increased by at leaktFrom the correspondence relation betwgp@mdp®, p* must
also have a positive cyclé. Thusy’ is formed by increasing the number of repetition
of the cycleC in p*, such thap’ t~ 5. O

Therefore we conclude thdtis a bounded integer variable. We now have another
main theorem.

Theorem 4. When B is infinite, A = D if and only stateF’ cannot be reached in
G| st.

4 Case Study

We now use a simplified automated container system to ifitesstour techniques. We
assume there are infinite number of containers to be trarespfsrom a ship to a yard.
One quay crane (QC) and two track cars (TC) are used to untmese tcontainers. As
to a container in the ship, the QC first transports it to an Tdle then the TC delivers
it to the yard. It takes 5 time units for a QC to move down and pig a container, then
it will wait until one of the TCs is idle. If either of the TCs idle, the QC spends 3



time units unloading the container to the idle TC, and 10 timés to get back to its
initial position to handle the next container. Once a TC kex®a container, it needs 15
time units to finish the delivery to the yard. Since the QC isaJy equipment, it is
expected that the utilization of the QC is higher. We thusetthe requirement that the
accumulated time of the QC waiting for an idle TC is at most wventieth of the time
in any interval.

downl[id]?

idle[0]==1 x=0, idle[id]=0

down[0]! ! ul

x=0

x==15

Fig. 6. Automated container system: (a) QC automaton (b)TC autmmat

The automata QC and TC are shown in Fig 6. V2 is the locationtatiwQC
waits for an idle TC. The boolean variahigle[i] is used to indicate whether TQ[
is idle (it takes value 1 when idle) or not with an initial vald. The urgent channel
down[i] ensures that if the QC is at location V2, and as soon ad]li€jdle, then the
container unloading is done immediately. The whole systgem+QC|| TC[O]|| TC[1].
The above requirement can be easily specified by the follp®i@ formula:

£>0= [(V2,x2,x3) <0.05( @
The above formula can be easily transformed to the followiDg
D:0>0=19[(V2, x2,x3) = [(X1,x2,x3) <0 )

Thecritical location vectoris; = (V2, x4, x3) and@ = 2000. We also declareystem
QCO0,TCO0,TC1< S. Following the techniques in Section 3, the transformed M€,
auxiliary automator$ and the functioraccum() are given in Fig.7 and Fig.8.

The failure state is specified 85: Al ] not d > 0. We checked whether the failure
state is never reached with UPPAAL and goff S |= C. Therefore, we havel = D.
If the unloading time from a TC to the yard is changed to a bigege.g, 35C does
not hold any more and UPPAAL can generate a counter-example.

This case can also be extended to a more complicated systinmaere QCs and
TCs. However, the transformed automata @hdoes not change if the LDI remains
unchanged.

5 Conclusion

This paper studies the problem of automatic verification tineed automaton against
an LDI. To solve this problem, several algorithms have beepgsed in the literature



x==5
x=0.

V1 acli\'/e[o]:l vz

idle[0]==1 idle[1]==1 x==1 x==1
down([0]! down[1]! X=0 x=0,
x=0, x=0 accum()

active[0]=0 agli e[0]=0
x==1
x=0

) w1 =1 o)

Fig. 7. Automated container system: (a) Transformed QC automdupfi &utomaton

void accum()
{ gc= (gc < A?gc+1: A)
if active[0] ==1
d=(gc>ANd>M?M+1:d+19)
d=(ge>ANd<M—Q?:d—1)

Fig. 8. Functionaccum()

[3,10]. For improving the complexity the algorithm propdse [11] is restricted to the
class of the so-calledigitalized propertiesHowever, these model checking algorithms
can only apply to one automaton, and cannot deal with the wasa B is infinite

in an efficient way. In addition, there is no available tooktgport these algorithms.
Recently some works have been done [17-19] for developirdghthecking tools for
Duration Calculus. However, to our knowledge, comparet wie model checkers of
other temporal logics, the tools are still not widely apalite in industrial fields.

In [16], we give an algorithm to reduce model checking an Ldhtodel checking
a CTL formula. The basic idea of that algorithm is: Insteadlodcking an automaton
A against the LDI directly, we first construct an untimed motefrom A and the
LDI, and then construct a CTL formulafrom the LDI and then use a popular model
checker, such as UPPAAL or SPIN, to checiif= ¢. This technique is simple and
works well for one automaton. However, in order to apply theraach to real-time
systems modelled as a network of automata with a common sdbais and actions,
we have to construct a composite automaton of the networkcékp Obviously, it is
not always feasible to manually construct such a composienaaton because of the
high complexity and mistakes may be inevitable.

To avoid the construction of composite automata, in thispape have presented a
different approach to this problem. We first construct a oekvof automata; to record
the entry end exit of thp-critical locations. The construction of eaghis very similar
to the automatotd; itself, and is simpler than the transformed mo#ieproposed in
[16]. As we need to check from any reachable state, when tteea@dent of the LDI is
true, whether or not the consequentis true, we then int8uo count the observation
time gc and the sum of the durations of the critical locatidrisom any reachable state.



The trick thatS can stay in the initial state for arbitrary time units ensurets starts
the calculation ofjc andd from any reachable state gf Also, the introduction of is
convenient for the user to simplify the specification. Withthis, more extra variables
and channels need to be introduced in the transformed nlevand more complex
expression of temporal logic needs to be defined. Finallyjefae a failure state such
that.A = D if and only if this failure state is never reacheddnSuch checking can be
done by some popular model checkers like UPPAAL.

In our future work, we will implement a tool that integratée tconstruction o
andg. This tool is able to transformzami file that has been constructed in UPPAAL
to describe the original automat&to two xm files that describe respectively trans-
formedS andgG. Then UPPAAL uses these two files as the input to do the chgckin
In this way, the checking of an LDI can be done without manuadinstructing the
transformed automata. These will help to make Duration @ascmore applicable in
practical applications.

The other direction of the future work is to apply the teclugignd tool to schedula-
bility analysis and scheduler synthesis. There have bédwm approaches to formalising
real-time scheduling, for instance, in [20] TLA is used tecifly a system and analyze
the schedulability of the system by proving that the systewh the scheduler satisfy
the given scheduling constraint. Using the Duration CalsuZhou Chaochen et al for-
malized a well-established scheduler EDF [22] and defined#mantics of scheduled
programs [21]. We believe that these techniques will beulgefour future work on
real-time scheduling analysis and synthesis, based onlrabdeking DC properties.
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