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Abstract. This paper investigates how to apply the techniques on solving
semi-algebraic systems to invariant generation of polynomial programs.By
our approach, the generated invariants represented as a semi-algebraic sys-
tem are more expressive than those generated with the well-established ap-
proaches in the literature, which are normally represented as a conjunction
of polynomial equations. We implement this approach with the computer
algebra toolsDISCOVERERandQEPCAD1.Wealso explain, through the
complexity analysis, why our approach is more efficient and practical than
the one of [17] which directly applies first-order quantifier elimination.
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1 Introduction

Loop invariant generation together with loop termination analysis of programs
plays a central role in program verification. Since the late sixties (or early sev-
enties) of the 20th century when the so-called Floyd-Hoare-Dijkstra inductive
assertion method, the dominant method on automatic verification of programs,
[11,14,9] was invented, there have been lots of attempts to handle the loop prob-
lems, e.g. [25,13,16,15], but only with a limited success.

Recently, due to the advance of computer algebra, several methods based on
symbolic computation have been applied successfully to invariant generation,
for example the techniques based on abstract interpretation [7,1,21,6], quantifier
elimination [5,17] and polynomial algebra [19,20,22,23,24].

The basic idea behind the abstract interpretation approaches is to perform
an approximate symbolic execution of a program until an assertion is reached
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that remain unchanged by further executions of the program. However, in order
to guarantee termination, the method introduces imprecision by use of an ex-
trapolation operator called widening/narrowing. This operator often causes the
technique to produce weak invariants. Moreover, proposing widening/narrowing
operators with certain concerns of completeness is not easy and becomes a key
challenge for abstract interpretation based techniques [7,1].

In contrast, [19,20,22,23,24] exploited the theory of polynomial algebra to
discover invariants of polynomial programs. [19] applied the technique of linear
algebra to generate polynomial equations of bounded degree as invariants of pro-
grams with affine assignments. [22,23] first proved that the set of polynomials
serving as loop invariants has the algebraic structure of an ideal, then proposed
an invariant generation algorithm by using fixpoint computation, and finally
implemented the algorithm by the Gröbner bases and the elimination theory.
The approach is theoretically sound and complete in the sense that if there is
an invariant of the loop that can be expressed as a conjunction of polynomial
equations, applying the approach can indeed generate it. [24] presented a similar
approach to finding polynomial equation invariants whose form is priori deter-
mined (called templates) by using an extended Gröbner basis algorithm over
templates.

Compared with the polynomial algebraic approaches that can only gener-
ate invariants represented as polynomial equations, [5] proposed an approach to
generate linear inequalities as invariants for linear programs, based on Farkas’
Lemma and non-linear constraint solving. In addition, [17] proposed a very gen-
eral approach for automatic generation of more expressive invariants by exploit-
ing the technique of quantifier elimination, and applied the approach to Pres-
burger Arithmetic and quantifier-free theory of conjunctively closed polynomial
equations. Theoretically speaking, the approach can also be applied to the the-
ory of real closed fields, but [17] pointed out that this is impractical in reality
because of the high complexity of quantifier elimination, which is double expo-
nential [8]. To handle the problem, [6] exploited the techniques of parametric
abstraction, Lagrangian relaxation and semidefinite programming to generate
invariants as well as ranking functions of polynomial programs. Compared with
the approach of [17], [6]’s is more efficient, as first-order quantifier elimination
is not directly applied there. However, [6]’s approach is incomplete in the sense
that, for some program that may have ranking functions and invariants of the
predefined form, applying the approach may not be able to find them, as La-
grangian relaxation and over-approximation of the positive semi-definiteness of
a polynomial are used.

In this paper, we attack the problem raised in [17] on how to efficiently gen-
erate polynomial invariants of programs over real closed fields and present a
more practical and efficient approach to it by exploiting our results on solving
semi-algebraic systems (SASs). The outline of our approach is as follows: we first
reduce polynomial invariant generation problem to solving semi-algebraic sys-
tems; then apply our theories and tools on solving SASs, in particular, on root
classification of parametric SASs [30,31,32] and real root isolation of constant
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SASs [28,29], to produce some necessary and sufficient conditions; and finally
utilize the technique of quantifier elimination to handle the derived conditions
and obtain invariants with the predefined form.

Suppose an SAS S has s (> 0) polynomial equations and m inequations and
inequalities. All polynomials are in n = t + (n − t) indeterminates (i.e., u1, . . . , ut,

x1, . . . , xn−t ) and of degree at most d where t is the dimension of the ideal
generated by the s equations. According to [3,8], directly applying the technique
of quantifier elimination of real closed fields, the cost for solving S is doubly
exponential w.r.t. n. But using our approach, the cost for the first step is almost
nothing, and the second step to apply root classification and isolation costs
singly exponential w.r.t. n plus doubly exponential w.r.t. t. The cost for the last
step is also doubly exponential w.r.t. t. Therefore, as t < n, our approach is
more efficient than the approaches directly based on the techniques of quantifier
elimination and Gröbner basis, such as [17,24], in particular, when t is much
less than n. Moreover, our approach is still complete in the sense that whenever
there exist invariants of the predefined form, applying our approach can indeed
synthesize them, while [6]’s 2 is incomplete. On the other hand, similarly to
[17,6], invariants generated by our approach are more expressive, while applying
the approaches based on polynomial algebra can only produce conjunction of
polynomial equations as invariants.

The rest of this paper is organized as: Section 2 provides a brief review of
the theories and tools on solving SASs; Section 3 defines some basic notions,
including semi-algebraic transition systems, polynomial programs, invariants,
inductive properties and so on; Section 4 is devoted to illustrating our approach
in detail with a running example; We provide the complexity analysis of our
approach in Section 5; In Section 6, we compare the application of this approach
to invariant generating with the one to ranking function discovering; and Section
7 concludes the paper and discusses the future work in this direction.

2 Preliminaries: Theories on Semi-algebraic Systems

In this section, we introduce the cornerstone of our technique, i.e. theories and
tools on solving SASs, mainly the theories on root classification of parametric
SASs and the tool DISCOVERER.

2.1 Basic Notions

Let K[x1, ..., xn] be the ring of polynomials in n indeterminates, X = {x1, · · · , xn},
with coefficients in the field K. Let the variables be ordered as x1 ≺ x2 ≺ · · · ≺ xn.
Then, the leading variable (or main variable) of a polynomial p is the variable
with the biggest index which indeed occurs in p. If the leading variable of a poly-
nomial p is xk, p can be collected w.r.t. its leading variable as p = cmxm

k + · · · + c0

2 As far as efficiency is concerned, we believe that our approach could be at least as
good as [6]’s, as the complexity of the semi-definite programming adopted in [6] is
also very high.
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where m is the degree of p w.r.t. xk and cis are polynomials in K[x1, ..., xk−1]. We
call cmxm

k the leading term of p w.r.t. xk and cm the leading coefficient. For ex-
ample, let p(x1, . . . , x5) = x5

2 + x4
3x

2
4 + (2x2 + x1)x3

4, so, its leading variable, term
and coefficient are x4, (2x2 + x1)x3

4 and 2x2 + x1, respectively.
An atomic polynomial formula over K[x1, ..., xn] is of the form p(x1, . . . , xn) � 0,

where � ∈ {=, >, ≥, �=}, while a polynomial formula over K[x1, ..., xn] is constructed
from atomic polynomial formulae by applying the logical connectives. Conjunc-
tive polynomial formulae are those that are built from atomic polynomial formulae
with the logical operator ∧. We will denote by PF ({x1, . . . , xn}) the set of polyno-
mial formulae and by CPF ({x1, . . . , xn}) the set of conjunctive polynomial formu-
lae, respectively.

In what follows, we will use Q to stand for rationales and R for reals, and fix
K to be Q. In fact, all results discussed below can be applied to R.

In the following, the n indeterminates are divided into two groups: u =
(u1, ..., ut) and x = (x1, ..., xs), which are called parameters and variables, re-
spectively, and we sometimes use “,” to denote the conjunction of atomic for-
mulae for simplicity.

Definition 1. A semi-algebraic system is a conjunctive polynomial formula of
the following form: ����

���

p1(u,x) = 0, ..., pr(u,x) = 0,
g1(u,x) ≥ 0, ..., gk(u, x) ≥ 0,
gk+1(u,x) > 0, ..., gl(u,x) > 0,
h1(u,x) �= 0, ..., hm(u,x) �= 0,

‘ (1)

where r > 1, l ≥ k ≥ 0, m ≥ 0 and all pi’s, gi’s and hi’s are in Q[u, x] \ Q. An SAS
of the form (1) is called parametric if t �= 0, otherwise constant.

An SAS of the form (1) is usually denoted by a quadruple [P, G1, G2, H], where
P = [p1, ..., pr], G1 = [g1, ..., gk], G2 = [gk+1, ..., gl] and H = [h1, ..., hm].

For a constant SAS S, interesting questions are how to compute the number
of real solutions of S, and if the number is finite, how to compute these real
solutions. For a parametric SAS, the interesting problem is so-called real solution
classification, that is to determine the condition on the parameters such that the
system has the prescribed number of distinct real solutions, possibly infinite.

2.2 Theories on Real Solution Classification

In this subsection, we outline the theories for real root classification of parametric
SASs. For details, please be referred to [31,27].

For an SAS S of the form (1), the algorithm for real root classification consists
of three main steps. Firstly, transform the equations of S into some sets of
equations in triangular form. A set of equations T : [T1, ..., Tk] is said to be in
triangular form (or a triangular set) if the main variable of Ti is less in the
order than that of Tj if i < j. Roughly speaking, if we rename the variables, a
triangular set looks like
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T1 = T1(v, y1),

T2 = T2(v, y1, y2),

· · · · · ·
Tk = Tk(v, y1, · · · , yk),

where v are the indeterminates other than yi. It is obvious that we now only
need to consider triangular systems in the following form

�����
����

f1(u, x1) = 0,
...

fs(u, x1, ..., xs) = 0,
G1, G2, H.

(2)

Certainly, it can be proven that there exists a correspondence between the
solutions of these triangular sets and S’s so that we only need to consider the
solutions of these triangular sets in order to deal with S’s.

Example 1. Consider an SAS S : [P, G1, G2, H] in Q[b, x, y, z] with P = [p1, p2, p3],
G1 = ∅, G2 = [x, y, z, b, 2 − b], H = ∅, where

p1 = x2 + y2 − z2, p2 = (1 − x)2 − z2 + 1, p3 = (1 − y)2 − b2z2 + 1.

The equations P can be decomposed into two triangular sets in Q(b)[x, y, z]

T1 : [b4x2 − 2b2(b2 − 2)x + 2b4 − 8b2 + 4, −b2y + b2x + 2 − 2b2, b4z2 + 4b2x − 8b2 + 4],
T2 : [x2 − 2x + 2, y + x − 2, z],

with the relation
Zero(P) = Zero(T1/b)

�
Zero(T2)

where Zero() means the set of zeros and Zero(T1/b) = Zero(T1) \ Zero(b).

Second, compute a so-called border polynomial from the resulting triangular
systems, say [Ti, G1, G2, H]. We need to introduce some concepts. Suppose F and
G are polynomials in x with degrees m and l, respectively. Thus, they can be
written in the following forms

F = a0x
m + a1x

m−1 + · · · + am−1x + am, G = b0x
l + b1x

l−1 + · · · + bl−1x + bl.

The following (m + l) × (m + l) matrix (those entries except ai, bj are all zero)�
��������������

a0 a1 · · · am

a0 a1 · · · am

. . .
. . .

. . .
a0 a1 · · · am

b0 b1 · · · bl

b0 b1 · · · bl

. . .
. . .

. . .
b0 b1 · · · bl

	













�

���

���

l

���

���

m

,
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is called the Sylvester matrix of F and G w.r.t. x. The determinant of the matrix
is called the Sylvester resultant or resultant of F and G w.r.t. x and is denoted
by res(F, G, x).

For system (2), we compute the resultant of fs and f ′
s w.r.t. xs and denote it

by dis(fs) (it has the leading coefficient and discriminant of fs as factors). Then
we compute the successive resultant of dis(fs) and the triangular set {fs−1, ..., f1}.
That is, we compute res(res(· · · res(res(dis(fs), fs−1, xs−1), fs−2, xs−2) · · · ), f1, x1)
and denote it by res(dis(fs); fs−1, ..., f1) or simply Rs. Similarly, for each
i (1 < i ≤ s), we compute Ri = res(dis(fi); fi−1, ..., f1) and R1 = dis(f1).

For each of those inequalities and inequations, we compute the successive
resultant of gj (or hj) w.r.t. the triangular set [f1, ..., fs] and denote it by Qj

(resp. Ql+j).

Definition 2. For an SAS T as defined by (2), the border polynomial of T is

BP =
s�

i=1

Ri

l+m�
j=1

Qj .

Sometimes, for brevity, we also abuse BP to denote the square-free part or the
set of square-free factors of BP .

Example 2. For the system S in Example 1, the border polynomial is

BP = b(b − 2)(b + 2)(b2 − 2)(b4 − 4b2 + 2)(2b4 − 2b2 + 1).

From the result in [31,27], we may assume BP �= 0. In fact, if any factor of BP is
a zero polynomial, we can further decompose the system into new systems with
such a property. For a parametric SAS, its border polynomial is a polynomial in
the parameters with the following property.

Theorem 1. Suppose S is a parametric SAS as defined by (2) and BP its border
polynomial. Then, in each connected component of the complement of BP = 0 in
parametric space Rd, the number of distinct real solutions of S is constant.

Third, BP = 0 decomposes the parametric space into a finite number of con-
nected region. We then choose sample points in each connected component of
the complement of BP = 0 and compute the number of distinct real solutions of
S at each sample point. Note that sample points can be obtained by the partial
cylindrical algebra decomposition (PCAD) algorithm [4].

Example 3. For the system S in Example 1, BP = 0 gives

b = 0, ± 2, ±
√

2, ±
�

2 ±
√

2.

The reals are divided into ten open intervals by these points. Because 0 < b < 2,
we only need to choose one point, for example, 1

2 , 1, 3
2 , 15

8 , from each of the four
intervals contained in (0, 2), respectively. Then, we substitute each of the four
values for b in the system, and compute the number of distinct real solutions of
the system, consequently obtain the system has respectively 0, 1, 0 and 0 distinct
real solutions.
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The above three steps constitute the main part of the algorithm in [31,34,27],
which, for any input SAS S, outputs the so-called border polynomial BP and a
quantifier-free formula Ψ in terms of polynomials in parameters u (and possible
some variables) such that, provided BP �= 0, Ψ is the necessary and sufficient
condition for S to have the given number (possibly infinite) of real solutions.
Since BP is a polynomial in parameters, BP = 0 can be viewed as a degenerated
condition. Therefore, the outputs of the above three steps can be read as “if
BP �= 0, the necessary and sufficient condition for S to have the given number
(possibly infinite) of real solutions is Ψ .”

Remark 1. If we want to discuss the case when parameters degenerate, i.e.,
BP = 0, we put BP = 0 (or some of its factors) into the system and apply
a similar procedure to handle the new SAS.

Example 4. By the steps described above, we obtain the necessary and sufficient
condition for S to have one distinct real solution is b2 − 2 < 0 ∧ b4 − 4b2 + 2 < 0
provided BP �= 0. Now, if b2 − 2 = 0, adding the equation into the system, we
obtain a new SAS: [ [b2 − 2, p1, p2, p3], [ ], G2, [ ] ]. By the algorithm in [28,29], we
know the system has no real solutions.

2.3 A Computer Algebra Tool: DISCOVERER

We have implemented the above algorithm and some other algorithms in Maple
as a computer algebra tool, named DISCOVERER. The reader can download the
tool for free via “http://www.is.pku.edu.cn/~xbc/discoverer.html”. The
prerequisite to run the package is Maple 7.0 or a later version of it.

The main features of DISCOVERER include

Real Solution Classification of Parametric Semi-algebraic Systems
For a parametric SAS T of the form (1) and an argument N , where N is one
of the following three forms:
– a non-negative integer b;
– a range b..c, where b, c are non-negative integers and b < c;
– a range b..w, where b is a non-negative integer and w is a name without

value, standing for +∞,
DISCOVERER can determine the conditions on u such that the number of
the distinct real solutions of T equals to N if N is an integer, otherwise falls
in the scope N . This is by calling

tofind([P], [G1], [G2], [H], [x1, ..., xs], [u1, ..., ut], N),

and results in the necessary and sufficient condition as well as the border
polynomial BP of T in u such that the number of the distinct real solutions
of T exactly equals to N or belongs to N provided BP �= 0. If T has infinite
real solutions for generic value of parameters, BP may have some variables.
Then, for the “boundaries” produced by “tofind”, i.e. BP = 0, we can call

Tofind([P, BP ], [G1], [G2], [H], [x1, ..., xs], [u1, ..., ut], N)

to obtain some further conditions on the parameters.
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Real Solution Isolation of Constant Semi-algebraic Systems
For a constant SAS T ( i.e., t = 0) of the form (1), if T has only a finite
number of real solutions, DISCOVERER can determine the number of dis-
tinct real solutions of T , say n, and moreover, can find out n disjoint cubes
with rational vertices in each of which there is only one solution. In addi-
tion, the width of the cubes can be less than any given positive real. The
two functions are realized through calling

nearsolve([P], [G1], [G2], [H], [x1, ..., xs]) and
realzeros([P], [G1], [G2], [H], [x1, ..., xs], w),

respectively, where w is optional and used to indicate the maximum size of
the output cubes.

3 Semi-algebraic Transition Systems and Invariants

In this section, we extend the notion of algebraic transition systems in [24] to
semi-algebraic transition systems (SATSs) to represent polynomial programs.
An Algebraic Transition System (ATS) is a special case of standard transition
system, in which the initial condition and all transitions are specified in terms
of polynomial equations; while in an SATS, each transition is equipped with
a conjunctive polynomial formula as guard, and its initial and loop conditions
possibly contain polynomial inequations and inequalities. It is easy to see that
ATS is a special case of SATS. Formally,

Definition 3. A semi-algebraic transition system is a quintuple 〈V, L, T, �0, Θ〉,
where V is a set of program variables, L is a set of locations, and T is a set of
transitions. Each transition τ ∈ T is a quadruple 〈�1, �2, ρτ , θτ 〉, where �1 and �2
are the pre- and post- locations of the transition, ρτ ∈ CPF (V, V ′) is the transition
relation, and θτ ∈ CPF(V ) is the guard of the transition. Only if θτ holds, the
transition can take place. Here, we use V ′ (variables with prime) to denote the
next-state variables. The location �0 is the initial location, and Θ ∈ CPF (V ) is
the initial condition.

If a transition τ changes nothing, i.e. ρτ ≡
�

v∈V v′ = v, we denote by skip ρτ .
Meanwhile, a transition τ = 〈l1, l2, ρτ , θτ 〉 is abbreviated as 〈l1, l2, ρτ 〉, if θτ is true.

Note that in the above definition, for simplicity, we require that each guard
should be a conjunctive polynomial formula. In fact, we can drop such a restric-
tion, as for any transition with a disjunctive guard we can split it into multiple
transitions with the same pre- and post- locations and transition relation, but
each of which takes a disjunct of the original guard as its guard.

A state is an evaluation of the variables in V and all states are denoted by
V al(V ). Without confusion we will use V to denote both the variable set and an
arbitrary state, and use F (V ) to mean the (truth) value of function (formula)
F under the state V . The semantics of SATSs can be explained through state
transitions as usual.

A transition is called separable if its transition relation is a conjunctive formula
of equations which define variables in V ′ equal to polynomial expressions over



Generating Polynomial Invariants 75

variables in V . It is easy to see that the composition of two separable transitions is
equivalent to a single separable one. An SATS is called separable if each transition
of the system is separable. In a separable system, the composition of transitions
along a path of the system is also equivalent to a single separable transition.
We will only concentrate on separable SATSs as any polynomial program can
easily be represented by a separable SATS (see [18]). Any SATS in the rest of
the paper is always assumed separable, unless otherwise stated.

Informally, an invariant of a program at a location is an assertion that is true
under any program state reaching the location. An invariant of a program can
be seen as a mapping to map each location to an assertion which has inductive
property, that is, initial and consecutive. Initial means that the image of the
mapping at the initial location holds on the loop entry, i.e. the invariant of the
initial location holds on the loop entry; whereas consecutive means that for any
transition the invariant at the pre-location together with the transition relation
and its guard implies the invariant at the post-location. In many cases, people
only consider an invariant at the initial location and do not care about invariants
at other locations. In this case, we can assume the invariants at other locations
are all true and therefore initial and consecutive mean that the invariant holds
on the entry, and is preserved under every cycle back to the initial location.

Definition 4 (Invariant at a Location). Let P = 〈V, L, T , l0, Θ〉 be an SATS.
An invariant at a location l ∈ L is a conjunctive polynomial formula φ ∈ PF (V ),
such that φ holds on all states that can be reached at location l.

Definition 5 (Invariant of a Program). An assertion map for an SATS
P = 〈V, L, T , l0, Θ〉 is a map η : L �→ PF (V ) that associates each location of P

with a formula of PF (V ). An assertion map of P is said to be an invariant of P

iff the following conditions hold:

Initial: Θ(V0) |= η(l0).
Consecutive: For each transition τ = 〈li, lj , ρτ , θτ 〉,

η(li)(V ) ∧ ρτ (V, V ′) ∧ θτ (V ) |= η(lj)(V ′).

4 Polynomial Invariants Generation

Similarly to [24], given an SATS S, we predetermine an invariant as a paramet-
ric SAS (PSAS for short) at each of the underlining locations (if no invariant
is predefined for a location, it is assumed that the mapping takes true as value
at the location) and therefore all these predefined PSASs form a parametric
invariant of S by the Definitions. Subsequently, according to the initial and con-
secutive conditions of the mapping, we can obtain a set of PSASs such that the
mapping is an invariant of the program iff each element the resulted set has no
real solution. Afterwards, we apply the algorithm on root classification of PSASs
to each of them and obtain a corresponding necessary and sufficient condition
on the parameters of the PSAS such that the PSAS has no real solution. Fi-
nally, applying quantifier elimination technique, we can get the instantiations of



76 Y. Chen et al.

these parameters and therefore get an invariant for each underlining location by
replacing with the resulted instantiations the parameters of the predetermined
parametric PSAS. The above procedure are supported by the computer algebra
tools DISCOVERER and QEPCAD.

We will use the following example to demonstrate our approach in details.

Example 5. Consider a program shown in Fig.1 (a).

Integer (x, y) := (0, 0);

l0 : while x ≥ 0 ∧ y ≥ 0 do

(x, y) := (x + y2, y + 1);

end while

P = {
V = {x, y}
L = {l0}
T = {τ} }

where
τ = 〈l0, l0, x′ − x − y2 = 0 ∧ y′ − y − 1 = 0,

x ≥ 0 ∧ y ≥ 0〉
(a) (b)

Fig. 1.

Thus, the corresponding SATS can be represented as in Fig.1 (b).

In the following, we concretize the above idea and demonstrate with the toy
example.

Predefining Invariant. Predetermine a template of invariants at each of the
underlining location, which is a PSAS, i.e. the conjunction of a set of atomic
polynomial formula. All of these predefined PSASs form a parametric invari-
ant of the program. For example, we can assume a template of invariants of
P at l0 in Example 5 as

eq(x, y) = a1y
3 + a2y

2 + a3x − a4y = 0 (3)

ineq(x, y) = b1x + b2y
2 + b3y + b4 > 0, (4)

where a1, a2, a3, a4, b1, b2, b3, b4 are parameters. Therefore, η(l0) = (3) ∧ (4).
Note that theoretically speaking we can predefine a PSAS as an invariant at
each location like in the above example, but this will raise the complexity
dramatically as thus the number of parameters is so large (the reader will
see this point from the complexity analysis in the later). In practice, alter-
natively, we will split a complicated invariant to several simple invariants
such that the image of every of these simple invariants at each location is
just one of the atomic subformulae of the image of the complicated invariant
at the location. For example, in the above example, we can split η to η1 and
η2 by letting η1(l0) = (3) and η2(l0) = (4). It is easy to prove that a program
has a complicated invariant iff the corresponding simple invariant exist, for
instance, η exists iff η1 and η2 exist. This is because every invariant of a
program is determined by the program itself.

Deriving PSASs from Initial Condition and Solving. According to the
initial condition in Definition 5, we have Θ |= η(l0) which means that each
real solution of Θ must satisfy η(l0). In other words, Θ ∧ ¬η(l0) has no real
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solution. This implies that for each atomic polynomial formula φ in η(l0),
Θ ∧ ¬φ has no real solution. Note that η(l0) is the conjunction of a set of
atomic polynomials and Θ ∧ ¬φ is a PSAS according to the definition. Thus,
applying the tool DISCOVERER to the resulted PSAS Θ ∧ ¬φ, we get a nec-
essary and sufficient condition of the derived PSAS having no real solution.
The condition may contain the occurrences of some program variables. In
this case, the condition should hold for any instantiations of these variables.
Thus, by introducing universal quantifications of these variables (we usually
add a scope to each of these variables according to different situations) and
then applying QEPCAD, we can get a necessary and sufficient condition
only on the presumed parameters.
Repeatedly apply the procedure to each atomic polynomial formula of the
predefined invariant at l0 and then collect all the resulted conditions.

Example 6. In Example 5, Θ |= η1(l0) is equivalent to

x = 0, y = 0, eq(x, y) �= 0 (5)

has no real solution. By calling

tofind(([x, y], [ ], [ ], [eq(x, y)], [x, y], [a1, a2, a3, a4], 0)

we get that (5) has no real solution iff true.
Similarly, Θ |= η2(l0) is equivalent to

x = 0, y = 0, ineq(x, y) ≤ 0 (6)

has no real solution. Calling

tofind([x, y], [−ineq(x, y)], [ ], [ ], [x, y], [b1, b2, b3, b4], 0)

we get that (6) has no real solution iff

b4 > 0. (7)

Deriving PSASs from Consecutive Condition and Solving. From Defi-
nition 5, for each transition τ = 〈li, lj , ρτ , θτ 〉,

η(li) ∧ ρτ ∧ θτ |= η(lj)

so η(li) ∧ ρτ ∧ θτ ∧ ¬η(lj) has no real solution. This implies that for each
atomic polynomial formula φ

η(li) ∧ ρτ ∧ θτ ∧ ¬φ (8)

has no real solution. It is easy to see that (8) is a PSAS according to De-
finition 1, so applying the tool DISCOVERER, we obtain a necessary and
sufficient condition on the parameters such that (8) has no real solution.
Subsequently, similarly to Step 2, we may need to exploit the quantifier
elimination tool QEPCAD to reduce the resulted condition in order to get
a necessary and sufficient condition only on the presumed parameters.
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Example 7. In Example 5, for the invariant η1, we have

eq(x, y) = 0 ∧ x′ − x − y2 = 0 ∧ y′ − y − 1 = 0 |= eq(x′, y′) = 0. (9)

This is equivalent to

eq(x, y) = 0 ∧ x′ − x − y2 = 0 ∧ y′ − y − 1 = 0 ∧ eq(x′, y′) �= 0 (10)

has no real solution. Calling

tofind([x′ − x − y2, y′ − y − 1, eq(x, y)], [ ], [ ], [eq(x′, y′) ],

[x′, y′, x], [y, a1, a2, a3, a4], 0),

it follows that (10) has no real solution iff

a3y
2 + 3a1y

2 + 2ya2 + 3a1y − a4 + a2 + a1 = 0 ∧ (11)

a3(a1y
2 + ya2 − a4) ≤ 0. (12)

Further by Basic Algebraic Theorem and simplifying by QEPCAD, (11) ∧ (12)
holds for all y iff

− a4 + a2 + a1 = 0 ∧ 3a1 + 2a2 = 0 ∧ a3 + 3a1 = 0. (13)

Regarding the invariant η2, we have

ineq(x, y) > 0 ∧ x′ − x − y2 = 0 ∧ y′ − y − 1 = 0 |= ineq(x′, y′) > 0. (14)

This is equivalent to

ineq(x, y) > 0 ∧ x′ − x − y2 = 0 ∧ y′ − y − 1 = 0 ∧ ineq(x′, y′) ≤ 0 (15)

has no real solution. Calling

tofind([x′ − x − y2, y′ − y − 1], [−ineq(x′, y′)], [ineq(x, y)], [ ],

[x′, y′], [x, y, b1, b2, b3, b4], 0),

it follows that (15) has no real solution iff

b4 + b3 + b2 + 2b2y + b3y + b2y
2 + b1x + b1y

2 > 0. (16)

It is easy to see that (16) should hold for all y ≥ 0, and thus, by applying QEP-
CAD to eliminate the quantifiers ∀y ≥ 0 over (16), we get

b1 + b2 ≥ 0 ∧ b1 ≥ 0 ∧ b2 + b3 + b4 > 0 ∧
(b3 + 2b2 ≥ 0 ∨ (b1b2 + b2

2 ≥ 0 ∧ 4b2b4 + 4b1b4 + 4b1b3 + 4b1b2 − b2
3 > 0)) (17)

Generating Invariant. According to the results obtained from Steps 1, 2 and
3, we can get the final necessary and sufficient condition only on the parame-
ters of each of the invariant templates. If the condition is too complicated, we
can utilize the function of PCAD of DISCOVERER or QEPCAD to prove
if or not the condition is satisfied. If yes, the tool can produce the instantia-
tions of these parameters. Thus, we can get an invariant of the predetermined
form by replacing the parameters with the instantiations, respectively.
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Example 8. From Examples 6 & 7, it follows the necessary and sufficient con-
dition on the parameters of η1 is (13). By using DISCOVERER, we get an
instantiation

(a1, a2, a3, a4) = (−2, 3, 6, 1).

Thus, η1(l0) = −2y3 + 3y2 + 6x − y = 0. Also, the necessary and sufficient condi-
tion on the parameters of η2 is (7) ∧ (17). By PCAD of DISCOVERER, it results
the following instantiation

(b1, b2, b3, b4) = (1, −1, 2, 1)

that is, η2(l0) = x − y2 + 2y + 1 > 0. Totally, we get the following invariant for the
program P : �

−2y3 + 3y2 + 6x − y = 0,
x − y2 + 2y + 1 > 0

Note that the above procedure is complete in the sense that for any given pre-
defined parametric invariant, the procedure can always give you an answer, yes
or no. Therefore, we can conclude that our approach is also complete in the
sense that once the given polynomial program has a polynomial invariant, our
approach can indeed find it theoretically. This is because we can assume para-
metric invariants in program variables of different degrees, and repeatedly apply
the above procedure until we obtain a polynomial invariant.

5 Complexity Analysis

Assume given an SATS P = 〈V, L, T , l0, Θ〉, applying the above procedure, we
obtain k distinct PSASs so that the predefined parametric invariants form an
invariant of the program iff none of these k PSASs has any real solution. W.l.o.g.,
suppose each of these k PSASs has at most s polynomial equations, and m in-
equations and inequalities. All polynomials are in n indeterminates (i.e., variables
and parameters) and of degrees at most d.

For a PSAS S, by [3], CAD (cylindrical algebraic decomposition) based quan-
tifier elimination on S has complexity O((2d)2

2n+8
(s + m)2

n+6
), which is double

exponential w.r.t. n. Thus, the total cost is O(k(2d)2
2n+8

(s + m)2
n+6

) for directly
applying the technique of quantifier elimination to generate an invariant of a
program as advocated by Kapur [17].

In contrast, the cost of our approach includes two parts: one is for apply-
ing real solution classification to generate condition on the parameters possibly
together with some program variables; the other is for applying first-order quan-
tifier elimination to produce condition only on the parameters (if necessary) and
further exploiting PCAD to obtain the instantiations of these parameters.

The first part consists of three main steps. Firstly, we transform the equa-
tions in S into triangular sets (i.e., equations in triangular form) by Ritt-Wu’s
method. By [12], the complexity of computing the first characteristic set is
O(sO(n)(d + 1)O(n3)). Thus, the complexity of this step is O(snO(1)

(d + 1)nO(1)
),

which is usually called a singly exponential complexity w.r.t. n. Secondly, we



80 Y. Chen et al.

compute a border polynomial (BP) from the triangularized systems through re-
sultant computation. Because the polynomials in the first computed characteris-
tic sets are of degree O(s(d + 1)O(n2)) by [12], the polynomials in the computed
triangular sets are of degree O(snO(1)

(d+1)nO(1)
). Thus, the complexity of com-

puting BP is at most (s + m)O(s3s+snO(1)
(d + 1)snO(1)

) because the complexity
of computing the resultant of two polynomials with degree d is at most O(d3).
Moreover, the degree of BP is at most D = O(sO(s2+s2nO(1))(d + 1)O(s2nO(1))).
Finally, we use a partial CAD algorithm with BP to obtain real solution clas-
sification. The complexity of this step is at most the complexity of performing
quantifier elimination on BP using CAD. Suppose the dimension of the ideal
generated by the s polynomial equations is t, then BP has at most t indetermi-
nates. Thus, by [3], the complexity of this step is at most O(2D22t+8

), which is
double exponential with respect to t. In a word, the cost for this part is singly
exponential in n and doubly exponential in t.

As the biggest degree of polynomials in the generated necessary and sufficient
condition from the above is at most D, the cost for the second part is O(2D22t+8

)
as well, which is doubly exponential in t, according to [3].

So, compared to directly applying quantifier elimination, our approach can
dramatically reduce the complexity, in particular when t is much less than n.

6 Generating Invariants vs. Discovering Ranking
Functions

In [2], we showed how to apply the approach to discovering non-linear ranking
functions. Although invariants and ranking functions both have inductive prop-
erties, the former is inductive w.r.t. a small step, i.e. each of single transitions of
the given program in contrast that the latter is inductive w.r.t. a big step, that
is each of circle transition at the initial location of the program. The difference
results that as far as invariant generation is concerned, our approach can be
simply applied to single loop programs as well as nested loop programs, without
any change; but regarding the discovery of ranking functions, we have to develop
the approach in order to handle nested loop programs, although it works well
for single loop programs.

7 Conclusions and Future Work

In this paper, we reduced the polynomial invariant generation of polynomial
programs to solving semi-algebraic systems, and theoretically analyzed why our
approach is more efficient and practical than that of [17] directly applying the
technique of first-order quantifier elimination. Compared to the well-established
approaches in this field, the invariants generated with our approach are more
expressive.

How to further improve the efficiency of our approach is still a big challenge
as well as our main future work, as the complexity is still single exponential
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w.r.t. the number of program variables and parameters, and doubly exponential
w.r.t. the number of parameters (at least). The high complexity restricts to scale
up our approach yet. Moreover, it deserves to investigate how to combine our
approach with other program verification techniques such as abstract interpre-
tation and Floyd-Hoare-Dijkstra’s inductive assertion method in order to resolve
complicated verification problems. In addition, implementing our approach in a
verification tool also makes so much senses in practice.
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