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ABSTRACT
In this paper we suggest a method based on convex program-
ming for computing semi-algebraic under-approximations of
reach sets for polynomial continuous systems with initial sets
being the zero sub-level set of a polynomial function. It is
well-known that the reachable set can be formulated as the
zero sub-level set of a value function to a Hamilton-Jacobi
partial differential equation (HJE), and our approach in this
paper consequently focuses on searching for approximate an-
alytical polynomial solutions to associated HJEs, of which
the zero sub-level sets converge to the exact reachable set
from inside in measure, without discretizing the state space.
Such approximate solutions can be computed via a classi-
cal hierarchy of convex programs consisting of linear ma-
trix inequalities, which are constructed by sum-of-squares
decomposition techniques. In contrast to traditional numer-
ical methods approximately solving HJEs, such as level-set
methods, our method reduces HJE solving to convex op-
timization, avoiding the complexity associated to gridding
the state space. Compared to existing approaches comput-
ing under-approximations, the approach described in this
paper is structurally simpler as the under-approximations
are the outcome of a single semi-definite program. Further-
more, an over-approximation of the reach set, shedding light
on the quality of the constructed under-approximation, can
be constructed via solving the same semi-definite program.
Several illustrative examples and comparisons with existing
methods demonstrate the merits of our approach.
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1. INTRODUCTION
Reachability analysis, which involves computing reach sets

of a given dynamical system, has emerged as a powerful for-
mal method for addressing a broad range of important en-
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gineering problems such as the reach-avoid verification (e.g.
[31, 37]), satisfiability checking of temporal logic formulae
(e.g.,[7]), and safe design of embedded controllers for air-
crafts, cars, medical devices, and other safety-critical ap-
plications. Consequently, attention from scientists across
multiple disciplines has been devoted to the problem of per-
forming reachability analysis.

Unfortunately, the exact computation of reachable sets
of an initial-value problem for a nonlinear system modeled
by an ordinary differential equation is generally impossible.
Despite existence of solvable cases [10], general practice con-
sequently is the computation of safe approximations of the
reachable set. Such approximations can be classified into
two categories: over-approximations, which are sets cov-
ering the exact reachable set, and under-approximations,
which are subsets of the exact reachable set. Due to its re-
lation to sufficient conditions in safety verification, the over-
approximation problem has traditionally attracted more at-
tention and significant advances have been reported based
on various representations of sets in the Rn such as inter-
vals [30], zonotopes [1], polyhedra and support functions for
polyhedral sets [5, 8], ellipsoids [19], level sets [26], Taylor
models [3] and semi-algebraic sets [36, 15]. Contrastingly,
computational methods for under-approximations have been
less explored. Existing methods mainly focus on linear sys-
tems (e.g., [18]), and methods addressing non-linear systems
[17, 36, 39] have been proposed only recently. Consequently,
the under-approximate reachability analysis for nonlinear
systems is still in its infancy.

For nonlinear systems modelled by polynomial ordinary
differential equations with initial sets defined by a zero sub-
level set of a polynomial function, we propose a method
based on semi-definite programming. It is able to construct
semi-algebraic under-approximations of reachable sets over
a finite time horizon. The idea behind our approach orig-
inates from the application of Hamilton-Jacobi partial dif-
ferential equations (HJE) to reachability analysis [23, 26].
Note that the general Hamilton-Jacobi(-Bellman) equation
is able to synthesize reachable sets for nonlinear systems
with control/disturbance inputs, which are not the focus of
this paper. An under-approximation of the reachable set
in our approach is constructed via the approximate ana-
lytical polynomial solution to the HJE. However, our ap-
proach in dealing with HJEs is completely different from
the traditional grid-based numerical methods such as level-
set methods [26]. Without any discretization of the state
space, we approximate the problem of addressing the solu-



tion to HJEs via a hierarchy of semi-definite programming
problems, which provide a converging sequence of under-
approximations to the reachable set by polynomial sub-level
sets in measure. The contributions of the paper are summa-
rized as follows.

1). We construct an optimization problem in which the
constraints approximate the HJE associated with the nonlin-
ear system under consideration. Any feasible solution sat-
isfying these constraints can be used to define an under-
approximation of the reachable set and the optimal solution
represents the exact reachable set.

2). We show that the above optimization problem, when
restricted to a locally compact state-space, can be uniformly
approximated via a hierarchy of semi-definite programming
problems as the order of the relaxation tends to infinity.
The presence of the local approximation under appropriate
requirements does not introduce any conservativeness in es-
timating reachable sets. Moreover, an under-approximation
can be synthesized by computing an approximately opti-
mal solution to a single semi-definite program. An over-
approximation can be extracted from the same near-optimal
solution, and an inspection of its difference to the under-
approximation provides a rigorous measure of the approxi-
mation quality obtained.

3). Finally, we test and discuss our method on several il-
lustrative examples of nonlinear dynamics based on the Mat-
lab package YALMIP [22] interfacing with the semi-definite
programming solver Mosek [27], and highlight the merits of
our method by comparing with the method in [17].

Related Work
As mentioned above, less attention has been paid to the
problem of under-approximating reachable sets of nonlinear
systems, compared with the over-approximation problem.
Most approaches are confined to linear systems (e.g., [18, 2,
11, 6]), although some methods for nonlinear systems have
been proposed recently as presented below.

Polytopic under-approximations permit the analysis of some
specified properties such as the falsification of safety prop-
erties using reasoning in the theory of linear arithmetic. [12,
13] proposed a method based on modal intervals with affine
forms to under-approximate reachable sets using intervals
for continuous nonlinear systems modelled by ordinary dif-
ferential equations. By making use of the homeomorphism
property of the solution mapping, a boundary-based reacha-
bility analsysis method was proposed to under-approximate
reachable sets with general polytopes in [39], and it was
extended to under-approximate reachability for a class of
nonlinear systems modelled by delay differential equations
in [38]. As the reachable sets of nonlinear systems tend to
be non-convex, the above methods for under-approximating
reachable sets using convex set representations may result in
poor approximations. As accuracy is an important factor in
performing reachability analysis (e.g.,[34, 25]), more com-
plex shapes of representations such as semi-algebraic sets
and Taylor models are desirable.

[36] proposed an iterative method, with each iteration
relying on solving semi-definite programming problems, to
compute semi-algebraic under-approximations of reachable
sets for polynomial systems using the advection map of the
given dynamical system. By decomposing the initial set’s
boundary into smaller interval boxes and performing bound-
ary reachability analysis as in [39], [40] proposed an iterative

method to compute semi-algebraic under-approximations of
reachable sets for polynomial systems and beyond by solving
semi-definite programming problems. Compared to these
methods, our method proposed in this paper reduces the
computation of the under-approximation to a single semi-
definite programming problem (SDP). Safe approximate so-
lutions to both the SDP and the reach set are thus easy
to obtain and the quality of approximation of the reachable
set can easily be scaled to desired precision. A Taylor model
backward flowpipe method was presented to compute under-
approximations in [4]. The algorithm in [4] attempted to
find implicit Taylor models such that the semi-algebraic set
formed by them is connected. However, the reachable set
representation considered in our method is not limited to
connected sets, thus avoiding the high computational com-
plexity of verifying the connectedness of the obtained semi-
algebraic set.

[17] provided an inner approximations of the region of at-
traction to an open target set subject to basic semi-algebraic
state constraints by solving a single semi-definite program
as well. The inner-approximation in [17] was constructed
by computing over-approximation of the complement of the
reachable set of interest. The under-approximation problem
in this paper is free of state constraints. However, any in-
formation on the convergence rate and the approximation
quality is inaccessible for the method in [17]. Contrastingly,
such important information can be gained or measured in
our approach since the approximation errors are calculated
during our computations, and an over-approximation of the
reachable set can be produced simultaneously by solving a
related single semi-definite program.

The structure of this paper is organized as follows. In
Section 2, we introduce our problem of interest as well as
Hamilton-Jacobi equations and Putinar’s Positivstellensatz
used to construct semi-definite programs. Our method for
computing under-approximations of reachable sets by solv-
ing semi-definite programs is elucidated in Section 3. After
illustrating our method through several examples and com-
parisons with existing works in Section 4, we conclude our
our method in Section 5.

2. PRELIMINARIES
In this section we present an introduction to reachable

sets, Hamilton-Jacobi equations and Putinar’s Positivstel-
lensatz used to construct semi-definite programs. The no-
tation will be used throughout this paper: For a set ∆, ∂∆
is its boundary. The symbol R[·] denotes the ring of poly-
nomials in variables given by the argument. The space of
continuously differentiable functions on a set X is denoted
by C1(X). The difference of two sets of A and B is denoted
by A \ B. µ(A) denotes the Lebesgue measure on A ⊂ Rn.
Vectors are denoted by boldface letters.

We consider continuous dynamical systems specified by
the following Ordinary Differential Equation (ODE):

dx

dt
= f(x), x0 ∈ X0, t ∈ [t0, T ], (1)

where x = (x1, x2, . . . , xn)′ ∈ Rn, f = (f1, f2, . . . , fn)′ and
X0 =

{
x | V0(x) ≤ 0

}
is a compact set. Furthermore,

fj : Rn → R, j = 1, 2, . . . , n, is a polynomial over x, and
V0 : Rn → R is a polynomial over x.

Since fj : Rn → R, j = 1, 2, . . . , n, is a polynomial over



the state variable x and the time variable t, f(x) is locally
Lipschitz continuous, assuring existence and uniqueness of
the trajectories of System (1) over some time interval [t0 −
δ, t0 + δ] in a given compact state space X . Further, the
trajectory of System (1) over time interval [t0, T ], where T ≤
t0 + δ, is defined to be φ(t;x0, t0) = x(t), where x(t) is the
solution to System (1) with the initial condition x(t0) = x0.
Hence comes the definition of reachable sets of the initial set
X0 at t ∈ [t0, T ] and over time interval [t0, t].

Definition 1. Given a system (1) and a time interval
[t0, T ], the reachable set of the initial set X0 at time instant
t ∈ [t0, T ] is defined to be Ω(t;X0, t0) = {x | x0 ∈ X0

∧
x =

φ(t;x0, t0)}; the reachable set of the initial set X0 over time
interval [t0, T ] is defined to be Ω([t0, t];X0, t0) = ∪τ∈[t0,t]{x |
x0 ∈ X0

∧
x = φ(τ ;x0, t0)}.

In this paper, we put our attention on under-approximations,
as defined below.

Definition 2. For t ∈ [t0, T ], a set Xt is called an under-
approximation of Ω(t;X0, t0) if

Xt ⊆ Ω(t;X0, t0).

2.1 Hamilton-Jacobi Equation
The exact reachable set can be obtained by the solutions

to Hamilton-Jacobi Equations associated with System (1).
For details, please refer to [26]. Below we present a simple
introduction to this concept.

Let X0 = {x | V0(x) ≤ 0}. We further assume that Φ(x, t)
with Φ(x, t0) = V0(x) is the viscosity solution to Hamilton-
Jacobi Equation

∂Φ(x, t)

∂t
+
∂Φ(x, t)

∂x
f(x) = 0, (2)

solved forward in time from t = t0 with the initial value
Φ(x, t0) = V0(x). Then

Ω(t;X0, t0) = {x | Φ(x, t) ≤ 0}

is the reachable set at time instant t for System (1).

Theorem 1. Assume that V0(x) is continuously differ-
entiable over x ∈ Rn, then Φ(x, t) is a classical solution to
(2), i.e. Φ(x, t) ∈ C1(Rn × [t0, T ]), and it is unique.

Proof. Apparently, Φ(x, t) = V0(φ−1(t0;x, t)), which is
continuously differentiable over (t,x) ∈ [t0, T ]×Rn, satisfies
(2), where φ−1(t;x, t0) is the inverse of the solution mapping
x = φ(t; ·, t0) : Rn 7→ Rn.

Next, we prove the uniqueness. Assume that there ex-
ists another Φ1(x, t) ∈ C1(Rn× [t0, T ]) such that Hamilton-
Jacobi Equation (2) holds. Substracting d

dt
Φ1(x, t) from

d
dt

Φ(x, t), we obtain

d

dt
Φ(x, t)− d

dt
Φ1(x, t) = 0 (3)

with the initial condition Φ(x, t0)−Φ0(x, t0) = 0. For ∀τ ∈
[t0, T ], integrating (3) over t from t0 to τ , we obtain that
Φ(x, τ) = Φ1(x, τ) for ∀x ∈ Rn. Thus, there exists a unique
solution Φ(x, t) ∈ C1(Rn × [t0, T ]) to (2)

2.2 Putinar’s Positivstellensatz
The problem of positivity of polynomials on a compact

semi-algebraic set is a field of research attracting researchers

from various areas including real algebra, semidefinite pro-
gramming, and operator theory. Based on Putinar’s Posi-
tivstellensatz [29], the above problem can be addressed in
the semi-definite programming framework. In the follow-
ing we briefly introduce such application of Putinar’s Posi-
tivstellensatz.

Let K ⊂ Rm be a closed semi-algebraic set, i.e., there
exist polynomials g1(y), . . . , gl(y) such that

K = {y ∈ Rm | g1(y) ≥ 0, . . . , gl(y) ≥ 0}.

Given a polynomial p(y), we attempt to decide whether it
is positive over K, i.e.

p(y) > 0,∀y ∈ K.

Additionally, we define
∑
m to be the set of sum of squares

(SOS) polynomials over variables y.

∑
m

:= {p ∈ R[y] | p =

k∑
i=1

q2
i , qi ∈ R[y], i = 1, . . . , k}.

Obviously if h ∈
∑
m, then h(y) ≥ 0 for any y ∈ Rm.

Putinar’s Positivstellensatz presented a linear formulation
in constraints defining a given compact semi-algebraic set to
characterize a polynomial that is positive on the compact
semi-algebraic set, as stated in Theorem 2.

Theorem 2. [Putinar’s Positivstellensatz [29]]Let K =
{y ∈ Rm | g1(y) ≥ 0, . . . , gl(y) ≥ 0} be a compact set.
Suppose there exists N > 0 such that

N −
m∑
i=1

y2
i ∈M(g1, . . . , gl).

If p(y) is positive on K, then p(y) ∈ M(g1, . . . , gl), where
M(g1, . . . , gl) is the quadratic module of polynomials g1, . . . , gl,
i.e.

M(g1, . . . , gl) = {σ0(y) +

l∑
i=1

σi(y)gi(y) | each σi ∈
∑
m

}.

Therefore, the problem of verifying positivity of a given
polynomial p(y) on a compact set K satisfying Putinar’s
Positivstellensatz is reduced to finding appropriate sum-of-
squares multipliers σi(y) ∈

∑
m such that

p(y) = σ0(y) +

l∑
i=1

σi(y)gi(y). (4)

When degrees of σi(y)’s are fixed, the problem of verifying
whether (4) holds is a semi-definite programming problem.

3. REACHABLE SET COMPUTATIONS
In this section an approach to under-approximate reach-

ability analysis for a given system (1) is presented. The ap-
proach begins with relaxing the associated Hamilton-Jacobi
Equation (2) and ends with solving semi-definite programs.

An under-approximation Xt of the reachable set at time
t ∈ [t0, T ] can be constructed by the zero sub-level set of
a continuously differentiable function solving a system of
constraints derived by relaxing the HJE (2). This is for-
mally stated in Theorem 3. For ease of exposition, we de-

note ∂Φ(x,t)
∂t

+ ∂Φ(x,t)
∂x

f(x) by LΦ(x, t) for the rest of this
paper.



Theorem 3. Assume a system (1) with a compact initial
set X0 =

{
x | V0(x) ≤ 0

}
and a time interval [t0, T ], where

V0(x) is continuously differentiable over x ∈ Rnand t0 < T .
If a continuously differentiable function Φ(x, t) and a non-
negative value ε satisfy the following constraints (5), namely

0 ≤ LΦ(x) ≤ ε, ∀(x, t) ∈ Rn × [t0, T ]
Φ(x, t0) ≥ V0(x)
Φ(x, t0)− ε ≤ V0(x)
ε ≥ 0

, (5)

then the set
{
x | Φ(x, τ) ≤ 0

}
is an under-approximation of

the reachable set for τ ∈ [t0, T ].

Proof. Assume that y = φ(τ ;x0, t0) with τ ∈ [t0, T ]
and x0 ∈ Rn. Additionally, assume that x(t) = φ(t;x0, t0)
with t ∈ [t0, τ ]. Obviously, y = x(τ). We can deduce that

Φ(y, τ) =Φ(x0, t0) +

∫ τ

t0

d

dt
Φ(x(t), t)dt

= Φ(x0, t0) +

∫ τ

t0

LΦ(x, t)dt

. (6)

Let Φ1(x, t) ∈ C1(Rn × [t0, T ]) satisfy HJE (2) with the
initial condition Φ1(x, t0) = V0(x). Since LΦ1(x, t) = 0 over
Rn × [t0, T ], the following equality can be inferred:

Φ(y, τ)−Φ1(y, τ) = Φ(x0, t0)−V0(x)+

∫ τ

t0

LΦ(x, t)dt. (7)

Also, since

0 ≤ Φ(x0, t0)− V0(x) ≤ ε

and

0 ≤ LΦ(x, t) ≤ ε

over Rn × [t0, T ], it is deduced that

0 ≤ Φ(y, τ)− Φ1(y, τ) ≤ ε(1 + τ − t0) (8)

holds over the Rn. It is evident that thus y ∈ {x | Φ(y, τ) ≤
0} implies y ∈ {x | Φ1(y, τ) ≤ 0}. Moreover, from Subsec-
tion 2.1, we have the conclusion that x0 ∈ X0 if y ∈ {x |
Φ1(y, τ) ≤ 0} holds. That is, the state y ∈ {x | Φ(x, τ) ≤
0} is reached definitely by a trajectory originating from X0

at time instant t0. Therefore,
{
x | Φ(x, τ) ≤ 0

}
is an under-

approximation of the reachable set for τ ∈ [t0, T ].

From Theorem 3, we have the following observations: Let
the pair (Φ(x, t), ε) be in (5) from Theorem 3.

1). The non-negative value ε can be regarded as a charac-
terization of the discrepancy between the approximate an-
alytical solution Φ(x, t) to HJE (2) and its exact solution
according to (8) in the proof of Theorem 3: the smaller ε is,
the closer the analytical solution Φ(x, t) approximates the
exact solution to HJE (2);

2). An over-approximation at time τ ∈ [t0, T ], which cov-
ers the reachable set Ω(τ ;X0, t0), can be constructed using
the function Φ(x, τ) and ε satisfying the constraint (5), as
formulated in Corollary 1. The over-approximation could be
employed to quantitatively characterize how close the com-
puted under-approximation is to the exact reachable set.

Corollary 1. Assume a system (1) with a compact ini-
tial set X0 =

{
x | V0(x) ≤ 0

}
and a time interval [t0, T ],

where V0(x) is continuously differentiable over x ∈ Rn and

t0 < T . If a continuously differentiable function Φ(x, t)
and a non-negative value ε satisfy the constraint (5), the
set {x | Φ(x, τ) ≤ ε(τ − t0 + 1)} is an over-approximation
of the reachable set for τ ∈ [t0, T ].

Proof. According to (8) in the proof of Theorem 3, the
conclusion can be assured.

Also, when optimizing the feasible pair (Φ(x, t), ε) in the
constraint (5) in Theorem 3, as formulated in (9), we are
able to gain the least conservative under-approximation of
the reachable set Ω(t;X0, t0) at time t ∈ [t0, T ].

ε∗ = min
Φ(x,t),ε

ε

s.t.

ε ≥ 0,

LΦ(x, t) ≥ 0, ∀(x, t) ∈ Rn × [t0, T ],

ε− LΦ(x, t) ≥ 0, ∀(x, t) ∈ Rn × [t0, T ],

Φ(x, t0)− V0(x) ≥ 0, ∀x ∈ Rn,
V0(x) + ε− Φ(x, t0) ≥ 0,∀x ∈ Rn,

Φ(x, t) ∈ C1(Rn × [t0, T ])

(9)

Let (Φ∗(x, t), ε∗) be the optimal pair solving the optimiza-
tion (9). We obtain the following conclusion.

Lemma 1. The optimal value ε∗ of the optimization prob-
lem (9) is equal to zero and the zero sub-level set of the func-
tion Φ∗(x, t), i.e. {x | Φ∗(x, t) ≤ 0}, is equal to the exact
reachable set Ω(t;X0, t0) at time t ∈ [t0, T ].

Proof. As stated in Theorem 1, there exists a unique
continuously differentiable function over Rn × [t0, T ] such
that the HJE (2) holds. Thus, the optimal value ε∗ of prob-
lem (9) is equal to zero and the zero sub-level set of its cor-
responding continuously differentiable function Φ∗(x, t) is
equal to the reachable set at time t ∈ [t0, T ], i.e. Ω(t;X0, t0) =
{x | Φ∗(x, t) ≤ 0}.

Through Theorem 3 and Lemma 1, an under-approximation
Xt at t ∈ [t0, T ] can be constructed via the zero sub-level
set of Φ(x, t) in the pair (Φ(x, t), ε) feasible in (9), and the
reachable set Ω(t;X0, t0) equals the zero sub-level set of the
function Φ∗(x, t) in the optimal pair (Φ∗(x, t), ε∗) solving
the optimization (9), i.e. Ω(t;X0, t0) = {x | Φ∗(x, t) ≤ 0}.
However, solving the optimization problem (9) is intractable
in general.

3.1 Under-Approximating Reachable Sets
In this subsection we show how a hierarchy of under-

approximations of the reachable set represented by poly-
nomial sub-level sets can be computed via solving semi-
definite programs, with a guarantee of convergence to the
exact reachable set in measure. Such semi-definite programs
approximate the optimization (9) in an appropriate compact
state space Y ⊂ Rn rather than Rn, i.e. the continuously
differentiable function Φ(x, t) defined in Rn × [t0, T ] in the
optimization (9) is restricted to the compact set Y × [t0, T ]
in the constructed semi-definite programs.

Firstly, we introduce the compact set Y ⊂ Rn required in
our computations.

Definition 3. Assume Ω([t0, T ];X0, t0) ⊆ X , the set Y
of the form {x | g(x) ≥ 0} is a set such that all trajectories
starting from X at time instant t = t0 do not leave it within
time interval [t0, T ], where g(x) = R− ‖x‖22 with R ≥ 0.



The compact set Y in Definition 3 always exists since the
reachable set Ω([t0, T ];X , t0) is bounded if X is bounded,
and there definitely exists some constant R ≥ 0 such that
Ω([t0, T ];X , t0) ⊆ Y := {x | g(x) ≥ 0} holds. By searching
for the continuously differentiable function Φ(x, t) restricted
in the compact domain Y × [t0, T ] rather than Rn × [t0, T ],
the optimization (9) is relaxed into the optimization (10),
as formulated below. However, such relaxation does not
introduce conservativeness in estimating the reachable set.

ε∗ = min
Φ(x,t),ε

ε

s.t.
ε ≥ 0,

LΦ(x, t) ≥ 0, ∀(x, t) ∈ Y × [t0, T ],

ε− LΦ(x, t) ≥ 0, ∀(x, t) ∈ Y × [t0, T ],

Φ(x, t0)− V0(x) ≥ 0, ∀x ∈ Y,
V0(x) + ε− Φ(x, t0) ≥ 0,∀x ∈ Y,

(10)

where the minimum is over Φ(x, t) ∈ C1(Y × [t0, T ]).

Lemma 2. The set {x ∈ X | Φ(x, t) ≤ 0} is an under-
approximation of the reachable set at time t ∈ [t0, T ], where
Φ(x, t) satisfies the constraints in (10).

Proof. By restricting the state space Rn in the con-
straint (5) to the compact set Y and due to the fact that
every trajectory starting from X at time t = t0 stays within
the Y over the time interval [t0, T ], the proof follows from
the proof of Theorem 3.

Lemma 3. Let (Φ∗(x, t), ε∗) be the optimal pair solving
the optimization problem (10), then ε∗ = 0 and the restric-
tion of the continuous differentiable function Φ∗(x, t) to the
compact set X × [t0, T ], i.e. Φ∗(x, t)|X×[t0,T ], is unique.

Proof. According to Kirszbraun’s theorem (e.g., [9]) on
extending Lipschitz mappings in Hilbert space, the existence
of a globally Lipschitz function f ′(·) : Rn 7→ Rn such that
f ′(x) = f(x) over Y is guaranteed. Thus the solution to
ẋ = f ′(x) exists for ∀x ∈ Rn and ∀t ∈ R and coincides
with the solution to (1) for ∀x ∈ Y. Thus, a feasible pair
(Φ(x, t), ε) to (9) associated with ẋ = f ′(x) is a feasible
pair to (10). Furthermore, the optimal value ε∗ to the op-
timization (10) is equal to zero, implying that the optimal
pair to the optimization (9) is also an optimal pair to the
optimization (10). Moreover, Φ∗(x, t)|X×[t0,T ] is equal to
the restriction of the Φ−component to the set X × [t0, T ]
in the optimal pair to (9). Since Ω([t0, T ];X , t0) ⊆ Y, the
uniqueness of Φ∗(x, t)|X×[t0,T ] can be assured by following
the corresponding proof in Theorem 2.

Consequently, we have the following theorem assuring com-
putation of the exact reachable set via solving (10).

Theorem 4. Let (Φ∗(x, t), ε∗) be the optimal solution to
(10), then the reachable set Ω(t;X0, t0) is equal to the set
{x ∈ X | Φ∗(x, t) ≤ 0}.

In the following, we show that the optimization problem
(10) can be approximated by a hierarchy of semi-definite
programming problems with the approximation error ε van-
ishing as the relaxation order tends to infinity.

Let Rk[x, t] denote the vector space of real multivariate
polynomials of total degree ≤ k. Each polynomial p(x, t) ∈

Rk[x, t] can be expressed in the monomial basis as

p(x, t) =
∑
|α|≤k

pαy
α =

∑
|α|≤k

pα(xα1
1 · . . . · x

αn
n · tαn+1),

where y = (x, t), the pα’s are the coefficients of p(x, t),
and α ranges over the multi-indices (vectors of non-negative
integers) such that |α| =

∑n+1
i=1 αi ≤ k.

Assuming Φk(x, t) ∈ Rk[x, t], the optimization (10) is re-
laxed to the following semi-definite program,

ε∗k = min
ε,Φk(x,t),si,i=0,...,9

ε

s.t.

ε ≥ 0

LΦk(x, t) = s0 + s1(t− t0)(T − t) + s2g(x)

ε− LΦk(x, t) = s3 + s4(t− t0)(T − t) + s5g(x)

Φk(x, t0)− V0(x) = s6 + s7g(x)

ε+ V0(x)− Φk(x0, t0) = s8 + s9g(x)

, (11)

where the minimum is over polynomials Φk(x, t) ∈ Rk[x, t],
ε and polynomial sum-of-squares si ∈ R[x, t], i = 0, . . . , 5,
sj ∈ R[x], j = 6, . . . , 9, of appropriate degrees. The con-
straints that polynomials are sum-of-squares can be written
explicitly as linear matrix inequalities, and the objective is
linear in ε; therefore problem (11) can be formulated as a
semi-definite program, which falls within the convex opti-
mization framework and is solvable in polynomial time up
to any desired accuracy by interior point methods (e.g., [35]).

3.2 Convergence Analysis
In this subsection we show how (11) gives rise to a con-

verging sequence of inner-approximations to the reachable
set at time t ∈ [t0, T ] in measure.

Let (Φ∗k(x, t), ε∗k) be the optimal solution to the semi-
definite program (11). Our first convergence result proves
the convergence of the restriction of the function Φ∗k to the
set X × [t0, T ] to the restriction of the function Φ∗(x, t) to
the set X × [t0, T ], i.e. Φ∗k(x, t)|X×[t0,T ] → Φ∗(x, t)|X×[t0,T ]

as k → ∞, where Φ∗ is the Φ−component of the optimal
solution (Φ∗, ε∗) to the optimization problem (10).

Theorem 5. Let (Φ∗k(x, t), ε∗k) and (Φ∗(x, t), ε∗) be the
optimal solutions to the optimizations (11) and (10) respec-
tively, where LΦ∗ ≡ 0 for ∀(x, t) ∈ Y × [t0, T ]. Then as the
relaxation order k approaches infinity, Φ∗k(x, t) converges to
Φ∗(x, t) with Φk(x, t) ≥ Φ∗(x, t) over X × [t0, T ] uniformly,
and εk converges monotonically from above to ε∗.

Proof. Since Y × [t0, T ] is compact, for ∀ε > 0, there

exists polynomials Φ̃ of a sufficiently high degree such that

sup
Y×[t0,T ]

|Φ̃− Φ∗| < ε

and

sup
Y×[t0,T ]

|LΦ̃− LΦ∗| < ε.

Also, since LΦ∗ ≡ 0 for ∀(x, t) ∈ Y × [t0, T ], we obtain

supY×[t0,T ] |LΦ̃| < ε. Set

Φ̂(x, t) := Φ̃(x, t) + ε(t− t0 + 1).

We derive that

0 < Φ̂(x, t)− Φ∗(x, t) < δ,∀(x, t) ∈ Y × [t0, T ]



and
0 < sup

Y×[t0,T ]

LΦ̂ < δ,

where δ = ε(T−t0+2). Thus the polynomial function Φ̂(x, t)
is strictly feasible in (9) and as a result, under Definition 3,
feasible for a sufficiently large relaxation order k, which fol-
lows Theorem 2. Thus, ε∗k converges to ε∗, i.e. 0 (according
to Lemma 3), since ε is arbitrary. Monotone convergence of
ε∗k to ε∗ follows from that the higher the relaxation order
k, the looser the constraint set of the minimization problem
(11) is.

Since Ω([t0, T ];X , t0) ⊆ Y and Φ∗(x, t) is unique over
X × [t0, T ] according to Lemma 3, the claim that Φk(x, t) ≥
Φ∗(x, t) over X × [t0, T ] follows from (8) and Φ∗k(x, t) con-
verges to Φ∗(x, t) over X × [t0, T ] as k tends to infinity.

Theorem 5 establishes a convergence of Φ∗k(x, t) to Φ∗(x, t)
with Φ∗k(x, t) ≥ Φ∗(x, t) over (x, t) ∈ X × [t0, T ] in function
space. Finally, the following theorem establishes a set-wise
convergence of the sets

Xt,k := {x ∈ X | Φ∗k(x, t) ≤ 0} (12)

and

X t,k := {x ∈ X | Φ∗k(x, t) ≤ 0} (13)

to Ω(t;X0, t0) at t ∈ [t0, T ], where Φ
∗
k := mini≤k Φ∗i .

Theorem 6. Let (Φ∗k(x, t), ε∗k) be the optimal pair solving
the optimization (11) and µ({x | V0(x) = 0}) = 0. Then the
sets Xt,k and X t,k defined in (12) and (13) converge to the
reachable set Ω(t;X0, t0) from inside such that Ω(t;X0, t0) ⊇
X t,k ⊇ Xt,k and

limk→∞µ(Ω(t;X0, t0) \ Xt,k) = 0

and

limk→∞µ(Ω(t;X0, t0) \ X t,k) = 0.

Moreover the convergence of X t,k is monotonous, i.e., X t,i ⊆
X t,j whenever i ≤ j.

Proof. The inclusion Ω(t;X0, t0) ⊃ X t,k ⊃ Xt,k follows
from the facts that Φ∗k(x, t) ≥ Φ∗(x, t) over (x, t) ∈ X ×
[t0, T ] in Theorem 3, Ω(t;X0, t0) = {x ∈ X | Φ∗(x, t) ≤ 0}
in Theorem 4 and X t,k = ∪ki=1Xt,i. The last fact also proves
the monotonicity of the sequence X t,k. Next, from Theorem
5 we have that Φ∗k(x, t) converges to Φ∗(x, t) over X × [t0, T ]
uniformly as the order k tends to infinity, thus we have

limk→∞

∫
X
|Φ∗k(x, t)− Φ∗(x, t)| dx = 0;

also, since µ({x|V0(x) = 0}) = 0 and the trajectory map-
ping φ(t; ·, t0) : X0 7→ Ω(t;X0, t0) is absolutely continuous for
t ∈ [t0, T ] and thus is measure preserving, µ({x|Φ∗(x, t) =
0}) = 0 for t ∈ [t0, T ] holds; additionally, the fact that
Φ∗k(x, t) ≥ Φ∗(x, t) over (x, t) ∈ X × [t0, T ] is ensured
by Theorem 5. Accordind to Theorem 4 stating the fact
that Ω(t;X0, t0) = {x ∈ X|Φ∗(x, t) ≤ 0} and Theorem
3 in [21], we have limk→∞µ(Ω(t;X0, t0) \ Xt,k) = 0 and
limk→∞µ(Ω(t;X0, t0) \X t,k) = 0, completing the proof.

Remark 1. In analogy to Corollary 1, a converging se-
quence of approximations to the reachable set Ω(t;X0, t0) at
time t ∈ [t0, T ] from outside can be constructed by solving
the semi-definite programming problem (11), as stated below.

Let

Yt,k := {x ∈ X | Φ∗k(x, t) ≤ ε(1 + t− t0)} (14)

and

Yt,k := {x ∈ X | Φ̂∗k(x, t) ≤ ε(1 + t− t0)} (15)

where t ∈ [t0, T ] and Φ̂∗k := maxi≤kΦ∗i .

Theorem 7. Let (Φ∗k(x, t), ε∗k) be the optimal solution to
(11). Then the sets Yt,k and Yt,k defined in (14) and (15)
converge to the reachable set Ω(t;X0, t0) from outside such
that Ω(t;X0, t0) ⊆ Yt,k ⊆ Yt,k and

limk→∞µ(Yt,k \ Ω(t;X0, t0)) = 0

and

limk→∞µ(Yt,k \ Ω(t;X0, t0)) = 0.

Moreover, the convergence of Yt,k is monotonous, i.e., Yt,i ⊇
Yt,j whenever i ≤ j.

Proof. The statement follows from corresponding state-
ments in Corollary 1, Theorem 4, and Theorem 5 and The-
orem 3.2 in [24].

4. EXAMPLES AND COMPARISONS
In this section we present three examples to illustrate our

approach and discuss the benefits of our method by com-
paring with the method in [17]. All computations were
performed on an i7-T450s 2.6GHz CPU with 4GB RAM
running Ubuntu Linux 17.04. For numerical implementa-
tion, we formulate the sum-of-square problem (11) using the
MATLAB package YALMIP [22] and use Mosek1 as a semi-
definite programming solver.

4.1 Examples
In this subsection we test our method on three illustrative

examples. The parameters that control the performance of
our approach are presented in Table 1.

Example 1. Consider a two-dimensional example con-
structed to illustrate the barrier certificate in [28],

ẋ1 = x1 − 2x2

ẋ2 = x1x2 + 0.5x2
2 ,

where X0 = {x | 100x2
1 + 100x2

2 ≤ 1}, and 1a) Y = {x|1 −
x2 − y2 ≥ 0}; 1b) Y = {x|0.25− x2 − y2 ≥ 0}.

The computed under-approximations are illustrated in Fig.
1 and 2. The obtained under-approximations with k = 20
for 1a) and k = 18 for 1b) almost match the corresponding
exact reachable sets by comparing with the respective gained
over-approximations.

Example 2. Consider the following van-der-Pol system

ẋ1 = x2

ẋ2 = −0.2x1 + x2 − 0.2x2
1x2 ,

where X0 = {x | x2
1 + x2

2 − 0.25 ≤ 0}, and 2a) Y = {x|15−
x2 − y2 ≥ 0}; 2b) Y = {x|16− x2 − y2 ≥ 0}.

The computation results are illustrated in Fig. 3 and 4.
When k = 12, the obtained under-approximations and the
corresponding over-approximations at t = 2.0 for 2a) and
2b) are too close to be shown so that just the under-approximation
for 2a) is presented in Fig. 4.



Figure 1: Reachable sets for Example 1 in 1a). (Solid red
and green curves: ∂X1,20 and ∂X1,18, respectively. Dashed red
and green curves: ∂Y1,20 and ∂Y1,18, respectively. Blue curve:
∂X0. Black curve: ∂Ω(1.0,X0, 0) from Runge-Kutta methods.)

Figure 2: Reachable sets for Example 1 in 1b). (Solid red and
green curves: ∂X1,12 and ∂X1,10, respectively. Dashed red and
green curves: ∂Y1,12 and ∂Y1,10, respectively. Blue curve: ∂X0.
Black curve: ∂Ω(1,X0, 0) from Runge-Kutta methods.)
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Figure 3: Reachable sets for Example 2. (Solid green and red
curves: ∂X2,10 for 2a) and 2b), respectively. Dashed green and
red curves: ∂Y2,10 for 2a) and 2b), respectively. Blue curve: ∂X0.
Black curve: ∂Ω(2.0,X0, 0) from Runge-Kutta methods.)

Ex. [t0, T ] k di ε T ime

1a [0,1.0] 18 18 1.50× 10−3 109.41

1a [0,1.0] 20 20 7.07× 10−4 238.55

1b [0,1.0] 10 10 1.30× 10−3 12.36

1b [0,1.0] 12 12 2.75× 10−4 7.82

2a [0,2.0] 10 10 2.85× 10−2 6.07

2a [0,2.0] 12 12 2.9× 10−3 10.63

2b [0,2.0] 10 10 2.71× 10−2 6.25

2b [0,2.0] 12 12 1.4× 10−3 10.69

3a [0,3.0] 12 12 1.75× 10−2 153.32

3a [0,3.0] 14 14 1.21× 10−2 665.57

3b [0,3.0] 12 12 4.35× 10−2 191.19

3b [0,3.0] 14 14 2.59× 10−2 742.96

Table 1: Parameters and performance of our implementa-
tions on the examples presented in this section. [t0, T ]: the
reference interval; k: the relaxation order in (11), i.e. de-
gree for Φk(x, t); di: degree of the sum-of-squares multiplier
si in the optimization (11); ε: tolerance of the near-optimal
solution to (11); T ime: seconds.

Example 3. Consider the reversed-time 3D-Lotka-Volterra
system

ẋ1 = −x1x2 + x1x3

ẋ2 = −x2x3 + x2x1

ẋ3 = −x3x1 + x3x2 ,

where X0 = {x |
∑3
i=1 100x2

i ≤ 1} and 3a) Y = {x | 0.16−∑3
i=1 x

2
i ≥ 0}; 3b) Y = {x | 0.25 −

∑3
i=1 x

2
i ≥ 0}. The

computation results are illustrated in Fig. 5 and 6.

From Example 1, we observe by comparing the results in
Fig. 1 and Fig. 2 that polynomials of degree 10 (or 12)
in the case of 1b) can under-approximate the reachable set

1For academic use, the software Mosek can be obtained for
free from https://www.mosek.com/.
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Figure 4: Reachable sets for Example 2. (Red curve: ∂X2,12.
Blue curve: ∂X0. Black curve: ∂Ω(2.0,X0, 0) from Runge-Kutta
methods.)
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Figure 5: Reachable sets for Example 3 in 3a). (Solid and
dashed red curves: ∂X3,14 and ∂Y3,14, respectively. Solid and
dashed green curves: ∂X3,12 and ∂Y3,12, respectively. Blue curve:
∂X0.)
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Figure 6: Reachable sets for Example 3 with 3a) and 3b).
(Solid red and green curves : ∂X3,14 and ∂X3,12 for 3a), respec-
tively. Dashed red and green curves: ∂X3,14 and ∂X3,12 for 3b),
respectively. Blue curve: ∂X0.)

Figure 7: Reachable sets for Example 1. (Solid red and green
curves: ∂X1,20 and ∂X1,12 from our method in 1a) and 1b), re-
spectively. Dashed red and green curves: ∂X1,20 and ∂X1,12 from
the method in [17] in 1a) and 1b), respectively. Black curve:
∂Ω(1.0,X0, 0) obtained by Runge-Kutta methods.)
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Figure 8: Reachable sets for Example 3 in 3a). (Solid red
and blue curves: ∂X3,14 and ∂X3,12 obtained from our method,
respectively. Dashed red and blue curves: ∂X3,14 and ∂X3,12

obtained from the method in [17], respectively.)
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Figure 9: Reachable sets for Example 3 in 3b). (Solid red
and blue curves: ∂X3,14 and ∂X3,12 obtained from our method,
respectively. Dashed red and blue curves: ∂X3,14 and ∂X3,12

obtained from the method in [17], respectively.)

less conservatively than polynomials of degree 18 (or 20) in
the case of 1a). This observation intuitively implies that a
less conservatively a-priori enclosure Y would help compute
a tighter approximation of the reachable set with polynomi-
als of lower degree. This claim also applies to Example 3 by
scrutinizing the results in Fig. 6. In contrast, such statement
does not seem to apply to Example 2, for which no signifi-
cant differences between state set estimates, as illustrated in
Fig. 3, are found for cases 2a) and 2b). In real applications,
we would suggest the use of a less conservatively set Y to
perform computations on (11). Another observation, from
all the above three examples, is that the semi-definite pro-
gram (11) can provide a sequence of inner-approximations
with guarantee of convergence to the exact reachable set
as well as a monotonically decreasing sequence of infima ε
characterizing the discrepancy between the approximate so-
lution to the HJE and its exact solution over the specified
compact set X × [t0, T ] with the relaxation order increasing,
as claimed in Theorem 5 and Theorem 6 respectively.

4.2 Comparisons
As discussed previously, analogous to our method in this

paper, an under-approximation of the rechable set can be
gained by solving a single semi-defnite program for the method



in [17] as well. Except the differences between our method
and the method in [17] as presented in the related work sec-
tion, we in this subsection further compare the performances
of these two methods based on Examples 1 ∼ 3.

From the visualized results in Fig. 7, it is evident that
the under-approximations computed by our method, when
the relaxation orders are 14 and 12 for the cases 1b) and
1a) respectively, are tighter than those synthesized by the
method in [17]. Compared with the results illustared in Fig.
3 (or, Fig. 4), the results obtained by applying the method
in [17] to both cases in Example 2 are too conservative.
Therefore, we do not show them in this paper. Contrasting
with Examples 1 and 2, the comparison as to Example 3
becomes slightly complicated. For the case of 3a), according
to the results illustrated in Fig. 8, the claim that our method
outperforms the method in [17] is still valid when relaxation
orders 14 and 12 are adopted in both methods. From Fig. 9,
it is difficult to make a conslusion that one outperforms the
other in case that the relxation order for both methods is 14.
However, when applying both methods with the relaxation
order 12 to 3b) and observing the results in Fig. 9, we gain
less conservative under-approxiamtions using the method in
[17]. Note that in 3a) ( and 3b)), the corresponding under-
approximations obtained by [17] with relaxation orders 14
and 12 respectively are almost the same and therefore it is
hard to distinguish the visualized results presented in Fig.
8 (and Fig. 9).

Based on the comparison results above, we conclude that
our method can provide tighter under-approximations than
the method in [17] for some cases when the same relaxation
order for both methods is used. Besides, apart from the
development of more advanced semi-definite programming
solvers, which are capable of dealing with numerical issues
in the numerical solving of semi-definite programming prob-
lems more maturely, the investigation of structure differ-
ences of the semi-definite programs constructed in this pa-
per and in [17] helps shed more light on the merits of one
over the other for these two methods.

5. CONCLUSION
An approach based on convex programming was proposed

for computing semi-algebraic under-approximations of reach-
able sets for polynomial nonlinear systems. The construc-
tion of reachable sets depends on computing approximate
analytical solutions of HJEs. The exact solution to the HJE
of interest can be uniformly approximated in a compact set
by solving a hierarchy of semi-definite programs, providing a
converging sequence of under-approximations to the reach-
able set. There are two notable benefits of our approach in
comparison to related approaches: one is that the under-
approximation is obtained by approximately solving just a
single semi-definite programming problem; and the other is
that the very same formulation also provides a description of
an over-approximation such that the accuracy of the reach-
set approximation can easily be inspected. We tested and
discussed our approach on several illustrative examples.

In order to make our method more practical, additonal
work remains to be done: numerical issues (e.g., [32]) and
computational efficiency in dealing with large-scale semi-
definite programming problems are pressing problems. For
alleviating these, and beyond developing more powerful semi-
definite programming solvers being capable of more ma-
turely and efficiently dealing with numerical issues ubiqui-

tous in the current solvers, an exploitation of the sparsity
of large-scale semi-definite programms [16] seems attractive.
An alternative to the semi-definite programming formula-
tion employed in this paper could be linear programs manip-
ulatting Handelman representations [33, 14]. While coming
with the drawback that semi-definite programming repre-
sentation are more general than the linear programming rep-
resentation in algebraic geometry [20], the solvers for linear
programs are obviously more stable and much more scalable.
We will investigate the trade-offs in our future work.

Instead of considering initial sets defined by sub-level sets
of a continuously differentiable function, one could also gen-
eralize to sub-level sets of Lipschitz-continuous functions. If
the initial set is defined by the zero sub-level sets of a sys-
tem of Lipschitz-continuous functions and the system is sub-
ject to state constraints, we can still under-approximate the
reachable set tightly by the use of a sequence of smooth vis-
cosity super-solutions to Hamilton-Jacobi equations, which
can again be found by solving semi-definite programming
problems. Moreover, we will extend our method in this pa-
per to under-approximate reachability analysis for systems
subject to disturbances and state-constraints, which is an
open problem. These extensions are ongoing work.
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