
Automatically Generating SystemC Code from HCSP Formal
Models

GAOGAO YAN, LI JIAO, SHULING WANG, LINGTAI WANG, and NAIJUN ZHAN,
State Key Lab. of Comput. Sci., Institute of Software, Chinese Academy of Sciences, China and Gaogao Yan,
Lingtai Wang and Naijun Zhan are also affiliated with University of Chinese Academy of Sciences, China

In model-driven design of embedded systems, how to generate code from high-level control models seam-
lessly and correctly is challenging. This is because hybrid systems, a normal control model, are involved with
continuous evolution, discrete jumps, and the complicated entanglement between them, while code only
contains discrete actions. In this paper, we investigate the code generation from Hybrid Communicating Se-
quential Processes (HCSP), a formal control model, to SystemC. We first introduce the notion of approximate
bisimulation as a criterion to check the consistency between two different systems, especially between the
original control model and the final generated code. We prove that it is decidable whether two HCSPs are
approximately bisimilar in bounded time and unbounded time with some constraints, respectively. For both
the cases, we present two sets of rules correspondingly for discretizing HCSPs, and prove that the original
HCSPmodel and the corresponding discretization are approximately bisimilar. Furthermore, based on the dis-
cretization, we give a transfer function to map a discretized HCSP model to SystemC code such that they are
also approximate bisimilar. We finally implement a tool to automatically realize the translation from HCSPs
to SystemC code, and illustrate our approach through some case studies.

CCS Concepts: • Software and its engineering → Model-driven software engineering; System mod-
eling languages; • Computer systems organization→ Embedded systems; •Theory of computation
→ Timed and hybrid models;

Additional Key Words and Phrases: Hybrid CSP, approximate bisimulation, code generation

ACM Reference Format:
Gaogao Yan, Li Jiao, Shuling Wang, Lingtai Wang, and Naijun Zhan. 20XX. Automatically Generating Sys-
temC Code from HCSP Formal Models . ACM Trans. Softw. Eng. Methodol. 0, 0, Article 00 (20XX), 40 pages.
https://doi.org/0000001.0000001

1 INTRODUCTION
Embedded Systems (ESs) make use of computer units to control physical processes so that their
behaviors could meet expected requirements. They have become ubiquitous in our daily life such
as automotive, aerospace, consumer electronics, communication, medical equipment and manu-
facturing. Many ESs are safety-critical — a tiny fault may lead to a catastrophic result. It is a grand

This work is supported partly by NSFC under grant No. 61625206 and 61732001.
The corresponding author:Naijun Zhan, 4 South Fourth Street, Zhong Guan Cun, Beijing, 100190, China.
Authors’ address: Gaogao Yan; Li Jiao; Shuling Wang; Lingtai Wang; Naijun Zhan,
State Key Lab. of Comput. Sci., Institute of Software, Chinese Academy of Sciences, 4 South Fourth Street, Zhong Guan Cun,
Beijing, 100190, China, yangg@ios.ac.cn, ljiao@ios.ac.cn, wangsl@ios.ac.cn, wanglt@ios.ac.cn, znj@ios.ac.cn, Gaogao Yan,
Lingtai Wang and Naijun Zhan are also affiliated with University of Chinese Academy of Sciences, Beijing, 100190, China.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 20XX Copyright held by the owner/author(s). Publication rights licensed to ACM.
1049-331X/20XX/0-ART00 $15.00
https://doi.org/0000001.0000001

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article 00. Publication date: 20XX.

https://doi.org/0000001.0000001
https://doi.org/0000001.0000001

00:2 G. Yan et al.

challenge to design ESs correctly, especially those complex and safety-critical ones. Among a va-
riety of developing methods, Model-Driven Design (MDD) is considered to be effective and has
been successfully applied in industry [42, 49]. In the framework of MDD, a model of the system
is first constructed and then updated through extensive analysis and verification, so that errors
can be detected and corrected at early stages of the design. Afterwards, by applying model trans-
formation techniques, the abstract (formal) model is transformed into a more concrete model and
finally into executable code. Particularly, the transformation process should be automatic, since
a manual fashion is error prone and costly [16]. In a word, MDD framework is an integration of
modeling, analysis, verification and code generation, which is reliable, efficient and has low cost.

Hybrid systems seamlessly integrate traditional discrete models with dynamical models such as
differential and algebraic equations, able to represent the feedback dynamics of embedded com-
puters in physical, chemical, or biological environments.Their precise mathematical semantics are
appropriate for them to model complex embedded systems, based on which analysis and verifica-
tion are therefore possible to be performed. Subsequently, a central problem in MDD is then how
to transform an abstract hybrid control model to an algorithmic model at code level rigorously
and automatically. This is quite challenging, as the controller code determines how to sample data
from the continuous plant and the entanglement between sampling data and computing control
commands is intricate. An efficient approach is to discretize the continuous plant, and then, the
discretized continuous plant together with the controller code constitute a complete implementa-
tion for the closed-loop hybrid system.Therefore, how and according to which criterion to sample
(discretize) the continuous behaviour is essential to guarantee the correctness and reliability of the
implementation. The Simulink Coder [4] of MathWorks, formerly known as Real-Time Workshop,
generates code from discrete-continuous Simulink models, and the generated code is used widely
for real-time applications including simulation acceleration, rapid prototyping, and hardware-in-
the-loop testing. As a Third-Party of Simulink, the dSPACE rapid control prototyping system [1]
is integrated seamlessly with Simulink and uses the code generated by Simulink Coder for devel-
oping real-time applications. But, the above problem is not well solved and remains challenging.

Except for the above mentioned Simulink, many MDD approaches targeting ESs, support code
generation from control models together with ODE models, both in industry and academia, e.g.,
SCADE [30], Modelica [68], SysML [5], MARTE [64], Ptolemy [31]. However, their correctness
from control models to source code is not completely guaranteed. To address this issue, a criterion
is absolutely demanded to judge in what sense a transformation from a control model to code is
correct, in other words, the criterion should preserve semantics. Clearly, a criterion with exact
semantics preservation like that in classical programing theories [63] is impossible.

Fortunately, approximate bisimulation [36] provides an appropriate criterion. Approximate bisim-
ulation allows error tolerance, i.e., the “distance” between the behaviors of two systems is al-
lowed to be within a given threshold rather than exactly identical. The notion of approximate
bisimulation has been extended to analysis and verification of different kinds of hybrid systems
[41, 46, 48, 54, 60–62, 69]. But all the existing results can only be applied to restricted hybrid
systems, as either discrete dynamics is not considered, or atomic actions are required to be inde-
pendent of continuous variables.

In this paper, we first extend approximate bisimulation to the hybrid modeling language called
Hybrid Communicating Sequential Processes (HCSP) [40, 80] which is an extension of Commu-
nicating Sequential Processes (CSP) to include differential equations and interrupts. Those inter-
actions model interactions between continuous and discrete dynamics and are very flexible, e.g.,
discrete actions can be triggered by changes of continuous variables. Compared with other for-
malisms such as hybrid automata [43] and hybrid programs [59], HCSP provides a compositional
way to model complicated ESs due to its flexible constructors. Secondly, we propose a set of rules

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article 00. Publication date: 20XX.

Automatically Generating SystemC Code from HCSP Formal Models 00:3

for discretizing HCSP models, and prove that the discretized HCSP model is approximately bisimi-
lar to the original HCSP model. Besides, we give a method for generating SystemC [45] code from
the discretized HCSP model and prove that they are approximately bisimilar with zero tolerance.
The reason whywe choose SystemC as the target programming language is that SystemC is widely
used in industry (it is implemented as a C++ class library) and that its syntax and semantics are
very similar to discretized HCSP models (so that the translation from discrete HCSP to SystemC
is straightforward). In addition, we define a formal operational semantics for a subset of SystemC
by a slight extension of the definition in [74, 75] in order to prove the correctness of the transfor-
mation from the discretized HCSP model to SystemC code.

This work is an extension of our previous work [73], where HCSP is used as the modeling
language for hybrid systems. In [73], we first extended the notion of approximate bisimulation
to HCSP models, then proved that it is decidable whether two HCSP processes are approximately
bisimilar if all ordinary differential equations (ODEs) occurring in them satisfy theGlobally Asymp-
totical Stability (GAS) condition [12]. Intuitively speaking, GAS requires an ODE with any initial
state can always be arbitrarily close to its equilibrium point as time proceeds. We also presented an
algorithm to discretize an HCSP (the control model) into a discrete HCSP (an algorithmic model),
and proved that they are approximately bisimilar if GAS is satisfied in the original HCSP.

However, the shortcomings of [12] at least include that GAS is very restrictive and that discrete
HCSP is not executable. Therefore, in this paper we consider the bounded-time execution instead
of requiring the system satisfying the GAS condition, and furthermore transform the discretized
HCSP to executable SystemC code. In detail, we extend and improve [73] in the following aspects:

• We consider hybrid systems executed within a bounded time instead of requiring GAS, and
show that whether two such HCSP processes are approximately bisimilar is decidable.
• We develop a set of discretizing rules to transform an HCSP to a discrete one which are

proved to be approximately bisimilar.
• We present two algorithms to compute time and value precisions respectively for HCSP

processes which are robustly safe. We then consider how to discretize those HCSP processes.
• We present a transformation function mapping a discretized HCSP into SystemC code.
• We introduce a formal operational semantics for a subset of SystemC, based on which the

approximate bisimularity between the discretized HCSP and the generated SystemC code is
proved.
• We implement a tool to automatically transform an HCSP without (with) GAS condition

to SystemC code such that they are approximately bisimilar on bounded (unbounded) time
with respect to the given precision.
• We also provide several case studies to illustrate the efficiency of our approach.

Together with the work reported in [77, 85, 86], this paper forms a framework for formal de-
sign of safety-critical systems from graphical modeling, simulation and formal verification to ex-
ecutable code with tool supports [27, 71, 84]. We believe it can improve the reliability of such
systems.

The rest of this paper is organized as follows. Some preliminary notions on dynamical systems,
transition systems, HCSP and SystemC are introduced in Sec. 2. Sec. 3 defines approximate bisim-
ulation between HCSP processes, and proves that it is decidable whether two HCSP processes are
approximately bisimilar in time-bounded and time-unbounded cases. In Sec. 4, discretization of
HCSP in both cases is presented under certain conditions. Then, the conditions under which the
original HCSP and its discretization are approximately bisimilar are discussed in Sec. 5. After that,
the translation from discrete HCSP to SystemC code and their bisimulation are presented in Sec. 6.

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article 00. Publication date: 20XX.

00:4 G. Yan et al.

Symbols Meaning
x̄ The equilibrium point of a given ODE

TS, TSi Transition systems
P,Q, Pi Sequential HCSP processes
S, Si Parallel HCSP processes
B Boolean expression

l, li ∈ L Actions in the label set of transition system
X (t, x) The solution to a given ODE at time t with initial value x
ε, ξ The precision thresholds for the discretization of an HCSP

process and of an ODE resp.
h The time precision for the discretization

Dh,ε (P) The discretization function with precisions h and ε
N (φ, ε), N (φ,−ε) The ε and −ε neighborhoods of formula φ resp.

ϵ , δ The value and time parameters for robustly safe processes
Table 1. Summary of some frequently used symbols and functions

In Sec. 7, three case studies are provided to illustrate our approach. Sec. 8 discusses related works,
and Sec. 9 concludes the paper and discusses the future work.

2 PRELIMINARIES
In this section, we will introduce some preliminary knowledge for understanding the work. In
Sec. 2.1, some basic notions about dynamical systems are presented. Labeled transition systems, a
semantic model of HCSP, on which the notion of the approximate bisimulation relation between
two systems is discussed, is given in Sec. 2.2. Afterwards, the source and target languages, i.e.
HCSP and SystemC, are presented in Sec. 2.3 and Sec. 2.4, respectively.

In order to ease the reader to understand the meanings of some frequently used symbols and
functions throughout this paper, we give a summary of symbols in Table 1.

2.1 Dynamical Systems
In what follows, N, R, R+, R+0 denote the natural, real, positive and nonnegative real numbers,
respectively. Vectors are denoted by boldface letters, for instance, x, y. Given a vector x ∈ Rn ,
∥x∥ denotes the infinity norm of x, i.e., ∥x∥ = max{|x1 |, |x2 |, ..., |xn |}. A continuous function
γ : R+0 → R+0 is said to be in class K if it is strictly increasing and γ (0) = 0, and to be in class K∞
if γ ∈ K and γ (r) → ∞ as r → ∞. A continuous function β : R+0 × R+0 → R+0 is said to be in class
KL if for each fixed t , βt (r) = β(r , t) ∈ K∞ with respect to r , and for each fixed r , βr (t) = β(r , t)
is decreasing with respect to t and tends to 0 as t →∞.

A dynamical system is of the following form
Ûx = f(x), x(t0) = x0. (1)

where x ∈ Rn is the state and x(t0) = x0 is the initial condition.
Suppose t0 < b. A function X (·) : [t0,b) → Rn is said to be a trajectory (or solution) of (1)

on [t0,b), if X (t0) = x0 and ÛX (t) = f(X (t)) for all t0 ≤ t < b. In order to ensure the existence
and uniqueness of trajectories, we assume f satisfies the local Lipschitz condition, i.e., for every
compact set S ⊂ Rn , there exists a constant L > 0 s.t. ∥f(x) − f(y)∥ ≤ L∥x − y∥ for all x, y ∈ S .

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article 00. Publication date: 20XX.

Automatically Generating SystemC Code from HCSP Formal Models 00:5

Under this condition, X (t, x0), which is uniquely determined, denotes the point reached at time
t ∈ [t0,b) from the initial condition x0. In addition, we assume (1) is forward complete [13], i.e., it
is solvable on an open interval (t0,+∞). x̄ ∈ Rn is an equilibrium point of (1) if f(x̄) = 0.

Definition 2.1. A dynamical system of form (1) is said to be globally asymptotically stable (GAS)
if there exists a equilibrium point x̄ and a function β of class KL s.t.

∀x ∈ Rn ∀t ≥ 0.∥X (t, x) − x̄∥ ≤ β(∥x − x̄∥, t), (2)

The point x̄ is actually the unique equilibrium point of the system. According to the definition,
X (t, x) tends to x̄ as t approaches +∞ no matter what the initial state x is, since the upper bound
β(∥x − x̄∥, t) tends to 0. Methods on judging whether a dynamical system is GAS are proposed
in [12, 70].

2.2 Transition Systems
Let the action set Act = D ∪ R+0 ∪ {τ }, where D is the set of instantaneous discrete actions, R+0
is the set of delay actions, and τ is a special instantaneous internal action. Given l1, l2 ∈ Act, the
distance dis(l1, l2) is defined as follows:

dis(l1, l2)
def
=


0 if l1 = l2
l1 if l1 ∈ R+0 and l2 = τ ,
l2 if l2 ∈ R+0 and l1 = τ ,
|l1 − l2 | if l1, l2 ∈ R+0 ,
+∞ otherwise.

(3)

Intuitively, the distance between two actions l1 and l2 stands for the remaining execution time of
l2 when l1 finished earlier, and vice versa. Two distinguished discrete actions cannot match each
other, so we define their distance to be infinity.

Definition 2.2 (Labeled transition system). A labeled transition system with observations is a
tuple TS = ⟨Q, L,→,Q0,Y ,H ⟩, where Q is a set of states, L ⊆ Act is a set of labels,→⊆ Q × L ×Q
is a transition relation, Q0 ⊆ Q is a set of initial states, Y is a set of observations and H : Q → Y

is an observation function. (q, l, q′) ∈→ is also written as q l→ q′, and→ satisfies
1. identity: q 0−→ q always holds;
2. delay determinacy: if q d−→ q′ and q

d−→ q′′, then q′ = q′′, where d ∈ R+0 ; and
3. delay additivity: if q d1−→ q′ and q′

d2−→ q′′ then q
d1+d2−→ q′′, where d1,d2 ∈ R+0 .

A transition system TS is said to be symbolic if Q and L ∩ D are finite, and L ∩ R+0 is bounded,
and metric if the observation set Y is equipped with a metric d : Y × Y → R+0 . Throughout this
paper, Y is Rn with the Euclidean distance d(y1, y2) = ∥y1 − y2∥.

A state trajectory of a transition system TS is a (possibly infinite) sequence of transitions q0 l0−→
q1

l1−→ · · · li−1−−−→ qi
li−→ · · · , denoted by {qi li−→ qi+1}i ∈N, s.t. q0 ∈ Q0 and qi

li−→ qi+1 for any i . An
observation trajectory is a (possibly infinite) sequence y0

l0−→ y1
l1−→ · · · li−1−−−→ yi

li−→ · · · , denoted
by {yi li−→ yi+1}i ∈N, and it is accepted by TS if there exists a state trajectory {qi li−→ qi+1}i ∈N s.t.
yi = H (qi) for all i ∈ N. The set of observation trajectories accepted by TS is called the language
of TS, and is denoted by L(TS). The reachable observation set of TS is a subset of Y defined by

Reach(TS) = {y ∈ Y | there exists y0 l0−→ y1
l1−→ · · · li−1−−−→ yi ∈ L(TS) with y = yi }. (4)

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article 00. Publication date: 20XX.

00:6 G. Yan et al.

Let YU ⊆ Y be the set of unsafe observations. The safety of TS can be verified by computing
Reach(TS) ∩ YU : TS is safe if the intersection is empty, and unsafe otherwise.

A maximal sequence of τ of a state trajectory {qj
lj−→ qj+1}j ∈N is a subsequence of the form

{qj
lj−→ qj+1}i≤j≤i+k with li = . . . = li+k−1 = τ , li−1 , τ if i ≥ 1 and li+k , τ . For a maximal

sequence of τ denoted as qi τ−→ · · · τ−→ qi+k , we remove the intermediate states and define the
τ -compressed transition qi

τ↠ qi+k instead. We also expand the τ -compressed transition to non-τ
transitions such that qi

li↠ qi+1 if qi li−→ qi+1 where li , τ . In what follows, ⟨Q, L,↠,Q0,Y ,H ⟩
denotes the labeled transition system resulted from ⟨Q, L,→,Q0,Y ,H ⟩ by replacing each transition
with its τ -compressed version. Furthermore, following conventions in process algebra, we use
p

l
==⇒ p′ to denote the closure of τ transitions, i.e., p(

τ↠){0,1} l↠ (τ↠){0,1}p′, for any l , τ . Here
(
τ↠){0,1} means zero or one τ transition.

2.3 Hybrid Communicating Sequential Processes
Hybrid Communicating Sequential Processes (HCSP) is a formal language for describing hybrid
systems, which extends CSP by introducing differential equations for modeling continuous evolu-
tion and interrupts for modeling the interaction between continuous evolution and discrete jumps.
The syntax of HCSP is given below:

P ::= skip | stop | x := e | wait d | ch?x | ch!e | P ;Q | B → P | P ⊓Q | P∗ |8i ∈I (ioi → Pi) | ⟨F (Ûs, s) = 0&B⟩ | ⟨F (Ûs, s) = 0&B⟩ � 8i ∈I (ioi → Qi)
S ::= P1∥P2∥ . . . ∥Pn for some n ≥ 1

where x and s stand for variables and vectors of variables, respectively, B and e are Boolean and
arithmetic expressions, d is a non-negative real constant, ch is the channel name, ioi stands for
an input or output communication event (i.e., either chi?x or chi !e), P,Q,Qi , Pi are sequential
process terms, and S stands for an HCSP which is either a sequential process or the composition
of multiple parallel processes. Parallel processes are not allowed to share variables. They can only
exchangemessages via synchronized communications along their common channels. Furthermore,
we assume that each input or output channel can be possessed by exactly one sequential process
in order to simplify the semantics of HCSP.

The informal meanings of the individual constructs are as follows:
• skip — Terminate immediately with variables unchanged.
• stop — Do nothing with time passing.
• x := e — Assign the value of expression e to x and then terminate.
• wait d — Keep idle for d time units with all variables unchanged.
• ch?x — Assign to x the value received from channel ch.
• ch!e — Send the value of e along channel ch.
– Note that a communication takes place only when both the sending and receiving parties

are ready. So one side may have to wait until the other becomes ready.
• P ;Q — Execute P first, and Q afterwards if P terminates.
• B → P — Execute P if B is true. Otherwise terminate immediately.
• P ⊓Q — (Internal choice.) Execute either P or Q . The choice is made by the process.
• P∗ — (Repetition.) Execute P for an arbitrary finite number of times. Assume there exists an

oracle num s.t. num(P∗) returns the upper bound of P ’s repeating times for a given P∗. In
particular, Pk means P repeating k times. Note that P0 = skip.

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article 00. Publication date: 20XX.

Automatically Generating SystemC Code from HCSP Formal Models 00:7

• 8i ∈I (ioi → Pi) — (External choice.) Execute the Pj if ioj is the first event to occur. Make a
non-deterministic choice if multiple events emerge simultaneously.
• ⟨F (Ûs, s) = 0&B⟩ — (Continuous evolution.) The vector s evolves following the dynamical

system F (Ûs, s) = 0 as long as B holds, and terminates when B turns false. B acts as the
domain of s. In particular, “wait d” can be derived as t := 0; ⟨Ût = 1&t < d⟩.
Here we assume that the set of B is open so that the escape point is located at its boundary.
We also restrict F to be ordinary differential equations (ODEs) by assuming the Jacobian
matrix of F to be non-singular (i.e., invertible), then F (Ûs, s) = 0 becomes an implicit ODE
system rather than Differential-Algebraic Equations whose Jacobian matrix is singular [14].
As shown in Sec. 4, we only consider F of the special form Ûs = f(s). We will consider the
discretization of such ODEs with respect to a fixed initial state.
• ⟨F (Ûs, s) = 0&B⟩ � 8i ∈I (ioi → Qi) — (Communication interrupt.) Behave as ⟨F (Ûs, s) = 0&B⟩

does, unless one or more events in {ioi }i ∈I occur before the continuous evolution terminates.
If a communication joj for some j occurs earlier than others, then the corresponding branch
is chosen to execute. If multiple communications in {ioi }i ∈I get ready simultaneously earlier
than others, then a non-deterministic choice will be made among them to decide which one
to execute.
– Note that the above two constructs are the main extension of HCSP for describing contin-

uous behaviors.
• P1∥P2∥ . . . ∥Pn (n ≥ 2)— Behave as if processes P1, P2, . . . , Pn run independently except that

all communications along their common channels must be synchronized.

Remark. The HCSP syntax we present above is only a subset of the HCSP in [40, 80]. To ease
the discretization process of HCSP, we put some restrictions on the syntax. For example, we adopt
Kleene star rather than general recursion for characterizing loops, and only allow parallel compo-
sitions to occur at the outermost level. There is no essential difficulty in expanding this work to
include the full set of HCSP , e.g., the general recursion handled in [85].

Example 2.3. For better understanding of HCSP, we model the water tank system [8], aiming at
maintaining its water level within desired boundaries, as an HCSP WTS composed of two parallel
components Watertank and Controller :

WTS def
= Watertank∥Controller

Watertank def
= v := v0;d := d0; (v = 1→ ⟨ Ûd = Qmax − πr2

√
2дd⟩ ⊵ (wl !d → cv?v);

v = 0→ ⟨ Ûd = −πr2
√
2дd⟩ ⊵ (wl !d → cv?v))∗

Controller def
= y := v0;x := d0; (wait p;wl?x ;x ≥ ub→ y := 0;x ≤ lb→ y := 1; cv!y)∗

where Qmax , π , r , д and p are constant system parameters, among which p is the period for Con-
troller to interact withWatertank. InWatertank, v is the control variable taking the value of either
1 or 0 depending on whether the valve is open or not, and d is the water level variable. Andv0 and
d0 are the initial values of the control and water level variables, respectively. In Controller, vari-
ables x and y are used to record the values of d and v from Watertank, respectively. Furthermore,
value transmissions are achieved via channelswl and cv .

The Controller works periodically. At the beginning of each period, it copies to x the value of
water level d via channelwl and then computes the new value of y. y takes the value of 1 if x ≥ ub
(the given upper bound), and 0 if x ≤ ub (the given lower bound). This new value is then sent back
tov inWatertank along channel cv . The above-mentioned actions are assumed to be instantaneous.
Then the water level d evolves following its own differential equation according to the status of
the valve v during this period.

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article 00. Publication date: 20XX.

00:8 G. Yan et al.

2.4 SystemC
SystemC is a system-level modeling language for hardware and software co-design. We choose
SystemC as the target language because it is widely adopted in the design of embedded systems,
thus more acceptable and practical. Moreover, its syntax and semantics are very close to HCSP’s,
e.g., the notion of time, communication and synchronization mechanisms, making the transfor-
mation between them more straightforward. We will give a brief introduction of SystemC in this
subsection, please refer to [45] for a comprehensive understanding of SystemC.

Syntax. SystemC is a C++ class library and thus follows an object-oriented design philosophy,
with most specific identifiers prefixed with SC_ or sc_ according to its naming convention. The
main method is named sc_main().

Modules are the basic blocks of a design hierarchy. A module is essentially a class containing
an SC_CTOR() (constructor) which initializes and connects sub-designs, registers processes, etc. It
often contains processes, ports, channels, events and helper functions as well.

Processes are member functions of modules, describing the actual functionality. There are two
types of processes, SC_METHOD (method) and SC_THREAD (thread). A method can be invoked
multiple times. Each time it begins and ends instantaneously. A thread, on the other hand, can be
invoked only one time, but it can suspend and continue according to the wait() function. All the
processes are orchestrated by the simulation kernel of SystemC.

Events ensure synchronization. To be specific, methods and threads waiting for an event will
start or continue simultaneously once it occurs.

Ports and channels support communication between modules. According to the data transfer di-
rection, there are sc_in, sc_out and sc_inout ports. The datatype of a port can be any C++, SystemC
or user-defined type. Channels connect ports of the same datatype, hence sub-designs are con-
nected. Data transmission is realized by calling methods of the channel such as read() and write().
One of the most commonly used channels is sc_signal⟨⟩.

Helper functions can be called by processes or other helper functions normally.
For better understanding, a simple example is depicted below. Within the declaration of the

module adder, a and b are input ports of integer type (line 3), sum is an output port of integer
type (line 4), and do_add() is a process writing the value of a + b into sum (line 5-7). In the
constructor, do_add is registered to the kernel as a method (line 9) with sensitive list a, b (line 10),
which means that the method do_add will start whenever a or b changes.

1 / / a s imp l e example o f adder
2 SC_MODULE(adder) { / / module d e c l a r a t i o n
3 s c_ in < in t > a , b ; / / i npu t p o r t s
4 sc_out < in t > sum ; / / ou tpu t p o r t s
5 vo id do_add () { / / p r o c e s s
6 sum . wr i t e (a . r ead () + b . r ead ()) ; / / adder
7 }
8 SC_CTOR (adder) { / / c o n s t r u c t o r
9 SC_METHOD(do_add) ; / / r e g i s t e r to k e r n e l

10 s e n s i t i v e << a << b ; / / s e n s i t i v i t y l i s t
11 }
12 } ;

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article 00. Publication date: 20XX.

Automatically Generating SystemC Code from HCSP Formal Models 00:9

Formal semantics. Unfortunately, no complete formal semantics for SystemC is given yet.
Some related work on the semantics of subsets of SystemC is listed below. In [56], a simulation
semantics of standard SystemC including basic SystemC operations and simulation scheduler is
defined based on abstract state machines, and is extended to more complex components in [34].
After that, operational semantics, denotational semantics and algebraic semantics of the standard
SystemC are studied in [57, 81–83]. But the problem is that some useful feature of SystemC such
as general function statements are not considered. Recently, an executable semantics for standard
SystemC is given based on guarded assignment systems in [74, 75] considering general function
statements as well. It fits our purpose to define a relation between HCSP and SystemC very well,
since guarded assignment systems are transition systems essentially. More details about the se-
mantics of HCSP and SystemC will be introduced in Sec. 3 and Sec. 6, respectively.

3 APPROXIMATE BISIMULATION OF HCSP
In this section, we introduce a new approximate bisimulation relation with two precisions over
transition systems inspired by [46] (Sec. 3.1), define the semantics of HCSP models based on tran-
sition systems (Sec. 3.2), and study the approximate bisimulation between two HCSP processes in
bounded and unbounded time, respectively (Sec. 3.3).

3.1 Approximate Bisimulation over Transition Systems
Let TSi = ⟨Qi , Li ,↠i ,Q

0
i ,Y ,Hi ⟩ (i = 1, 2) be two metric transition systems with the same output

set Y and metric d. Let h and ε be the time and value precisions, respectively.

Definition 3.1 (Approximate bisimulation). A relationBh,ε ⊆ Q1×Q2 is called an (h, ε)-approximate
bisimulation relation between TS1 and TS2, if for all (q1, q2) ∈ Bh,ε :
1. d(H1(q1),H2(q2)) ≤ ε ,
2. ∀q1

l↠1 q′1, ∃q2
l ′
==⇒2 q′2 s.t. dis(l, l ′) ≤ h and (q′1, q′2) ∈ Bh,ε , for l ∈ L1 and l ′ ∈ L2,

3. ∀q2
l↠2 q′2, ∃q1

l ′
==⇒1 q′1 s.t. dis(l, l ′) ≤ h and (q′1, q′2) ∈ Bh,ε , for l ∈ L2 and l ′ ∈ L1.

Intuitively, approximate bisimulation requires the difference of observation values of the pair
(q1, q2)must be within the tolerance ε . Besides, if one of them is capable to reach a state via a single
action, the other one can also reach a state via an action (possibly with sequences of τ before and
after it) such that the distance between the two actions is within the tolerance h and the pair of
derived states also satisfy the approximate bisimulation.

Definition 3.2. TS1 and TS2 are approximately bisimilar with precisionsh and ε , denoted TS1 �h,ε
TS2, if there exists an (h, ε)-approximate bisimulation relation Bh,ε satisfying that for all q1 ∈ Q0

1 ,
there exists q2 ∈ Q0

2 s.t. (q1, q2) ∈ Bh,ε and vice versa.

Now we can define the approximate bisimulation between two transition systems on time inter-
val [0,T], whereT ∈ R+ ∪ {+∞}. [0,T] is bounded ifT ∈ R+, and unbounded ifT = +∞. It is easy
to introduce a global clock for each transition system to record its execution time. The clock value
is increased by the value of the delay action once it is performed. We can check approximately
bisimulation between two transition systems on [0,T] by only considering transitions which keep
the global clock within the upper bound T .

For two (h, ε)-approximately bisimilar transition systems TS1 �h,ε TS2, it is easy to deduce
that Reach(TS1) ⊆ N (Reach(TS2), ε) and Reach(TS2) ⊆ N (Reach(TS1), ε) where N (Y , ε) denotes
the ε-neighborhood of Y , i.e., N (Y , ε) = ∪

y∈Y {x | d(x, y) ≤ ε}. As an immediate consequence,
this can be applied for safety verification of transition systems, especially whose reachable states
cannot be precisely computed. For example, if the distance between Reach(TS1) and an unsafe

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article 00. Publication date: 20XX.

00:10 G. Yan et al.

set YU is greater than ε , Reach(TS2) must be disjoint from YU and hence safe. As shown in the
rest of the paper, it is guaranteed that the original HCSP model, the discretized HCSP, and the
resulting SystemC code all satisfy approximate bisimulation. Thus safety is preserved during the
whole model transformation.

3.2 HCSP as Transition Systems
In this subsection we present an operational semantics of HCSP based on the notion of transition
system in order to investigate approximate bisimulation between different HCSP processes. We
will simply present its definition and give a few examples for better understanding. For more
details, readers are referred to [76, 77].

A transition system TS(S) = ⟨Q, L,→,Q0,Y ,H ⟩ can embed an HCSP S as follows:
• Q = (subp(S) ∪ {√}) × eval(S). Among them, subp(S) is the set of all the sub-processes of S

(i.e., all the processes occuring in S), and
√

is the terminal process. eval(S) = Var(S) → Val is
the set of evaluations of variables in S where Val is the value space. A (process) state means
an evaluation v instead of the state of the transition system. Besides, fst(q) and snd(q)mean
the first and second components of a given state q, respectively.
• L = R+0 ∪ InOut ∪ {τ }. R+0 stands for time delays, InOut for the set of input and output

communication events, and τ for a discrete action of HCSP such as assignment or evaluation
of Boolean expressions.
• Q0 = {(S,v) | v ∈ eval(S)}, meaning S is to execute from the initial process state v .
• Y = −→Val is the set of value vectors corresponding to Var(S).
• H (q) = vec(snd(q)) for q ∈ Q , where function vec returns the value vector corresponding to

the process state of q.
• → is the transition relation. A transition takes the form (P,v) l−→ (P ′,v ′), indicating that

process P executes to P ′ with v changing to v ′ by performing action l . It will be explained
in detail in the remainder of this subsection.

Given sequential processes P1, P2 with transition systems TS(P1) = ⟨Q1, L1,→1,Q
0
1,Y1,H1⟩

and TS(P2) = ⟨Q2, L2,→2,Q
0
2,Y2,H2⟩, we can define the parallel transition system TS(P1∥P2) =

⟨Q, L,→,Q0,Y ,H ⟩ where
• Q = ((subp(P1) ∪ {

√})∥(subp(P2) ∪ {
√})) × {v1 ⊎ v2 | v1 ∈ eval(P1),v2 ∈ eval(P2)}, where

given two sets of processes PS1 and PS2, PS1∥PS2 is defined as {α ∥β | α ∈ subp(PS1) ∧ β ∈
subp(PS2)}; v1 ⊎ v2 represents the disjoint union, i.e. v1 ⊎ v2(x) is v1(x) if x ∈ Var(P1),
otherwise v2(x). This operator is well-defined because of the syntax restriction of HCSP, i.e.
the processes in parallel do not share variables.
• L = L1 ∪ L2.
• Q0 = {(P1∥P2,v0

1 ⊎v0
2) | (Pi ,v0

i) ∈ Q0
i for i = 1, 2}.

• Y = Y1 × Y2.
• H (q) = H1(q) × H2(q).
• → is defined based on the parallel composition of transition relations of P1 and P2.

Below we present the transition rules (5), (6) for continuous evolution ⟨F (Ûs, s) = 0&B⟩, and (7)
for synchronization, for illustration.

(5) and (6) define the transition relation for the time evolution case and termination case, respec-
tively. In both rules,v denotes the initial state. For the evolution case (5), for any d ≥ 0 such that B
evaluates to true before d , the process can evolve for d time units according to F . S(·) : [0,d] → Rn

defines the trajectory of F with initial value v(s). And B holds under v[s 7→ S(t)], the state at t (by
substituting S(t) for s), for any t in [0,d). Afterd time units, the resulting process is ⟨F (Ûs, s) = 0&B⟩

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article 00. Publication date: 20XX.

Automatically Generating SystemC Code from HCSP Formal Models 00:11

with the new initial state updated to v[s 7→ S(p)], keeping the other variables unchanged. For the
termination case (6), B is false in current state v , so a τ - transition occurs leading to termination
of the continuous evolution.

∀d > 0.∃S(·) : [0,d] → Rn .(S(0) = v(s) ∧ (∀t ∈ [0,d).
(F (ÛS(t), S(t)) = 0 ∧v[s 7→ S(t)](B) = true)))

(⟨F (Ûs, s) = 0&B⟩,v) d−→ (⟨F (Ûs, s) = 0&B⟩,v[s 7→ S(d)])
(5)

v(B) = f alse

(⟨F (Ûs, s) = 0&B⟩,v) τ−→ (√,v) (6)

(7) defines the rule for communication synchronization. Suppose two transitions (P1,u)
α−→

(P ′1,u ′) and (P2,v)
β
−→ (P ′2,v ′) occur for P1 and P2, respectively. Let α be the receiving action

along some channel ch (i.e., α = ch?x), and β be the sending action along the same channel (i.e.,
β = ch!e), then the two actions in parallel will synchronize with each other, with an internal τ
transition produced for the composite transition system.

(P1,u)
ch?x−−−−→ (P ′1,u ′), (P2,v)

ch!e−−−−→ (P ′2,v ′)
(P1∥P2,u ⊎v)

τ−→ (P ′1∥P ′2,u ′ ⊎v ′)
(7)

3.3 Approximate bisimulation over HCSP processes
Let S1 and S2 be two HCSP processes, T ∈ R+ ∪ {+∞} the upper bound of execution time, h the
time precision, and ε the value precision.

Definition 3.3. S1 and S2 are called (h, ε)-approximately bisimilar on [0,T], denoted by S1 �h,ε S2
on [0,T], if TS(S1) �h,ε TS(S2) holds on [0,T] with an arbitrary initial state v0, where TS(S1) and
TS(S2) are the τ -compressed transition systems of S1 and S2, respectively.

We present Algorithm 1 for deciding whether two HCSP processes are approximately bisimilar
within a time interval. The inputs of the algorithm include two HCSP processes S1 and S2, the
initial state v0, the time and value precisions h and ε , and a time bound Tb . The output is either
true indicating S1 �h,ε S2 on [0,Tb], or false indicating that it does not hold. According to Def. 3.3,
the algorithmwill first construct the transition systems TS(S1) and TS(S2), and then check whether
TS(S1) �h,ε TS(S2) holds or not.

In the initialization phase, TS(Sm).Q0, the set of the initial states of the transition system TS(Sm),
is set to {(Sm,v0)}, and the set of transitions TS(Sm).T 0 is initialized as ∅, form = 1, 2. The iteration
index i is assigned to 0. The time step d is set to dε , the minimal step size such that the precision
ε is guaranteed for all ODEs in S1 and S2 (which will be presented in details in the subsequent
section).

The algorithm takes two steps. The first step (lines 1-6) constructs the sets of reachable states
and transitions of TS(S1) and TS(S2). The idea is to expand each set iteratively until reaching its
fixpoint. At the i-th iteration, starting from a current state q in TS(Sm).Q i , a new valid transition
with label l is returned by function ValidT(q). The new transition is added to TS(Sm).T i+1 (line
2), and its post state is added to TS(Sm).Q i+1 (line 3). The repetition stops when a fixed point is
reached, that is, TS(Sm).T i = TS(Sm).T i−1 (line 5). Then the state and transition sets TS(Sm).Q and
TS(Sm).T are obtained (line 6). The function ValidT, given a source state q, returns a transition
q

l↠ q′ if it is enabled for q, and furthermore, if l is a time delay, l must be equal or less than dε and
the global time after taking it must be within the boundTb . Note that l is strictly less than dε only
when the corresponding continuous evolution is interrupted or when the new global time reaches
Tb .

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article 00. Publication date: 20XX.

00:12 G. Yan et al.

Algorithm 1 AB(S1, S2,v0,h, ε,Tb) /* Deciding whether S1 and S2 are approximately bisimilar
within time Tb */
Input: Processes S1, S2; initial state v0; precisions h and ε ; time bound Tb ;
Initialization: /* Initialize the initial state and transition set of transition systems generated by S1 and S2,

the iteration index i , and step size dε s.t. the ε is guaranteed for all ODEs */
TS(Sm).Q0 ← {(Sm,v0)}, TS(Sm).T 0 ← ∅ form = 1, 2;
i ← 0; d ← dε ;

1: repeat
2: /* add new elements into TS(Sm).T and TS(Sm).Q until a fixed point is reached */

TS(Sm).T i+1 ← TS(Sm).T i ∪ {q
l↠ q′ | q ∈ TS(Sm).Qi ∧ q

l↠ q′ ∈ ValidT(q)};
3: TS(Sm).Qi+1 ← TS(Sm).Qi ∪ postState(TS(Sm).T i+1);
4: i ← i + 1;
5: until TS(Sm).T i = TS(Sm).T i−1
6: /* the final reachable states and transitions of TS(Sm) within Tb */

TS(Sm).Q ← TS(Sm).Qi ; TS(Sm).T ← TS(Sm).T i ;
7: /* Initialize the approximate bisimulation set for S1 and S2 */
B0
h,ε←{(q1,q2) ∈ TS(S1).Q × TS(S2).Q | d(H1(q1),H2(q2)) ≤ ε};

8: i ← 0;
9: repeat

10: /* remove the pairs of states violating the approximate bisimulation from Bih,ε until a fixed point is
reached */
Bi+1h,ε ← {(q1,q2) ∈ B

i
h,ε | AppSim(q1,q2,B

i
h,ε ,h) ∧ AppSim(q2,q1,B

i
h,ε ,h)};

11: i ← i + 1;
12: until Bih,ε = B

i−1
h,ε

13: /* the final maximal approximate bisimulation relation */
Bh,ε = Bih,ε ;

14: if ((S1,v0), (S2,v0)) ∈ Bh,ε then
15: return true;
16: else
17: return false;
18: end if

The second step (lines 7-18) checks whether S1 and S2 are approximately bisimilar with given
precisions based on Def. 3.1 and Def. 3.2. At the beginning, B0

h,ε stores all state pairs whose “dis-
tance” is not greater than ε (line 7), and the iteration index i is reset to 0 (line 8). Only the pairs satis-
fying approximate bisimulation are kept for the next iteration (lines 10-11).AppSim(q1,q2,Bi

h,ε ,h)

returns true if and only if for every transition q1
l↠1 q′1 ∈ TS(S1).T , there exists transition

q2
l ′
==⇒2 q′2 ∈ TS(S2).T such that (q′1,q′2) ∈ Bi

h,ε and dis(l, l ′) ≤ h. And AppSim(q2,q1,Bi
h,ε ,h)

works symmetrically. When a fixed point Bi
h,ε is reached (line 12), the final approximate bisimu-

lation relation Bh,ε (line 13) is exactly acquired. At last, the algorithm returns true if the pair of
the initial states of ((S1,v0), (S2,v0)) belongs to Bh,ε (line 14), indicating that S1 �h,ε S2 on [0,Tb]
(line 15), and false otherwise (line 16-17).

Now we consider the decidability problem under bounded time (Tb ∈ R+) and unbounded time
(Tb = +∞), respectively.

Bounded time. For a given time step d and a bounded time Tb , the transition systems derived
from S1 and S2 (i.e., TS(S1) and TS(S2)) are symbolic (or finite). Thus, we can conclude that Algo-
rithm 1 terminates, and thus whether S1 �h,ε S2 on [0,Tb] is decidable.

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article 00. Publication date: 20XX.

Automatically Generating SystemC Code from HCSP Formal Models 00:13

Theorem 3.4. Given two HCSP processes with the same initial statev0, it is decidable whether they
are approximately bisimilar on [0,T] where T ∈ R+ is an arbitrary real number.

Proof. Let the two HCSP processes be S1 and S2. TS(S1) and TS(S2) denotes the transition sys-
tems constructed according to Algorithm 1, with any given initial state v0.

We first claim that TS(S1) and TS(S2) are symbolic. As all ODEs in S1 and S2 are local Lipschitz,
based on the theories of numerical solutions to ODEs, we can compute a bound dε such that for
any discretization step d ≤ dε , the error on each discretization step and the total error on [0,T] are
smaller than the precision ε . A method of computing such dε is given in the subsequent section.
Since the number of τ and communication actions in S1 and S2 are finite, andT and d are positive
real numbers, we can conclude that TS(S1) and TS(S2) are both symbolic.

After that, we can compute a maximal approximate bisimulation relation between them with
given precisions h and ε . Then the problem whether TS(S1) and TS(S2) are (h, ε)-approximately
bisimilar depends on whether all the pairs of their initial states belong to the maximal approximate
bisimulation relation. As T is finite and the number of discrete actions is finite, Algorithm 1 will
terminate in a finite number of steps.

Thus, we can conclude that whether two HCSP processes are approximately bisimilar on [0,T]
is decidable. □

Unbounded time. ForTb = +∞, the transition systems derived from S1 and S2 are infinite and
the algorithm may not terminate any more. However, if we require that all the ODEs in S1 and
S2 satisfy the GAS condition (introduced in Sec. 2.1), the problem is still decidable. The basic idea
is to approximate the reachable states of S1 and S2 as finite sets. Suppose the ODEs occurring in
Sm are Fm1 , · · · , Fmkm and their equilibrium points are xm1 , · · · , xmkm , respectively, form = 1, 2. As a
result, for each ODE Fmj with j ∈ {1, · · · ,km}, there must exist a sufficiently largeTm

j such that the
distance between the trajectory and its equilibrium point xmj can be sufficiently small afterTm

j time.
Therefore, all the reachable states afterTm

j can be approximated as xmj and can be ignored without
affecting the result. So Algorithm 1 terminates and the problem whether two HCSP processes are
approximately bisimilar on [0,+∞] is decidable under the GAS assumption.

Theorem 3.5. Given two HCSP processes with the same initial state v0, if all the ODEs occurring
in them are GAS, it is decidable whether they are approximately bisimilar on [0,+∞].

Proof. Since the problem of deciding whether two HCSP processes under the GAS assumption
are approximately bisimilar on [0,+∞] can always be reduced to the problem whether they are
approximately bisimilar within a bounded interval (the latter problem is decidable from Theorem
3.4), we can conclude that Theorem 3.5 holds. □

4 DISCRETIZATION OF HCSP
Our approach to generating executable code from HCSP models proceeds in two phases: discretiz-
ing the HCSP model, and generating SystemC code from the discretized HCSP model. We mainly
focus on the first phase in this section, leaving the second one to be introduced in Sec. 6.

Benefiting from the compositionality, the discretization of HCSP processes can be realized by
defining a set of rules corresponding to its primitive constructs. As a result, discretizing an HCSP
can be done in a compositional manner. Let S be anHCSP,T ∈ R+∪{+∞} be the upper bound of the
execution time, and h and ε be the precisions for time and value, respectively. In the following, we
explain how to construct a discrete HCSP processDh,ε (S) from S such that S is (h, ε)-approximately
bisimilar toDh,ε (S) on the interval [0,T], i.e., S �h,ε Dh,ε (S) holds on [0,T].The crucial issue for the
discretization of HCSP processes is to represent the continuous dynamics by a discrete approxima-
tion. To achieve this, we firstly propose a method for discretizing ODEs within a bounded interval

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article 00. Publication date: 20XX.

00:14 G. Yan et al.

in Sec. 4.1. Then, discretizing HCSP processes in bounded and unbounded time are discussed in
Sec. 4.2 and Sec. 4.3, respectively. For better understanding, the approximate bisimulation relation
between HCSP and its discretization will be discussed in Sec. 5 individually.

4.1 Discretizing Continuous Dynamics in Bounded Time
As analytical solutions to differential equations are difficult and impossible in general to compute,
approximate solutions based on numeric computation become an alternative. Below we consider
the discretization of an ODE within a bounded time To ∈ R+.

The ODE under consideration is Ûx = f(x)with the initial condition x(t0) = x̃0, where x, x̃0 ∈ Rn ,
and X (t, x̃0) is assumed to be the solution of the initial value problem on the time interval [t0, t0 +
To]. In what follows, h and ξ respectively represent the discretized time step and the precision of
the discretization. In general ξ is less than the overall value precision ε for the processes under
consideration throughout.

There are many well-established methods for numerically solving ODEs [66], among which the
4-stage Runge-Kutta method is more effective with higher precision. The global discretization error
of it can be bounded byO(h4). By applying the 4-stage Runge-Kuttamethod, Ûx = f(x) on [t0, t0+To]
is discretized as

(wait h; x := x + hΦ(x,h))N ;wait h′; x := x + h′Φ(x,h′) (8)
where N = ⌊Toh ⌋, h′ = To−Nh, andΦ(x, s) = 1

6 (k1+2k2+2k3+k4)with k1 = f(x), k2 = f(x+ 1
2sk1),

k3 = f(x + 1
2sk2) and k4 = f(x + sk3). With the initial state x0 at h0 = t0, the obtained sequence of

approximate solutions {xi } at time stamps {hi } satisfies
x0, h0 = t0,
xi = xi−1 + hΦ(xi−1,h), hi = t0 + i ∗ h, 1 ≤ i ≤ N
xN+1 = xN + h

′Φ(xN ,h′), hN+1 = t0 +To, if Nh < To

(9)

Intuitively, To is divided into N intervals of length h and a possible residual interval of length h′.
Φ is used for computing the approximated value of x based on the values of the vector field at the
four points k1, k2, k3 and k4.

The discretization error at time hi is defined as ∥X (hi , x̃0) − xi ∥, i.e., the distance between the
exact solution and the approximate solution at hi . According to Theorem 7.2.2.3 in [66], the error
can be estimated as follows:

Proposition 4.1 (Global Error). Let L be the Lipschitz constant of the ODE Ûx = f(x) with the
initial condition x(t0) = x̃0, that is, for any compact set S of Rn , ∥f(y1) − f(y2)∥ ≤ L∥y1 − y2∥ for all
y1, y2 ∈ S . And x0 ∈ Rn is a state with ∥x0 − x̃0∥ ≤ ξ1. Then there exists a stepsize he > 0 s.t. for all
0 < h ≤ he and all i ≤ ⌈Toh ⌉, the global discretization error between X (hi , x̃0) and xi satisfies:

∥X (hi , x̃0) − xi ∥ ≤ M(h), (10)
where

M(h) = eLh
′−1
L C2(h′)4 + [1 + Lh′ + (Lh

′)2
2 +

(Lh′)3
4 +

(Lh′)4
24]MN (h), and

MN (h) = eNLhξ1 +
eNLh−1

L C1h
4.

(11)

Among them N = ⌊Toh ⌋, h′ = To−Nh, hi and xi are as defined in (9), andC1,C2 are positive constants
depending on the local discretization error of the 4-stage Runge-Kutta method.

Proof. For each i ≤ N , by Theorem 3 in [73] and Theorem 7.2.2.3 in [66], it follows that there
exists a stepsize he such that for all 0 < h ≤ he

∥X (hi , x̃0) − xi ∥ ≤ eNLhξ1 +
eNLh − 1

L
C1h

4

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article 00. Publication date: 20XX.

Automatically Generating SystemC Code from HCSP Formal Models 00:15

where C1 is a positive constant depending on the local discretization error of the 4-stage Runge-
Kutta method. In the following, we useMN (h) to denote the right side of the above inequality, i.e.,
MN (h) = eNLhξ1 +

eNLh−1
L C1h

4.
When i = N + 1, we introduce an auxiliary point x′N+1 = X (hN , x̃0)+h′Φ(X (hN , x̃0),h′), which

is the approximate solution toX (t, x̃0) at hN+1 starting fromX (hN , x̃0) by using the 4-stage Runge-
Kutta method with stepsize h′. Clearly

∥X (hN+1, x̃0) − x′N+1∥ ≤
eLh

′ − 1
L

C2(h′)4,

where C2 is a constant. As xN+1 = xN + h
′Φ(xN ,h′),

∥x′N+1 − xN+1∥ ≤ ∥X (hN , x̃0) − xN ∥ + h′∥Φ(X (hN , x̃0),h′) − Φ(xN ,h′)∥.

Let Φ(X (hN , x̃0)) = 1
6 (k1 + 2k2 + 2k3 +k4) and Φ(xN ,h′) =

1
6 (k ′1 + 2k ′2 + 2k ′3 +k ′4) according to the

definition of Φ(x, s). Based on the Lipschitz condition, ∥k1 − k ′1∥ ≤ L∥X (hN , x̃0) − xN ∥ ≤ LMN (h),
∥k2 − k ′2∥ ≤ L∥(X (hN , x̃0)) + h′

2 k1 − xN − h′
2 k
′
1∥ ≤ L∥(X (hN , x̃0)) − xN ∥ + Lh′

2 ∥k1 − k ′1∥ ≤ (1 +
Lh′
2)LMN (h), and analogously ∥k3 − k ′3∥ ≤ (1 + Lh′

2 +
(Lh′)2

4)LMN (h) and ∥k4 − k ′4∥ ≤ (1 + Lh′ +
(Lh′)2

2 +
(Lh′)3

4)LMN (h). Therefore

h′∥Φ(X (hN , x̃0),h′) − Φ′(xN ,h′)∥ = h′∥ k1+2k2+2k3+k46 − k ′1+2k
′
2+2k

′
3+k

′
4

6 ∥
≤ h′

6 (∥k1 − k ′1∥ + 2∥k2 − k ′2∥ + 2∥k3 − k ′3∥ + |k4 − k ′4∥)
≤ [Lh′ + (Lh

′)2
2 +

(Lh′)3
6 +

(Lh′)4
24]MN (h),

and

∥x′N+1 − xN+1∥ ≤ [1 + Lh′ +
(Lh′)2
2
+
(Lh′)3
6
+
(Lh′)4
24
]MN (h).

Hence we have
∥X (hN+1, x̃0) − xN+1∥ = ∥X (hN+1, x̃0) − x′N+1 + x′N+1 − xN+1∥

≤ ∥X (hN+1, x̃0) − x′N+1∥ + ∥x′N+1 − xN+1∥
≤ eLh

′−1
L C2(h′)4 + [1 + Lh′ + (Lh

′)2
2 +

(Lh′)3
6 +

(Lh′)4
24]MN (h).

Let M(h) denote eLh
′−1
L C2(h′)4 + [1 + Lh′ + (Lh

′)2
2 +

(Lh′)3
6 +

(Lh′)4
24]MN (h), the upper bound of

∥X (hN+1, x̃0) − xN+1∥, where h′ = To − ⌊Toh ⌋h.
As L > 0 and h′ ≥ 0, it is obvious that M(h) > MN (h). Therefore, for any 0 < h ≤ he and all

i ≤ ⌈Toh ⌉, the global discretization error between X (hi , x̃0) and xi can be bounded by M(h). This
completes the proof. □

By Proposition 4.1, we can prove that an ODE and its discretization are approximately bisimilar
on bounded time.

Theorem 4.2 (Correctness of Discretization of ODEs). Assume L is the Lipschitz constant
of the ODE Ûx = f(x) with the initial condition x(t0) = x̃0, and x0 the initial approximation satisfies
∥x0 − x̃0∥ ≤ ξ1. For any precision ξ > ξ1 > 0, there exists h > 0 s.t.

Ûx = f(x), x(t0) = x̃0. (12)

and
x := x0; (wait h; x := x + hΦ(x,h))N ;wait h′; x := x + h′Φ(x,h′) (13)

are (h, ξ)-approximately bisimilar on [t0, t0 +To], where N = ⌊Toh ⌋ and h′ = To − Nh.

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article 00. Publication date: 20XX.

00:16 G. Yan et al.

Proof. For convenience, P and DP are used to denote the transition systems of the ODE and
its discrete result over [t0, t0 + To], respectively. P has infinitely many states {X (t, x̃0) | t ∈
[t0, t0 +To]} and transitions {X (t, x̃0)

t ′−t↠ P X (t ′, x̃0) | t < t ′}. DP , on the contrary, has finite num-
ber of states {xi }0≤i≤N+1 and transitions {xi

h↠DP xi }0≤i≤N ∪ {xN+1
h′↠DP xN+1}

∪{xi 0↠DP

xi }1≤i≤N+1
∪{xi τ↠DP xi+1}0≤i≤N . Here h′ is assumed to be positive without loss of generality.

Let Bh,ξ = {(X (t0, x̃0), x0)} ∪ {(X (ti , x̃0), xi+1) | ti ∈ (hi ,hi+1] ∧ 0 ≤ i ≤ ⌈Toh ⌉ − 1}. This means
that the exact values X (ti , x̃0) where t ∈ (hi ,hi+1] are all approximated as the discrete value xi+1.
The subscription i of ti emphasizes the fact that ti is from the i-th interval (hi ,hi + 1]. Especially,
x̃0 is approximated as x0.

We first prove there exists suchh that ∥X (ti , x̃0)−xi+1∥ ≤ ξ for each pair (X (ti , x̃0), xi+1) ∈ Bh,ξ .
Firstly we have ∥X (ti , x̃0) − xi+1∥ ≤ ∥X (ti , x̃0) − X (hi+1, x̃0)∥ + ∥X (hi+1, x̃0) − xi+1∥. If ti = hi+1,
∥X (ti , x̃0)−X (hi+1, x̃0)∥ = 0. For ti < hi+1, since the functionX (t, x̃0) is continuous on [ti ,hi+1] and
differentiable on (ti ,hi+1) (byTheorem (7.1.1) of [66]), there always exists some t ′i ∈ (ti ,hi+1) such
that f(X (t ′i , x̃0)) =

X (hi+1,x̃0)−X (ti ,x̃0)
hi+1−ti . So we have ∥X (hi+1, x̃0)−X (ti , x̃0)∥ = (hi+1−ti)∥f(X (t ′i , x̃0))∥.

Let Dm denote max ∥f(X (t, x̃0)∥ on [t0, t0 + To]. If Dm = 0, f(X (t, x̃0)) = 0 on [t0, t0 + To] and
∥X (hi+1, x̃0) − X (ti , x̃0)∥ = 0. If Dm > 0, choose h ≤ h1 =

ξ−ξ1
2Dm

, then ∥X (hi+1, x̃0) − X (ti , x̃0)∥ ≤
(hi+1 − ti)Dm <

ξ−ξ1
2 for all i and all ti . And from Proposition 4.1, ∥X (hi+1, x̃0) − xi+1∥ ≤ M(h).

M(h) tends to ξ1 as h → 0, so there exists h2 such that M(h) < ξ+ξ1
2 for h ≤ h2.

Therefore, choose h = min{h1,h2}, then the “distance” between X (ti , x̃0) and xi+1 for all i and
all ti can be bounded by ∥X (ti , x̃0) − xi+1∥ < ξ−ξ1

2 +
ξ+ξ1
2 = ξ .

Below we prove that the relation Bh,ξ is a bisimulation relation between P and DP .

Consider the transition X (t, x̃0)
t ′−t↠ P X (t ′, x̃0) in P . If t ′ and t are from the same interval

(hi ,hi+1], the corresponding transition of DP should be xi
0↠D(P) xi . Obviously the distance is

t ′ − t < h. If t ′ is from a different interval (hj ,hj+1], the corresponding compressed transition

should be xi+1
(j−i)h
=====⇒DP xj+1. Here the distance |(t ′ − t) − (j − i)h | < h.

For xi
0↠DP xi , transitions in P are X (hi−1 + δ , x̃0)

h−δ↠ P X (hi , x̃0). For xi
τ↠DP xi+1, transitions

are X (hi , x̃0)
δ↠P X (hi + δ , x̃0). For xi

h↠DP xi (resp. xN
h′↠DP xN) transitions are X (hi−1 +

δ , x̃0)
h−δ↠ P X (hi , x̃0) (resp. X (hN−1 + δ , x̃0)

h′−δ↠ P X (hN , x̃0)).
In conclusion P and DP are (h, ξ)-approximately bisimilar on [t0, t0 +To]. □

4.2 Discretization of HCSP in Bounded Time
We continue to consider the discretization of HCSP processes. Below, we denote Dh,ε (S) by the
discretized process of S with time step h and value precision ε . Dh,ε (S)within timeT ∈ R+ is listed
in Table 2, with the original process above the line and the discretized one below for each rule. Gen-
erally, the discretization of ODEs is as in the previous section. We replace the guard B with N (B, ε),
a Boolean expression that holds in the ε-neighborhood of B, i.e., N (B, ε) = ∪

y∈B {x|d(x, y) ≤ ε}.
For instance, N (x > 2, ε) is x > 2 − ε . When B is true, N (B, ε) is also true. We also test whether
N (B, ε) holds for the next discretized step, i.e., N ′(B, ε) := N (B, ε)[x 7→ x+hΦ(x,h)]. Thus, the dis-
cretized process will terminate in accord with the original continuous evolution. Besides, Boolean
variables ch? and ch! are introduced for each channel ch to represent the readiness of the input and
output events. Let ch∗ be the dual of ch∗, e.g., if ch∗ = ch?, then ch∗ = ch! and vice versa. We use#i ∈I (ioi := 1) to represent the sequential composition of setting all the readiness variables ioi in I

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article 00. Publication date: 20XX.

Automatically Generating SystemC Code from HCSP Formal Models 00:17

skip
skip

stop
stop

x := e
x := e

wait d
wait d

ch?x
ch? := 1; ch?x ; ch? := 0

ch!e
ch! := 1; ch!e; ch! := 08i ∈I (ioi → Qi)#i ∈I (ioi := 1); 8i ∈I (ioi → (#i ∈I (ioi := 0);Dh,ε (Qi)))

P ;Q
Dh,ε (P);Dh,ε (Q)

B → P
B → Dh,ε (P)

P ⊓Q
Dh,ε (P) ⊓ Dh,ε (Q)

P∗
(Dh,ε (P))∗

P ∥Q
Dh,ε (P)∥Dh,ε (Q)

⟨Ûx = f(x)&B⟩
(N (B, ε) ∧ N ′(B, ε) → (wait h; x := x + hΦ(x,h))) ⌊

T
h ⌋ ;

N (B, ε) ∧ N ′(B, ε) → (wait h′; x := x + h′Φ(x,h′));
N (B, ε) ∧ N ′(B, ε) → stop

⟨Ûx = f(x)&B⟩ � 8i ∈I (ioi → Qi)#i ∈I (ioi := 1);
(N (B, ε) ∧ N ′(B, ε) ∧ ∧i ∈I (ioi ∧ ¬ioi) → (wait h; x := x + hΦ(x,h))) ⌊

T
h ⌋ ;

(N (B, ε) ∧ N ′(B, ε) ∧ ∧i ∈I (ioi ∧ ¬ioi) → (wait h′; x := x + h′Φ(x,h′)));
¬(N (B, ε) ∧ N ′(B, ε)) ∧ ∧i ∈I (ioi ∧ ¬ioi) → #i ∈I (ioi := 0);
∨i ∈I (ioi ∧ ioi) → (8i ∈I (ioi → (#i ∈I (ioi := 0);Dh,ε (Qi))));

(N (B, ε) ∧ N ′(B, ε) ∧ ∧i ∈I (ioi ∧ ¬ioi)) → stop

Table 2. The rules for discretization of HCSP in bounded time.

to 1, that is, io1 := 1; . . . ; io |I | := 1. And #i ∈I (ioi := 0) is defined similarly. Details are explained as
follows:
• skip, stop, x := e and wait d remain unchanged, as they do not need discretization.
• The input process ch?x is discretized as: set ch? to 1 (ready); read; reset ch? to 0 (not ready).

The output process ch!e is handled in the same way.
• For 8i ∈I (ioi → Qi), similarly, first set to 1 all the readiness variables of {ioi }i ∈I , and reset

them to 0 as soon as one of them occurs, followed by the discretized result of the correspond-
ing sequential process Qi .
• Compound constructs including sequential composition P ;Q , alternative construct B → P ,

internal choice P ⊓Q , repetition P∗ and parallel composition P ∥Q are discretized recursively.
• The continuous statement ⟨Ûx = f(x)&B⟩ is discretized on [0,T] by Theorem 4.2. When the
N (B, ε)- and N ′(B, ε)-neighborhood guards hold, assign x +hΦ(x,h) to x every h time units
for ⌊Th ⌋ times, and then assign x + h′Φ(x,h′) to x for the residual interval [⌊Th ⌋h,T]. If the
two guards still hold after that, we use stop to terminate the whole process. Otherwise, if
N (B, ε)∧N ′(B, ε) turns false beforeT (near the exact termination time point, which is guaran-
teed by the robustly-safe requirement discussed in the next section), x will keep unchanged
and the discretized process terminates.
• The communication interrupt ⟨Ûx = f(x)&B⟩ � 8i ∈I (ioi → Qi) can be discretized similarly.
At the beginning, all the readiness variables corresponding to {ioi }I are set to 1. Act as the
discretized ⟨Ûx = f(x)&B⟩ does when there occurs no communications. If the two neighbor-
hood guards are violated but no communication gets ready, the process will terminate and

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article 00. Publication date: 20XX.

00:18 G. Yan et al.

all its readiness variables are reset to 0. If some ioi occur, take an external choice and go on
to the corresponding discretized Qi .

Example 4.3. Following the rules in Table 2, a discretized system WTSh,ε of the water tank sys-
tem in Example 2.3 is obtained as follows:

WTSh,ε
def
= Watertankh,ε ∥Controllerh,ε

Watertankh,ε
def
= v := v0;d := d0;

(v = 1→ (wl ! := 1; (wl ! ∧ ¬wl?→ (wait h;d = d + hΦ(x,h))) ⌊ Th ⌋ ;
wl ! ∧ ¬wl?→ (wait h′;d = d + h′Φ(x,h′));
wl ! ∧wl?→ (wl !d;wl ! := 0; cv? := 1; cv?v; cv? := 0);
wl ! ∧ ¬wl?→ stop);
v = 0→ (wl ! := 1; (wl ! ∧ ¬wl?→ (wait h;d = d + hΦ(x,h))) ⌊ Th ⌋ ;
wl ! ∧ ¬wl?→ (wait h′;d = d + h′Φ(x,h′));
wl ! ∧wl?→ (wl !d;wl ! := 0; cv? := 1; cv?v; cv? := 0);
wl ! ∧ ¬wl?→ stop))∗

Controllerh,ε
def
= y := v0;x := d0; (wait p;wl? := 1;wl?x ;wl? := 0;

x ≥ ub → y := 0;x ≤ lb → y := 1; cv! := 1; cv!y; cv! := 0)∗

4.3 Discretization of HCSP in Unbounded Time
In the unbounded time case, we require that all ODEs satisfy the GAS condition. Actually, most
rules are the same as in bounded time, except for those containing ODEs, i.e. continuous evolution
and continuous interrupt, shown in Table 3.

Here we take as an example the continuous evolution ⟨Ûx = f(x)&B⟩. If Ûx = f(x) is GAS, there
must exist a sufficiently large Tet called equilibrium time after which the distance between the
actual trajectory and the equilibrium point x̄ is less than ε . Therefore, it turns to the bounded time
case with time boundTet , except that the value of the continuous evolution is approximated by its
equilibrium point x̄ after Tet . The communication interrupt is handled similarly.

5 CORRECTNESS OF THE DISCRETIZATION
In this section, we consider the correctness of the discretization investigated in the previous sec-
tion, i.e., whether the discretized HCSP Dh,ε (S) defined as above (Sec. 4) is approximately bisimilar
to the original HCSP S in given time step and value precision. This is hard to be held in general, as
the precisions, however small, may lead to different control flows when executing S and Dh,ε (S).
To avoid this, we need to put on S an extra condition called robustly safety. Below we will first
present the notion of robustly safety, then propose an algorithm for calculating the robustly-safe
parameters for a given HCSP, and finally investigate the approximate bisimulation between HCSP
and its discretization under this condition.

5.1 Robustly Safe Processes
Boolean conditions are contained in three kinds of constructs, B → P , ⟨Ûx = f(x)&B⟩ and ⟨Ûx =
f(x)&B⟩ � 8i ∈I (ioi → Qi). In each case, execution decisions are made depending on the truth
values of the Boolean condition B. Intuitively speaking, S and Dh,ε (S) are expected to make the
same choice at proximate timepoints if they start executing from the same initial state. Especially,

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article 00. Publication date: 20XX.

Automatically Generating SystemC Code from HCSP Formal Models 00:19

⟨Ûx = f(x)&B⟩
(N (B, ε) ∧ N ′(B, ε) → (wait h; x := x + hΦ(x,h))) ⌊

Tet
h ⌋ ;

N (B, ε) ∧ N ′(B, ε) → (wait h′; x := x + h′Φ(x,h′));
N (B, ε) ∧ N ′(B, ε) → (x = x̄; stop)

⟨Ûx = f(x)&B⟩ � 8i ∈I (ioi → Qi)#i ∈I (ioi := 1);
(N (B, ε) ∧ N ′(B, ε) ∧ ∧i ∈I (ioi ∧ ¬ioi) → (wait h; x := x + hΦ(x,h))) ⌊

Tet
h ⌋ ;

(N (B, ε) ∧ N ′(B, ε) ∧ ∧i ∈I (ioi ∧ ¬ioi) → (wait h′; x := x + h′Φ(x,h′)));
¬(N (B, ε) ∧ N ′(B, ε)) ∧ ∧i ∈I (ioi ∧ ¬ioi) → #i ∈I (ioi := 0);
∨i ∈I (ioi ∧ ioi) → (8i ∈I (ioi → (#i ∈I (ioi := 0);Dh,ε (Qi))));
(N (B, ε) ∧ N ′(B, ε) ∧ ∧i ∈I (ioi ∧ ¬ioi)) → (x = x̄; stop)

Table 3. The rules for discretization of HCSP in unbounded time.

for ⟨Ûx = f(x)&B⟩, any violation of the boundary condition should be consistent in both the original
and the discretized version. To this end we propose the (δ , ϵ)-robustly safe condition.

Let ϵ > 0 be a precision.The ϵ-neighbourhood of a pointv is denoted asU (v, ϵ) = {y | d(y,v) <
ϵ}. The (−ϵ)-neighborhood of a formula φ is denoted as N (φ,−ϵ) = {x ∈ φ | ∀y ∈ ¬φ .∥x−y∥ > ϵ}.
Intuitively, x ∈ N (φ,−ϵ)means that x is insideφ and that the distance between x andφ’s boundary
is greater than ϵ .

Definition 5.1 ((δ , ϵ)-robustly safe). Let δ > 0 and ϵ > 0 be the time and value precisions, re-
spectively. An HCSP S is (δ , ϵ)-robustly safe w.r.t. a given initial state v0, if the following two
conditions hold:

(a) for every alternative process B → P with B depending on continuous variables in S , the
state v right before B → P satisfies v ∈ N (B,−ϵ) ∪ N (¬B,−ϵ);

(b) for every continuous evolution ⟨Ûx = f(x)&B⟩ which ends up in state v at t because of the
violation of B (hence v(B) = false), there exists t̂ ∈ (t, t + δ) s.t. U (v[x 7→ X (̂t, x̃0)], ϵ) ⊆
N (¬B,−ϵ), where x̃0 denotes the initial value of the ODE.

S is said to be (δ , ϵ)-robustly safe if it is (δ , ϵ)-robustly safe w.r.t. any initial state.

Condition (a) means that, when entering B → P , the actual state v should fall into the (−ϵ)-
neighborhood of B or ¬B. Thus if v ∈ N (B,−ϵ) (or v ∈ N (¬B,−ϵ)) and the value precision of the
discretization ε < ϵ , the discrete statev ′ with d(v,v ′) ≤ ε is also in B (or ¬B). Condition (b) means
that, in less than δ time after B is violated, the ODE will reach a state in ¬B which is more than 2ϵ
far away from B’s boundary. So, if h < δ < 2h and ε < ϵ , (δ , ϵ)-robustly safety guarantees that any
violation of the boundary condition in the continuous evolution to be detected in the discretized
process, in a time bounded by h, and therefore the continuous and the discrete processes are (h, ε)-
approximately bisimilar.

Example 5.2. For a better understanding, we illustrate the satisfiability and violation of (δ , ϵ)-
robustly safe condition for two continuous statements in Fig. 1. As shown in the figure, suppose
the Boolean condition B in all ⟨Ûx = f1(x)&B⟩, ⟨Ûx = f2(x)&B⟩ and ⟨Ûx = f3(x)&B⟩ turns f alse at
time t1, meaning that the three continuous statements will terminate at t1. Consider the discretized
processes for them according to Table 2 with the value precision ε less than ϵ and the time preci-
sion h in (δ2 , δ). Then we hope that the corresponding discretized process for either f1, f2 and f3

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article 00. Publication date: 20XX.

00:20 G. Yan et al.

 ×

√

 ×

Fig. 1. The examples of (δ , ϵ)-robustly safe continuous statements (Color figure online).

terminates at a time close to t1, i.e. the distance between it and t1 should be less than the given time
precision h. From the above explanation, it is required that the ODE in the continuous statements
should step forward for at least 2ϵ distance within δ . As shown in Fig. 1, ⟨Ûx = f1(x)&B⟩ satisfies
(δ , ϵ)-robustly safety, ⟨Ûx = f3(x)&B⟩ violates the time constraint, and ⟨Ûx = f2(x)&B⟩ violates the
value constraint.

We have the following theorem for robustly safe processes.

Theorem 5.3. (1) If S is (δ , ϵ)-robustly safe w.r.t. an initial state v0, then S is (δ , ϵ ′)-robustly safe
w.r.t. v0, for any 0 < ϵ ′ < ϵ .
(2) If S is (δ , ϵ)-robustly safe w.r.t. v0, then S is (δ ′, ϵ)-robustly safe w.r.t. v0, for any δ ′ > δ .

Proof. (1) δ is fixed. (a) Since S is (δ , ϵ)-robustly safe, v ∈ N (B,−ϵ) ∪ N (¬B,−ϵ). As ϵ ′ < ϵ , we
have N (B,−ϵ) ⊂ N (B,−ϵ ′) and N (¬B,−ϵ) ⊂ N (¬B,−ϵ ′), so obviouslyv ∈ N (B,−ϵ ′)∪N (¬B,−ϵ ′).
(b) Let t̂ ′ = t̂ , then we have U (v[x 7→ X (̂t ′, x̃0)], ϵ ′) ⊂ U (v[x 7→ X (̂t, x̃0)], ϵ) ⊆ N (¬B,−ϵ) ⊆
N (¬B,−ϵ ′). (2) ϵ is fixed. (a) The first condition has nothing to do with δ , and naturally holds for
any δ ′ > δ . (b) Choose t̂ ′ = t̂ . Obviously t̂ ′ ∈ (t, t + δ ′). So the condition is satisfied. □

Theorem 5.3 indicates the fact that a given HCSP S is (δ , ϵ)-robustly safe for any δ ≥ δmin

and ϵ ≤ ϵmax if there exists δmin and ϵmax such that it is (δmin, ϵmax)-robustly safe. Next we will
present algorithms for returning the valid scopes of δ and ϵ by computing the values of δmin and
ϵmax, given an HCSP with an initial state.

5.2 Computing Parameters ϵ and δ

By Def. 5.1, we first compute the value of ϵ based on the Boolean conditions of the alternative
constructs (that is, those Bi ’s in Bi → Pi , see Alg. 2), and then the value of δ based on the calculated
ϵ and the domain conditions of the continuous evolutions (the Bi ’s in Alg. 3).

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article 00. Publication date: 20XX.

Automatically Generating SystemC Code from HCSP Formal Models 00:21

Algorithm 2 Com_ϵ(S,v0) /* Computing the scope of ϵ */
Input: Process S and its initial state v0;
1: c = +∞; /* The upper bound of ϵ is initialized to +∞ */

/* Find the minimal upper bound from all alternative statements in S */
2: for all S ′i ;Bi → Pi in S do
3: ci = Findminimum e s.t. /* Compute the upper bound of ϵi (i.e., ci) for a specific alternative

statement */ 
d(vi ,bi) = e,where
vi ∈ RS(v0, S

′
i),

bi ∈ boundary(Bi ,vi);

4: c = min(c, ci); /* Update the upper bound of ϵ */
5: end for
6: return ϵ ≤ c; /* Return the scope of ϵ */

Computing ϵ . The inputs are the process S and the initial state v0 in Alg. 2. The local variable
c with initial value +∞ is introduced to record the upper bound of ϵ (line 1). For every alternative
statement Bi → Pi with S ′i being the subprocess before it (line 2), we first compute ci to be the
minimal distance between vi , a reachable state after executing S ′i from v0, and bi , a state on the
boundary of Bi under the statevi (line 3), and then update c with the smaller one between current
c and ci (line 4). Here the computation of ci can be reduced to a constrained optimization problem.
And the reachable set is returned by the function RS() using simulation methods, since it is difficult
to compute and even not computable in general when ODEs are involved. Moreover, the function
boundary() returns the boundary of Bi under a given state by computing the range of all variables
contained in Bi . For instance, boundary(B,v) returns x = 1&y = 1 for B = x > 1&y > 1 for any v .
After all alternative constructs are traversed, ϵ ≤ c , the valid scope, is finally returned (line 6).

Notably, the error introduced by RS() during simulation should be small enough such that the
reachable state of the previous subprocess will not overlap with the boundary of the Boolean
condition, or ci will be 0 causing the whole algorithm to fail.

Computing δ . As discussed previously, for a fixed ϵ , the distance betweenX (̂t, x̃0) andX (t, x̃0)
should be at least 2ϵ . Furthermore, by requiring that the continuous evolution keeps monotonic till
t̂ is found after B turns false, the existence of t̂ is guaranteed, satisfying the robustly-safe condition
in Def. 5.1.

Based on this idea, the procedure of calculating δ when ϵ is given is presented in Alg. 3. The
skeleton of Alg. 3 is quite similar to Alg. 2. Firstly, the local variable d , for recording the lower
bound of δ , is initialized to 0 (line 1). For each continuous statement with Bi . true (line 2), the
computation of the lower bound for di can be reduced to a constrained optimization problem (line
3). After that, we update d as the maximal value between di and the current value of d (line 4).
Finally, δ ≥ d is returned (line 6).

The formulas between line 3 and line 4 are used to determine the lower bound of di . Xi (t,vi)
stands for the solution of the continuous evolution with respect to initial statevi . We first compute
two time points, ti and t̂i , s.t. with respect to the initial statevi , the value ofBi at ti becomes false for
the first time, and the distance between Xi (t̂i ,vi) and Xi (ti ,vi) is greater than 2ϵ , and the solution
between these two points is monotonic; then by searching the maximal value of ∥fi (Xi (t ′i ,vi))∥ by
ranging t ′i in [ti , t̂i], we can get the minimal precision di satisfying the robustly safe property.

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article 00. Publication date: 20XX.

00:22 G. Yan et al.

Algorithm 3 Com_δ (S,v0, ϵ) /* Computing the scope of δ */
Input: Process S and the value parameter ϵ ;
1: d = 0; /* The lower bound of δ is initialized to 0 */

/* Find the maximal lower bound from all continuous statements in S */
2: for all S ′i ; ⟨ Ûxi = fi (xi)&Bi ⟩ in S with Bi . true do
3: di = Findminimum e s.t. /* Compute the lower bound of δi (i.e.,di) for a specific continuous

statement */ 

2ϵ

∥fi (Xi (t ′i ,vi))∥
= e,

Bi [xi 7→ Xi (ti ,vi)] = false,

∥Xi (ti ,vi) − Xi (t̂i ,vi)∥ ≥ 2ϵ,

for each t ∈ [ti , t̂i], fi (Xi (t,vi)) > 0 or fi (Xi (t,vi)) < 0

ÛXi (t,vi) = fi (Xi (t,vi)), for some ti , t̂i ∈ R, where
vi ∈ RS(v0, S

′
i),

t ′i ∈ [ti , t̂i],
t ∈ R;

4: d = max(d,di); /* Update the upper bound of δ */
5: end for
6: return δ ≥ d ; /* Return the scope of δ */

5.3 Approximate Bisimulation between HCSP and the Disretization
Based on the assumption of robustly safe, the main theorems on the approximate bisimulation
between an HCSP and its discretization are presented for both the bounded and unbounded sce-
narios.

Theorem 5.4 (Bounded time). Let S be an HCSP and v0 any initial state at time 0. Assume S
is (δ , ϵ)-robustly safe with respect to v0, and for any ODE Ûx = f(x) occurring in S , f is Lipschitz
continuous. Let ε ∈ (0, ϵ) be a precision and T ∈ R+ a bounded time. When δ = 0, if h makes
Theorem 4.2 hold, then S �h,ε Dh,ε (S) holds on [0,T]. If δ > 0 and there exists h ∈ (δ2 , δ) such that
Theorem 4.2 holds, we can also conclude that S �h,ε Dh,ε (S) on [0,T].

Before presenting the proof, we have two points to explain for the theorem.
Firstly, h must be sufficiently small to meet the requirements in Theorem 4.2, i.e. h < hmax for

some hmax . When δ = 0, such an h can always be found. But when δ > 0, h should also be in the
interval (δ2 , δ) derived from the assumption of (δ , ϵ)-robustly safety. If the two intervals (0,hmax)
and (δ2 , δ) are disjoint, h does not exist. This happens when at least one ODE in S fails to leave far
enough away from the boundary of its domain B in a limited time, just like the ODE ⟨Ûx = f2(x)&B⟩
shown in Fig. 1.

Secondly, we point out emphatically the execution of each ODE occurring in S . If it terminates
before time T because of the violation of the domain condition B, its successive processes will be
continued to be executed, one by one, until time reachesT ; Otherwise, its execution afterT along
with the executions of its successive processes will be disregarded.

Below we give a proof of Theorem 5.4.

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article 00. Publication date: 20XX.

Automatically Generating SystemC Code from HCSP Formal Models 00:23

Proof. Let t1 and t2 be the time points right before and after P executes in S , and σ1 and σ2 be
the states at t1 and t2. Similarly, td1 and td2 are for the time points right before and after Dh,ε (P)
executes in Dh,ε (S), and σd1 and σd2 for the states correspondingly. We denote d(σ1,σd1) by ε1, and
d(σ2,σd2) by ε2.

We will first prove that ε2 ≤ Kε1 for some constant K , and the time difference (if exists) is no
more than h. This is given by structural induction on P .

• Cases P = skip and P = stop: Obviously ε2 = ε1 since no variable is changed.
• Case P = wait d : Also ε2 = ε1.
• Case P = (x := e): Suppose e is of the functional form f (x1, · · · , xn). After the assign-

ment, only the value of x is changed, that is, σ2(x) = f (σ1(x1), · · · ,σ1(xn)) and σd2 (x) =
f (σd1 (x1), · · · ,σd1 (xn)). Let δi = σd1 (xi) − σ1(xi), and we have |δi | ≤ ε1 for i = 1, . . . ,n, since
d is the Euclidian distance. Without loss of generality we suppose x is x1. By the Lagrange
Mean Value Theorem, there exists θ ∈ (0, 1) such that σd2 (x) − σ2(x) =

∑n
i=1

∂f
∂xi
(σ1(xi) +

θδi)δi . So |σd2 (x)−σ2(x)| ≤
∑n

i=1 |
∂f
∂xi
(σ1(xi)+θδi)|·|δi | ≤ nMε1, whereM = max{| ∂f∂xi

(σ1(xi)+
θδi)| | θ ∈ (0, 1), δi ∈ [−ε1, ε1], i ∈ {1, . . . ,n}}. M exists because ∂f

∂xi
is bounded in the in-

terval (σ1(xi) − ε1,σ1(xi) + ε1) for each i . Therefore ε2 =
√
|σd2 (x) − σ2(x)|2 +

∑n
i=2 δ

2
i ≤√

n2M2 + n − 1 · ε1.
• Case P = ch!e: Recall that the discretized process is ch! := 1; ch!x ; ch! := 0. Notice that

the auxiliary readiness variable ch! does not introduce errors. If there is a deadlock, the
communication will never be enabled. Otherwise, it takes zero or more time before the com-
munication actually occurs, letting time advance by the same amount for both processes. No
variable is changed as a consequence of an output, thus ε2 = ε1.
• Case P = ch?x : Time analysis is the same as in case P = ch!x . The difference is that, when

the communication actually occurs, the value of x is changed as in case P = (x := e), so the
result is the same, i.e., ε2 ≤

√
n2M2 + n − 1 · ε1.

• Case P = Q;Q ′: By the induction hypothesis, the intermediate error satisfies εm ≤ KQε1 and
ε2 ≤ KQ ′εm . Therefore ε2 ≤ KQ ′εm ≤ KQKQ ′ε1.
• Case P = Q∗: As num(Q∗) is the upper bound of the number of repetitions of Q (defined in

Sec. 2.3), we have ε2 ≤ K
num(Q∗)
Q ε1 based on the previous case.

• Case P = Q ⊓ Q ′: Let both processes make the same choice, that is, to choose both Q and
Dh,ε (Q), or bothQ ′ andDh,ε (Q ′). By the induction hypothesis, we have ε2 ≤ max{KQ ,KQ ′}ε1.
• Case P = B → Q : Suppose ε1 < ε . (This can always be realized by choosing anh small enough

based on the hypothesis that ε1 ≤ Dh.) Then we have ε1 < ϵ since ε < ϵ . When σ1(B) is true,
σd1 (B) is also true, because σ1 and β1 are close enough to satisfy the first condition in robustly
safety, thenQ and Dh,ε (Q)will be executed afterwards, with ε2 ≤ KQε1. When σ1(B) is false,
σd1 (B) is also false for the same reason, then both terminate immediately with ε2 = ε1.
• Case P = ⟨Ûx = f(x)&B⟩: Recall that the trajectory X (t,σ1(x)) starts with the initial value
σ1(x) at t1. Let the timing sequence be {ti = t1 + (i − 1)h}i≥1. Suppose B turns false for the
first time at tf ∈ (tN , tN+1] (N = +∞ when B ≡ true). Clearly N (B, ε) is true at t1, t2, …, tN .
Besides, the value of N ′(B, ε) atT , i.e. the value of N (B, ε) at tN+1, is also true , from the fact
that the discrete value falls in the ε neighborhood of some t ≤ tf when B is true. (similar to
the proof for Theorem 4.2). But N (B, ε) = false at tN+2, according to the definition of (δ , ϵ)-
robustly safe. If T < tN+1, it is just the same as the situation in Theorem 4.2. If T ≥ tN+1,
Dh,ε (P) does nothing after tN+1, while P does nothing after tf . |tf − tN+1 | < h, and there
exists some K such that d(X (tf ,σ1(x)), xN+1) ≤ Kε1 holds by Theorem 4.2.

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article 00. Publication date: 20XX.

00:24 G. Yan et al.

• Case P = ⟨Ûx = f(x)&B⟩�8i ∈I (ioi → Qi): Also the auxiliary variables ioi , ioi do not introduce
errors. Communication interrupts are handled as Boolean conditions with higher priority. So
the result is similar to that for the case P = ⟨Ûx = f(x)&B⟩. Notably, the time step h should
be small enough such that the communication action and the violation of B would fall into
different intervals to be distinguished if they don’t occur simultaneously.

Nowwe can infer that εд , the global error in the discretization, is bounded byDh for some constant
D. By choosing h < ε

D , the constraint εд < ε can be satisfied. If δ = 0, that is sufficient. If δ > 0,
ε
D >

δ
2 is also needed to ensure h fall into (δ2 , δ). □

Theorem 5.5 (Unbounded time). Let S be an HCSP, which is (δ , ϵ)-robustly safe, 0 < ε < ϵ be
a precision. If for any ODE Ûx = f(x) occurring in S , f is Lipschitz continuous, Ûx = f(x) is GAS with
f(x̄) = 0 for some x̄, then if there exists h satisfying h < δ < 2h if δ > 0 s.t. Theorem 4.2 holds with
the equilibrium time of each ODE as the upper bound, it follows S �h,ε Dh,ε (S) on [0,+∞].

Proof. Assume equilibrium times of ODEs in S are T 1
et ,T

2
et , ...T

n
et where n ∈ N is the number

of ODEs. Let T = T 1
et + T

2
et ... + T

n
et . As the distance between S and Dh,ε (S) is never greater than

ε after T , we can easily conclude that S �h,ε Dh,ε (S) on [T ,+∞]. The proof for S �h,ε Dh,ε (S) on
[0,T] is similar to the bounded scenario illustrated in Theorem 5.4. □

We can see easily that the unbounded time case can be reduced to the bounded time case, with
the sum of the equilibrium time for all the ODEs occurring in S as the upper bound of the execution
of S .

Remark. To ensure the discretization is approximately bisimilar with the original HCSP model,
as shown in Theorem 5.4 and Theorem 5.5, several conditions need to hold. First of all, the ODEs
occurring in the HCSP model must be local Lipschitz continuous, which is necessary to ensure
the existence and uniqueness of the solutions to the ODEs. Second, the HCSP model should be
(δ , ϵ)-robustly safe, and moreover, the relation between the parameters δ , ϵ , and the value and
time precisions for the discretization must be satisfied. This requirement is especially necessary to
guarantee the consistence of the control flows governed by the Boolean conditions for the whole
HCSP model and its discretization, under the premise that each atomic statement is approximately
bisimilar with its discretization. At last, for the unbounded time case, the ODEs are required to be
GAS, which ensures that the ODE can finally reach an equilibrium point within a bounded time.
This is also essential for discretizing HCSP models on unbound time.

6 FROM DISCRETIZED HCSP TO SYSTEMC
In this section, we present the generation of SystemC code from the discretized HCSP preserving
a (0, 0)-approximate bisimulation (bisimulation for short) during the transformation. In order to
prove this bisimulation, we first recall the operational semantics of a core subset of SystemC de-
fined in [74, 75] in Sec. 6.1, and then present the function for SystemC code generation and the
proof of the bisimulation based on the unified semantic framework in Sec. 6.2. As the discrete
rules of HCSP for unbounded time are very close to those for bounded time (the only difference
lies in the choice of the bounded execution time for the continuous statement, as seen in Tab. 2
and Tab. 3), we only present the method of code generation for the bounded time case here.

6.1 Operational Semantics of a Subset of SystemC
Theoperational semantics for a subset of SystemC defined in [74, 75] is based on transition systems.
Formally, the transition function T : SC_statements → Transitions maps a SystemC statement
to a set of guarded transitions, and may introduce auxiliary variables such as event, channel and

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article 00. Publication date: 20XX.

Automatically Generating SystemC Code from HCSP Formal Models 00:25

function variables. The assignment statement, taken as an example, has the following semantics:
T [l : v := exp; l ′] ≡ {P .pc = l → P .pc := l ′,v := exp} (14)

where l and l ′ are the labels of SystemC statements, v := exp is an assignment statement, P is the
context process which contains the assignment, and pc is the program counter of P for recording
the execution progress. And for sequential composition S0; S1, the transitions are defined as the
union of S0’s and S1’s corresponding transitions, that is,

T [l0 : S0; l1 : S1; l2] ≡ T [l0 : S0; l1] ∪ T [l1 : S1; l2] (15)
Furthermore, the simulation scheduler is also regarded as a process. All in all, a SystemC program
is mapped into a transition system and its execution is interpreted as transitions on the transition
system.

Although the subset covers most common statements of SystemC, the for-loop statement in-
volved in our work is not considered. The semantics of for-loop can be derived as a composition
of assignment statements and a while-loop statement

T [l : for S1 do S2; l
′] ≡ T [l : A1; l1] ∪ T [l1 : while b do S ′2; l

′] (16)
where S1 = A1;b;A2 with A1 and A2 being assignments, S ′2 ≡ S2;A2, and b is the Boolean expres-
sion within the loop condition.

6.2 Generating SystemC Code From Discretized HCSP
When an HSCP process S is translated into the discretized HCSP D such that they are (h, ε)-
approximately bisimilar, we will go on to transform D into a piece of SystemC code SC which is
semantically equivalent toD. If it succeeds, we can conclude that S and SC are (h, ε)-approximately
bisimilar by transitivity. In this section, we will define a function SC[·] returning a piece of Sys-
temC code for each sequential HCSP, and prove its correctness as well.

Code generation. At the outermost level, the whole parallel modelD of the form P1∥ . . . ∥Pk is
encapsulated as an SC_MODULE, with each sequential Pi as an SC_THREAD therein. This does not
affect functionality, so we will not discuss it later. What we are concerned about is the function
SC[·] : HCSP_sequential_processes→ SystemC_statements which is recursively defined. Below
is the definition for each sequential construct.

The most important is SC[P ;Q] ≡ SC[P];SC[Q], whose role is to link pieces of code.
Tab. 4 lists code-generating rules for other relatively simple ones, leaving complicated ones for

later. x := e is mapped to an assignment x = e in the syntax of SystemC. wait d is transformed into
a statement wait(d, SC_TU), in which SC_TU is the time unit chosen from SC_SEC (second), SC_MS
(millisecond), SC_US (microsecond), etc. stop is mapped to an infinite while-loop statement that
waits for one and one time unit, meaning that the process is suspended forever. The alternative
construct is mapped to an if statement. The internal choice construct is implemented as an if-else
statement, where oracle returns a uncertain boolean value to guide the choice. Here oracle is a
special SC_METHOD which can be seen as an external process. The repetition P∗ and the bounded
repetition Pk aremapped to for statements, where num(P∗) returns the upper bound of P ’s iteration
times.

To ensure synchronization during communication, sc_signals and sc_events are utilized. For each
channel ch, the reading side has ch_r , an sc_signal with Boolean type, to represent the readiness
to read, and ch_r_done , an sc_event, to represent the completion of reading. And the writing side
has ch_w and ch_w_done similarly.

For the discretized input construct ch? := 1; ch?x ; ch? := 0, the SystemC code is shown in the
below left. It first initializes the signal ch_r to 1, which means getting ready to read (line 2); waits

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article 00. Publication date: 20XX.

00:26 G. Yan et al.

SC[x := e] ≡ x = e

SC[wait d] ≡ wait(d, SC_TU)
SC[stop] ≡ while (true) {wait(1, SC_TU)}
SC[B → P] ≡ if (B) {SC[P]}
SC[P ⊓Q] ≡ if (oracle) {SC[P]} else {SC[Q]}
SC[P∗] ≡ for (i = 1; i <= num(P∗); i++) {SC[P]}
SC[Pk] ≡ for (i = 1; i <= k; i++) {SC[P]}

Table 4. Function for code generation of HCSP.

until the other side gets ready and finishes writing (lines 3-5); gets the latest value from the channel
and assigns it to the variable x (line 6); informs that it has finished reading (line 7); and finally resets
ch_r to 0 (lines 8). Here SC[ch? := 1], SC[ch?x] and SC[ch? := 0] correspond to the code in
lines 2, 3-7 and 8, respectively. The right below is the code for the output ch! := 1; ch!e; ch! := 0
generated similarly. Note that the writing side writes when the other side is ready (lines 3-5), and
informs its own completion (line 6), and waits for the completion of the other side (lines 7). The
two pieces of code are put in pair for a clearer comparison between them.

1 / / code f o r i npu t c o n s t r u c t
2 ch_r =1 ;
3 i f (! ch_w)
4 wai t (ch_w . posedge_even t ()) ;
5 wai t (ch_w_done) ;
6 x=ch . r ead () ;
7 ch_r_done . n o t i f y () ;
8 ch_r =0 ;

1 / / code f o r ou tpu t c o n s t r u c t
2 ch_w =1 ;
3 i f (! ch_r)
4 wai t (ch_r . posedge_even t ()) ;
5 ch . w r i t e (e) ;
6 ch_w_done . n o t i f y () ;
7 wai t (ch_r_done) ;
8 ch_w =0 ;

For the discretized communication-based external choice #i ∈I (ioi := 1); 8i ∈I ioi → (#i ∈I (ioi :=
0);Qi), we first explain the meanings of variables and lists used therein. chan_num represents the
size of the number of channels in I , which is assumed to be finite for simplicity. Indexes of channels
range from 0 to chan_num − 1. The Boolean variable IO[i] stands for the readiness of this side of
the i-th channel, and IO_d[i] for that of the other side. And k records the index of the channel
whose both sides are ready. Below is the explanation of our code. First, k is initialized as −1 and
the value of chan_num is calculated (lines 2-3). Second, all the IO[i] are set to 1, which means all
getting ready on this side (lines 4-6). Third, wait until the other side of some channel also gets
ready (line 7). Fourth, find the channel (lines 8-9), execute its communication (line 10) and record
its index in k (line 11). Finally, reset all the Boolean variables in IO to 0 (lines 14-16), and execute
Q[k] (line 17). Here SC[#i ∈I (ioi := 1)], SC[8i ∈I ioi], SC[#i ∈I (ioi := 0)] and SC[Qi] correspond to
lines 4-6, 7-13, 14-16 and 17, respectively.

1 / / code f o r e x t e r n a l cho i c e c o n s t r u c t
2 i n t k=−1;
3 i n t chan_num= s i z e o f (I) / s i z e o f (I [0]) ;
4 f o r (i n t i = 0 ; i <chan_num ; i ++) {

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article 00. Publication date: 20XX.

Automatically Generating SystemC Code from HCSP Formal Models 00:27

5 IO [i] = 1 ;
6 }
7 wai t (IO_d [0] . posedge_even t () | . . . | IO_d [chan_num − 1] . posedge_even t ()) ;
8 f o r (i n t i = 0 ; i <chan_num&&k <0 ; i ++) {
9 i f (IO [i]==1&&IO_d [i] = = 1) {

10 SC [[i o _ i]] ;
11 k= i ;
12 }
13 }
14 f o r (i n t i = 0 ; i <chan_num ; i ++) {
15 IO [i] = 0 ;
16 }
17 SC [[Q[k]]] ;

Until now, we have defined the code generation function for all basic constructs of the dis-
cretized HCSP. The remaining two constructs can be expressed as compositions of these basic
contructs, thus the code generation for them can be defined recursively.

Code for discretized continuous contruct is given below. It contains three parts. The first part
in lines 2-7 corresponds to (N (B, ε) ∧ N ′(B, ε) → (wait h; x := x + hΦ(x,h))) ⌊ Th ⌋ . where N (B, e),
N_p(B, e) and R_K(x,h) are helper functions computing N (B, ε), N ′(B, ε) and Φ(x,h), respectively
(e is used instead of ε for simplicity). The second part in lines 8-11 corresponds to N (B, ε) ∧
N ′(B, ε) → (wait h′; x := x + h′Φ(x,h′)), where T − floor(T /h) ∗ h is the value of h′. And there is
no more explaining about the third part in lines 12-16.

1 / / code f o r con t inuous c o n s t r u c t
2 f o r (i n t i = 0 ; i < f l o o r (T / h) ; i ++) {
3 i f (N(B , e)&&N_p (B , e)) {
4 wai t (h , SC_TU) ;
5 x=x+h ∗R_K (x , h) ;
6 }
7 }
8 i f (N(B , e)&&N_p (B , e)) {
9 wai t (T− f l o o r (T / h) ∗ h , SC_TU) ;

10 x=x +(T− f l o o r (T / h) ∗ h) ∗ R_K (x , (T− f l o o r (T / h) ∗ h)) ;
11 }
12 i f (N(B , e)&&N_p (B , e)) {
13 whi l e (t r u e) {
14 wai t (1 , SC_TU) ;
15 }
16 }

For the discretized communication interrupt construct, code can be obtained by combining that
of the discretized continuous construct and the communication choice construct. #i ∈I (ioi := 1)
is implemented as before (lines 2-6). The discretized ODE is also represented as a series of as-
signments and waits as before, except that the Boolean condition is augmented by the readiness
variables for the channels (lines 7-16). If the neighborhood condition of B is violated, all the readi-
ness variables are reset to 0 (lines 17-21). Then if some channel is ready when the neighborhood of
B remains true, it communicates and records its index k (lines 22-27), resets readiness variables to

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article 00. Publication date: 20XX.

00:28 G. Yan et al.

0 (lines 28-30) and executes Q[k] (lines 31-33). At last, if the neighborhood of B is never violated
and no channels get ready during [0,T], the whole process is suspended forever (lines 34-38).

1 / / code f o r communicat ion i n t e r r u p t c o n s t r u c t
2 i n t k=−1;
3 i n t chan_num= s i z e o f (I) / s i z e o f (I [0]) ;
4 f o r (i n t i = 0 ; i <chan_num ; i ++) {
5 IO [i] = 1 ;
6 }
7 f o r (i n t i = 0 ; i < f l o o r (T / h) ; i ++) {
8 i f (N(B , e)&&N_p (B , e)&&IO [0]&&! IO_d [0] & & . . .) {
9 wai t (h , SC_TU) ;

10 x=x+h ∗R_K (x , h) ;
11 }
12 }
13 i f (N(B , e)&&N_p (B , e)&&IO [0]&&! IO_d [0] & & . . .) {
14 wai t (T− f l o o r (T / h) ∗ h , SC_TU) ;
15 x=x +(T− f l o o r (T / h) ∗ h) ∗ R_K (x , (T− f l o o r (T / h) ∗ h))
16 }
17 i f (! (N(B , e)&&N_p (B , e))&& IO [0]&&! IO_d [0] & & . . .) {
18 f o r (i n t i = 0 ; i <chan_num ; i ++) {
19 IO [i] = 0 ;
20 }
21 }
22 f o r (i n t i = 0 ; i <chan_num&&k <0 ; i ++) {
23 i f (IO [i]==1&&IO_d [i] = = 1) {
24 SC [[i o _ i]] ;
25 k= i ;
26 }
27 }
28 f o r (i n t i = 0 ; i <chan_num ; i ++) {
29 IO [i] = 0 ;
30 }
31 i f (k > −1) {
32 SC [[Q[k]]] ;
33 }
34 i f (N(B , e)&&N_p (B , e)&&IO [0]&&! IO_d [0] & & . . .) {
35 whi l e (t r u e) {
36 wai t (1 , SC_TU) ;
37 }
38 }

Correctness of the code generation. Based on the above definition of function SC[.], a piece
of SystemC code SC[Dh,ε (S)] can be automatically generated from a given discretized HCSP
Dh,ε (S). Furthermore, we can guarantee the “equivalence” between them by proving that they
are bisimilar, i.e., with h = ε = 0 in Def. 3.1 and Def. 3.2.

Theorem 6.1. For the discretization of HCSP model S, Dh,ε (S) and SC[Dh,ε (S)] are bisimilar, i.e.,
(0, 0)-approximately bisimilar.

Proof. We first focus on transition systems, denoted as TD and TSC , generated from Dh,ε (S)
and SC[Dh,ε (S)], respectively. Let Var(P) be the set of variables occurring in P , and In(P) and

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article 00. Publication date: 20XX.

Automatically Generating SystemC Code from HCSP Formal Models 00:29

Out(P) be the sets of channels that P can read and write, respectively. The states in TD and TSC
are evaluations over Var(Dh,ε (S))∪In(Dh,ε (S))∪Out(Dh,ε (S)). Actions are constructs ofDh,ε (S) and
pieces of SC[Dh,ε (S)], respectively. Essentially, they are {τ } ∪ {assign(x, e)} ∪ {d ≥ 0} according
to their real effects. With a slight abuse of definition, the sequence of transitions based on P is
abbreviated as v P−→ v ′, and transitions based on P1; P2 : . . . ; Pk is abbreviated as v0 P1−−→ v1 P2−−→
· · · Pk−−→ vk to emphasize that the end of the i-th transition is the beginning of the i + 1-th. v(e)
means the value of the expression e based on the evaluation v , and v ′ = v[x 7→ y] means the
evaluation v ′ is the same as v except v ′(x) = y.

From the definition of HCSP, each P can only change the values of variables in Var(P) ∪Out(P).
Hence the set is mentioned as the local variables of P in the following of this proof. Two statesv and
v ′ are called locally equivalent with respect to P , denoted asv =P v ′, if for any x ∈ Var(P)∪Out(P),
v(x) = v ′(x).

The transitions are organized by structural induction on Dh,ε (S)’s possible components. In the
following, we use P to represent each component, and pi and qi to distinguish states of TD and
TSC , respectively.

• Case P = P1; P2: Transitions are {p0
P1−−→ p1

P2−−→ p2} and {q0
SC[P1]
−−−−−−→ q1

SC[P2]
−−−−−−→ q2}.

• Cases P = Qk and P = Q∗: Transitions are {p0
Q−→ p1

Q−→ · · · Q−→ pk } and {q0
SC[Q]
−−−−−→

q1
SC[Q]
−−−−−→ · · ·

SC[Q]
−−−−−→ qk }. For P = Q∗, k takes the value num(Q∗).

• Case P = skip: Transitions are {p τ−→ p} and {q τ−→ q}.
• Case P = stop: Transitions are {p d−→ p} and {q d−→ q}. Here d is large enough number.
• Case P = wait d : Transitions are {p d−→ p} and {q d−→ q}.
• Case P = x := e: Transitions are {p x :=e−−−→ p[x 7→ p(e)]} and {q x=e−−−→ q[x 7→ q(e)]}.
• Case P = #i ∈I (ioi := b) (b = 0 or 1): Suppose I = {1, . . . , |I |}. As a result, transitions are

{p0
io1:=b−−−−−→ p1

io2:=b−−−−−→ · · ·
io |I | :=b−−−−−−→ p |I |} and {q0

IO [1]:=b−−−−−−−→ q1
IO [2]=b−−−−−−→ · · · IO [|I |]=b−−−−−−−→ q |I |}

where pi = pi−1[ioi 7→ b] and qi = qi−1[IO[i] 7→ b] for i ∈ I . Here IO[i] are alias of ioi .
• Case P = B → Q : Transitions are {p Q−→ p ′ | p(B) = 1} ∪ {p τ−→ p | p(B) = 0} and
{q
SC[Q]
−−−−−→ q′ | q(B) = 1} ∪ {q τ−→ q | q(B) = 0}.

• Case P = 8i ∈I (ioi → Qi): Transitions are
∪

i ∈I {p0
di−→ p0i

ioi−−→ p1i
Qi−−→ p2i } and

∪
i ∈I {q0

di−→
q0i

SC[ioi]−−−−−−→ q1i
SC[Qi]−−−−−−→ q2i }. This means that, if the i-th communication is the first to be

ready after waiting di (di can also be 0), the communication ioi and the sequential Qi will
be scheduled. Here p0i =P p0, and p0i (ioi) = 1 and p0i (ioj) = 0 for all j , i . Similarly,
q0i =SC[P] q0, q0i (IO_d[i]) = 1 and q0i (IO_d[j]) = 0 for all j , i . IO_d[i] have the same
meaning as ioi .
• Case P = ch?x : Transitions are {p0

d−→ p1
x :=p1(ch)−−−−−−−−→ p2} and {q0

d−→ q1
x=q1(ch)−−−−−−−→ q2}. d is the

time difference between the readiness of reading and the completeness of channel updating.
Notably, if the writing side gets ready first, d must be 0. Here p1 is locally equivalent to p0
with respect to P, that is, p1 =P p0, and satisfies p1(ch!) = 1. And p2 = p1[x 7→ p1(ch)].
Analyses for q1 and q2 are similar.
• Case P = ch!e: Transitions are {p0

d−→ p1
ch:=p1(e)−−−−−−−→ p2

0−→ p3} and {q0
d−→ q1

ch=q1(e)−−−−−−−→
q2

0−→ q3}. d is the time difference between the readiness of writing and the readiness of the

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article 00. Publication date: 20XX.

00:30 G. Yan et al.

reading. The transitions p2
0−→ p3 and q2

0−→ q3 are used for ensuring that the latest value of
the channel is updated. Other analyses for p1, p2, q1 and q2 are similar to the previous case.
• Case P = P1∥P2:
– When there are no communications, P1 and P2 will execute independently, resulting in

possible alternate executions of P1’s and P2’s transitions by nondeterministic choices. If
P1 and P2 are atomic (i.e., there is only one step of transition), transitions are {p00

P1−−→
p10

P2−−→ p11} ∪ {p00
P2−−→ p01

P1−−→ p11} and {q00
SC[P1]
−−−−−−→ q01

SC[P2]
−−−−−−→ q11} ∪ {q00

SC[P2]
−−−−−−→

q10
SC[P1]
−−−−−−→ q11}. If P1 and P2 are not atomic, the result is similar, by introducing more

intermediate states.
– When there are communications in between, it will be a little different. For example, the

case where ch! := 1; ch!e; ch! := 0 in P1 and ch? := 1; ch?x ; ch? := 0 in P2 match. There
are four kinds of transitions based on P : {p00

ch!:=1−−−−−→ p10
d1−−→ p ′10

ch?:=1−−−−−→ p11
ch:=p11(e)−−−−−−−−→

p21
x :=p21(ch)−−−−−−−−→ p22

ch!:=0−−−−−→ p32
ch?:=0−−−−−→ p33} ∪ {p00

ch!:=1−−−−−→ p10
d1−−→ p ′10

ch?:=1−−−−−→ p11
ch:=p11(e)−−−−−−−−→

p21
x :=p21(ch)−−−−−−−−→ p22

ch?:=0−−−−−→ p23
ch!:=0−−−−−→ p33} ∪ {p00

ch?:=1−−−−−→ p01
d2−−→ p ′01

ch!:=1−−−−−→ p11
ch:=p11(e)−−−−−−−−→

p21
x :=p21(ch)−−−−−−−−→ p22

ch!:=0−−−−−→ p32
ch?:=0−−−−−→ p33} ∪ {p00

ch?:=1−−−−−→ p01
d2−−→ p ′01

ch!:=1−−−−−→ p11
ch:=p11(e)−−−−−−−−→

p21
x :=p21(ch)−−−−−−−−→ p22

ch?:=0−−−−−→ p23
ch!:=0−−−−−→ p33}. Similarly, transitions based on SC[P] are

{q00
ch_w=1−−−−−−→ q10

d1−−→ q′10
ch_r=1−−−−−−→ q11

ch=q11(e)−−−−−−−−→ q21
x=q21(ch)−−−−−−−−→ q22

ch_w=0−−−−−−→ q32
ch_r=0−−−−−−→

q33}∪ {q00
ch_w=1−−−−−−→ q10

d1−−→ q′10
ch_r=1−−−−−−→ q11

ch=q11(e)−−−−−−−−→ q21
x=q21(ch)−−−−−−−−→ q22

ch_r=0−−−−−−→
q23

ch_w=0−−−−−−→ q33}∪ {q00
ch_r=1−−−−−−→ q01

d2−−→ q′01
ch_w=1−−−−−−→ q11

ch=q11(e)−−−−−−−−→ q21
x=q21(ch)−−−−−−−−→

q22
ch_w=0−−−−−−→ q32

ch_r=0−−−−−−→ q33}∪ {q00
ch_r=1−−−−−−→ q01

d2−−→ q′01
ch_w=1−−−−−−→ q11

ch=q11(e)−−−−−−−−→ q21
x=q21(ch)−−−−−−−−→

q22
ch_r=0−−−−−−→ q23

ch_w=0−−−−−−→ q33}. Here p ′10 =P1
p10 with p ′10(ch?) = 0, p ′01 =P2

p01 with
p ′01(ch!) = 0, q′10 =SC[P1] q10 with q′10(ch_r) = 0, and q′01 =SC[P2] q01 with q′01(ch_w) = 0.
And relations of other states are the same as in the previous cases.

Other constructs can be proved by combining the above-mentioned cases.
LetB be the identical relation over the evaluations. From the above analyses, we can easily prove

that B is a (0, 0)-approximately bisimilar relation, that is, Dh,ε (S) is bisimilar to SC[Dh,ε (S)]. □

7 CASE STUDIES
In this section, we illustrate the code generation process from HCSP to SystemC through three
case studies: the water tank system introduced in Sec. 2.3, a room heating system, and the control
of the slow descent phase of the China Chang’e lunar lander. The whole procedure is divided
into four steps: (1) build the HCSP model of the system manually; (2) estimate the values of the
critical robustly safe parameters δ and ϵ for discretization through Matlab scripts; (3) choose the
value precision ε < ϵ and the bounded time T ∈ R+ (or T = +∞ for unbounded time), and then
infer the value of h; (4) generate SystemC code from the HCSP model based on ε and h obtained
in step 3. This is implemented by a Java program, whose input is the HCSP model and computed
precisions, and the output is a piece of SystemC code1. For thewater tank system, both the bounded
and unbounded time cases are discussed (since the GAS condition is satisfied). For the other two
systems, only the bounded time case is considered.

1The tool and all example files, including the Matlab scripts for computing the discrete parameters and precisions, can be
found at https://github.com/HCSP-CodeGeneration/HCSP2SystemC.

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article 00. Publication date: 20XX.

https://github.com/HCSP-CodeGeneration/HCSP2SystemC

Automatically Generating SystemC Code from HCSP Formal Models 00:31

7.1 Water tank system
The water tank system and its corresponding HCSP model have been introduced in Sec. 2.3, and
its discretization is in Sec. 4.2. So we directly present the results in bounded and unbounded time
scenarios, respectively. Parameters are set to Qmax = 2.0, π = 3.14, r = 0.18, д = 9.8, p = 1,
lb = 4.1, ub = 5.9, v0 = 1 and d0 = 4.5 here.

0 2 4 6 8 10 12 14 16
3

3.5

4

4.5

5

5.5

6

6.5

t

d

d−HCSP
d−SC

Fig. 2. The HCSP model vs. the SystemC code of WTS for the waterlevel (Color figure online).

Bounded time. Using the algorithms in Section 5.2, we get δ = 0 and ϵ ≤ 0.22. Therefore, we set
ε = 0.2 andT = 16, and figure outh = 0.008 such thatTheorem 5.4 holds, i.e.,WTS �h,ε Dh,ε (WTS)
on [0, 16]. Then the SystemC code bisimilar to Dh,ε (WTS) is automatically generated.

Fig. 2 shows the fluctuation of the water level d acquired from the simulation of the original
HCSP model (d-HCSP represented by blue solid with cycles) and the generated SystemC model
(d-SC represented by red dashed), respectively. It is apparent that they practically coincide with
each other.

Unbounded time. In fact, the method above can be applied directly, by computing the equilibrium
time for each ODE and taking the sum of all of them as the time bound.

Take as an example theWTS in [73] whose discretization has already been presented with the
GAS condition. We first compute the time of reaching the stable state for the two ODEs Ûd =
Qmax − πr2

√
2дd and Ûd = −πr2

√
2дd (whose equilibrium points are Q2

max
2π 2r4д and 0, respectively),

which are 82.5s and 9.5s, respectively. Second, we use our tool to generate the SystemC code
fromWTS within 82.5 + 9.5 = 92s. Thus the SystemC code without the limitation on the total
execution time is generated. Setting the values of parameters as in the bounded scenario, the result
also shows the consistency between the original HCSP and its generated SystemC code (details
are omitted here, as it is very close to the result in Fig. 2).

7.2 Room Heating
The second case study is inspired by the room heating benchmark in [33]. In this example, there
are an n-room house andm heaters, wherem < n in general. In order to maintain proper room
temperature, heaters are shared, that is, a heater in one room can move to its adjacent room. But
each room is allowed to hold only one heater at the same time. The temperature of each room
(denoted as xi , i = 1, . . . ,n) is decided by those of its adjacent rooms and the outside (represented
as u), and whether there is a heater working inside (defined as hi = 1 when there is, and hi = 0

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article 00. Publication date: 20XX.

00:32 G. Yan et al.

otherwise). The state of the heater in room i is controlled by the room temperature xi : the heater
switches on when the temperature is below a lower threshold (i.e., xi ≤ oni), and off when it is
beyond a upper threshold (i.e., xi ≥ offi). In addition, the shift of the heater from room j to room
i happens when the following four conditions hold: (1) room i has no heater; (2) room j has one;
(3) the temperature of room i is below a certain level (i.e., xi ≤ geti); and (4) the temperature
difference between room j and room i is not less than another threshold (i.e., x j − xi ≥ diffi).

Here, we consider an instance of the room heating system where n = 2 andm = 1, that is, there
are two rooms and one heater. Its continuous behavior, denoted as ODEtem, is governed by{

Ûx1 = −0.45x1 + 0.25x2 + 0.2u + 5h1
Ûx2 = 0.25x1 − 0.65x2 + 0.15u + 5h2

(17)

where u = 4 is the outside temperature. Assume the system has an initial state x1 = x2 = 10,
h1 = 1 and h2 = 0. The thresholds are on1 = on2 = 10, off1 = off2 = 12, get1 = get2 = 8, and
diff1 = diff2 = 0.5. We get the following HCSP model of the room heating system:

RH def
= Room∥Controller

Room def
= x1 := 10;x2 := 10;R_h1 := 1;R_h2 := 0;

(⟨ODEtem⟩ ⊵ (ch_x1!x1 → (ch_x2!x2; ch_h1?R_h1; ch_h2?R_h2)))∗

Controller def
= h1 := 1;h2 := 0;C_x1 := 10;C_x2 := 10; owner := 1;

(wait 0.1; ch_x1?C_x1; ch_x2?C_x2;
(owner = 1&C_x2 ≤ дet2&C_x1 −C_x2 ≥ diff2) → (owner := 2;h1 := 0;h2 := 1);
(owner = 2&C_x1 ≤ дet1&C_x2 −C_x1 ≥ diff1) → (owner := 1;h1 := 1;h2 := 0);
(owner = 2&C_x2 ≤ on2) → (h1 := 0;h2 := 1);
(owner = 1&C_x1 ≤ on1) → (h1 := 1;h2 := 0);
C_x2 ≥ off2 → h2 := 0;C_x1 ≥ off1 → h1 := 0; ch_h1!h1; ch_h2!h2)∗

The room heating system RH is modeled as the parallel composition of two processes Room and
Controller. ch_x1, ch_x2, ch_h1 and ch_h2 are channels between Room and Controller, and C_x1,
C_x2, R_h1 and R_h2 are used to restore values received from corresponding channels. Further-
more, the variable owner in Controller represents the room holding the heater, i.e., owner = i
means that room i has the heater for i = 1, 2.

For discretization of the above model, we estimate that δ = 0 and ϵ ≤ 0.12, and choose ε = 0.1.
By letting T = 5, we infer h = 0.0002 such that RH �h,ε Dh,ε (RH) on [0, 5] holds. At last, the
SystemC code bisimilar to Dh,ε (RH) is generated.

Like in the first case, the execution results of the HCSPmodel and the generated SystemCmodel
are shown in Fig. 3. The temperatures in room 1 and 2 are represented as x1 and x2 with suffixes
-HCSP and -SC, respectively. Obviously the SystemC model is indeed an approximation of the
original HCSP model.

7.3 Slow Descent Phase of the Lunar Lander
In [27, 79], the formal verification of the slow descent phase of a lunar lander is presented. We
mainly focus on its discretization and code generation here.

The slow descent phase is the last of the six phases in the powered descent process of a lunar
lander, beginning at a height of 30m relative to the lunar surface. Just as the name indicates, its
aim is to ensure that the lander shall descend slowly and smoothly to the lunar surface. During this
phase, the controller periodically observes the state of the lander including the velocity and mass,

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article 00. Publication date: 20XX.

Automatically Generating SystemC Code from HCSP Formal Models 00:33

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
7.5

8

8.5

9

9.5

10

10.5

11

11.5

12

12.5

t

te
m

p

x1−HCSP
x2−HCSP
x1−SC
x2−SC

Fig. 3. The HCSP model vs. the SystemC code of RH for the temperatures (Colour figure online).

and computes a new control command, and then sends it back for the physical plant to follow in
the next period, until an engine shutdown signal is received.

The dynamics of the physical plant is described by
Ûr = v

Ûv =
Fc
m − дM

Ûm = − Fc
Isp

ÛFc = 0

(18)

and the controller reads the values ofm and v periodically to calculate F ′c for the next sampling
cycle:

F ′c = −0.01 ·m · ((
Fc
m
− дM) − 0.6 · (v + 2) + дM) (19)

whose righthand side is written as Com_Next_Fc for short. Here r is the lander’s altitude relative
to the lunar surface, v is its vertical velocity, m is its mass, and Fc is the thrust imposed on the
lander.дM = 1.622m/s2 is the gravitational acceleration on the moon. And Isp denotes the specific
impulse2 of the lander’s thrust engine, which is set to Isp1 = 2548N · s/kg if Fc ≤ 3000N, and
Isp2 = 2842N · s/kg otherwise. Therefore there are actually two ODEs, denoted as ODE1 and
ODE2 for convenience, corresponding to Isp1 and Isp2, respectively.

By assigning the initial values ofm, r , v and Fc to 1250kg, 30m, −2m/s and 2027.5N, respec-
tively, and the sampling period to 0.128s, we have the following HCSP system Slow_ph:

Slow_ph def
= Lander∥Controller

Lander def
= m := 1250; r := 30;v := −2; L_Fc := 2027.5;

(L_Fc ≤ 3000→ ⟨ODE1⟩ ⊵ (ch_m!m → (ch_v!v; ch_Fc?L_Fc));
L_Fc > 3000→ ⟨ODE2⟩ ⊵ (ch_m!m → (ch_v!v; ch_Fc?L_Fc)))∗

Controller def
= C_m := 1250;C_v := −2; Fc := 2027.5;

(wait 0.128; ch_m?C_m; ch_v?C_v; Fc := Com_Next_Fc; ch_Fc !Fc)∗

2Specific impulse is a physical quantity describing the efficiency of rocket engines. It equals the thrust produced per unit
mass of propellant burned per second.

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article 00. Publication date: 20XX.

00:34 G. Yan et al.

0 1 2 3 4 5 6 7 8 9 10
10

12

14

16

18

20

22

24

26

28

30

t

r

r−HCSP
r−SC

(a)

0 1 2 3 4 5 6 7 8 9 10
−2

−2

−2

−2

−1.9999

−1.9999

−1.9999

−1.9999

−1.9999

t

v

v−HCSP
v−SC

(b)

0 1 2 3 4 5 6 7 8 9 10
1242

1243

1244

1245

1246

1247

1248

1249

1250

t

m

m−HCSP
m−SC

(c)

0 1 2 3 4 5 6 7 8 9 10
2014

2016

2018

2020

2022

2024

2026

2028

t

F
c

Fc−HCSP
Fc−SC

(d)

Fig. 4. The HCSPmodel vs. the SystemC code of Slow_ph: (a)-(d) represent the evolution of altitude r, velocity
v, mass m and thrust Fc , of the lunar lander, respectively (Color figure online).

where ch_m, ch_v and ch_Fc are channels between Lander and Controller, andC_m,C_v and L_Fc
are used to restore values received from corresponding channels.

As with the previous two cases, we can estimate that δ = 0 and ϵ ≤ 972.5, respectively. Then,
by letting ε = 0.05 andT = 10 here, we can infer h = 0.0002 satisfies Slow_ph �h,ε Dh,ε (Slow_ph)
on [0, 10]. Finally, we automatically generate the SystemC code that is bisimilar to Dh,ε (Slow_ph),
whose execution (red dashed, with suffix -SC) is given in Fig. 4, compared to the simulation of
the original HCSP model (blue solid with cycles, with suffix -HCSP). In particular, all variables
in Slow_ph, i.e., r , v ,m and Fc , are observed. As show in Fig. 4, the difference between the HCSP
results and the SystemC results is within the error precision, i.e., ε = 0.05, for each variable.

8 RELATEDWORK
Approximate bisimulation. Approximate bisimulation [36] is a popular method for analyz-

ing and verifying complex hybrid systems. Instead of requiring observational behaviors of two
systems to be exactly identical, it allows errors but requires the “distance” between two systems to
remain bounded by some precisions. In [35], with the use of simulation functions, a characteriza-
tion of approximate simulation relations between hybrid systems is developed. A new approximate
bisimulation relationwith two parameters as precisions, which is very similar to the notion defined
in this paper, is introduced in [46]. For control systems with inputs, the method for constructing a

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article 00. Publication date: 20XX.

Automatically Generating SystemC Code from HCSP Formal Models 00:35

symbolic model which is approximately bisimilar with the original continuous system is studied in
[61]. Moreover, [54] discusses the problem for building an approximately bisimilar symbolic model
of a digital control system. Also, there are some works on building symbolic models for networks
of control systems [62]. But for all the above works, either discrete dynamics is not considered,
or it is assumed atomic actions are independent of the continuous variables. In [41, 48, 69], the
abstraction of hybrid automata is considered, but it is only guaranteed that the abstract system is
an approximate simulation of the original system. In [60], a discretization of hybrid programs is
presented for a proof-theoretical purpose, i.e., it aims to have a sound and complete axiomatiza-
tion relative to properties of discrete programs. Different from all the above works, we aim to have
a discretization of HCSP, for which discrete and continuous dynamics, communications, etc., are
entangled with each other tightly, to guarantee that the discretized process has the approximate
equivalence with the original process.

Code generation. In the past decade, code generation from formal models has received lots of
attention from the research and industrial communities [53], owe to its overwhelming advantages,
such as reducing the cost for development, making domain concepts easier to write and introduc-
ing less errors [16]. For the traditional discrete systems, there aremany relevant tools andworks. In
[52], a tool that can generate code from a high level specification, called Hybrid Control Operator
Language (HCOL), is proposed. However, HCOL mainly focuses on mathematical calculation and
is weak in building a whole embedded system. In [25], a tool named EventB2Java is presented for
generating Java code from Event-B [7] formal models. Another tool called Asm2C++ is proposed
in [18], which can transform the Abstract State Machines (ASM) [19] to C++ code. But both tools
do not formally prove the conformance relation between the formal model and the code model. In
[58], the authors define a complete set of rules for transforming UML State Machine (USM) to C++
code. Whereas, the semantic-conformance between USM [72] and corresponding C++ code is only
tested on some benchmarks (in fact, 4 of 66 tests failed), and no formal correctness is proved. More-
over, [50] explores the possibilities of automatically generate Java code from Z formal models [67].
Unfortunately, the translation is done manually. Authors in [51] illustrate the translation from a
formalized modeling language called ⟨HOE⟩2 to an efficient intermediate representation, and [32]
introduces a method that can automatically generate a distributed implementation in C from a for-
mal model called LNT [26], and [65] develops a tool for transforming a deterministic finite-state
automaton (FSA) [28] into a piece of C# code. Nevertheless, continuous behavior is not taken into
account in ⟨HOE⟩2, LNT and FSA. Other popular models for building reactive systems, such as Es-
terel [17], Statecharts [39], and Lustre [37, 38] also support code generation. However, continuous
behavior is still not supported in them. In fact, there are few works about code generation from
continuous or hybrid systems, due to the complexity of them.

A hybrid system exhibits the combination of continuous and discrete behaviors, even with con-
currence and communication. However, the code inherently appears discrete. Therefore, the se-
mantic differences between the model and the code may bring about different system behavior,
which is dangerous for safety-critical systems, as it essentially determines how to sample data
from the continuous evolution and the entanglement between sampling data and computing con-
trol commands, that essentially determines whether or not the controller at code level is correct.
How to provide formal guarantees for the model of the system and its code is a challenging prob-
lem. In fact, many MDD approaches targeting at ESs have been proposed and used in industry and
academia, many of which support code generation from control models, e.g., commercial model-
ing tools such as Simulink [3], Rational Rose [2], and TargetLink [6]. However, they mainly focus
on the numerical errors for solving the ODEs in the model rather than errors on discrete behav-
ior, and they all lack the formal guarantee between the model and the code generated from the

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article 00. Publication date: 20XX.

00:36 G. Yan et al.

model. SHIFT [29] is another modeling language for hybrid automata, and code generation is also
supported in it, but the correctness issue is not addressed rigorously. In [10] and [44], code gen-
eration from a special hybrid model, named CHARON [9], was discussed on signal thread and
multi-thread execution, respectively. Then, the authors extended their previous work by defining
a formal criteria, named faithful implementation, in which error bounds on the variables and the
time of discrete transitions are allowed [11]. However, the code model in [11] is only an under-
approximate implementation of the original hybrid system essentially, and only the coherence of
transitions between the hybrid model and its code model is considered. Moreover, there are many
strict hypotheses in [11], such as the original hybrid system should be linear, all invariants and
guards are µ-insensitive, etc. In [23], the authors present an approach for generating code from a
synchronous language kernel with ODEs. However, the exact error introduced in the process of
the discretization of ODEs is not considered. Different from the above works, in this paper, we
formally identify an equivalent relation, i.e., approximate bisimulation, between a powerful mod-
eling language for hybrid system (i.e., HCSP) and its code model (SystemC), and moreover present
rules for generating code models from hybrid models and ensure they are approximately bisimilar
for given precisions.

ODE solvers and zero-crossing detection. The generation of code from hybrid systems with
interacting continuous evolution and discrete computation relies heavily on the development of
ODE solvers and the subsequent zero-crossing detection problem caused by the value precision.
Most classical ODE solvers require rollback to adjust the step sizes to decrease the numerical error
and to iterate to detect the events [78]. It is of great help to promote the precision and efficiency of
numerical ODE solvers to make this iteration process converge more quickly. In [21], the authors
propose a more precise and efficient abstraction of the continuous variables, by computing the
interval valued step functions based on GRKLib method [20] to over-approximate the continuous
functions; and then in [22], they perform a guaranteed integration of the ODE semantics with
the discrete system modeled using imperative languages. However, zero-crossing detection is not
considered. As an alternative approach, some work on implementation or code generation of hy-
brid systems explores to eliminate zero crossing detection, which is very costly, by posing some
restrictions on the systems. In [47], it is required that each operational mode and its corresponding
guard of any event must overlap for a duration greater than the sampling time, thus the event can
always be detected. In [55], they deal with a class of linear time invariant systems, and meanwhile
require that the witness function obtained after solving the ODEs for each location be monotonic.
Thus, the dynamic zero crossing detection is not needed. In [24], they propose a quantized state
system (QSS)-based approximation for solving ODEs in Ptolemy: if the three QSS assumptions
on ODEs are valid, then there will be no error due to numerical approximation of the integration,
thus the zero-crossing detection is predictable in advance. However, for systems that do not satisfy
the QSS assumption, the zero-crossing detection can not be guaranteed. In [15] which focuses on
translating a hybrid automaton into a Simulink/Stateflow (SlSf) model, zero-crossing detection
algorithms inside the simulation routines of SlSf are used for event detection. Additionally, to
make sure no transitions will be missed, an ε-relaxation is introduced for each guard constraint,
as long as a time step small enough is chosen.

9 CONCLUSION
This paper translates the abstract models of hybrid systems in HCSP to SystemC code, under the
premise that either all ODEs of the hybrid system satisfy the GAS condition or the hybrid system
executes within bounded time. In both cases, the translation can be done fully automatically, by
defining a set of rules for transforming HCSP models with continuous dynamics, to discretized

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article 00. Publication date: 20XX.

Automatically Generating SystemC Code from HCSP Formal Models 00:37

HCSP models, and to final SystemC code successively. Furthermore, the translation is guaranteed
to be correct, by proving that the source model with continuous evolution and the discretized
intermediatemodel are approximately bisimilar with respect to the given precisions, andmoreover,
the discretized intermediate model and the target code are bisimilar. In particular, the precisions
are introduced during the discretization of continuous dynamics and thus cannot be avoided. We
have implemented a tool for the automatic code generation from HCSP to SystemC, and applied
it to three case studies to illustrate our approach.

Together with the work reported in [77, 85, 86], it forms an integrated framework for formal
design of safety-critical embedded systems. In this framework, one can build a Simulink/Stateflow
graphical model of the system to be developed first, and conduct extensive simulations, then trans-
form the graphical model automatically to HCSP formal model based on which formal verification
can be done, and finally generate correct code from the verified HCSP model.

As a future work, we will concentrate on the optimization of the generated SystemC code corre-
sponding to each construct of HCSP. We will consider transforming from SystemC code into other
high-level programming languages such as RUST, C, C++, Java. In addition, we will consider to
apply the framework to more complicated practical case studies.

REFERENCES
[1] dSPACE Release 2019-A. https://www.dspace.com/.
[2] Rational Rose. 2017. http://www-03.ibm.com/software/products/en/rosemod.
[3] Simulink. 2017. https://cn.mathworks.com/products/simulink.html.
[4] Simulink Coder User’s Guide, R2019a. The MathWorks, Inc.
[5] SysML V 1.5. 2017. http://www.omg.org/spec/SysML/1.5/.
[6] TargetLink. 2017. https://www.dspace.com/en/inc/home/products/sw/pcgs/targetli.cfm.
[7] J. Abrial. 2010. Modeling in Event-B: System and Software Design. Cambridge University Press, New York.
[8] E. Ahmad, Y. Dong, S. Wang, N. Zhan, and L. Zou. 2014. Adding formal meanings to AADL with hybrid annex. In

FACS 2014. Springer, 228–247.
[9] R. Alur, R. Grosu, Y. Hur, V. Kumar, and I. Lee. 2000. Modular specification of hybrid systems in CHARON. In HSCC

2000 (LNCS), Vol. 1790. Springer, 6–19.
[10] R. Alur, F. Ivancic, J. Kim, I. Lee, and O. Sokolsky. 2003. Generating embedded software from hierarchical hybrid

models. Languages Compilers and Tools for Embedded Systems 38, 7 (2003), 171–182.
[11] M. Anand, S. Fischmeister, Y. Hur, J. Kim, and I. Lee. 2010. Generating reliable code from hybrid-systems models. IEEE

Trans. Computers 59, 9 (2010), 1281–1294.
[12] D. Angeli. 2002. A Lyapunov approach to incremental stability properties. IEEE Trans. Automat. Control 47, 3 (2002),

410–421.
[13] D. Angeli and E. Sontag. 1999. Forward completeness, unboundedness observability, and their Lyapunov characteri-

zations. Systems and Control Letters 38, 4 (1999), 209–217.
[14] U. Ascher and L. Petzold. 1998. Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equa-

tions (1st ed.). Society for Industrial and Applied Mathematics, Philadelphia, PA, USA.
[15] Stanley Bak, Omar Ali Beg, Sergiy Bogomolov, Taylor T. Johnson, Luan Viet Nguyen, and Christian Schilling. 2017.

Hybrid automata: from verification to implementation. International Journal on Software Tools for Technology Transfer
(12 Jun 2017). DOI:http://dx.doi.org/10.1007/s10009-017-0458-1

[16] R. Balzer. 1985. A 15 year perspective on automatic programming. IEEE Trans. Software Eng. 11, 11 (1985), 1257–1268.
[17] G. Berry. 2000. The foundations of Esterel. In Proof, Language, and Interaction, Essays in Honour of Robin Milner.

425–454.
[18] S. Bonfanti, M. Carissoni, A. Gargantini, and A. Mashkoor. 2017. Asm2C++: a tool for code generation from abstract

state machines to Arduino. In NFM 2017 (LNCS), Vol. 10227. Springer, 295–301.
[19] E. Börger and R. Stark. 2003. Abstract State Machines: A Method for High-level System Design and Analysis. Springer,

New York.
[20] O. Bouissou and M. Martel. 2006. GRKLib: A guaranteed runge-kutta library. In International Symposium on Scientific

Computing, Computer Arithmetic and Validated Numerics. IEEE, Los Alamitos.
[21] O. Bouissou and M. Martel. 2008a. Abstract interpretation of the physical inputs of embedded programs. In VMCAI,

LNCS 4905. Springer-Verlag, 37–51.

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article 00. Publication date: 20XX.

https://www.dspace.com/
http://www-03.ibm.com/software/products/en/rosemod
https://cn.mathworks.com/products/simulink.html
http://www.omg.org/spec/SysML/1.5/
https://www.dspace.com/en/inc/home/products/sw/pcgs/targetli.cfm
http://dx.doi.org/10.1007/s10009-017-0458-1

00:38 G. Yan et al.

[22] O. Bouissou and M. Martel. 2008b. A hybrid denotational semantics for hybrid systems. In ESOP, LNCS 4960. Springer-
Verlag, 63–77.

[23] T. Bourke, J. Colaço, B. Pagano, C. Pasteur, and M. Pouzet. 2015. A synchronous-based code generator for explicit
hybrid systems languages. In CC 2015 (LNCS), Vol. 9031. Springer, 69–88.

[24] C. Brooks, E. A. Lee, D. Lorenzetti, T. S. Nouidui, and M. Wetter. 2015. CyPhySim: a cyber-physical systems simulator.
In HSCC 2015. ACM, New York, NY, USA, 301–302.

[25] N. Cataño and V. Rivera. 2016. EventB2Java: a code generator for Event-B. In NFM 2016 (LNCS), Vol. 9690. Springer,
166–171.

[26] D. Champelovier, X. Clerc, H. Garavel, Y. Guerte, C. McKinty, V. Powazny, F. Lang, W. Serwe, and G. Smeding. 2015.
Reference manual of the LNT to LOTOS translator (version 6.2). INRIA/VASY and INRIA/CONVECS (2015).

[27] M. Chen, X. Han, T. Tang, S. Wang, M. Yang, N. Zhan, H. Zhao, and L. Zou. 2015. MARS: a toolchain for modeling,
analysis and verification of hybrid systems. In ProCoS 2015. 39–58.

[28] T. Chow. 1978. Testing software design modeled by finite-state machines. IEEE Trans. Software Eng. 4, 3 (1978),
178–187.

[29] A. Deshpande, A. Göllü, and P. Varaiya. 1996. SHIFT: a formalism and a programming language for dynamic networks
of hybrid automata. In Hybrid Systems IV. 113–133.

[30] F. Dormoy. 2008. SCADE 6: A model based solution for safety critical software development. In ERTS 2008. 1–9.
[31] J. Eker, J. Janneck, and et al. 2003. Taming heterogeneity - the Ptolemy approach. Proc. IEEE 91, 1 (2003), 127–144.
[32] H. Evrard and F. Lang. 2017. Automatic distributed code generation from formal models of asynchronous processes

interacting by multiway rendezvous. J. Log. Algebr. Meth. Program. 88 (2017), 121–153.
[33] A. Fehnker and F. Ivancic. 2004. Benchmarks for hybrid systems verification. In HSCC 2004. LNCS, Vol. 2993. Springer,

326–341.
[34] A. Gawanmeh, A. Habibi, and S. Tahar. 2004. Enabling SystemC verification using abstract state machines. In FDL

2004. ECSI, 649–661.
[35] A. Girard, A. Julius, and G. Pappas. 2008. Approximate simulation relations for hybrid systems. Discrete Event Dynamic

Systems 18, 2 (2008), 163–179.
[36] A. Girard and G. Pappas. 2007. Approximation metrics for discrete and continuous systems. IEEE Transactions on

Automatic Control 52, 5 (2007), 782–798.
[37] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. 1991. The synchronous dataflow programming language LUSTRE.

In Proceedings of the IEEE. 1305–1320.
[38] N. Halbwachs and P. Raymond. 2007. A Tutorial of Lustre. (2007). http://francois.touchard.perso.luminy.univ-amu.

fr/INFO5/Langages/lustre/tutorial.pdf.
[39] D. Harel. 1987. Statecharts: a visual formalism for complex systems. Sci. Comput. Program. 8, 3 (1987), 231–274.
[40] J. He. 1994. From CSP to hybrid systems. In A Classical Mind, Essays in Honour of C.A.R. Hoare. Prentice Hall

International (UK) Ltd., 171–189.
[41] T. Henzinger, P. Ho, and H. Wong-Toi. 1998. Algorithmic analysis of nonlinear hybrid systems. IEEE Transactions on

Automatic Control 43, 4 (1998), 540–554.
[42] T. Henzinger and J. Sifakis. 2006. The embedded systems design challenge. In FM 2006 (LNCS), Vol. 4085. Springer,

1–15.
[43] T. A. Henzinger. 1996. The theory of hybrid automata. In LICS 1996. IEEE, 278–292.
[44] Y. Hur, J. Kim, I. Lee, and J. Choi. 2004. Sound code generation from communicating hybrid models. In HSCC 2004

(LNCS), Vol. 2993. Springer, 432–447.
[45] IEEE Std. 1666-2011. 2011. Open SystemC language reference manual. In IEEE Standards Association.
[46] A. Julius, A. D’Innocenzo, M. Di Benedetto, and G. Pappas. 2009. Approximate equivalence and synchronization of

metric transition systems. Systems and Control Letters 58, 2 (2009), 94–101.
[47] J. Kim and I. Lee. 2003. Modular code generation from hybrid automata based on data dependency. In Real-Time and

Embedded Technology and Applications Symposium. The 9th IEEE, 160–168.
[48] R. Lanotte and S. Tini. 2005. Taylor approximation for hybrid systems. In HSCC 2005. LNCS, Vol. 3414. Springer,

402–416.
[49] E.A. Lee. 2000. What’s ahead for embedded software? Computer 33, 9 (2000), 18–26.
[50] P. Li, J. Sun, and H. Wang. 2017. Towards code generation from design models. In SEKE 2017. KSI Research Inc. and

Knowledge Systems Institute Graduate School, 242–247.
[51] I. Llopard, C. Fabre, and A. Cohen. 2017. From a formalized parallel action language to its efficient code generation.

ACM Trans. Embedded Comput. Syst. 16, 2 (2017), 37:1–37:28.
[52] T. Low and F. Franchetti. 2017. High assurance code generation for cyber-physical systems. In HASE 2017. IEEE,

104–111.
[53] L. Luhunu and E. Syriani. 2017. Survey on template-based code generation. InMODELS 2017. CEUR-WS.org, 468–471.

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article 00. Publication date: 20XX.

http://francois.touchard.perso.luminy.univ-amu.fr/INFO5/Langages/lustre/tutorial.pdf
http://francois.touchard.perso.luminy.univ-amu.fr/INFO5/Langages/lustre/tutorial.pdf

Automatically Generating SystemC Code from HCSP Formal Models 00:39

[54] R. Majumdar and M. Zamani. 2012. Approximately bisimilar symbolic models for digital control systems. In CAV
2012. LNCS, Vol. 7358. Springer, 362–377.

[55] A.Malik, P. S. Roop, S. Andalam,M. Trew, andM.Mendler. 2017. Modular compilation of hybrid systems for emulation
and large scale simulation. ACM Trans. Embed. Comput. Syst. 16, 5s (2017), 118:1–118:21.

[56] W. Müller, J. Ruf, and W. Rosenstiel. 2003. An ASM based SystemC simulation semantics. In SystemC: Methodologies
and Applications. 97–126.

[57] X. Peng, H. Zhu, J. He, and N. Jin. 2006. An operational semantics of an event-driven system-level simulator. In SEW
2006. IEEE, 190–202.

[58] V. Pham, A. Radermacher, S. Gérard, and S. Li. 2017. Complete code generation from UML state machine. In MODEL-
SWARD 2017. SciTePress, 208–219.

[59] A. Platzer. 2010. Differential-algebraic dynamic logic for differential-algebraic programs. Journal of Logic and Com-
putation 20, 1 (2010), 309–352.

[60] A. Platzer. 2012. The complete proof theory of hybrid systems. In LICS 2012. IEEE, 541–550.
[61] G. Pola, A. Girard, and P. Tabuada. 2008. Approximately bisimilar symbolic models for nonlinear control systems.

Automatica 44, 10 (2008), 2508–2516.
[62] G. Pola, P. Pepe, and M. Di Benedetto. 2014. Symbolic models for networks of discrete-time nonlinear control systems.

In ACC 2014. IEEE, 1787–1792.
[63] J. Ralph, A. Abo, and V. J. 1998. Refinement Calculus: A Systematic Introduction. Springer.
[64] B. Selic and S. Gérard. 2013. Modeling and Analysis of Real-Time and Embedded Systems with UML and MARTE:

Developing Cyber-Physical Systems. Elsevier.
[65] T. Shulga, E. Ivanov, M. Slastihina, and N. Vagarina. 2016. Developing a software system for automata-based code

generation. Programming and Computer Software 42, 3 (2016), 167–173.
[66] J. Stoer and R. Bulirsch. 2013. Introduction to Numerical Analysis. Springer.
[67] J. Sun, J. Dong, J. Liu, and H. Wang. 2001. Object-Z web environment and projections to UML. In WWW 2001. ACM,

725–734.
[68] M. Tiller. 2012. Introduction to Physical Modeling with Modelica. Springer.
[69] A. Tiwari. 2008. Abstractions for hybrid systems. Formal Methods in System Design 32, 1 (2008), 57–83.
[70] J. Tsinias, N. Kalouptsidis, and A. Bacciotti. 1987. Lyapunov functions and stability of dynamical polysystems. Math-

ematical Systems Theory 19, 4 (1987), 333–354.
[71] S. Wang, N. Zhan, and L. Zou. 2015. An improved HHL prover: an interactive theorem prover for hybrid systems. In

ICFEM 2015. LNCS, Vol. 9407. Springer, 382–399.
[72] Y. Wang, J. Talpin, A. Benveniste, and P. Guernic. 2000. A semantics of UML state-machines using synchronous

pre-order transition systems. In ISORC 2000. IEEE Computer Society, 96–103.
[73] G. Yan, L. Jiao, Y. Li, S. Wang, and N. Zhan. 2016. Approximate bisimulation and discretization of hybrid CSP. In FM

2016. LNCS, Vol. 9995. Springer, 702–720.
[74] N. Zeng and W. Zhang. 2013. A SystemC semantics in guarded assignment systems and its applications with VERDS.

In APSEC 2013. IEEE, 371–379.
[75] N. Zeng and W. Zhang. 2014. An Executable Semantics of SystemC Transaction Level Models and Its Applications

with VERDS. In ICECCS 2014. IEEE, 198–201.
[76] N. Zhan, S. Wang, and H. Zhao. 2013. Formal Modelling, Analysis and Verification of Hybrid Systems. In Unifying

Theories of Programming and Formal Engineering Methods. LNCS, Vol. 8050. Springer, 207–281.
[77] N. Zhan, S. Wang, and H. Zhao. 2016. Formal Verification of Simulink/Stateflow Diagrams: A Deductive Way. Springer.
[78] F. Zhang, M. Yeddanapudi, and P. J Mosterman. 2008. Zero-crossing location and detection algorithms for hybrid

system simulation. IFAC Proceedings 41, 2 (2008), 7967–7972.
[79] H. Zhao, M. Yang, N. Zhan, B. Gu, L. Zou, and Y. Chen. 2014. Formal verification of a descent guidance control program

of a lunar lander. In FM 2014. LNCS, Vol. 8442. Springer, 733–748.
[80] C. Zhou, J. Wang, and A. Ravn. 1996. A formal description of hybrid systems. In Hybrid Systems 1996. LNCS, Vol. 1066.

Springer, 511–530.
[81] H. Zhu, J. He, X. Peng, and N. Jin. 2008. Denotational approach to an event-driven system-level language. In UTP 2008.

Springer, 258–278.
[82] H. Zhu, F. Yang, and J. He. 2010. Generating denotational semantics from algebraic semantics for event-driven system-

level language. In UTP 2010. Springer, 286–308.
[83] H. Zhu, Y. Zhao, and J. He. 2009. Locality-based normal form approach to linking algebraic semantics and operational

semantics for an event-driven system-level language. In ASWEC 2009. IEEE, 297–306.
[84] L. Zou, J. Lv, S. Wang, N. Zhan, T. Tang, L. Yuan, and Y. Liu. 2014. Verifying Chinese train control system under a

combined scenario by theorem proving. In VSTTE 2013. LNCS, Vol. 8164. Springer, 262–280.
[85] L. Zou, N. Zhan, S. Wang, and M. Fränzle. 2015. Formal verification of Simulink/Stateflow diagrams. In ATVA 2015.

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article 00. Publication date: 20XX.

00:40 G. Yan et al.

LNCS, Vol. 9364. Springer, 464–481.
[86] L. Zou, N. Zhan, S. Wang, M. Fränzle, and S. Qin. 2013. Verifying Simulink diagrams via a hybrid Hoare logic prover.

In EMSOFT 2013. IEEE, 1–10.

Received XXX XXXX; revised XXX XXXX; accepted XXX XXXX

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article 00. Publication date: 20XX.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Dynamical Systems
	2.2 Transition Systems
	2.3 Hybrid Communicating Sequential Processes
	2.4 SystemC

	3 approximate bisimulation of HCSP
	3.1 Approximate Bisimulation over Transition Systems
	3.2 HCSP as Transition Systems
	3.3 Approximate bisimulation over HCSP processes

	4 Discretization of HCSP
	4.1 Discretizing Continuous Dynamics in Bounded Time
	4.2 Discretization of HCSP in Bounded Time
	4.3 Discretization of HCSP in Unbounded Time

	5 Correctness of the Discretization
	5.1 Robustly Safe Processes
	5.2 Computing Parameters and
	5.3 Approximate Bisimulation between HCSP and the Disretization

	6 From Discretized HCSP to SystemC
	6.1 Operational Semantics of a Subset of SystemC
	6.2 Generating SystemC Code From Discretized HCSP

	7 Case studies
	7.1 Water tank system
	7.2 Room Heating
	7.3 Slow Descent Phase of the Lunar Lander

	8 Related Work
	9 Conclusion
	References

