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Model-based design has become the predominant approach to the design of hybrid and cyber-physical systems

(CPSs). It advocates the use of mathematically founded models to capture heterogeneous digital and analog

behaviours from domain-specific formalisms, allowing all engineering tasks of verification, code synthesis and

validation to be performed within a single semantic body. Guaranteeing the consistency among the different

views and heterogeneous models of a system at different levels of abstraction however poses significant

challenges. To address these issues, Hoare and He’s Unifying Theories of Programming (UTP) proposes a

calculus to capture domain-specific programming and modelling paradigms into a unified semantic framework.

Our goal is to extend UTP to form a semantic foundation for CPS design. Higher-Order UTP (HUTP) is a

conservative extension to Hoare and He’s theory which supports the specification of discrete, real-time

and continuous dynamics, concurrency and communication, and higher-order quantification. Within HUTP,

we define a calculus of normal hybrid designs to model, analyse, compose, refine and verify heterogeneous

hybrid system models. In addition, we define respective formal semantics for HCSP (Hybrid Communicating

Sequential Processes) and Simulink using HUTP.
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1 INTRODUCTION
Hybrid systems, also known under the more architecture-centered denomination of cyber-physical

systems (CPSs), exploit networked computing units to monitor and control physical processes via
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wired and/or radio communications. CPSs are omnipresent, from high-speed train control systems,

power grids, automated factories, to ground, sea, air and space transportations. CPSs can be complex,

networked, systems of systems, and are often entrusted with mission- and safety-critical tasks.

Therefore, the efficient and verified development of safe and reliable CPSs is a priority mandated

by many standards, yet a notoriously difficult and challenging field.

To address design complexity under the necessity of verified CPS development, model-based

design (MBD) [18] has become a predominant development approach in the embedded systems

industry. The classical development process of MBD can be sketched as: (1) to start from an

abstract model, ideally with a precise mathematical semantics; (2) to conduct extensive analysis

and verification on this abstract model, so as to locate and correct errors as early as possible; (3)

subsequently, to refine that abstract, system-level, model to a semantically concrete specification

and, eventually, to executable code, by model transformation.

To assist such a development process, design-by-contract (DbC) is an important tool. It allows to

define the abstract model of a composite system from the assembly of simple interfaces declaring

the behavioural assumptions and guarantees of its constituents. DbC provides a method to conduct

verification and development tasks in a modular and compositional manner. Under the DbC par-

adigm, developers define contracts with two parts: (1) the required behaviour that a constituent

guarantees to implement, and (2) the assumptions the constituent makes about its environment. A

composite system can thus be characterised by the contracts of its constituents, the composition of

which fulfills the expected system contract. Each system constituent can be shown to fulfill its guar-

anteed behaviour under given assumptions, the violation of which could lead to an unpredictable

behaviour of the entire system.

By allowing an arbitrary level of system decomposition, vertically (domain-specific) or horizon-

tally (cross-domain), design complexity becomes tractable and controllable. Errors can be identified

and corrected at the very early stages of system design; correctness and reliability can be guaranteed

by simulation, verification and refinement; and developers can reuse existing contracts and compo-

nents, further improving development efficiency. Expectedly, model- and contract-based design

practices are much recommended by many standard bodies for safety-critical system development.

Nonetheless, guaranteeing the consistency of a system based on the models of its components

poses significant challenges. To address it, ideally, one would need a uniform semantics domain

capable of capturing all component models, at different abstraction levels, across heterogeneous

domain concerns, into the same analysis, automated reasoning and verification framework.

Motivated by the Grand Unified Theory in physics, in the literature, Hoare and He’s unifying

theories of programming (UTP) [28] is the first proposal toward unifying different programming

paradigms and models under a common relational calculus suitable for design and verification. In

UTP, programs are interpreted as guarded designs consisting of a guard, pre- and post-condition

[24, 28]. UTP defines operators and a refinement relation over guarded designs to form a lattice.

Hence, in UTP, arbitrarily different programming constructs, paradigms, and models of computation

can be logically interpreted and compared using the Galois connection induced by their lattice

ordering.

Guaranteeing consistency among different models at different levels of abstraction is a grand

challenge in control and software engineering. To address it for the design of hybrid systems, this

paper follows the UTP paradigm by extending the classical UTP with higher-order quantification

on continuous variables (functions over time) and differential relations to form a higher-order

UTP (HUTP), that can be used to give uniform semantics of hybrid systems at different levels of

abstraction, from higher-level abstract models like Simulink or Hybrid Communicating Sequential

Processes (HCSP), down to the low-level models of computation of their implementation by

generated source code in SystemC or ANSI-C, allowing the consistency among models of hybrid
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systems at different levels of abstraction/implementation to be proved using theorem proving

techniques. Note that HUTP in this paper differs from the higher-order UTP defined in [28, 61, 62].

The latter focuses on higher-order programming, i.e., programs can be treated as higher-order

variables in the paradigm. Higher-order quantifications over functions and predicates are also

addressed in related works, such as [62]. However, it is still unclear whether the classical UTP can

be extended to hybrid systems like the extension to higher-order programs.

Our work starts from [10], which extends UTP by allowing differential relations and higher-

order quantification, establishing a theory of higher-order UTP (HUTP). Additionally, [10] defines

HUTP syntactically, which still leaves the question open of equipping it with an adequate algebraic

structure (e.g., complete lattices) to serve as a semantics foundation for CPS design.

During the same period of [10], to address the context of CPS design with UTP, Woodcock et al.

introduce time-dependent trajectory variables into the alphabet and define hybrid relations [17],
based on which the semantics of Modelica [42] with a mixture of differential algebraic equations and

event preemption is given. To unify discrete and hybrid theories, they introduce continuous-time

traces to the trace model and define a generalised theory of reactive processes [16] in terms of

trace algebra. Subsequently in [15], they define reactive design contracts that provide the basis for

modelling and verification of reactive systems in the presence of parallelism and communication,

yet limited to discrete controllers. Based on the theory of reactive processes, [13] provides an

alternative definition of hybrid relations to define a denotational semantics of hybrid programs [48].

However, the above bulk of works does not address some important features, including

• Super-dense computation. As argued in [38], super-dense computation provides a very appropri-
ate abstract computation model for embedded systems, as computer is much faster than other

physical devices and computation time of a computer is therefore negligible, although the

temporal order of computations is still there. As [17] considers finite timed traces with right

continuity, super-dense time computation violates right continuity at time points, where a

sequence of discrete events happen, and therefore cannot be modelled, although [16] argues

that the theory of finite timed traces is extensible to deal with infinite ones.

• Parallelism with communication-based synchronisation is not addressed yet, although widely

used in CPS designs.

• Declaration of local variables and channels. Variables and channels are interpreted as functions
over time, therefore declaration of local variables and channels have to resort to higher-order

quantification. [14] uses symmetric lenses to deal with local variables, but only discrete

variables are considered.

For the drawbacks of our previous work [10], we propose a new theory of HUTP and investigate

the suitable algebraic structure for HUTP by taking all important features of hybrid systems into

consideration, to enable its use as a semantics foundation for CPS design. Inspired by the Duration

Calculus [66], we introduce real-time variables, denoted as functions over time. Derivatives of

real variables are additionally allowed in predicates, to form differential relations. In order to

model synchronous communication between processes, we introduce timed traces to record the

communication history of processes. Noteworthy contributions of previous works [15, 16, 28] with

related aim regarded traces as finite abstract sequences. By contrast, timed traces in this paper

can be infinite. Therefore, non-terminating behaviours such as divergence and deadlock can be

described explicitly. These definitions ground the elaboration of the concepts of hybrid processes

and (normal) hybrid designs, based on which we define formal semantics for HCSP [22, 67] and

Simulink [39] using HUTP, and justify the correctness of the translation from Simulink to HCSP in

[69] as an application of HUTP. In addition, by abstracting hybrid processes and (normal) hybrid
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designs, we propose a skeleton of equipping HUTP with compositional assume-guarantee reasoning

by means of contracts.

Our work is similar to [15] in some aspects, as both are extensions of traditional UTP [28].

However, they differ in essence, namely:

• Our HUTP theory separates the concerns of time, state and traces. Especially, we introduce

continuous state variables and construct a trace model to address concurrency and commu-

nication for hybrid systems. In [15, 16], although continuous states are encapsulated into

traces, parallelism based on traces is not made explicit. For example, the interleaving of traces

carrying continuous states is confusing, as, in reality, physical evolution never interleaves

with discrete models.

• Our approach can deal with infinite behaviour very well, in which therefore deadlock and

divergence can be modelled formally. For example, the Zeno’s paradox (Example 3.5) can

be modelled as a normal non-terminating (and not necessarily unpredictable) behaviour. In

contrast, it is unclear how to model the Zeno’s paradox and other infinite behaviours using

[15], as it seems that only finite traces are involved.

• Since our HUTP theory supports infinite behaviours, auxiliary variables wait and wait ′,
denoting reactivity in discrete models [15, 28], are interpreted explicitly with our approach.

In summary, our proposed HUTP is a conservative extension to the classical UTP of [28] and

contributes:

• the separation of concerns in hybrid system design into time, state and trace;

• a timed trace model recording execution history and captures communication behaviours;

• real-time variables and their derivatives, which are functions over time, and differential

relations over them that are very powerful to express all kinds of continuous dynamics;

• higher-order quantification for specifying locality;

• a calculus of hybrid processes and (normal) hybrid designs to model and analyse hybrid

systems with (potentially) infinite behaviours; and

• the HUTP semantics of HCSP and Simulink.

Paper Organisation. The rest of the paper is organised as follows. Section 2 retrospects some

preliminary concepts of the Unifying Theories of Programming. Section 3 defines a timed trace

model which will play an important role in the HUTP theory. Section 4 introduces hybrid processes

which combine time, states and traces to provide a uniform semantics for hybrid systems. To

elaborate a sound theory, we extend hybrid processes to (normal) hybrid designs in Section 5. In

Section 6, the HUTP is applied to verify the translation from Simulink diagrams to HCSP as an

application of HUTP. Section 7 addresses the related work and Section 8 concludes this paper and

discusses future works.

2 UNIFYING THEORIES OF PROGRAMMING
UTP [28] is an alphabetised refinement calculus unifying heterogeneous programming paradigms.

An alphabetised relation consists of an alphabet 𝛼 (𝑃), containing its variables 𝑥 and primes 𝑥 ′
,

and a relational predicate 𝑃 referring to this vocabulary. The terms 𝑥 and 𝑥 ′
are called observable

variables: 𝑥 is observable at the start of execution and 𝑥 ′
is observable at the end of execution.

The behaviour of a program is encoded as a relation between the observable variables 𝑥 and 𝑥 ′
. In

particular, assignment, sequential composition, conditional statement, non-deterministic choice,

and recursion of imperative programs can be specified as alphabetised relations below, where x
and x′ are sequences or vectors of variables, x\{𝑥} (x′\{𝑥 ′}) denotes excluding 𝑥 (𝑥 ′

) from x (x′).
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To start with, the relation calculus comprises all operators of first-order logic.

𝑥 B 𝑒 =̂ 𝑥 ′ = 𝑒 ∧ x′\{𝑥 ′} = x\{𝑥}
𝑃 #𝑄 =̂ ∃x∗ · 𝑃 [x∗/x′] ∧𝑄 [x∗/x]

𝑃 ◁ 𝑏 ▷𝑄 =̂ (𝑏 ∧ 𝑃) ∨ (¬𝑏 ∧𝑄)
𝑃 ⊓𝑄 =̂ 𝑃 ∨𝑄

𝑃 ⊔𝑄 =̂ 𝑃 ∧𝑄

Assignment 𝑥 B 𝑒 is defined by observing the update 𝑥 ′
of variable 𝑥 once its value 𝑒 is evaluated,

leaving other variables in the alphabet x unchanged. Sequence 𝑃 #𝑄 is modelled by locally binding,

through x∗, the final state x′ of 𝑃 and the initial state x of 𝑄 both are instantiated to it. Note

that # requires that 𝛼out (𝑃) = 𝛼 ′
in (𝑄), where 𝛼out (𝑃) and 𝛼in (𝑄) denote the sets of output and

input variables in 𝛼 (𝑃) and 𝛼 (𝑄), respectively, and 𝛼 ′
in (𝑄) is the primed version by priming all the

variables in 𝛼in (𝑄). The conditional 𝑃 ◁ 𝑏 ▷𝑄 evaluates as 𝑃 if 𝑏 is true or as 𝑄 otherwise. 𝑃 ⊓𝑄

non-deterministically chooses 𝑃 or 𝑄 , whereas 𝑃 ⊔𝑄 is a conjunction of 𝑃 and 𝑄 .

Let 𝑃 and 𝑄 be two predicates with the same alphabet, say {x, x′}. Then, 𝑄 is a refinement of 𝑃 ,
denoted 𝑃 ⊑ 𝑄 , if ∀x, x′ ·𝑄 ⇒ 𝑃 . In addition, 𝑃 ⊑ 𝑄 iff 𝑃 ⊓𝑄 = 𝑃 iff 𝑃 ⊔𝑄 = 𝑄 . With respect to

the refinement order ⊑, the least (𝜇) and greatest (𝜈) fixed points of a program function 𝐹 can be

defined as follows:

𝜇𝐹 =̂
d
{𝑋 | 𝐹 (𝑋 ) ⊑ 𝑋 }

𝜈𝐹 =̂
⊔{𝑋 | 𝑋 ⊑ 𝐹 (𝑋 )}

Example 2.1. Given an alphabet {𝑥,𝑦, 𝑥 ′, 𝑦 ′}, the semantics of the assignment 𝑥 B 1 is different

from 𝑥 ′ = 1. The former is equivalent to 𝑥 ′ = 1 ∧𝑦 ′ = 𝑦, while the latter indicates that 𝑦 and 𝑦 ′
can

be arbitrary, i.e., 𝑥 ′ = 1 ⊑ 𝑥 B 1. They are equivalent if the alphabet contains only 𝑥 and 𝑥 ′
.

A UTP theory is a well-defined subset of alphabetised relations that satisfies certain conditions,

called healthiness conditions. If a predicate is a fixed point of the healthiness condition, 𝑃 = H(𝑃),
then it is said to be H-healthy. In other words, a healthiness condition H defines an invariant

predicate set {𝑋 | H(𝑋 ) = 𝑋 }, and is required to be idempotent (H ◦H = H), which means that

taking the medicine twice leaves you as healthy as taking it once (no overdoses). So, in UTP, the

healthy predicates of a theory are the fixed points of idempotent functions. When H is monotonic

with respect to the refinement order ⊑, then according to the Knaster-Tarski theorem [57], the

UTP theory satisfying H forms a complete lattice and, additionally, recursion can be well specified.

Multiple healthiness conditions H0, H1, · · · , H𝑛 can also be composed as H =̂ H0 ◦ H1 ◦ · · · ◦ H𝑛 ,

provided thatH𝑖 andH𝑗 commute, for all 0 ≤ 𝑖, 𝑗 ≤ 𝑛. Healthiness conditions play an important

role in UTP, and distinct healthiness conditions can be defined to specify properties of different

programming paradigms. In Section 4, we use healthiness conditions to define the concept of hybrid

processes.

Example 2.2. Given an alphabet {𝑥, 𝑥 ′, term, term′}, where the Boolean variable term′
denote

whether the program has terminated. If the preceding program is non-terminated (¬term), the

current program 𝑃 should do nothing but keep the values of all variables unchanged, expressed by

the following healthiness condition:

H(𝑃) =̂ 𝑃 ◁ term ▷ (𝑥 ′ = 𝑥 ∧ term′ = term)
The statement 𝑥 B 1 is not H -healthy, but we can make it H -healthy by

H(𝑥 B 1) = (𝑥 B 1) ◁ term ▷ (𝑥 ′ = 𝑥 ∧ term′ = term)
It is easy to check that the above program is indeed a fixed point of 𝑋 = H(𝑋 ). When term is

true, i.e., the preceding program is terminated, the above program executes 𝑥 B 1. Note that this
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6 Xu, et al.

assignment is equivalent to 𝑥 ′ = 1 ∧ term′ = term. If non-termination is expected, we can write

H(𝑥 ′ = 1 ∧ ¬term′). It is a left-zero of sequential composition, i.e.,

H(𝑥 ′ = 1 ∧ ¬term′) # 𝑃 = H(𝑥 ′ = 1 ∧ ¬term′)
provided that 𝑃 is any H -healthy predicate whose alphabet is {𝑥, 𝑥 ′, term, term′}.

Following the convention of UTP, in this paper, we will define a set of healthiness conditions

to identify the features of hybrid systems. The operators for classical sequential programs based

on first-order relational calculus, such as #, ⊓ and ⊔, can be easily lifted to the theory for hybrid

systems proposed in this paper based on higher-order differential relational calculus, and we will

prove that they still hold the desired properties like in classical UTP.

3 TIMED TRACE MODEL
In this section, we construct a timed trace model to capture the communication behaviour of

processes. Traces play an important role in our HUTP theory which separates the concerns of

time, state and trace. For processes in parallel, we assume that no shared variable is allowed

between them and exchange of data between processes is described solely by communications. The

synchronous communication between concurrent processes is achieved using input and output

data channels. The input action ch?𝑥 receives a value along channel ch and assigns it to the variable

𝑥 , and the output action ch!e sends the value of the expression 𝑒 along channel ch. A synchronous

communication takes place immediately when both the sending and the receiving actions are

enabled. If one party is not ready, the other has to wait.

3.1 Trace Blocks
Each timed trace is a sequence of communication, wait and internal blocks defined below:

• A pair ⟨ch∗, 𝑑⟩ is a communication block, where ch∗, a channel operation, indicates input
(ch?), output (ch!) or synchronised communication (ch), and 𝑑 is a value along channel ch.
It represents that a communication along ch∗ takes place instantly. For example, ⟨ch?, 𝑑⟩
describes the communication receiving the value 𝑑 along the channel ch at current time.

• A pair ⟨𝛿, RS⟩ is a wait block, where 0 < 𝛿 ≤ +∞ is the time period and RS is a set of waiting

channel operations, called ready set. It means the process evolves during the period with the

channel operations in RS ready for communication. The dual of RS is defined by

RS = {ch∗ | ch∗ ∈ RS, ∗ ∈ {?, !}}

where ? = ! and ! = ?, and we assume that RS ∩ RS = ∅.
• The symbol 𝜏 is an internal block standing for an internal or invisible action such as a timeless

discrete computation.

Example 3.1. For the communication of two HCSP processes: ch?𝑥 ∥ch!2, since ch?𝑥 and ch!2 are
ready simultaneously at the beginning, the communication takes place instantly according to the

semantics of HCSP [64]. The timed traces of ch?𝑥 and ch!2 are ⟨ch?, 2⟩ and ⟨ch!, 2⟩, respectively.

Example 3.2. Consider the delay communication ch?𝑥 ∥(wait 1; ch!2). Since the right process
waits for 1 time unit before ch!2 is ready, the left process has to wait for 1 time unit for synchroni-

sation although it has been ready since the beginning. The communication takes place after 1 time

unit. Therefore, the timed trace of the left is ⟨1, {ch?}⟩⌢⟨ch?, 2⟩ and the right is ⟨1, ∅⟩⌢⟨ch!, 2⟩.

Example 3.3. Consider an ordinary differential equation (ODE) with communication interruption:

𝑥 B 1; ⟨ ¤𝑥 = 𝑥&true⟩ ⊵ 8(sensor!𝑥 → actuator?𝑥) ∥ wait 2; sensor?𝑦; actuator!(𝑦 + 1)
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The assignment 𝑥 B 1 is a timeless discrete action denoting initialisation. The left HCSP process

means the continuous evolution depicted by the ODE ¤𝑥 = 𝑥 is preempted as soon as the communi-

cation sensor!𝑥 takes place, followed by actuator?𝑥 . The right process indicates that the ODE of

the left process evolves for 2 time units before sensor!𝑥 takes place when the value of 𝑥 reaches

exp(2). Therefore, the timed trace of the left process is

𝜏⌢⟨2, {sensor!}⟩⌢⟨sensor!, exp(2)⟩⌢⟨actuator?, exp(2) + 1⟩
and the timed trace of the right process is

⟨2, ∅⟩⌢⟨sensor?, exp(2)⟩⌢⟨actuator!, exp(2) + 1⟩

3.2 Timed Traces
In the previous works such as [15, 16, 28], traces are finite sequences. In our work, we consider

infinite timed traces. A timed trace is a finite or infinite sequence of communication, wait, and

internal blocks which records the execution history of a process.

Let Σ be the set of all channels and Σ? and Σ! the respective sets of receiving and sending events

along channels in Σ. The sets of communication and wait blocks are respectively

C =̂ (Σ? ∪ Σ! ∪ Σ) × D
W =̂ {⟨𝛿, RS⟩ | 0 < 𝛿 ≤ +∞, RS ⊆ (Σ? ∪ Σ!), RS ∩ RS = ∅}

where D is some domain.

Definition 3.4 (Timed Trace Set). Let TT = (C ∪W ∪ {𝜏})∗ ∪ (C ∪W ∪ {𝜏})𝜔 be the timed trace

set, 𝜖 the empty trace and
⌢
the concatenation between trace blocks. Then, the algebra (TT, 𝜖,⌢)

satisfies the following axioms, where
⌢
takes precedence over =.

Associativity ∀tt0, tt1, tt2 ∈ TT · (tt0⌢tt1)⌢tt2 = tt0
⌢ (tt1⌢tt2)

Unit ∀tt ∈ TT · 𝜖⌢tt = tt⌢𝜖 = tt
Left Zero ∀tt ∈ TT · ⟨+∞, RS⟩⌢tt = ⟨+∞, RS⟩
Additivity ⟨𝛿0, RS⟩⌢⟨𝛿1, RS⟩ = ⟨𝛿0 + 𝛿1, RS⟩

The axiom Left Zero reflects a simplifying function lz : TT→ TT that removes the redundant

tail from each trace. For example, lz(⟨+∞, RS⟩⌢⟨2, RS⟩) = ⟨+∞, RS⟩. The axiom Additivity reflects

a simplifying function add : TT→ TT that merges all the consecutive wait blocks with the same

ready set in each trace. For example, add (⟨1, RS⟩⌢⟨2, RS⟩) = ⟨3, RS⟩. Then, the composite function

add ◦ lz : TT→ TT returns the simplest form of each trace. A trace tt is called canonical normal
form if |tt| = |add ◦ lz(tt) |, where | · | returns the length of traces. Thus, we say tt is canonical
if it cannot be simplified. In what follows, all traces are referred to canonical normal form if not

otherwise stated.

We say tt0 is equivalent to tt1, denoted by tt0 = tt1, if each finite prefix of tt0 is also a

prefix of tt1, and vice versa. We say tt0 < tt1 if tt0 is finite and there exists a trace tt such that

tt0
⌢tt = tt1, and in addition we let tt1 − tt0 = tt. Therefore, tt0 < tt1 means tt0 is a finite

prefix of tt1, and tt1 − tt0 denotes the suffix after deleting tt0.
Let lim(tt) be the sum of the time periods of all the wait blocks in tt. If no wait block appears

in tt, then we let limit(tt) = 0. A trace tt is non-terminated if lim(tt) = +∞ ∨ |tt| = +∞ and

divergent if lim(tt) < +∞∧|tt| = +∞. Let tt(𝑛) be the 𝑛-th (start from 0) block of tt. If |tt| < +∞,

for any 𝑛 ≥ |tt| we let tt(𝑛) = tt( |tt| − 1), i.e., the last block of tt. We say tt is deadlocked if

lim(tt) = +∞ ∧ ∃𝑁 ∈ N · ∀𝑛 ≥ 𝑁 · tt(𝑛) = ⟨𝛿, RS⟩ ∧ RS ≠ ∅ (1)

where N is the set of natural numbers. (1) means that, from a certain time point, the process will be

waiting for communication forever. Clearly, a deadlock is non-terminated because lim(tt) = +∞.
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This non-termination occurs because some channel operations are never matched. From the view of

failures-divergence model [54], the standard denotational semantics for CSP, a ready set is exactly

the dual of a refusal set, which contains the events (channel operations) that are not refused. Thus,

(1) means that, from a certain time point, the dual channel operations in tt’s ready set are always

refused by the environment, which leads to a deadlock. Especially, if lim(tt) = +∞ ∧ |tt| < +∞,

the last block of tt must be a wait block ⟨+∞, RS⟩, in which case tt will be deadlocked if RS ≠ ∅.

Example 3.5 (Zeno’s Paradox). Consider a ball falling from an initial height ℎ with initial velocity

0. The ball falls freely with its dynamics given by the ODE ¤𝑣 = −𝑔, where 𝑣 is the velocity and 𝑔 is

the gravitational acceleration. After

√︁
2ℎ/𝑔 time units, it hits the ground (ℎ = 0) with 𝑣 = −

√︁
2ℎ𝑔.

Then, there is a discontinuous update in its velocity. This discrete change can be modelled as a

mode switch with the update given by 𝑣 B −𝑐 · 𝑣 . This assumes that the collision is inelastic,

and the velocity decreases by a factor 𝑐 , for some appropriate constant 0 < 𝑐 < 1. Next, the ball

bounces back with velocity 𝑐
√︁
2ℎ𝑔 and reaches the peak (𝑣 = 0) after 𝑐

√︁
2ℎ/𝑔 time units. The ball

then falls again and this process repeats infinitely. In summary, the timed trace of the bouncing

ball is ⟨
√︁
2ℎ/𝑔, ∅⟩⌢𝜏⌢⟨2𝑐

√︁
2ℎ/𝑔, ∅⟩⌢𝜏⌢ · · ·⌢ ⟨2𝑐𝑛+1

√︁
2ℎ/𝑔, ∅⟩⌢𝜏⌢ · · · where the internal blocks (𝜏s)

denote the mode switch of the velocity (𝑣 B −𝑐 · 𝑣). The limit of this timed trace is
1+𝑐
1−𝑐 ·

√︁
2ℎ/𝑔 but

the length of it is infinite, i.e., a divergence.

3.3 Parallel Composition
For each pair of processes in parallel, we assume that they communicate over a set of channels

𝐼 . Concretely, they can only exchange messages or data synchronously via the channels in 𝐼 , and

they communicate with the environment via channels outside 𝐼 . In [54], this parallel is called

generalised or interface parallel, and in [64], it is called alphabetised parallel and the channels in

𝐼 are called common channels. Therefore, in this paper, the set 𝐼 is called a common channel set
between processes (traces). For simplicity, we also assume:

(1) Each input or output channel can only be owned by one sequential process, i.e., a channel

operation like ch? cannot occur in two different sequential processes in parallel.

(2) Any pair of symmetric input and output channels cannot be owned by one sequential process,

i.e., channel operations like ch? and ch! cannot occur in one sequential process.

Such restrictions are not essential, as the general communication model can always be reduced to

this simplified model, please refer to [27] for the details.

Let tt0∥𝐼tt1 { tt denote that the parallel composition of two timed traces tt0 and tt1 over a
common channel set 𝐼 derives a new timed trace tt. Since infinite timed traces are included, we

give the following coinductive rules to define the parallel composition of timed traces, where the

binding priority among operators is that
⌢
prior to ∥𝐼 prior to{, and ⊎ is a disjoint union.

𝜖 ∥𝐼𝜖 { 𝜖
[Empty]

⟨𝛿, RS0⟩⌢tt0∥𝐼 ⟨𝛿, RS1⟩⌢tt1 { ⟨𝛿, RS0 ⊎ RS1⟩⌢tt
RS0 ∩ RS1 = ∅ tt0∥𝐼tt1 { tt

[SynWait]

⟨ch?, 𝑑⟩⌢tt0∥𝐼 ⟨ch!, 𝑑⟩⌢tt1 { ⟨ch, 𝑑⟩⌢tt
ch ∈ 𝐼 tt0∥𝐼tt1 { tt

[SynIO]

⟨ch∗, 𝑑⟩⌢tt0∥𝐼tt1 { ⟨ch∗, 𝑑⟩⌢tt
ch ∉ 𝐼 tt0∥𝐼tt1 { tt

[NoSynIO]
𝜏⌢tt0∥𝐼tt1 { 𝜏⌢tt

tt0∥𝐼tt1 { tt
[𝜏-Act]

Rule [Empty] says that the parallel composition of two empty traces trivially reduces to an empty

trace. Rule [SynWait] states that when both sides are waiting for a communication, they can be
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synchronised for the same length of period if their ready sets are unmatched, i.e., RS0 ∩ RS1 = ∅,
because RS0 ∩ RS1 ≠ ∅ indicates that the two sides are waiting for a communication with some

channel operations matched, that should be taken immediately, and no time synchronization is

allowed. Rule [SynIO] synchronises the input and output communications along some channel

ch ∈ 𝐼 . The synchronization will never be applied to channels outside 𝐼 or internal actions 𝜏 as

stated by Rules [NoSynIO] and [𝜏-Act]. In addition, there are symmetric versions of these rules,

which means that ∥𝐼 is commutative.

Property 1 (Associativity). Let 𝐼0, 𝐼1 and 𝐼2 be the respective common channel sets between timed
traces tt0 and tt1, tt1 and tt2, and tt2 and tt0, then (tt0∥𝐼0tt1)∥𝐼1⊎𝐼2tt2 = tt0∥𝐼0⊎𝐼2 (tt1∥𝐼1tt2).

Example 3.6. The timed trace tt0 = ⟨2, {ch?}⟩⌢⟨ch?, 5⟩ indicates a delay for 2 time units, during

which the channel operation ch? is waiting, followed by receiving the value 5 along channel ch. The
trace tt1 = ⟨2, ∅⟩⌢⟨ch!, 5⟩ indicates a delay for 2 time units, during which no channel operations

are waiting, followed by sending the value 5 along channel ch. The parallel composition of tt0 and
tt1 over the channel ch is

tt0∥ {ch}tt1 { ⟨2, {ch?}⟩⌢⟨ch, 5⟩
by [SynWait], [SynIO] and [Empty]. In fact, recording ch? in the ready set of the composed traces

is not necessary, as ch is a channel that only connects tt0 and tt1, making it impossible for the

environment to synchronise with it via ch. However, on the other hand, recording ch? has no side

effect, and just indicates that the process itself was waiting for the channel operation ch! during
the period, no matter whether ch is a common channel between tt0 and tt1 or not. This notion is

in accordance to the semantics of HCSP (please refer to [64] for the details).

Example 3.7. The timed trace tt0 = ⟨dh?, 3⟩⌢⟨2, ∅⟩ indicates receiving the value 3 along channel
dh at the initial time, followed by a delay of 2 time units during which no channel operations are

waiting. Let tt1 = ⟨1, ∅⟩⌢⟨1, {ch?}⟩. Then, we have
tt0∥ {ch}tt1 { ⟨dh?, 3⟩⌢⟨1, ∅⟩⌢⟨1, {ch?}⟩

by [NoSynIO], [SynWait], [Empty] and Additivity of wait blocks (see Definition 3.4). Note that if

tt0 and tt1 also communicate via dh, then no rules can be applied for tt0∥ {ch,dh}tt1 because dh?
cannot be synchronised, i.e., they are uncomposable.

Example 3.8. Let tt0 = ⟨ch?, 3⟩⌢⟨dh?, 4⟩ and tt1 = ⟨ch!, 3⟩⌢⟨dh!, 5⟩, then no rules can be applied

for tt0∥ {ch,dh}tt1 as the values along channel dh are different although the heads of tt0 and tt1
are matched by [SynIO], i.e., tt0 and tt1 are uncomposable.

Example 3.9. Let tt0 = ⟨1, {ch?}⟩ and tt1 = ⟨1, {ch!}⟩, then no rules can be applied for

tt0∥ {ch}tt1, as it is impossible that the symmetric channel operations ch? and ch! are waiting

simultaneously, indicating that tt0 and tt1 are uncomposable.

Example 3.10. Consider two infinite timed traces

tt0 = ⟨ch?, 0⟩⌢⟨ch?, 1⟩⌢ · · · ⟨ch?, 𝑛⟩⌢ · · ·
tt1 = 𝜏⌢⟨ch!, 0⟩⌢𝜏⌢⟨ch!, 1⟩⌢ · · ·⌢ 𝜏⌢⟨ch!, 𝑛⟩⌢ · · ·

The timed trace tt0 indicates that the process is receiving values along channel ch endlessly at

current time. The timed trace tt1 indicates the infinite sending events at current time and before

each sending event there is an internal action. Their parallel composition over ch is also infinite:

tt0∥ {ch}tt1 { 𝜏⌢⟨ch, 0⟩⌢𝜏⌢⟨ch, 1⟩⌢ · · ·⌢ 𝜏⌢⟨ch, 𝑛⟩⌢ · · ·
by [𝜏-Act] and [SynIO]. It is a divergence as the time never progresses.
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Example 3.11. Let tt0 = 𝜏⌢⟨1, {ch?}⟩⌢⟨2, ∅⟩ and tt1 = ⟨2, ∅⟩⌢𝜏⌢⟨1, {ch!}⟩. Then, their parallel
composition via channel ch is

tt0∥ {ch}tt1 { 𝜏⌢⟨1, {ch?}⟩⌢⟨1, ∅⟩⌢𝜏⌢⟨1, {ch!}⟩

by [𝜏-Act], [SynWait] andAdditivity of wait blocks (see Definition 3.4). Notice that in this example,

the symmetric channel operations ch? and ch! appear in one timed trace. Similar to Example 3.6, ch
is a common channel between tt0 and tt1 and therefore it does not connect to the environment.

ch? and ch! appearing in one timed trace is the result from parallel composition, which indicates

this trace denotes a parallel process, not a sequential one. Actually, we can construct the following

parallel HCSP processes:

P =̂ 𝑥 B 0; ⟨ ¤𝑥 = 1&𝑥 < 1⟩ ⊵ 8(ch?𝑥 → skip);wait(2)
Q =̂ wait(2);𝑦 B 0; ⟨ ¤𝑦 = 1&𝑦 < 1⟩ ⊵ 8(ch!𝑦 → skip)

The timed trace of P∥Q is exactly 𝜏⌢⟨1, {ch?}⟩⌢⟨1, ∅⟩⌢𝜏⌢⟨1, {ch!}⟩ as shown above.

4 HYBRID PROCESSES
Following Hehner’s philosophy “programs as predicates” [25], the first-order relational calculus

of UTP [28] can be used to model programs specified with possibly different or heterogeneous

programming styles. In this section, we introduce continuous dynamics into rational predicates

to model hybrid systems, and use the term hybrid processes to denote such extended predicates.

Hybrid processes serve as the basis of the HUTP theory in this paper.

To use UTP for modelling hybrid systems’ behaviours, one first needs to extend it with an explicit

notion of time. This can be done by introducing two observational variables ti, ti′ : R≥0 ∪ {+∞} to
specify the start- and end-time of the observed behaviour. Let tr ∈ add ◦ lz(TT), where add ◦ lz(TT)
denotes the set of canonical normal traces, represent the timed trace before the process is started

and tr ′ ∈ add ◦ lz(TT) stand for timed trace up to the moment of observation.

In a real-time setting, process state variables are interpreted as functions over time. To specify its

real-time value, we use∼𝑠 to represent it. In a word, we have three versions for each state variable 𝑠 :

• the version 𝑠 ∈ D stands for its initial value in the domain D, i.e., the input state variable,
where D could be a Banach space;

• the primed version 𝑠 ′ ∈ D stands for the final value, i.e., the output state variable; and

• the real time version∼𝑠 : [ti, ti′) → D stands for its dynamic trajectory from the start time ti
to the end time ti′, and ¤∼𝑠 : (ti, ti′) ⇀ D is a partial function denoting the derivative of∼𝑠 .

We use the boldface symbols s, s′,∼s and ¤∼s to denote respective vectors of input, output, real-time

state variables and the derivatives. The alphabet that our theory depends on is {ti, ti′, tr, tr ′, s,∼s, ¤∼s, s′}
by default. Therefore, first-order predicate 𝑃 (x, x′) introduced in Section 2 can be extended to

high-order differential relation∼𝑃 (ti, ti′, tr, tr ′, s,∼s, ¤∼s, s′). By introducing some healthiness conditions

for high-order differential relations, we can then define hybrid processes.

4.1 Healthiness Conditions
As stated in Section 2, healthiness conditions play an important role in UTP. Therefore, we introduce

the following healthiness conditions to identify the features of hybrid processes:

• Time must be irreversible, and trace should be monotonically increasing because processes

are not permitted to undo past events, i.e.,

H0 (𝑋 ) = 𝑋 ∧ ti ≤ ti′ ∧ tr ≤ tr ′
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This healthiness condition is a variant of R1 of reactive processes in [28] and [15]. Here,

however, R1 does not deal with time. Similar variants include HC1 in [23] and HCT1 in [17],

but they do not involve the concept of traces.

• Trace should keep consistent with time:

H1 (𝑋 ) = 𝑋 ∧ ti = lim(tr) ∧ ti′ = lim(tr ′)

• If the preceding process does not terminate, i.e., ti = +∞ ∨ |tr | = +∞, the current process

should do nothing but keep the time and trace observations unchanged, i.e.,

H2 (𝑋 ) = (ti = ti′ ∧ tr = tr ′) ◁ (ti = +∞ ∨ |tr | = +∞) ▷ 𝑋

where 𝑃◁𝑏▷𝑄 =̂ (𝑏∧𝑃)∨ (¬𝑏∧𝑄). This healthiness condition is similar to R3 in [28] and R3ℎ
in [15], except that we specify the auxiliary variable wait explicitly as ti = +∞ ∨ |tr | = +∞.

Hence, unlike in classical UTP, variables wait and wait ′ are not used in our HUTP.

• If the current process does not terminate, i.e., ti′ = +∞ ∨ |tr ′ | = +∞, the values of the output

state variables are unobservable, i.e.,

H3 (𝑋 ) = (∃s′ · 𝑋 ) ◁ (ti′ = +∞ ∨ |tr ′ | = +∞) ▷ 𝑋

As stated above, ti′ = +∞ ∨ |tr ′ | = +∞ specify variable wait ′ in the traditional definition

of reactive processes of the UTP, where wait ′ being true denotes the observation that all

primed variables stand for intermediate observations, not final ones. However, in our work,

we hide the primed state variables by an existential quantifier when ti′ = +∞ ∨ |tr ′ | = +∞,

since observing the state values at time infinity makes no sense. The idea of H3 is similar to

R4 for a healthy process in [9], which expresses the intuition that “program variable state is

not visible while waiting for external events”.

• If the process evolves for a period of time, i.e., ti < ti′, the real-time value∼s should keep

right-continuous and semi-differentiable, i.e.,

H4 (𝑋 ) = 𝑋 ∧ RC ∧ SD

where

RC =̂ ∀𝑖 · ∀𝑡 ∈ [ti, ti′) ·∼s𝑖 (𝑡) =∼s𝑖 (𝑡+)
SD =̂ ∀𝑖 · ∀𝑡 ∈ (ti, ti′) · ∃𝑑0, 𝑑1 · ¤∼s𝑖 (𝑡

−) = 𝑑0 ∧ ¤∼s𝑖 (𝑡
+) = 𝑑1

denote the right-continuity and semi-differentiability, respectively, and s𝑖 (∼s𝑖 and s′𝑖 ) is the
𝑖-th variable in s (∼s and s′). H4 rules out some ill behaviours, such as the Dirichlet function

(returning 1 if 𝑡 is a rational number and 0 otherwise) and theWeierstrass function (continuous

everywhere but differentiable nowhere).

Definition 4.1 (Hybrid Process). A hybrid process HP is a fixed point of 𝑋 = HHP (𝑋 ), where

HHP =̂ H0 ◦ H1 ◦ H2 ◦ H3 ◦ H4

and the alphabet of HP is 𝛼 (HP) =̂ {ti, ti′, tr, tr ′, s,∼s, ¤∼s, s′}.

Since wait and wait ′, used to denote reactivity in discrete models [15, 28], are interpreted

respectively as ti = +∞ ∨ |tr | = +∞ and ti′ = +∞ ∨ |tr ′ | = +∞ in H2 and H3, the hybrid processes

defined by Definition 4.1 are essentially reactive.

Theorem 4.2 (Idempotence and Monotonicity). HHP is idempotent and monotonic.
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4.2 Operations
4.2.1 Meet and Join. Let HP0 and HP1 be two hybrid processes. Non-determinism is simply mod-

elled by logical disjunction:

HP0 ⊓ HP1 =̂ HP0 ∨ HP1

It stands for a process that internally chooses to execute either HP0 or HP1, regardless of the
environment. The dual of non-determinism choice is conjunction:

HP0 ⊔ HP1 =̂ HP0 ∧ HP1

The alphabets are expanded by ⊓ and ⊔, i.e., 𝛼 (HP0 ⊓ HP1) = 𝛼 (HP0 ⊔ HP1) = 𝛼 (HP0) ∪ 𝛼 (HP1).
In the literature, ⊓ is also called demonic choice or meet, while ⊔ is called angelic choice or join.
Generally, ⊓means ∧ and ⊔means ∨, but in UTP [15, 28], they always denote ∨ and ∧, respectively.
Thus, in this paper, we will follow this notational convention.

Property 2. If HP0 and HP1 are HHP-healthy, then so are HP0 ⊓ HP1 and HP0 ⊔ HP1.

4.2.2 Sequential Composition. The sequential composition in traditional UTP can be adapted to

hybrid processes:

HP0 # HP1 =̂ ∃ti∗, s∗, tr∗ · HP0 [ti∗, s∗, tr∗/ti′, s′, tr ′] ∧ HP1 [ti∗, s∗, tr∗/ti, s, tr]

provided that 𝛼out (HP0) = 𝛼 ′
in (HP1), where 𝛼out (HP0) and 𝛼in (HP1) denote the sets of output

and input variables (containing time and trace variables) in 𝛼 (HP0) and 𝛼 (HP1), respectively, and
𝛼 ′

in (HP1) is the primed version by priming all the variables in 𝛼in (HP1). If 𝛼out (HP0) ≠ 𝛼 ′
in (HP1),

then we can extend the alphabets by 𝛼+
out (HP0) = 𝛼+

in
′(HP1) =̂ 𝛼out (HP0) ∪ 𝛼 ′

in (HP1) to ensure the

well-definedness of sequential composition.

Property 3. If HP0 and HP1 are HHP-healthy, then so is HP0 # HP1.

With the definition of sequential composition, we can prove the following property for the

healthiness condition H3 defined before.

Property 4. The healthiness conditionH3 is equivalent to

𝑋 = 𝑋 # skip

where skip =̂ H2 (ti = ti′ ∧ tr = tr ′ ∧ s = s′).

4.2.3 Complement. The complement of a hybrid process HP is interpreted by

¬≀HP =̂ HHP (¬HP)

Note that ¬HP is not HHP-healthy, as it may violate constraints such as tr ≤ tr ′. Therefore, we
enforce healthiness by HHP, resulting in ¬≀HP. Intuitively, ¬≀HP can be seen as the complement of

HP in the context of hybrid processes, i.e., we can prove that¬≀HP⊓HP = ⊥HP and¬≀HP⊔HP = ⊤HP.

Then we define implication by

HP0 ⇒≀ HP1 =̂ ¬≀HP0 ∨ HP1

These logic operators are similar to ¬𝑟 and ⇒𝑟 , used in [15].
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4.2.4 Quantification. To support declaration, abstraction and instantiation of variables, as in [28],

we introduce quantifications over three versions 𝑠 , 𝑠 ′ and∼𝑠 of observable state variable 𝑠 in a hybrid

process HP. Existential quantifications of first-order variables 𝑠 and 𝑠 ′ are as usual:

∃𝑠 · HP =̂
∨{HP[𝑑/𝑠] | 𝑑 ∈ D}

∃𝑠 ′ · HP =̂
∨{HP[𝑑/𝑠 ′] | 𝑑 ∈ D}

The quantification of real-time variable∼𝑠 is of higher-order and it will meanwhile quantifies the

derivative of∼𝑠 , as follows:

∃∼𝑠 · HP =̂
∨ {

HP[𝑓 , 𝑔/∼𝑠, ¤∼𝑠]
���� 𝑓 : [ti, ti′) → D 𝑔 : (ti, ti′) ⇀ D
∀𝑡 ∈ (ti, ti′) · ¤𝑓 (𝑡−) = 𝑔(𝑡−) ∧ ¤𝑓 (𝑡+) = 𝑔(𝑡+)

}
Existential quantification removes the quantified variables from the alphabet of a process, i.e.,

𝛼 (∃𝑠 ·HP) = 𝛼 (HP)\{𝑠}, 𝛼 (∃𝑠 ′ ·HP) = 𝛼 (HP)\{𝑠 ′} and 𝛼 (∃∼𝑠 ·HP) = 𝛼 (HP)\{∼𝑠, ¤∼𝑠}. Dually, universal
quantifications of 𝑠 , 𝑠 ′ and∼𝑠 can be defined by

∀𝑠 · HP =̂ ¬≀ (∃𝑠 · ¬≀HP)
∀𝑠 ′ · HP =̂ ¬≀ (∃𝑠 ′ · ¬≀HP)
∀∼𝑠 · HP =̂ ¬≀ (∃∼𝑠 · ¬≀HP)

Since real-time variables are functions over time, such quantifications are of higher-order (func-

tional). It can also be proven that quantifiers ∃ and ∀ areHHP-preserving. In addition, higher-order

∃ and ∀ enjoy the following properties:

Property 5 (Quantification).

∃∼𝑥 · (HP0 # HP1) = (∃∼𝑥 · HP0) # (∃∼𝑥 · HP1)
∀∼𝑥 · (HP0 # HP1) ⊒ (∀∼𝑥 · HP0) # (∀∼𝑥 · HP1)
∃∼𝑥 · (HP0 ⊓ HP1) = (∃∼𝑥 · HP0) ⊓ (∃∼𝑥 · HP1)
∀∼𝑥 · (HP0 ⊓ HP1) ⊒ (∀∼𝑥 · HP0) ⊓ (∀∼𝑥 · HP1)
∃∼𝑥 · (HP0 ⊔ HP1) ⊑ (∃∼𝑥 · HP0) ⊔ (∃∼𝑥 · HP1)
∀∼𝑥 · (HP0 ⊔ HP1) = (∀∼𝑥 · HP0) ⊔ (∀∼𝑥 · HP1)

¬≀∃∼𝑥 · HP = ∀∼𝑥 · ¬≀HP
¬≀∀∼𝑥 · HP = ∃∼𝑥 · ¬≀HP

Note that in the above the refinement order ⊑ for predicates introduced in Section 2 can be lifted

to hybrid processes naturally. With the aid of higher-order quantifiers, the lexical locality of a

variable 𝑠 in a hybrid process HP can be specified by

local 𝑠 · HP =̂ ∃𝑠,∼𝑠, 𝑠 ′ · HP

Example 4.3. Consider a hybrid process with independent state variables 𝑥 and 𝑦:

HP0 =̂ HHP

©«
ti < ti′ ∧ tr ′ − tr = ⟨ti′ − ti, ∅⟩∧
𝑥 = ∼𝑥 (ti) ∧ 𝑥 ′ = ∼𝑥 (ti′−) ∧ 𝑦 =

∼
𝑦 (ti) ∧ 𝑦 ′ =

∼
𝑦 (ti′−)

∧∀𝑡 ∈ (ti, ti′) · ¤∼𝑥 (𝑡) = 1 ∧ ¤
∼
𝑦 (𝑡) = 2

ª®®¬
with 𝛼 (HP0) = {ti, ti′, tr, tr ′, 𝑥,∼𝑥, ¤∼𝑥, 𝑥 ′, 𝑦,

∼
𝑦, ¤

∼
𝑦,𝑦 ′}. A literal abstraction of variable 𝑥 from HP0 is

local 𝑥 · HP0 = HHP

(
ti < ti′ ∧ tr ′ − tr = ⟨ti′ − ti, ∅⟩∧
𝑦 =

∼
𝑦 (ti) ∧ 𝑦 ′ =

∼
𝑦 (ti′−) ∧ ∀𝑡 ∈ (ti, ti′) · ¤

∼
𝑦 (𝑡) = 2

)
with the alphabet {ti, ti′, tr, tr ′, 𝑦,

∼
𝑦, ¤

∼
𝑦,𝑦 ′}.
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Example 4.4. Consider another interesting example, let

HP1 =̂ HHP

©«
ti < ti′ ∧ tr ′ − tr = ⟨ti′ − ti, ∅⟩∧
𝑥 = ∼𝑥 (ti) ∧ 𝑥 ′ = ∼𝑥 (ti′−) ∧ 𝑦 =

∼
𝑦 (ti) ∧ 𝑦 ′ =

∼
𝑦 (ti′−)

∧∀𝑡 ∈ (ti, ti′) · ¤∼𝑥 (𝑡) + ¤
∼
𝑦 (𝑡) = 0

ª®®¬
The abstraction of 𝑥 from HP1 is

local 𝑥 · HP1 = HHP

(
ti < ti′ ∧ 𝑦 =

∼
𝑦 (ti) ∧ 𝑦 ′ =

∼
𝑦 (ti′−) ∧ tr ′ − tr = ⟨ti′ − ti, ∅⟩

)
with the alphabet {ti, ti′, tr, tr ′, 𝑦,

∼
𝑦, ¤

∼
𝑦,𝑦 ′}. Note that when 𝑥 is localised, the ODE ¤∼𝑥 (𝑡) + ¤

∼
𝑦 (𝑡) = 0 is

also abstracted away.

4.2.5 Parallel Composition. The parallel composition of two hybrid processes is written as

HP0∥𝑀HP1

which uses the parallel-by-merge scheme developed in UTP [15, 28]. We assume that the state

variables of concurrent processes are disjoint, i.e.,𝛼 (HP0)∩𝛼 (HP1) = {ti, ti′, tr, tr ′}. Let the notation
HP𝑋 make an 𝑋 -version of HP by adding the shared outputted variables (ti′ and tr ′) in HP with

the 𝑋 -subscript, i.e.,

HP𝑋 =̂ HP # (ti = ti′
𝑋
∧ tr = tr ′

𝑋
∧ s = s′) = HP[ti′

𝑋
, tr ′

𝑋
/ti′, tr ′]

Let s0 and s1 be state variables (s0 ∩ s1 = ∅) owned by hybrid processes HP0 and HP1, respectively.
Let s =̂ s0 ⊎ s1. Then, the parallel composition of HP0 and HP1 can be defined as follows:

HP0∥𝑀HP1 =̂ HHP

(
(HP0,𝑋 ∧ HP1,𝑌 ∧ tr = tr ′) # 𝑀

)
where 𝑀 is a merge predicate with 𝛼 (𝑀) =̂ {ti𝑋 , ti𝑌 , ti′, tr𝑋 , tr𝑌 , tr, tr ′, s,∼s, ¤∼s, s′}. Therefore, the
alphabet of the parallel composition is 𝛼 (HP0∥𝑀HP1) =̂ {ti, ti′, tr, tr ′, s,∼s, ¤∼s, s′}. The parallel-by-

merge scheme is illustrated pictorially in Fig. 1.

$$

Fig. 1. Parallel-by-merge scheme (s = s0 ⊎ s1)

From the above figure, we can see that by renaming the common dashed variables, two processes

HP0,𝑋 andHP1,𝑌 execute independently and their respective outputs, as well as their common input

trace tr , are fed into the merge predicate𝑀 . Then,𝑀 produces the merged result as the output of

the parallel composition. Each merge predicate reflects a corresponding parallel scheme, i.e., the

parallel composition is parametric over𝑀 . Fig. 1 in this paper looks like Fig. 1 which illustrates the

parallel-by-merge dataflow in [15], because both of them are derived from the parallel-by-merge of

the classic UTP of [28], but they differ in the following two aspects:

(1) Continuous state variables∼s0 and∼s1 are involved and state variables s0 and s1 are disjoint
(no sharing state variables) in our setting;

(2) We only transfer the input trace tr to the merge predicate, as it would be necessary in parallel

composition (see Definition 4.5 for an example).
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A merge predicate𝑀 is well-defined if it satisfies the following three properties:

(1) 𝑀 = 𝑀 [ti𝑋 , tr𝑋 , s0, ti𝑌 , tr𝑌 , s1/ti𝑌 , tr𝑌 , s1, ti𝑋 , tr𝑋 , s0], indicating ∥𝑀 is commutative.

(2) The end time of the parallel composition is infinite iff the end time of one process is infinite:

𝑀 = 𝑀 ∧ (ti′ = +∞ ◁ (ti𝑋 = +∞ ∨ ti𝑌 = +∞) ▷ ti′ < +∞)
(3) Similarly, the timed trace of the parallel composition is infinite iff the timed trace of one

process is infinite:

𝑀 = 𝑀 ∧ (|tr ′ | = +∞ ◁ ( |tr𝑋 | = +∞ ∨ |tr𝑌 | = +∞) ▷ |tr ′ | < +∞)
The following defines a well-defined merge predicate𝑀𝐼 that specifies parallelism.

Definition 4.5 (𝑀𝐼 ). Let s0 and s1 be state variables (s0 ∩ s1 = ∅) owned by HP0 and HP1,
respectively, and 𝐼 a set of channels via which HP0 and HP1 communicate. Then, we define

𝑀𝐼 =̂ syn # mrg

where

syn =̂ ti′
𝑋
= ti𝑋 ∧ ti′

𝑌
= ti𝑌 ∧ s′

0
= s0 ∧ s′

1
= s1 ∧ tr ′ = tr∧(

ti𝑋 < ti𝑌 ⇒ ∀𝑡 ∈ [ti𝑋 , ti𝑌 ) ·∼s0 (𝑡) = s0 ∧ tr ′
𝑋
= tr𝑋⌢⟨ti𝑌 − ti𝑋 , ∅⟩ ∧ tr ′

𝑌
= tr𝑌

)
∧(

ti𝑋 > ti𝑌 ⇒ ∀𝑡 ∈ [ti𝑌 , ti𝑋 ) ·∼s1 (𝑡) = s1 ∧ tr ′
𝑋
= tr𝑋 ∧ tr ′

𝑌
= tr𝑌⌢⟨ti𝑋 − ti𝑌 , ∅⟩

)
∧(

ti𝑋 = ti𝑌 ⇒ tr ′
𝑋
= tr𝑋 ∧ tr ′

𝑌
= tr𝑌

)
mrg =̂ ti′ = max{ti𝑋 , ti𝑌 } ∧ s′

0
= s0 ∧ s′

1
= s1 ∧ (tr ′

𝑋
− tr)∥𝐼 (tr ′𝑌 − tr) { (tr ′ − tr)

The predicate syn synchronises the termination time (+∞ if non-terminated) of two processes. If

ti𝑋 < ti𝑌 , then it delays the termination of the process tagged by 𝑋 until it reaches 𝑡𝑌 . During the

period of delay, the values of the corresponding state variables keep unchanged, and meanwhile

the wait block ⟨ti𝑌 − ti𝑋 , ∅⟩ should be added to the end of the trace tr𝑋 . Following syn ismrg which
merges times, states and traces, respectively. It uses the maximum time as the termination time

(+∞ if non-terminated) of the parallel composition (ti′ = max{ti𝑋 , ti𝑌 }).

Property 6 (Well-Definedness). 𝑀𝐼 is well-defined.

4.3 Complete Lattice
Property 7 (Monotonicity). The operators #, ⊔, ⊓, ◁▷, ∃ and ∥𝑀 are monotonic and ¬≀ is

anti-monotone, with respect to the refinement order ⊑.

A (finite or infinite) set S of hybrid processes equipped with the refinement order ⊑ forms

a partially ordered set, denoted by (S, ⊑). Let
d
S the disjunction of all hybrid processes in

S, denoting a system that behaves as any of hybrid processes in S. Obviously, HP ⊑
d

S iff

∀𝑋 ∈ S · HP ⊑ 𝑋 . Conversely, the conjunction of all hybrid processes in S is denoted by

⊔S,
which denotes a system that only has the behaviour shared by all hybrid processes in S. In lattice

theory,

d
S and

⊔S are called the infimum and supremum of a set S, respectively.

Theorem 4.6 (Complete Lattice). Let HP be the image of HHP, i.e., it is the set of all hybrid
processes, then it forms a complete lattice with top and bottom:

⊤HP =̂
⊔
HP = HHP (false)

⊥HP =̂
d
HP = HHP (true)

Recursion can be specified once a complete lattice is formed. Theoretically speaking, recursion

can be denoted by the fixed points of the equation 𝑋 = 𝐹 (𝑋 ), where 𝐹 constructs the body of the

recursion. If 𝐹 (𝑋 ) is monotonic, the fixed points of 𝑋 = 𝐹 (𝑋 ) form a complete lattice according

to Knaster-Tarski theorem [57]. The least fixed point is denoted by 𝜇𝑋 · 𝐹 (𝑋 ) and the greatest
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fixed point by 𝜈𝑋 · 𝐹 (𝑋 ). The definitions of the least and greatest fixed points refer to Section 2. In

particular, 𝜇𝑋 · 𝑋 = ⊥HP and 𝜈𝑋 · 𝑋 = ⊤HP.

4.4 Non-termination, Deadlock, Divergence and Miracle
Non-termination has a special property, i.e., being a left zero of sequential composition:

Definition 4.7 (Non-termination). A hybrid process HP is non-terminated iff HP # HP = HP for

any hybrid process HP.

A hybrid process is divergent if its execution time is finite but its trace is infinite; and a deadlock
if its execution time is infinite with some channel operations waiting forever, specified as follows.

It can be demonstrated that both divergence and deadlock are non-terminated by Definition 4.7.

Definition 4.8 (Divergence). A divergence is a fixed point of 𝑋 = HHP ◦ DIV (𝑋 ) where
DIV (𝑋 ) = 𝑋 ∧ ti′ < +∞ ∧ |tr ′ | = +∞

Definition 4.9 (Deadlock). A deadlock is a fixed point of 𝑋 = HHP ◦ DL(𝑋 ) where
DL(𝑋 ) = 𝑋 ∧ ti′ = +∞ ∧ ∃𝑁 ∈ N · ∀𝑛 ≥ 𝑁 · tr ′(𝑛) = ⟨𝛿, RS⟩ ∧ RS ≠ ∅

A miracle is a miraculous process that only occurs after a non-terminating hybrid process, and

thus it is impossible to implement a miracle in reality. Formally,

Definition 4.10 (Miracle). A miracle is a fixed point of 𝑋 = HHP ◦ MIR(𝑋 ) where
MIR(𝑋 ) = 𝑋 ∧ (ti = +∞ ∨ |tr | = +∞)

Theorem 4.11 (Miracle). ⊤HP is the only miracle of hybrid processes.

Miracle refines any hybrid process HP, i.e., HP ⊑ ⊤HP, and it enjoys the following two desired

properties, where Property 8 indicates miracle is non-terminated by Definition 4.7.

Property 8 (Left Zero of #). ⊤HP # HP = ⊤HP for any hybrid process HP.

Property 9 (Zero of ∥𝑀 ). HP∥𝑀⊤HP = ⊤HP∥𝑀HP = ⊤HP for any hybrid process HP.

In contrast to the miracle, ⊥HP is the most unpredictable behaviour, because it allows non-

deterministically choosing a behaviour among possibly infinitely many processes; in other words,

chaos. Generally, chaos is expected to be non-terminated (left-zero of sequential composition)

and the parallel composition of any process with chaos should result in chaos (zero of parallel

composition). However, the chaos ⊥HP does not enjoy such desired properties as the miracle ⊤HP

does. This problem will be solved in Section 5.

4.5 Abstract Hybrid Processes
A hybrid process models the state and trace of a system over time to accurately render its concrete

behavior. For the purpose of verification, however, such a level of detail is certainly excessive, as

instead modular abstraction may be desired. To address this issue, we propose the notion of abstract
hybrid process, where traces are simply abstracted. Formally,

Definition 4.12 (Abstract Hybrid Process). An abstract hybrid process is a fixed point of

𝑋 = Ha

0
◦ Ha

2
◦ Ha

3
◦ H4 (𝑋 )

where

Ha

0
(𝑋 ) =̂ 𝑋 ∧ ti ≤ ti′

Ha

2
(𝑋 ) =̂ (ti = ti′) ◁ ti = +∞ ▷ 𝑋

Ha

3
(𝑋 ) =̂ (∃s′ · 𝑋 ) ◁ ti′ = +∞ ▷ 𝑋

For brevity, we use Ha

HP
to denote Ha

0
◦ Ha

2
◦ Ha

3
◦ H4.
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Theorem 4.13 (Idempotence and Monotonicity). Ha
HP

is idempotent and monotonic.

Note thatHa

0
,Ha

2
andHa

3
are abstract versions ofH0,H2 andH3 in Definition 4.1, respectively.

A predicate is an abstract hybrid process iff it is Ha

HP
-healthy. Compared with Definition 4.1 of

HHP, abstract hybrid processes only consider time (ti and ti′) and state (s,∼s, ¤∼s and s′), ignoring
the timed trace (tr and tr ′). Therefore, H1 is no longer necessary here. By Theorem 4.13, abstract

hybrid processes can form a complete lattice with top and bottom

⊤AHP =̂ Ha

HP
(false) ≡ ti = ti′ = +∞

⊥AHP =̂ Ha

HP
(true) ≡ (ti = ti′) ◁ ti = +∞ ▷ (ti ≤ ti′ ∧ RC ∧ SD)

Clearly, ⊤AHP ⊑ ⊤HP and ⊥AHP ⊑ ⊥HP if we ignore the alphabets as ⊤AHP and ⊥AHP do not contain

tr or tr ′. Abstract hybrid processes also form a Boolean algebra (AHP,⊓,⊔,¬a

≀ ,⊤AHP,⊥AHP), where
AHP is the image ofHa

HP
and the negation ¬a

≀ can be defined by ¬a

≀ 𝑋 =̂ Ha

HP
(¬𝑋 ). Furthermore,

an abstract hybrid condition is a fixed point of ¬a

≀ 𝑋 = ¬a

≀ 𝑋 # ⊥AHP. The equation can be denoted by

a healthiness conditionHa

HC
, i.e., a predicate is an abstract hybrid condition iff it isHa

HC
-healthy.

Abstract hybrid conditions are a subset of abstract hybrid processes.

Additionally, by definition of the refinement relation, for a hybrid process HP with explicit timed

traces, if 𝑃 ⊑ HP (ignoring the alphabets) then HP does satisfy the property 𝑃 , which is represented

by an abstract hybrid process. Hence, thanks to the lattice structure induced by ⊑, we can define

an (𝛼,𝛾) Galois-connection stipulating the concretisation of a property 𝑃 to be the meet of all

hybrid processes that satisfy it, i.e., 𝛾 (𝑃) =̂
d
{HP | 𝑃 ⊑ HP} and, dually, the abstraction of a hybrid

process HP to be the join of all properties satisfied by it, i.e., 𝛼 (HP) =̂ ⊔{𝑃 | 𝑃 ⊑ HP}. In particular,

𝛾 (⊥AHP) = ⊥HP and 𝛼 (⊤HP) = ⊤AHP.

5 HYBRID DESIGNS
In this section, we propose the concept of hybrid design. Hybrid designs are a subset of hybrid

processes but enjoy some desired algebraic properties which are not featured by hybrid processes.

Based on hybrid designs, we will then propose normal hybrid designs, which are the first-class

notions in the HUTP theory.

The notion of design in UTP was first introduced by Hoare and He in [28]. A design consists of

a pair of predicates (Pre, Post) standing for the pre- and post-condition of a program, augmented

with the Boolean variables ok and ok′
to express whether the program has started and terminated:

Pre ⊢ Post =̂ (ok ∧ Pre) ⇒ (ok′ ∧ Post) ≡ ¬ok ∨ ¬Pre ∨ (ok′ ∧ Post)

which states that if the program starts in a state satisfying the pre-condition Pre, it will terminate, and

on termination the post-condition Post will be true. The pair (Pre, Post) describes a contract between
the component and its environment, and therefore supports the decomposition of engineering

tasks to resolve system design complexity.

In related works, the meanings of ok and ok′
are slightly different. For example, in [15], ok and

ok′
are used to indicate divergence. Here, however, since divergence can be observed from time and

trace (ti′ < +∞ ∧ |tr ′ | = +∞), ok and ok′
have different meanings. We extend the notion of design

to hybrid systems by interpreting ok and ok′
to denote a process’s status: ok′ = true indicates

that the process executes normally (not necessarily terminating), and hence ok = false means

that the preceding process executed abnormally, causing the behaviour of the current process

to be unpredictable. Thus, it is necessary to distinguish normal and abnormal non-termination.

Specifically, ¬ok′
indicates the abnormal behaviour, which should be abnormal non-termination;

ok′ ∧ (ti′ = +∞ ∨ |tr ′ | = +∞) indicates normal non-termination; and ok′ ∧ ti′ < +∞ ∧ |tr ′ | < +∞
indicates (normal) termination.
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Definition 5.1 (Hybrid Designs). Let HP𝐴 and HP𝐶 be hybrid processes. Then,

HP𝐴 ⊢ HP𝐶 =̂ (ok ∧ HP𝐴) ⇒≀ (ok′ ∧ HP𝐶 )

is a hybrid design with the alphabet 𝛼 (HP𝐴) ∪ 𝛼 (HP𝐶 ) ∪ {ok, ok′}, where HP𝐴 and HP𝐶 are called

assumption and commitment, respectively.

Hybrid designs are a subset of hybrid processes, as ok∧HP𝐴 and ok′∧HP𝐶 areHHP-healthy and

⇒≀ isHHP-preserving, which means HP𝐴 ⊢ HP𝐶 is alsoHHP-healthy. Intuitively, when a hybrid

design starts normally (ok = true) and its assumption HP𝐴 holds, then it executes normally and

the commitment HP𝐶 holds. The hybrid design ⊥HP ⊢ HP𝐶 , where ⊥HP is a variant of true (which
is a convention in UTP), is abbreviated as ⊢ HP𝐶 meaning not making any assumptions.

5.1 Matrix Representation
Given a hybrid designHP𝐴 ⊢ HP𝐶 , if ok is false, i.e., its predecessor is abnormal, then it will behave

unpredictably, i.e., chaos ⊥HP; if ok is true but ok′
is false, it indicates that the assumption HP𝐴

must be violated, i.e., ¬≀HP𝐴; if both ok and ok′
are true, the commitment HP𝐶 can be guaranteed

as soon as the assumption HP𝐴 holds, i.e., HP𝐴 ⇒≀ HP𝐶 . In order to make this semantics of hybrid

designs clearer, we use the matrix encoding proposed in [43] to define hybrid designs as 2 × 2

matrices by instantiating ok and ok′
with all four possible combinations:

HP𝐴 ⊢ HP𝐶 =̂

¬ok′ ok′( )
⊥HP ⊥HP ¬ok

¬≀HP𝐴 HP𝐴 ⇒≀ HP𝐶 ok
(2)

With the aid of the matrix representation, the proofs of the theorems and properties on hybrid

designs become more concise and intuitive. The proofs of this section are largely based on this

matrix representation and the calculus on it (see the appendix for the details).

5.2 Normal Hybrid Designs
In general, UTP allows the assumption to refer to both primed and unprimed versions of variables.

However, as explained in [21], only normal designs, whose assumptions are conditions and do

not refer to primed (state) variables, are significant. Similarly, only normal hybrid designs, whose
assumptions are fixed points of the equation below, make sense in hybrid system design.

¬≀𝑋 = ¬≀𝑋 # ⊥HP

Intuitively, the above equation indicates that if an execution violates an assumption, then we expect

that any extension of the execution will also violate the assumption. For example, let HP be a

hybrid process specifying the expected behaviour, then ¬≀HP represents the unexpected behaviour.

It is desirable that all the extensions of ¬≀HP should also be unexpected, i.e., ¬≀HP ⊑ ¬≀HP # ⊥HP.

Meanwhile, we have ¬≀HP #⊥HP ⊑ ¬≀HP according to the monotonicity of # (Property 7). In a word,

we expect the property ¬≀HP = ¬≀HP # ⊥HP.

The above equation can be denoted by a healthiness condition

HHC (𝑋 ) = ¬≀ (¬≀𝑋 # ⊥HP)

A predicate is called a hybrid condition if it isHHC-healthy in a similar manner as reactive conditions

in [15]. Hybrid conditions are a subset of hybrid processes. For example,HHP (𝑠 > 0) is a hybrid
condition while HHP (𝑠 ′ > 0) is not. Especially, ⊥HP and ⊤HP are hybrid conditions because it is

easy to check that ⊥HP = ¬≀ (¬≀⊥HP # ⊥HP) and ⊤HP = ¬≀ (¬≀⊤HP # ⊥HP).
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A hybrid design, say HC ⊢ HP, is called normal hybrid design, if HC is a hybrid condition

(HHC-healthy). In what follows, we only consider normal hybrid designs. Operations on normal

hybrid designs can be thus reduced to standard matrix operations. In particular, non-deterministic

choice (meet) ⊓ and sequential composition # correspond to matrix addition and multiplication,

respectively. Moreover, reasoning is completely component-free (with no mention to ok and ok′
or

variable substitutions), i.e., compositional.

Theorem 5.2 (Operations).

(1) (HC0 ⊢ HP0) ⊓ (HC1 ⊢ HP1) = (HC0 ∧ HC1) ⊢ (HP0 ∨ HP1)
(2) (HC0 ⊢ HP0) ⊔ (HC1 ⊢ HP1) = (HC0 ∨ HC1) ⊢ ((HC0 ⇒≀ HP0) ∧ (HC1 ⇒≀ HP1))
(3) (HC0 ⊢ HP0) # (HC1 ⊢ HP1) = (HC0 ∧ ¬≀ (HP0 # ¬≀HC1)) ⊢ (HP0 # HP1)

Parallel-by-merge, as defined for hybrid processes in Section 4.2.5, can naturally be extended to

normal hybrid designs, except that the form of merge predicates should be adapted to deal with

auxiliary variables ok and ok′
. Concretely, the merge predicate for normal hybrid designs can be

defined by:

NHD(𝑀) =̂ (ok𝑋 ∧ ok𝑌 ) ⇒≀ (𝑀 ∧ ok′)
where 𝛼 (𝑀) ∩ {ok𝑋 , ok𝑌 , ok, ok′} = ∅. It states that only parallel designs execute normally (i.e.

ok𝑋 ∧ ok𝑌 ) can they merge by𝑀 as usual. Otherwise, merge becomes unpredictable.

Theorem 5.3 (Parallel Composition).

(HC0 ⊢ HP0)∥NHD(𝑀) (HC1 ⊢ HP1) =
©«
¬≀ (¬≀HC0∥⊥HP

¬≀HC1)
∧¬≀ (¬≀HC0∥⊥HP

HP1)
∧¬≀ (¬≀HC1∥⊥HP

HP0)
ª®¬ ⊢ HP0∥𝑀HP1

Intuitively, the assumption of parallel composition, above, stipulates that unexpected interactions

cannot happen. For example, ¬≀HC0 denotes the unexpected behaviour of HC0 ⊢ HP0. Hence, its
parallel composition with the behaviour of the other side, i.e.,¬≀HC0∥⊥HP

¬≀HC1 and¬≀HC0∥⊥HP
HP1,

should also be unexpected, as negated by the assumption, where the merge predicate ⊥HP denotes

the weakest parallelism, i.e., (P∥⊥HP
Q) ⊑ (P∥𝑀Q) for any merge predicate𝑀 .

If state variables play the dominant role in the assumptions and traces are not the concern, such

asHHP (𝑠 > 0), we can give an alternative definition to parallel composition as follows, which is

simpler than ∥NHD(𝑀) .

Definition 5.4 (Parallel Composition).

(HC0 ⊢ HP0)∥HP𝑀 (HC1 ⊢ HP1) =̂ (HC0 ∧ HC1) ⊢ (HP0∥𝑀HP1)

For normal hybrid designs, the assumption for non-chaos is made explicitly. Since parallel

execution involves the evaluation of both processes, it is necessary to ensure that both their

assumptions are valid to start with. Thus, the assumption for successful execution of the parallel

composition is the conjunction of their separate assumptions rather than their disjunction. It states

that the parallel composition HP0∥HP𝑀 HP1 can only be executed when both of the components

successfully start with the assumptions HC0 and HC1 holding, otherwise, it is a chaos. Note that

∥HP
𝑀

is different from ∥NHD(𝑀) , the former composes assumptions and commitments separately

while the latter treats hybrid designs as hybrid processes.

Theorem 5.5 (Closure). Normal hybrid designs are closed on ⊓, ⊔, #, ∥NHD(𝑀) and ∥HP
𝑀
.

Theorem 5.6 (Refinement). (HC0 ⊢ HP0) ⊑ (HC1 ⊢ HP1) iff
HC1 ⊑ HC0 and HP0 ⊑ (HC0 ∧ HP1)
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This theorem indicates that the monotonic hybrid refinement relation can be lifted to a con-

travariant design refinement relation, and hence the monotonicity of modalities for normal hybrid

designs can be proved, specified as the following two properties.

Property 10 (Contra-variance). If HC0 ⊒ HC1 and HP0 ⊑ HP1 then

(HC0 ⊢ HP0) ⊑ (HC1 ⊢ HP1)
Property 11 (Monotonicity). Operators ⊔, ⊓, #, ∥NHD(𝑀) and ∥HP

𝑀
for normal hybrid designs are

monotonic with respect to ⊑.

5.3 Complete Lattice
The laws for ⊓ and ⊔ can be respectively generalised to

d
and

⊔
, which indicates that normal

hybrid designs form a complete lattice, as stated by the following theorem.

Theorem 5.7 (Complete Lattice). Normal hybrid designs form a complete lattice with top

⊤NHD =̂ ⊥HP ⊢ ⊤HP

and bottom
⊥NHD =̂ ⊤HP ⊢ ⊥HP

Property 12 (Chaos). ⊥NHD = ⊤HP ⊢ HP for any hybrid process HP.

Property 13 (Non-termination). For any normal hybrid design NHD,

⊥NHD # NHD = ⊥NHD and ⊤NHD # NHD = ⊤NHD

Property 14 (Parallel Composition). For any normal hybrid design NHD,

NHD∥NHD(𝑀)⊤NHD = ⊤NHD∥NHD(𝑀)NHD = ⊤NHD

Property 15 (Parallel Composition). For any normal hybrid design NHD,

NHD∥HP
𝑀
⊥NHD = ⊥NHD∥HP𝑀 NHD = ⊥NHD

The above conclusions demonstrate that the chaos ⊥NHD of normal hybrid designs enjoys the

desired properties that (1) it is non-terminated (left-zero of sequential composition, see Property 13)

and (2) its parallel composition with any normal hybrid design can result in itself (zero of parallel

composition ∥HP
𝑀
, see Property 15), which fixes the hole in the HUTP theory mentioned at the end

of Section 4 (where the chaos ⊥HP of hybrid processes does not enjoy such desired properties).

6 REFLECTION OF HCSP AND SIMULINKWITH HUTP
In this section, we give the HUTP semantics of HCSP [64] and Simulink [39], representing two

representative imperative and data-flow formalisms for hybrid system design in academia and

industry, respectively. Furthermore, we prove the consistency between the operational semantics

of HCSP and its HUTP semantics. We illustrate by an example the refinement relation between a

Simulink diagram and the corresponding HCSP model within the HUTP framework, demonstrating

the expressive capabilities of the UTP as a meta-theory for translation validation.

6.1 Syntactic Sugar
For brevity, we introduce the following syntax sugar for HUTP. We define the notations V·U and ⌈·⌋
which are similar to V·W and ⌈·⌉ of Duration Calculus [66]. Let 𝑃 (∼s, ¤∼s) denote a predicate relating∼s
and its derivative ¤∼s.

V𝑃 (∼s, ¤∼s), RSU𝜙 (ti,ti′) =̂ HHP

(
ti < ti′ < +∞ ∧ 𝜙 (ti, ti′) ∧ s =∼s(ti) ∧ s′ =∼s(ti′−)∧
∀𝑡 ∈ (ti, ti′) · 𝑃 (∼s(𝑡), ¤∼s(𝑡)) ∧ tr ′ − tr = ⟨ti′ − ti, RS⟩

)
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is a finite continuous process over the time interval [ti, ti′), and it says that∼s is differentiable with
𝑃 (∼s, ¤∼s) holding at every instant 𝑡 from ti to ti′. During the period, the channel operations in the

ready set RS are waiting, recorded by the trace history tr ′ − tr . The predicate 𝜙 (ti, ti′) characterises
the relation of ti and ti′, such as ti′ − ti = 2. We omit 𝜙 (ti, ti′) if 𝜙 (ti, ti′) = (ti < ti′). For brevity,

V𝑃 (∼s, ¤∼s), RSU𝑑 =̂ V𝑃 (∼s, ¤∼s), RSUti′−ti=𝑑
V𝑃 (∼s, ¤∼s), RSU∼𝑑 =̂ V𝑃 (∼s, ¤∼s), RSU(ti′−ti)∼𝑑

where 𝑑 > 0 and ∼ ∈ {<, ≤,≠, >, ≥}.
A sequence of operations which is assumed to take no time is called super-dense computation

[38]. Under super-dense computation, the computer processing the sequence of the operations is

much faster than the physical devices attached to it, rendering the time to compute the discrete

operations negligible. However, the temporal order of computations is still present. Under the

assumption of super-dense computation, a discrete process without communication is defined by

⌈𝑃 (s, s′)⌋ =̂ HHP (ti = ti′ < +∞ ∧ 𝑃 (s, s′) ∧ tr ′ − tr = 𝜏)
It executes instantly at time ti = ti′ < +∞, rather than continuously over a time interval. Especially,

⌈⌋ =̂ HHP (ti = ti′ < +∞ ∧ s = s′ ∧ tr = tr ′)
Note that ⌈⌋ ≠ ⌈s = s′⌋ as their traces are different. We can prove the following property for ⌈⌋.
Property 16 (Unit). ⌈⌋ is a unit of hybrid processes w.r.t. #.
Corollary 1 (Unit). ⊢ ⌈⌋ is a unit of normal hybrid designs w.r.t. #.

Instant communications can be defined by discrete processes with communication:

⌈ch?, s𝑖⌋ =̂ HHP (ti = ti′ < +∞ ∧ ∃𝑑 · s𝑖 B 𝑑 ∧ tr ′ − tr = ⟨ch?, 𝑑⟩)
⌈ch!, 𝑒 (s)⌋ =̂ HHP (ti = ti′ < +∞ ∧ s′ = s ∧ tr ′ − tr = ⟨ch!, 𝑒 (s)⟩)

where s𝑖 is the 𝑖-th variable in s and 𝑒 (s) is an expression containing s.
In addition, we also define infinite continuous processes:

V𝑃 (∼s, ¤∼s), RSU∞ =̂ HHP

©«
ti < ti′ = +∞ ∧ s =∼s(ti)∧
∀𝑡 ∈ (ti, +∞) · 𝑃 (∼s(𝑡), ¤∼s(𝑡))
∧tr ′ − tr = ⟨+∞, RS⟩

ª®¬
Since we cannot observe the state variables of the point at infinity, the process will not output any

values of state variables, i.e., the output state variables s′ are hidden.

6.2 From HCSP to HUTP
HCSP is a formal language for describing hybrid systems. It extends Communicating Sequential

Processes by introducing differential equations for modelling continuous evolutions and interrupts

for modelling arbitrary interactions between continuous evolutions and discrete jumps. The syntax

of HCSP is given as follows, adapted from [64].

P F skip | 𝑥 B 𝑒 | wait 𝑑 | ch?x | ch!e | 𝑋 | rec 𝑋 · P | P;P | P ⊓ P | 𝐵 → P | (3)

⟨𝐹 (¤s, s) = 0&𝐵⟩ | ⟨𝐹 (¤s, s) = 0&𝐵⟩ ⊵𝑑 P | ⟨𝐹 (¤s, s) = 0&𝐵⟩ ⊵ 8𝑖∈𝐼 (ioi → P𝑖 )
S F P | S∥S

The HCSP constructs can be defined respectively by normal hybrid designs (Section 5.2) as follows:

• The skip statement terminates immediately having no effect on variables, and it is modelled

as the relational identity:

JskipKHUTP =̂ ⊢ ⌈⌋
It is a unit of normal hybrid designs w.r.t. # by Corollary 1.
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• The assignment of the value 𝑒 to a variable 𝑥 is modelled as setting 𝑥 to 𝑒 and keeping all

other variables constant if 𝑒 can be successfully evaluated [28]. Therefore, the assignment

can be interpreted as follows:

J𝑥 B 𝑒KHUTP =̂ E(𝑒) ⊢ ⌈𝑥 B 𝑒⌋

where E(𝑒) isHHC-healthy and specifies the condition by which 𝑒 can be evaluated. Note that

𝐸 is a function supplied for all expressions. For example,HHP (𝑠 ≠ 0) can be such a condition,

where 𝑠 is a state variable in 𝑒 .

• The wait statement will keep idle for 𝑑 time units keeping variables unchanged:

Jwait 𝑑KHUTP =̂ ⊢ V¤∼s = 0, ∅U𝑑
• The sequential composition P0;P1 behaves as P0 first, and if it terminates, as P1 afterwards:

JP0;P1KHUTP =̂ JP0KHUTP # JP1KHUTP

• P0 ⊓ P1 denotes internal choice, which behaves as either P0 or P0, and the choice is made by

the process. It is interpreted as a demonic choice of two operands in a standard way:

JP0 ⊓ P1KHUTP =̂ JP0KHUTP ⊓ JP1KHUTP

• The alternative 𝐵 → P, where 𝐵 is a Boolean expression, behaves as P if 𝐵 is true; otherwise

it terminates immediately:

J𝐵 → PKHUTP =̂ JPKHUTP ◁ 𝐵 ▷ JskipKHUTP

• A process variable 𝑋 is interpreted as a predicate variable:

J𝑋 KHUTP =̂ 𝑋

• The recursion rec 𝑋 · P means that the execution of P can be repeated by replacing each

occurrence of𝑋 with rec 𝑋 ·P itself during executing P, i.e., rec 𝑋 ·P behaves like P[rec 𝑋 ·P/𝑋 ].
The semantics for recursion can be defined as the least or the greatest fixed point by

Jrec 𝑋 · PK𝜇
HUTP

=̂ 𝜇𝑋 · JPKHUTP

Jrec 𝑋 · PK𝜈
HUTP

=̂ 𝜈𝑋 · JPKHUTP

For example, the semantics of P∗ can be defined as

JP∗KHUTP =̂ Jrec 𝑋 · skip ⊓ (P;𝑋 )K𝜇
HUTP

= ∃𝑛 ∈ N · JP𝑛KHUTP

where N is the set of non-negative integers and P0 =̂ skip.
• A continuous evolution statement ⟨𝐹 (¤s, s) = 0&𝐵⟩ says that the process keeps waiting, and
meanwhile keeps continuously evolving following the differential equations 𝐹 , until the

domain constraint 𝐵 is violated:

J⟨𝐹 (¤s, s) = 0&𝐵⟩KHUTP =̂ exit ⊓ (ode∅ # exit)

where

odeRS =̂ ⊢ V𝐹 (¤∼s,∼s) = 0 ∧ 𝐵 [∼s/s], RSU
exit =̂ ⊢ ⌈¬𝐵(s) ∧ s′ = s⌋

Note that odeRS
and exit take 𝐹 and 𝐵 as parameters. For brevity, the parameters are not

shown in the following content. The above states that the process can either terminate at

the beginning, i.e., exit, or evolve for a finite period before terminating without waiting

communications, i.e., ode∅ # exit, depending on whether 𝐵 holds or not.
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• ⟨𝐹 (¤s, s) = 0&𝐵⟩ ⊵𝑑 P behaves like ⟨𝐹 (¤s, s) = 0&𝐵⟩, if the evolution terminates before 𝑑 time

units. Otherwise, after 𝑑 time units of evolution according to 𝐹 , it moves on to execute P:

J⟨𝐹 (¤s, s) = 0&𝐵⟩ ⊵𝑑 PKHUTP =̂ exit ⊓ (ode∅
<𝑑

# exit) ⊓ (ode∅
𝑑

# JPKHUTP)
It can either terminate at the beginning, i.e., exit, evolve less than 𝑑 time units before ter-

minating, i.e., ode∅
<𝑑

# exit, or evolve for 𝑑 time units and then continue to execute P, i.e.,
ode∅

𝑑
# JPKHUTP.

• ⟨𝐹 (¤s, s) = 0&𝐵⟩ ⊵ 8𝑖∈𝐼 (ioi → P𝑖 ) behaves like ⟨𝐹 (¤s, s) = 0&𝐵⟩, except that the continuous
evolution is preempted as soon as one of the communications ioi takes place, which is followed

by the respective P𝑖 , where 𝑖𝑜𝑖 stands for a communication event, i.e., either ch?x or ch!e.
Notice that if the continuous part terminates before a communication among {io𝑖 | 𝑖 ∈ 𝐼 }
occurs, then the process terminates without communicating. Concretely,

J⟨𝐹 (¤s, s) = 0&𝐵⟩ ⊵ 8𝑖∈𝐼 (ioi → P𝑖 )KHUTP
=̂ exit ⊓ comm ⊓ (odeRS # (exit ⊓ comm)) (4)

Without loss of generality, we let 𝐼 = 𝐼? ∪ 𝐼! with 𝐼? ∩ 𝐼! = ∅ such that ioi = chi?xi if 𝑖 ∈ 𝐼?
and chi!ei otherwise (𝑖 ∈ 𝐼!), where 𝑒𝑖 is an arithmetic expression. Note that 𝑥𝑖 and 𝑥 𝑗 can

denote the same variable even if 𝑖 ≠ 𝑗 . Let RS = {chi?, chj! | 𝑖 ∈ 𝐼?, 𝑗 ∈ 𝐼!} be the set of waiting
channel operations. Then, the preemption by communication can be described by

comm =̂ input ⊓ output

where

input =̂
d

𝑖∈𝐼? (⊢ ⌈chi?, 𝑥𝑖⌋ # JP𝑖KHUTP)
output =̂

d
𝑗 ∈𝐼! (E(𝑒 𝑗 (s)) ⊢ ⌈chj!, 𝑒 𝑗 (s)⌋ # JP𝑗 KHUTP)

It states that the process can either terminate or communicate at the beginning: exit⊓ comm,

evolve for a finite period before terminating or communicating: odeRS # (exit ⊓ comm).
• ch?x receives a value along channel RS and assigns it to 𝑥 , and as the dual, ch!e sends the
value of 𝑒 along channel RS:

Jch?xKHUTP =̂ J⟨¤s = 0&true⟩ ⊵ (ch?x → skip)KHUTP

Jch!eKHUTP =̂ J⟨¤s = 0&true⟩ ⊵ (ch!e → skip)KHUTP

A communication takes place when both the sending and the receiving parties are ready, and

may cause one side to wait if the other side is not ready.

• P0∥P1 behaves as if sequential processes P0 and P1 run independently except that all com-

munications along the common channels connecting P0 and P1 are to be synchronised. The

processes P0 and P1 in parallel can neither share variables, nor input or output channels, i.e.,

a channel operation ch∗ appears in P0 iff it does not appear in P1. The parallel composition

of P0 and P1 can be translated as the parallel composition defined by Definition 5.4 with the

merge predicate𝑀𝐼 defined by Definition 4.5:

JP0∥P1KHUTP =̂ JP0KHUTP∥HP𝑀𝐼
JP1KHUTP (5)

where 𝐼 is the set of common channels between P0 and P1.

In what follows we prove the consistency between the HUTP semantics and the structural

operational semantics (SOS) of HCSP given in [64]. The latter consists of a collection of transition

rules of the following form
1
:

Pre-condition

(P, (ti, s)) tb−→ (P′, (ti′, s′),∼s)
1
We here revise the operational semantics in [64] a little bit.
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where P and P′
are HCSP processes, (ti, s) and (ti′, s′) are process states, described by the state

variables with timestamps, tb denote a trace block defined in Section 3, and∼s is a flow depicting

the evolution from s to s′. Note that the flow∼s can be removed if the above transition describes a

discrete action. For example, the SOS of an assignment is

𝑒 can be evaluated on s

(𝑥 B 𝑒, (ti, s)) 𝜏−→ (𝜀, (ti, s[𝑥 ↦→ 𝑒 (s)]))
where 𝜀 denotes termination. A more comprehensive understanding of the operational semantics

can be found in [64].

We say the HUTP semantics and the SOS of an HCSP process are consistent iff they keep

consistent on time, state and trace. Concretely, the changes of time and state and the generated

trace of the SOS of an HCSP process should be reflected by its HUTP semantics, and vice versa. For

example, the SOS for the ODE with communication interruption

ODE⊵ =̂ ⟨𝐹 (¤s, s) = 0&𝐵⟩ ⊵ 8𝑖∈𝐼 (ch𝑖∗𝑖 → P𝑖 )
is described by the following rules:

¬𝐵(s)
(ODE⊵, (ti, s))

𝜏−→ (𝜀, (ti, s))
[Int0]

∼s is a solution of 𝐹 (¤s, s) = 0

∼s(ti) = s s′ =∼s(ti′−) ∀𝑡 ∈ [ti, ti′) · 𝐵(∼s(𝑡))

(ODE⊵, (ti, s))
⟨ti′−ti,{chi?,chj ! |𝑖∈𝐼?, 𝑗 ∈𝐼! }⟩−−−−−−−−−−−−−−−−−−−−→ (ODE⊵, (ti′, s′),∼s)

[Int1]

𝑖 ∈ 𝐼? ch𝑖∗𝑖 = ch𝑖?𝑥𝑖

(ODE⊵, (ti, s))
⟨ch𝑖?,𝑑 ⟩−−−−−−→ (P𝑖 , (ti, s[𝑥𝑖 ↦→ 𝑑]))

[Int2]

𝑗 ∈ 𝐼! ch 𝑗∗𝑗 = ch 𝑗 !𝑒 𝑗
𝑒 𝑗 can be evaluated on s

(ODE⊵, (ti, s))
⟨ch𝑗 !,𝑒 𝑗 (s) ⟩−−−−−−−−−→ (P𝑗 , (ti, s))

[Int3]

The rule [Int0] is reflected by exit and the rule [Int1] is reflected by odeRS # JODE⊵KHUTP, where

RS = {chi?, chj! | 𝑖 ∈ 𝐼?, 𝑗 ∈ 𝐼!}. The rule [Int2], equivalent to ⊢ ⌈ch𝑖?, 𝑥𝑖⌋, depicts a receiving event
that interrupts the ODE, followed by the process P𝑖 . The HUTP semantics of P𝑖 is denoted by

JP𝑖KHUTP, and therefore, the HUTP semantics for the receiving event can be described by

⊢ ⌈ch𝑖?, 𝑥𝑖⌋ # JP𝑖KHUTP

Similarly, by [Int3], the HUTP semantics of the sending event is denoted by

E(𝑒 𝑗 ) ⊢ ⌈ch 𝑗?, 𝑒 𝑗 ⌋ # JP𝑗 KHUTP

where E(𝑒 𝑗 ) means 𝑒 𝑗 can be evaluated successfully. The process comm summarises the HUTP

semantics of the above communications. Note that ODE⊵ terminates after applying these rules

except [Int1]. In summary, we can get

ODE⊵ = exit ⊓ comm ⊓ (odeRS # ODE⊵)
In other words, the SOS of ODE⊵ is equivalent to the equation 𝑋 = 𝐹 (𝑋 ), where

𝐹 (𝑋 ) =̂ exit ⊓ comm ⊓ (odeRS # 𝑋 )
Any solution of 𝑋 = 𝐹 (𝑋 ) can be treated as the HUTP semantics of ODE⊵ . In this paper, we use

the least fixed point:

𝜇𝑋 .𝐹 (𝑋 ) = exit ⊓ comm ⊓
(
odeRS # (exit ⊓ comm)

)
as shown in (4). It can be checked that the SOS of ODE⊵ , denoted by the above four transition rules,

is reflected by (4), and vice versa.
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Remark 1. Another solution of the equation 𝑋 = 𝐹 (𝑋 ) above is
odeRS

∞ ⊓ exit ⊓ comm ⊓ (odeRS # (exit ⊓ comm))
where odeRS

∞ =̂ ⊢ V𝐹 (¤∼s,∼s) = 0∧𝐵 [∼s/s], RSU∞ denotes ODE⊵ will evolve forever, never terminate. This
solution is reasonable, although it is neither the least nor the greatest fixed point.

Theorem 6.1 (Semantic Consistency). The HUTP semantics of HCSP is consistent with the
structural operational semantics of HCSP.

6.3 From Simulink to HUTP
Matlab/Simulink [39] is an industrial de-facto standard for modelling embedded systems. A Simulink

diagram consists of a set of blocks. Each block has a set of input and output signals. A discrete
block computes the output signal from the input signals periodically or aperiodically. A continuous
block computes the output signal continuously by following a differential equation. Blocks can be

organised into hierarchical subsystems, such as normal, triggered and enabled subsystems.

In this subsection, we introduce a formal semantics of Simulink by encoding it into HUTP.

Overall, a Simulink diagram is split into discrete and continuous sub-diagrams which consist of

discrete and continuous blocks, respectively. We define the respective semantics for the discrete

and continuous sub-diagrams and then compose them together. The following Simulink diagrams

serve as running examples. The left of Fig. 2 is the original diagram and the right is the diagram

where the ports between some blocks are added.

Bias Gain

Integrator0 Integrator1

Bias Gain

Integrator0 Integrator1

port

Fig. 2. Examples of plant-control loop

6.3.1 Discrete Block. A discrete block is executed during a finite time interval. The left of Fig. 3 is

the typical periodic discrete block of a math operation, such as Bias and Gain in Fig, 2. This kind of

blocks are stateless. The block on the right is a periodic Unit Delay block, which is stateful.

Fig. 3. Discrete blocks

For each discrete block, we use ports to serve as channels for the input and output lines. For a

periodic Math Operation block, periodically, one first gets data from the input ports (get), then
performs a computation based on the inputs (comp), next puts the computed result to its output

ports (put), and finally keeps silent for a period of time (period), as follows:

get =̂ ⊢ ⌈in0?, 𝑥⌋ ∧ G0 (𝑥 ′) # ⊢ ⌈in1?, 𝑦⌋ ∧ G1 (𝑦 ′)
comp =̂ A(𝑥,𝑦) ⊢ ⌈𝑧 B op(𝑥,𝑦)⌋
put =̂ ⊢ ⌈out0!, 𝑧⌋ # ⊢ ⌈out1!, 𝑧⌋

period =̂ ⊢ V ¤∼𝑧 = 0, ∅Ust
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In the above, get acquires data 𝑥 and 𝑦 from channels (ports) in0 and in1, respectively. Note

that ⌈in0?, 𝑥⌋ and ⌈in1?, 𝑦⌋ are instant communications (i.e., fetch data whenever they require).

The constraints G0 (𝑥 ′) and G1 (𝑦 ′) mean that only the desired data is received. Receiving does not

consume time, so the order of channel operations in0? and in1? does not matter. comp denotes

a computation, where A(𝑥,𝑦) means that the operands 𝑥 and 𝑦, provided from get, must satisfy

some assumption, such as 𝑦 ≠ 0. Therefore, the relation G0 (𝑥) ∧ G1 (𝑦) ⇒ A(𝑥,𝑦) must hold. If

A(𝑥,𝑦) is satisfied, the computation ⌈𝑧 B op(𝑥,𝑦)⌋ executes. By contrast with get, put just puts
the computed result to channels (ports) out0 and out1. Note that get, comp and put do not consume

time. Then, the process keeps quiescent for some period specified by the sample time st, denoted
by period, where ∅ indicates the in0?, in1?, out0! and out1! are not ready to communicate with the

context during the period. Finally, it can terminate at any time before the next period arrives (tail).
In summary, a periodicMath Operation block can be translated as:

MOP =̂ get # comp # put # (period # get # comp # put)∗ # tail (6)

where

tail =̂ ⊢ V ¤∼𝑧 = 0, ∅U<st ⊓ ⊢ ⌈⌋
Unlike a Math Operation block, a Unit Delay block is stateful. The right of Fig. 3 is a typical

periodic Unit Delay block. At the beginning, its state is initialised (init). Then, periodically, it puts
the current state to the output channels (ports) out0 and out1, then gets data from the input channel

(port) in and updates the state (get), and finally holds the state for some period (period). In summary,

a Unit Delay block can be translated as follows:

UnitDelay =̂ init # put # get # (period # put # get)∗ # tail

where

init =̂ ⊢ ⌈𝑦 B init_y⌋
put =̂ ⊢ ⌈out0!, 𝑦⌋ # ⊢ ⌈out1!, 𝑦⌋
get =̂ ⊢ ⌈in?, 𝑥⌋ # ⊢ ⌈𝑦 B 𝑥⌋

period =̂ ⊢ V ¤
∼
𝑦 = 0, ∅Ust

tail =̂ ⊢ V ¤
∼
𝑦 = 0, ∅U<st ⊓ ⊢ ⌈⌋

6.3.2 Continuous Block. Blocks containing continuous states are called continuous blocks. Com-

puting a continuous state requires one to know the derivative of the state variables. The left of

Fig. 4 is an Integrator block and the right is a Math Operation block of which sample time is 0.

They are both typical continuous blocks.

Discrete 
or 

Continuous Discrete 

Continuous Continuous 

Discrete 

Continuous 

Discrete 

Fig. 4. Continuous blocks

For an Integrator block, the state is first initialised by an initial condition, as follows:

init =̂ ⊢ ⌈𝑦 B init_y⌋

Then, its semantics depends on the context it interacts with:

• If the source block is continuous (such as Integrator0 in Fig. 2), then the block will evolve

continuously following the ODE ¤𝑦 = 𝑥 , instead of receiving 𝑥 periodically or aperiodically

from the input port. Meanwhile, it will send the current value of 𝑦 to the output port out1
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whenever the non-continuous target block requires it (put). In that case, the corresponding

HUTP semantics will be given as follows:

Integrator =̂ init # (put ⊓ ode0)∗ (7)

where

put =̂ ⊢ ⌈out1!, 𝑦⌋
ode0 =̂ ⊢ V ¤

∼
𝑦 = ∼𝑥, {out1!}U

• On the other hand, if the source block is non-continuous (such as Integrator1 in Fig. 2),

then, at each iteration, the block will either get data 𝑥 from the input channel (get), evolve
according to the latest received data (ode1), or put the current value of𝑦 to the output channel

(put), as follows:

Integrator =̂ init # (get ⊓ put ⊓ ode1)∗ (8)

where

get =̂ ⊢ ⌈in?, 𝑥⌋
ode1 =̂ ⊢ V ¤

∼
𝑦 = ∼𝑥 ∧ ¤∼𝑥 = 0, {in?, out1!}U

The semantics of a Math Operation block with sample time 0 in the right of Fig. 4 is a bit more

complicated. It requires the conversions between discrete and continuous signals, as illustrated

by Fig. 5. Concretely, the conversion of the discrete input signal 𝑦0 to the continuous one (D/A

converter) can be specified as follows:

converter0 =̂ (⊢ ⌈in1?, 𝑦0⌋ ∧ G(𝑦 ′
0
) # ⊢ V ¤

∼
𝑦0 = 0, {in1?}U)∗

At each iteration, converter0 gets the desired data (constrained by G(𝑦 ′
0
)) from the input channel

in1 and then keeps the data unchanged for some period. Thus, the input 𝑦0 can be treated as a

continuous signal from the view of the continuous block.

On the other hand, the conversion of the continuous output signal 𝑧1 to the discrete one (A/D

converter) can be specified as follows:

converter1 =̂ (⊢ ⌈out1!, 𝑧1⌋ # ⊢ ∃∼𝑑 · V ¤∼𝑧1 =∼𝑑, {out1!}U)∗

At each iteration, converter1 puts the current value of 𝑧1 to the output channel out1 and then 𝑧1
continues evolving for some period. Thus, from the view of out1, the signal 𝑧1 is discrete.

D/A
converter0

A/D
converter1

Discrete 

Continuous 

Discrete 

Continuous 

Fig. 5. Continuous Math Operation Block with D/A and A/D converters

Given that all the inputs and outputs are continuous, the computation of the continuousMath
Operation block can be translated as follows:

comp =̂ A(∼𝑥,∼𝑦1) ⊢ V∼𝑧0 = op(∼𝑥,∼𝑦1)U ⊓ ⊢ ⌈⌋

It means that if the continuous inputs∼𝑥 and
∼
𝑦1 satisfy the expected assumptions during the whole

course of action then, the value of∼𝑧0 is, at all times, equal to the result of the operation of∼𝑥 and
∼
𝑦1 in

time. ⊢ ⌈⌋ denotes the case that simulation is not started (ti = ti′). In summary, the semantics of the

continuous Math Operation block of Fig. 5 can be described by the following parallel composition:

CMOP =̂ Hshare (converter0∥∅comp∥∅converter1)
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where (1) ∥∅ denotes ∥HPSYN ∅
with the merge predicate SYN ∅ =̂ ti𝑋 = ti𝑌 ∧𝑀∅. According to Defini-

tion 4.5,𝑀∅ allows ti𝑋 ≠ ti𝑌 . However, blocks in Simulink are synchronous on time, i.e., ti𝑋 = ti𝑌 ;
(2)Hshare is the healthiness condition that enforces the consistency between

∼
𝑦0 and

∼
𝑦1 and between

∼𝑧0 and∼𝑧1 when the diagram evolves, specified as follows:

Hshare (𝑃 ⊢ 𝑄) =̂ 𝑃 ⊢ 𝑄 ∧ ∀𝑡 ∈ [ti, ti′) ·
∼
𝑦0 (𝑡) =

∼
𝑦1 (𝑡) ∧∼𝑧0 (𝑡) =∼𝑧1 (𝑡)

As the parallel-by-merge in this paper (Section 4.2.5) does not support shared state variables, the

healthiness condition above is used to enforce the parallel by shared state variables, i.e., it states

that the evolutions of 𝑦0 and 𝑧0 should keep consistent with 𝑦1 and 𝑧1, respectively, because 𝑦1 and

𝑧1 are respective aliases of 𝑦0 and 𝑧0.

6.3.3 Lines between discrete Blocks. In order to synchronise communications between discrete

blocks, lines between blocks serve as buffers to receive data whenever source blocks provide and

target blocks require, as illustrated by the buffer in Fig. 2. A typical buffer is shown below:

Discrete 

Discrete 

Discrete 

Fig. 6. A two-branch line between discrete blocks

Notice that the buffer must render the causality relation of ports (if the source block provides

data and, meanwhile, a target block requires). It should guarantee that the target block can only

get the latest data from the source block. In other words, if the channel operations out? and in0! of

the buffer occur simultaneously, out? should be earlier than in0!. Therefore, the buffer should be

translated as follows:

buffer =̂
(
get # (put

0
⊓ put

1
⊓ ready)∗ # ready

)∗
(9)

where

get =̂ ⊢ ⌈out?, 𝑥⌋
put

0
=̂ ⊢ ⌈in0!, 𝑥⌋

put
1

=̂ ⊢ ⌈in1!, 𝑥⌋
ready =̂ ⊢ V ¤∼𝑥 = 0, {out?, in0!, in1!}U

This means that, at each iteration, the buffer first gets data from the output port of the source block

(get), then puts the received data to the input ports of the target blocks whenever they require it

(put
0
and put

1
), and finally waits for a period of time, during which channel operations out?, in0!

and in1! are made ready for communication (ready).

6.3.4 Composition. According to the above analysis, before translating the Simulink diagram on

the left of Fig. 2, we need to add the necessary ports between some blocks, resulting in the diagram

shown on the right of Fig. 2. Before execution, the system must be initialised by setting time to 0

and trace to 𝜖 , as follows:

INIT =̂ ⊢ HHP (ti′ = 0 ∧ tr ′ = 𝜖)

Then, the composite system, the Diagram on the right of Fig. 2, can be defined in two parts. The

Plant part consists of the continuous blocks Integrator0 and Integrator1. The Control part consists
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of the discrete blocks Bias and Gain, and a buffer between them. The Diagram can be modelled by

the parallel composition of Plant and Control, as follows:

Plant =̂ Hshare (Integrator0 ∥∅ Integrator1) (10)

Control =̂ Bias ∥out0 buffer ∥in1 Gain (11)

JDiagramKHUTP =̂ INIT # (Plant ∥ {in0,out1 } Control) (12)

where ∥𝐼 represents ∥HPSYN 𝐼
with SYN 𝐼 =̂ ti𝑋 = ti𝑌 ∧𝑀𝐼 , for simplicity, and we use ∥ch if 𝐼 = {ch}. It

can be proved that SYN 𝐼 is well-defined from Property 6. In the above case,

Hshare (𝑃 ⊢ 𝑄) =̂ 𝑃 ⊢ 𝑄 ∧ ∀𝑡 ∈ [ti, ti′) ·∼𝑎0 (𝑡) = ∼𝑎1 (𝑡) = ∼𝑎(𝑡) (13)

because the continuous blocks Integrator0 and Integrator1 share 𝑎 which has two aliases 𝑎0 and 𝑎1.

Example 6.2 (Algebraic Loop). Consider the loop of Bias and Gain in Fig. 7. It forms an algebraic

loop. According to (6), the respective prefixes of the communication traces of Bias and Gain
are ⟨in0?, 𝑑0⟩⌢𝜏⌢⟨out0!, 𝑑1⟩ and ⟨in1?, 𝑑2⟩⌢𝜏⌢⟨out1!, 𝑑3⟩, where 𝜏 denotes timeless computations.

According to (9), the prefixes of the communication traces of two buffers between Bias and Gain
are ⟨out0?, 𝑑4⟩⌢𝜏⌢⟨in1!, 𝑑5⟩ and ⟨out1?, 𝑑6⟩⌢𝜏⌢⟨in0!, 𝑑7⟩. It can be verified that these four traces

cannot be composed by ∥𝐼 , as defined in Section 3.3, which indicates that this unsound system will

reduce to ⊤HD, i.e., it can do nothing.

Bias

Gain

Fig. 7. A loop of discrete blocks

In addition to the above, the semantics of hierarchical diagrams, such as normal, triggered and

enabled subsystems, can also be defined using HUTP. Since describing their HUTP semantics

clearly needs pages of space, they are not introduced in this paper. Note that compared with the

HUTP semantics of Simulink given in [10, 64], the HUTP semantics defined above is much simpler

with more solid foundations as HUTP theory is well developed in this paper.

6.4 Applying HUTP to Justify the Translation from Simulink to HCSP
In the work [69], we introduced how to translate Simulink (as well as Stateflow) diagrams to the

corresponding HCSPmodels for the purpose of verifying them using a Hybrid Hoare Logic prover in

Isabelle/HOL [65, 68]. The translation is automatic and is implemented as a module ss2hcsp in the

tool chain MARS
2
[63, 64] which implements the flow from modelling, simulation, verification to

code generation for hybrid systems. In this subsection, we justify the correctness of the translation

by ss2hcsp from the Simulink diagram of Fig. 2 to the corresponding HCSP model as an application

of the HUTP proposed in this paper.

Definition 6.3 (Conditional Equivalence). Let 𝑇 =̂ {𝑡𝑛} ⊆ R≥0 be a chain of increasing time points

(𝑡𝑛 < 𝑡𝑛+1) with lim𝑛→+∞ 𝑡𝑛 = +∞ and 𝑆 the set of state variables. Let P and Q be differential

relations. Then, we say P is equivalent to Q w.r.t.𝑇 and 𝑆 iff P ∧ ti′ ∈ 𝑇 is equivalent to Q ∧ ti′ ∈ 𝑇

on the state variables in 𝑆 , denoted by P ≡𝑇,𝑆 Q .

2
https://gitee.com/bhzhan/mars.git
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Intuitively, P ≡𝑇,𝑆 Q means that if P and Q terminate at time ti′ ∈ 𝑇 , then their state variables in

𝑆 are consistent. In this subsection, we wish to justify JDiagramKHUTP ≡𝑇,𝑆 JJDiagramKHCSPKHUTP

with some 𝑇 and 𝑆 , where Diagram is the Simulink diagram of Fig. 2.

For the Simulink Diagram of Fig. 2, ss2hcsp generates the following HCSP process:

JDiagramKHCSP =̂ PlantHCSP∥ControlHCSP

where

PlantHCSP =̂ 𝑎 B 0;𝑥0 B 0;

(
⟨ ¤𝑥0 = 𝑎, ¤𝑎 = 𝑧1, ¤𝑧1 = 0&true⟩ ⊵ 8

(
ch𝑥 !𝑥0 → skip,
ch𝑧?𝑧1 → skip

))∗
ControlHCSP =̂ ti B 0; ch𝑥?𝑥1;𝑦 B 𝑥1 + 1.5; 𝑧0 B 𝑦 × 2.4; ch𝑧 !𝑧0;(

wait(1); ti%2 = 0 → (ch𝑥?𝑥1;𝑦 B 𝑥1 + 1.5);
ti%3 = 0 → (𝑧0 B 𝑦 × 2.4; ch𝑧 !𝑧0)

)∗
The period of ControlHCSP is the greatest common divisor (GCD) of periods of the blocks (Bias and
Gain) it contains, i.e., GCD(2, 3) = 1, as denoted by wait(1). Since no shared variable is allowed

between different HCSP processes in parallel, we let 𝑥0 and 𝑥1 be two aliases of 𝑥 , and 𝑧0 and 𝑧1 the

aliases of 𝑧, as shown by the right diagram in Fig. 2.

We first study the conditions under which PlantHCSP is consistent with Plant of (10). According
to (4), PlantHCSP can be translated as follows:

JPlantHCSPKHUTP =̂ init𝑎 # init𝑥0 #
(
put𝑥 ⊓ get𝑧 ⊓ (ode # (put𝑥 ⊓ get𝑧))

)∗
where init𝑎 =̂ ⊢ ⌈𝑎 B 0⌋, init𝑥0 =̂ ⊢ ⌈𝑥0 B 0⌋, put𝑥 =̂ ⊢ ⌈ch𝑥 !, 𝑥0⌋, get𝑧 =̂ ⊢ ⌈ch𝑧?, 𝑧1⌋ and

ode =̂ ⊢ V ¤∼𝑥0 = ∼𝑎 ∧ ¤∼𝑎 =∼𝑧1 ∧ ¤∼𝑧1 = 0, {ch𝑥 !, ch𝑧?}U (14)

According to (7) and (8), Plant of (10) can be unfolded as

Plant =̂ Hshare

(
(init𝑥0 # (put𝑥 ⊓ ode0)∗)∥∅ (init𝑎0 # (get𝑧 ⊓ ode1)∗)

)
(15)

where init𝑎0 =̂ ⊢ ⌈𝑎0 B 0⌋, put𝑥 =̂ ⊢ ⌈in0!, 𝑥0⌋, get𝑧 =̂ ⊢ ⌈out1?, 𝑧1⌋ and

ode0 =̂ ⊢ V ¤∼𝑥0 = ∼𝑎1, {in0!}U
ode1 =̂ ⊢ V ¤∼𝑎0 =∼𝑧1 ∧ ¤∼𝑧1 = 0, {out1?}U

Note that in0 and out1 are the aliases of ch𝑥 and ch𝑧 , respectively, so we do not distinguish put𝑥
and get𝑧 in JPlantHCSPKHUTP and Plant. Now we demonstrate Plant of (15) is equivalent to

init𝑎 # init𝑥0 #
(
get𝑧 ⊓ put𝑥 ⊓ ode

)∗
(16)

if 𝜏s are removed from traces, where ode is defined in (14). The traces of init𝑥0 # (put𝑥 ⊓ ode0)∗ and
init𝑎0 # (get𝑧 ⊓ ode1)∗ can be modelled by the finite state machines (FSMs) in Fig. 8, where 𝜏𝑥 and

𝜏𝑎 denote the actions of init𝑥0 and init𝑎0 , respectively.

Fig. 8. FSMs of traces of init𝑥0 # (put𝑥 ⊓ ode0)∗ (left) and init𝑎0 # (get𝑧 ⊓ ode1)∗ (right)
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Fig. 9. The composition of FSMs in Fig. 8 by ∥∅

According to the definition of ∥∅, the two FSMs in Fig. 8 only synchronise on wait blocks

⟨𝛿𝑥 , {in0!}⟩ and ⟨𝛿𝑧, {out1?}⟩, which indicates 𝛿𝑥 = 𝛿𝑧 . Therefore, their composition is illustrated in

Fig. 9, which reflects the following result:(
(init𝑥0 # put∗𝑥 # init𝑎0 ) ⊓ (init𝑎0 # get∗𝑧 # init𝑥0 )

)
# (put𝑥 ⊓ get𝑧 ⊓ ode01)∗ (17)

where

ode01 =̂ ⊢ V ¤∼𝑥0 = ∼𝑎1 ∧ ¤∼𝑎0 =∼𝑧1 ∧ ¤∼𝑧1 = 0, {in0!, out1?}U
If we ignore 𝜏s in traces, then (init𝑥0 # put∗𝑥 # init𝑎0 ) and (init𝑎0 # get∗𝑧 # init𝑥0 ) are equivalent to
(init𝑎0 # init𝑥0 # put∗𝑥 ) and (init𝑎0 # init𝑥0 # get∗𝑧), respectively. Then, (17) can be simplified:(

(init𝑎0 # init𝑥0 # put∗𝑥 ) ⊓ (init𝑎0 # init𝑥0 # get∗𝑧)
)
# (put𝑥 ⊓ get𝑧 ⊓ ode01)∗

= init𝑎0 # init𝑥0 # (put∗𝑥 ⊓ get∗𝑧) # (put𝑥 ⊓ get𝑧 ⊓ ode01)∗

= init𝑎0 # init𝑥0 # (put𝑥 ⊓ get𝑧 ⊓ ode01)∗ (18)

Note that the above result should be constrained by the healthiness condition of (13) which states

𝑎0 and 𝑎1 are aliases of 𝑎. Therefore, the above result is equivalent to (16), which is equivalent to

Plant of (15) (if 𝜏s are removed from traces).

However, (16) is not equivalent to JPlantHCSPKHUTP, because the latter always terminates with

put𝑥 or get𝑧 . Thus, the premise of the equivalence should be (1) 𝜙0: ignoring 𝜏s in traces and (2) 𝜙1:

Plant terminates with put𝑥 or get𝑧 . In summary,

Plant ≡𝜙0∧𝜙1
JPlantHCSPKHUTP (19)

On the other hand, we study the conditions under which ControlHCSP is consistent with Control
of (11) under some conditions. ControlHCSP can be translated as follows:

JControlHCSPKHUTP =̂ ⊢ ⌈ti B 0⌋ # get𝑥 # comp𝑦 # comp𝑧 # put𝑧#©«
⊢ V ¤∼𝑥1 = ¤

∼
𝑦 = ¤∼𝑧0 = 0, ∅U1#

(get𝑥 # comp𝑦) ◁ ti%2 = 0 ▷ JskipKHUTP#
(comp𝑧 # put𝑧) ◁ ti%3 = 0 ▷ JskipKHUTP

ª®®¬
∗

as illustrated by Fig. 10, where get𝑥 =̂ ⊢ ⌈ch𝑥?, 𝑥1⌋, put𝑧 =̂ ⊢ ⌈ch𝑧 !, 𝑧0⌋, comp𝑦 =̂ ⊢ ⌈𝑦 B 𝑥1 + 1.5⌋
and comp𝑧 =̂ ⊢ ⌈𝑧0 B 𝑦×2.4⌋. During the time intervals, the values of 𝑥1,𝑦 and 𝑧0 keep unchanged,

denoted by the side condition on the left of the time line.

Loop

Fig. 10. Visual representation of HUTP semantics of ControlHCSP
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Similarly, the behavior of Control in (11) can be illustrated by Fig. 11, where put0𝑦 =̂ ⊢ ⌈out0!, 𝑦0⌋,
get0𝑦 =̂ ⊢ ⌈out0?, 𝑦⌋, put1𝑦 =̂ ⊢ ⌈in1!, 𝑦⌋ and get1𝑦 =̂ ⊢ ⌈in1?, 𝑦1⌋. Compared to Fig. 10, the behaviour

of Control is consistent with JControlHCSPKHUTP, except that the latter does not contain syn0𝑦
(synchronous communication between put0𝑦 and get0𝑦) and syn1𝑦 (synchronous communication

between put1𝑦 and get1𝑦), because JControlHCSPKHUTP is a sequential process (and does not involve

synchronous communication). This will lead to the inconsistency of the traces of JControlHCSPKHUTP

and Control. In addition, the end time ti′ of Control is not necessarily equal to the end time ti+𝑛 = 𝑛

of JControlHCSPKHUTP. Thus, the premise of the consistency should be (1)𝜑0: ignoring trace variables

and (2) 𝜑1: ti′%1 = 0. In summary,

Control ≡𝜑0∧𝜑1
JControlHCSPKHUTP (20)

Loop

Fig. 11. Visual representation HUTP semantics of Control

Finally, according to (5), the HUTP semantics of JDiagramKHCSP is

JJDiagramKHCSPKHUTP = JPlantHCSP∥ControlHCSPKHUTP

= JPlantHCSPKHUTP∥HP𝑀{ch𝑥 ,chz }
JControlHCSPKHUTP

Note that the merge predicate 𝑀𝐼 (Definition 4.5) allows the different termination time of par-

allel processes and it will delay the shorter one for the final time synchronisation. For example,

JPlantHCSPKHUTP always terminate with put𝑥 or get𝑧 , while JControlHCSPKHUTP can terminate with

put𝑧# ⊢ V ¤∼𝑥1 = ¤
∼
𝑦 = ¤∼𝑧0 = 0, ∅U1 # JskipKHUTP # JskipKHUTP. For time synchronisation, 𝑀{ch𝑥 ,ch𝑧 }

will delay JPlantHCSPKHUTP for 1 time unit. In fact, the termination time difference raises when

JControlHCSPKHUTP terminates with ti′%2 ≠ 0 ∧ ti′%3 ≠ 0. Thus, if ti′%2 = 0 ∨ ti′%3 = 0, ∥HP
𝑀{ch𝑥 ,ch𝑧 }

will degrade into ∥ {ch𝑥 ,ch𝑧 } . Consider the condition 𝛾 : ti′%2 = 0 ∨ ti′%3 = 0, it implies 𝜑1, and

furthermore, it implies 𝜙1 because Control terminates with get𝑥 or put𝑧 under 𝛾 , which indicates

Plant will terminate with put𝑥 or get𝑧 . In a word, 𝛾 ⇒ 𝜙1 ∧ 𝜑1. Additionally, it is known 𝜑0 ⇒ 𝜙0.
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Combining (19), (20) and the monotonicity of ∥ {ch𝑥 ,chy } (Property 11),

Plant∥ {in0,out1 }Control ≡𝜑0∧𝛾 JPlantHCSPKHUTP∥ {ch𝑥 ,ch𝑧 }JControlHCSPKHUTP

given that in0 and out1 are aliases of ch𝑥 and ch𝑧 , respectively. In summary, we can conclude

JDiagramKHUTP ≡𝑇,𝑆 JJDiagramKHCSPKHUTP

where 𝑇 = {𝑡 ≥ 0 | 𝑡%2 = 0 ∨ 𝑡%3 = 0} and 𝑆 = {𝑥0, 𝑥1, 𝑦, 𝑧0, 𝑧1, 𝑎0, 𝑎1}.

7 RELATEDWORK
Hoare and He’s unifying theories of programming (UTP) [28] is the first proposal towards unifying

different programming paradigms and models under a common relational calculus suitable for

design and verification. Another notable contribution in the same spirit is Milner’s theory of

bigraphs [40].

The concept of higher-order UTP dates back to [28], where higher-order variables are introduced

to represent predicates of methods and procedures. Based on [28], Zeyda et al. propose a concept of

higher-order UTP to set up a UTP theory for object-orientation [61, 62]. [61] builds a UTP theory

for object-orientation by addressing four problems: consistency of the program model, redefinition

of methods in subclasses, recursion and mutual recursion, and simplicity. [62] supports recursion,

dynamic binding, and compositional method definitions all at the same time. It shows how higher-

order programming can be used to reason about object-oriented programs in a compositional

manner and exemplifies its use by creating an object-oriented variant of a refinement language

for real-time systems. In addition, it introduces the higher-order quantification over predicates.

Unlike these higher-order extensions to UTP [28, 61, 62], that presented in this paper focuses on

higher-order quantification and the semantics of hybrid systems in the UTP theory.

Besides the de facto standards Simulink and Modelica, many more programming paradigms and

domain-specific formalisms have been explored in the aim of modeling hybrid systems.

• Functional programming variants of data-flow concepts comprise Yampa [29], an extension

of Haskell’s functional reactive programming model (FRP, [46]), or Zelus [8], a functional

synchronous data-flow language to model ordinary differential equations in a so-called non-

standard time model. Like Modelica and Simulink, both lines of formalisms are devoted to

simulation supporting type-based analysis of basic safety properties, such as causality.

• Another line of work regards earlier attempts to extend rich process algebras like the 𝜋-

calculus with continuous real variables [7, 11, 30]. These extensions lead to the corresponding

formulations of bi-simulations as a foundation to verification.

Our approach is to define such an algebraically expressive formalism, yet devoted to the primary

purpose of verifying hybrid system models, by embedding its definition, verification and proof

capabilities in higher-order logic (Isabelle/HOL).

Hybrid automata [3] are a popular formalism to model hybrid systems, but composition/decompo-

sition of automata results in an exponential blow up which is intractable to analyze in practice.

I/O hybrid automata [35] is an extension of hybrid automata with explicit inputs and outputs.

Assume-guarantee reasoning [26] on such automata tackles composability to prevent state-space

explosion. However, their applicability is in practice restricted to linear hybrid automata.

Alternatively, proof-theoretic approaches to hybrid systems verification, such as differential

dynamic logic (dL, [47, 50]), action systems [4], hybrid Hoare logic together with hybrid com-

municating sequential processes (HHL/HCSP, [22, 31, 64, 67]) and hybrid Event-B [2, 12], have

gained much attention by offering powerful abstraction, refinement and proof mechanisms to scale

hybrid system verification to practical use cases. Also note an early model of CPSs in the Coq proof

assistant [37], which introduces a library VeriDrone, a foundational framework for reasoning
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about CPSs at all levels from high-level models to C code that implements the system. Empow-

ered by the extension of SAT modulo-theory of real variables, implementing the seminal works

on 𝛿-decidability of [19, 20] in tools like dReal and dReach, provers allow for the tactics-guided

mechanized verification of logic models of hybrid systems. [41] introduces a verification-driven

engineering toolset S𝜑nx, which uses KeYmaera as hybrid verification tool, for modelling hybrid

systems, exchanging and comparing models and proofs, and managing verification tasks.

Differential dynamic logic (dL) [47, 48] extends dynamic logic [51] to hybrid systems by allowing

modalities over hybrid programs that extend classical sequential programs with ordinary differential

equations tomodel the continuous evolution of physical artifacts. In order to deal withmore complex

behaviour of hybrid systems, some variants of dL were established, e.g., stochastic differential

dynamic logic [48] and differential game logic [49].

In [32] Loos and Platzer propose a differential refinement logic to cope with refinement relations

among different levels of abstraction for a given simple hybrid system. It remains an open problem

whether the approach can apply to more complex hybrid system. In [52] the authors investigate

how to apply dL to define architecture of CPSs. However, parallelism and communication are

not considered in dL and its variants. Recent component-based verification methodologies devel-

oped in dL [44, 45, 55] propose composition operators in dL to split verification of systems into

more manageable pieces. [33, 34] extend them with parallel composition (true concurrency) using

design patterns defined using the primitive constructs of dL, which requires the corresponding

mechanization effort as tactics in KeYmaeraX.

HCSP is a hybrid extension of Hoare’s Communicating Sequential Processes [27]. It features

a native parallel composition operator and communicating primitives in addition to standard

constructs for hybrid systems (sequences, loops, ODEs) and a proof calculus called hybrid Hoare
logic (HHL) [31], as well as several extensions for dealing with more complex behavious, e.g.,

fault-tolerance [58] and noise [59]. Also, the notion of approximate bisimulation was proposed in

[60], with which a refinement relation between continuous models and between continuous models

and discrete models can be well coped with. However, it is difficult to use HHL/HCSP to play a

semantics foundation for the design of hybrid systems using MBD and DbC, as it is not easy to

unify different models and views at different level of abstraction in HHL/HCSP.

Röonkkö and Ravn, and Back et al. extended action system [5] to hybrid systems, called hybrid
action system [53] and continuous action system [4], respectively. As conservative extensions of action

systems, theoretically speaking, both hybrid action system and continuous action system could

support MBD and DbC. But both of them are very weak on dealing with continuous behaviours.

In particular, they lack refinement relations, different continuous models and/or discrete models,

which are essential for the MBD and DbC of hybrid systems.

8 CONCLUSIONS AND FUTUREWORKS
This paper defines a conservative extension to Hoare and He’s UTP theory with higher-order

quantification and provides a formal semantics for modeling and verifying hybrid systems, mixing

discrete real-time processes and continuous dynamics. To this end, HUTP introduces real-time

variables, denoted as functions over time, and allows the derivative of a variable to occur in a

predicate, to define differential relations. This introduction allows to draw the concepts of hybrid

processes and (normal) hybrid designs.

Our goal is to use the HUTP to define a formal semantics for engineering and formally verifying

models such as Matlab’s Simulink/Stateflow and/or the SAE’s AADL, but also HCSP, and support the

workflow of these environment with formal verification and certification functionalities inherited

from its implementation in higher-order logic (Isabelle/HOL).We intend to additionally use HUTP to
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justify the correctness of the translation between these models and HCSP by translation validation

as an appliaction of HUTP.

Future Works. Starting from the definition of normal hybrid design contracts presented in this paper,

we are seeking principled abstractions to support modular analysis and compositional verification

of hybrid system models. Our initial intuition was to start from the definition of abstract hybrid

processes in Section 4.5 and define a theory of contracts using Abadi and Lamport’s “composing

specifications” [1] or Benveniste’s meta-theory of contracts [6]. Indeed, consider a normal hybrid

designHC ⊢ HP andHa

HP
-healthy abstract hybrid processes𝐶 and 𝑃 such thatHC ⊑ 𝐶 and 𝑃 ⊑ HP.

The abstract design𝐶 ⊢ 𝑃 naturally forms a contractual property of HC ⊢ HP, in the sense of Abadi

and Lamport or Benveniste.

However, related works in the UTP [15] show that the algebraic elaboration of such a contract

theory requires non-constructive definitions such as weakest liberal preconditions and weakest

rely, which prevent the structural decomposition and abstraction of parallel composition and

communications from the abstracted hybrid designs (unless one uses, e.g., Lamport’s encoding of

hand-shake communications using shared variables).

As a result, our aim will instead be to elaborate a dependently-typed session calculus [36] in the

UTP and equip it with abstract model checking capabilities [56].
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A PROOFS
A.1 Proofs for Timed Trace Model

Property 1 (Associativity). Let 𝐼0, 𝐼1 and 𝐼2 be the respective common channel sets between timed
traces tt0 and tt1, tt1 and tt2, and tt2 and tt0, then (tt0∥𝐼0tt1)∥𝐼1⊎𝐼2tt2 = tt0∥𝐼0⊎𝐼2 (tt1∥𝐼1tt2).

Proof. We prove by induction on the length of traces. Since the traces we consider could

be infinite, the proof is coinductive. We start from the cases that |tt0 |, |tt1 |, |tt2 | ≤ 1, such as

tt0 = tt1 = tt2 = 𝜖 , then by the fact that 𝐼0, 𝐼1 and 𝐼2 are disjoint, we can get

(tt0∥𝐼0tt1)∥𝐼1⊎𝐼2tt2 = tt0∥𝐼0⊎𝐼2 (tt1∥𝐼1tt2)

which indicates the associativity of the parallel composition of timed traces. □

A.2 Proofs for Hybrid Processes
Theorem 4.2 (Idempotence and Monotonicity).HHP is idempotent and monotonic.

Proof. First, HHP is monotonic because it is constructed by monotonic operators. Then, we

prove it is also idempotent. It can be checked thatH0,H1,H2,H3 andH4 themselves are idempotent

and H0 and H4 are commutative with their partners. Therefore,

HHP ◦ HHP = (H0 ◦ H1 ◦ H2 ◦ H3 ◦ H4) ◦ (H0 ◦ H1 ◦ H2 ◦ H3 ◦ H4)
= (H1 ◦ H2 ◦ H3) ◦ (H0 ◦ H0 ◦ H1 ◦ H2 ◦ H3 ◦ H4 ◦ H4)
= (H1 ◦ H2 ◦ H3) ◦ (H0 ◦ H1 ◦ H2 ◦ H3 ◦ H4) (21)

It is not difficult to check that H3 is commutative with H0 and H1, and we prove it is also com-

mutative with H2. For short, let inf =̂ (ti = +∞ ∨ |tr | = +∞) and inf ′ =̂ (ti′ = +∞ ∨ |tr ′ | = +∞)
correspondingly. Let ♮ =̂ (ti = ti′ ∧ tr = tr ′). Then,

H2 ◦ H3 (𝑋 ) = ♮ ◁ inf ▷ ((∃s′ · 𝑋 ) ◁ inf ′ ▷ 𝑋 )

and

H3 ◦ H2 (𝑋 ) = (∃s′ · (♮ ◁ inf ▷ 𝑋 )) ◁ inf ′ ▷ (♮ ◁ inf ▷ 𝑋 )
= (♮ ◁ inf ▷ ∃s′ · 𝑋 ) ◁ inf ′ ▷ (♮ ◁ inf ▷ 𝑋 )
= ♮ ◁ inf ▷ (∃s′ · 𝑋 ◁ inf ′ ▷ 𝑋 )

Therefore, H2 ◦ H3 = H3 ◦ H2, and we can continue the equation (21):

HHP ◦ HHP = (H1 ◦ H2 ◦ H3) ◦ (H0 ◦ H1 ◦ H2 ◦ H3 ◦ H4)
= H0 ◦ H1 ◦ H2 ◦ H1 ◦ H2 ◦ H3 ◦ H3 ◦ H4

= H0 ◦ H1 ◦ H2 ◦ H1 ◦ H2 ◦ H3 ◦ H4
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Lastly, we prove the composition H1 ◦ H2 is idempotent. Concretely,

H1 ◦ H2 (𝑋 ) = H1 (♮) ◁ inf ▷H1 (𝑋 )

Then,

H1 ◦ H2 ◦ H1 ◦ H2 (𝑋 ) = H1 (♮) ◁ inf ▷H1 (H1 (♮) ◁ inf ▷H1 (𝑋 ))
= H1 (♮) ◁ inf ▷ (H1 (♮) ◁ inf ▷H1 (𝑋 ))
= H1 (♮) ◁ inf ▷H1 (𝑋 ) = H1 ◦ H2 (𝑋 )

In summary, HHP ◦ HHP = H0 ◦ H1 ◦ H2 ◦ H3 ◦ H4 = HHP, i.e., it is idempotent. □

Property 2. If HP0 and HP1 are HHP-healthy, HP0 ⊓ HP1 and HP0 ⊔ HP1 are HHP-healthy.

Proof. It can be checked that H4 is commutative with its partners, thus

HHP (𝑋 ) = H0 ◦ H1 ◦ H2 ◦ H3 ◦ H4 (𝑋 )
= H0 ◦ H1 ◦ H4 ◦ H2 ◦ H3 (𝑋 )
= H014 (♮ ◁ inf ▷ ((∃s′ · 𝑋 ) ◁ inf ′ ▷ 𝑋 )) (22)

where H014 =̂ H0 ◦ H1 ◦ H4. Then,HHP (𝑋 ) ⊓ HHP (𝑌 ) andHHP (𝑋 ) ⊔ HHP (𝑌 ) are
H014 (♮ ◁ inf ▷ ((∃s′ · 𝑋 ∨ 𝑌 ) ◁ inf ′ ▷ (𝑋 ∨ 𝑌 ))) = HHP (𝑋 ∨ 𝑌 )
H014 (♮ ◁ inf ▷ ((∃s′ · 𝑋 ∧ 𝑌 ) ◁ inf ′ ▷ (𝑋 ∧ 𝑌 ))) = HHP (𝑋 ∧ 𝑌 )

Therefore, ⊓ and ⊔ are HHP-preserving. □

Lemma A.1. H014 (𝑋 ) # H014 (𝑌 ) = H014 (𝑋 # 𝑌 ), where H014 =̂ H0 ◦ H1 ◦ H4.

Proof. The computation is performed as follows:

H014 (𝑋 ) # H014 (𝑌 ) = 𝑋 ∧ lim(tr) = ti ≤ ti′ = lim(tr ′) ∧ tr ≤ tr ′ ∧ RC ∧ SD #
𝑌 ∧ lim(tr) = ti ≤ ti′ = lim(tr ′) ∧ tr ≤ tr ′ ∧ RC ∧ SD

= ∃ti∗, s∗, tr∗ · 𝑋 [ti∗, s∗, tr∗/ti′, s′, tr ′] ∧ 𝑌 [ti∗, s∗, tr∗/ti, s, tr]
∧ lim(tr) = ti ≤ ti∗ = lim(tr∗) ≤ ti′ = lim(tr ′) ∧ tr ≤ tr∗ ≤ tr ′

∧RC [ti∗/ti′] ∧ RC [ti∗/ti] ∧ SD[ti∗/ti′] ∧ SD[ti∗/ti]
= (𝑋 # 𝑌 ) ∧ lim(tr) = ti ≤ ti′ = lim(tr ′) ∧ tr ≤ tr ′ ∧ RC ∧ SD
= H014 (𝑋 # 𝑌 )

□

Property 3. If HP0 and HP1 are HHP-healthy, then so is HP0 # HP1.

Proof. As stated in the proof of Property 2 (see (22)), a hybrid processHHP (𝑋 ) can be represented
by H014 (♮ ◁ inf ▷ (∃s′ · 𝑋 ◁ inf ′ ▷ 𝑋 )). This form can be transformed into a matrix:

¬inf ′ inf ′( )
H014 (𝑋 ∧ ¬inf ∧ ¬inf ′) H014 (∃s′ · 𝑋 ∧ ¬inf ∧ inf ′) ¬inf

false H014 (♮ ∧ inf ∧ inf ′) inf

Imagine # and ∨ as matrix multiplication and addition, respectively, then HHP (𝑋 ) # HHP (𝑌 ) is

©«
H014 (𝑋 ∧ ¬inf ∧ ¬inf ′)#
H014 (𝑌 ∧ ¬inf ∧ ¬inf ′)

H014 (𝑋 ∧ ¬inf ∧ ¬inf ′) # H014 (∃s′ · 𝑌 ∧ ¬inf ∧ inf ′)
∨H014 (∃s′ · 𝑋 ∧ ¬inf ∧ inf ′) # H014 (♮ ∧ inf ∧ inf ′)

false H014 (♮ ∧ inf ∧ inf ′)

ª®®®¬
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By Lemma A.1, it can be simplified to(
H014 ((𝑋 # 𝑌 ) ∧ ¬inf ∧ ¬inf ′) H014 (∃s′ · (𝑋 # 𝑌 ∨ 𝑋 ) ∧ ¬inf ∧ inf ′)

false H014 (♮ ∧ inf ∧ inf ′)

)
which is equivalent to

H014 (♮ ◁ inf ▷ (∃s′ · (𝑋 # 𝑌 ∨ 𝑋 ) ◁ inf ′ ▷ (𝑋 # 𝑌 ))) (23)

where # takes precedence over ∨. The predicate ♮ ◁ inf ▷ (∃s′ · (𝑋 # 𝑌 ∨ 𝑋 ) ◁ inf ′ ▷ (𝑋 # 𝑌 )) is
H2-healthy, and we prove it is also H3-healthy.

H3 (♮ ◁ inf ▷ (∃s′ · (𝑋 # 𝑌 ∨ 𝑋 ) ◁ inf ′ ▷ (𝑋 # 𝑌 ))) =
(♮ ◁ inf ▷ (∃s′ · (𝑋 # 𝑌 ∨ 𝑋 ) ◁ inf ′ ▷ ∃s′ · (𝑋 # 𝑌 )))
◁inf ′ ▷ (♮ ◁ inf ▷ (∃s′ · (𝑋 # 𝑌 ∨ 𝑋 ) ◁ inf ′ ▷ (𝑋 # 𝑌 )))

which can be simplified to (♮ ◁ inf ▷ (∃s′ · (𝑋 # 𝑌 ∨ 𝑋 ))) ◁ inf ′ ▷ (♮ ◁ inf ▷ (𝑋 # 𝑌 )), equivalent
to ♮ ◁ inf ▷ (∃s′ · (𝑋 # 𝑌 ∨ 𝑋 ) ◁ inf ′ ▷ (𝑋 # 𝑌 )) itself. Therefore, (23) is H0 ◦ H1 ◦ H4 ◦ H2 ◦ H3-

healthy, i.e.,HHP (𝑋 ) # HHP (𝑌 ) is HHP-healthy. □

Property 4. The healthiness conditionH3 is equivalent to

𝑋 = 𝑋 # skip

where skip =̂ H2 (ti = ti′ ∧ tr = tr ′ ∧ s = s′).

Proof. With the aid of matrix representation, skip can be transformed into a matrix:

¬inf ′ inf ′( )
♮ ∧ s = s′ ∧ ¬inf ∧ ¬inf ′ false ¬inf

false ♮ ∧ inf ∧ inf ′ inf

Then, 𝑋 # skip can be computed as(
𝑋 ∧ ¬inf ∧ ¬inf ′ 𝑋 ∧ ¬inf ∧ inf ′

𝑋 ∧ inf ∧ ¬inf ′ 𝑋 ∧ inf ∧ inf ′

)
#
(
♮ ∧ s = s′ ∧ ¬inf ∧ ¬inf ′ false

false ♮ ∧ inf ∧ inf ′

)
which can be simplified to (

𝑋 ∧ ¬inf ∧ ¬inf ′ ∃s′ · 𝑋 ∧ ¬inf ∧ inf ′

𝑋 ∧ ¬inf ∧ ¬inf ′ ∃s′ · 𝑋 ∧ ¬inf ∧ inf ′

)
The above is equivalent to (∃s′ · 𝑋 ) ◁ inf ′ ▷ 𝑋 , which denotes H3. □

Property 5 (Quantification).

∃∼𝑥 · (HP0 # HP1) = (∃∼𝑥 · HP0) # (∃∼𝑥 · HP1)
∀∼𝑥 · (HP0 # HP1) ⊒ (∀∼𝑥 · HP0) # (∀∼𝑥 · HP1)
∃∼𝑥 · (HP0 ⊓ HP1) = (∃∼𝑥 · HP0) ⊓ (∃∼𝑥 · HP1)
∀∼𝑥 · (HP0 ⊓ HP1) ⊒ (∀∼𝑥 · HP0) ⊓ (∀∼𝑥 · HP1)
∃∼𝑥 · (HP0 ⊔ HP1) ⊑ (∃∼𝑥 · HP0) ⊔ (∃∼𝑥 · HP1)
∀∼𝑥 · (HP0 ⊔ HP1) = (∀∼𝑥 · HP0) ⊔ (∀∼𝑥 · HP1)

¬≀∃∼𝑥 · HP = ∀∼𝑥 · ¬≀HP
¬≀∀∼𝑥 · HP = ∃∼𝑥 · ¬≀HP
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Proof. We only prove the second item, and others can be proved similarly.

(∀∼𝑥 · HP0) # (∀∼𝑥 · HP1)
=
∧{HP0 [𝑓0, 𝑔0/∼𝑥, ¤∼𝑥] | 𝑓0 : [ti, ti′) → D ∧ 𝑔0 : (ti, ti′) ⇀ D ∧ CON(𝑓0, 𝑔0, ti, ti′)}#∧{HP1 [𝑓1, 𝑔1/∼𝑥, ¤∼𝑥] | 𝑓1 : [ti, ti′) → D ∧ 𝑔1 : (ti, ti′) ⇀ D ∧ CON(𝑓1, 𝑔1, ti, ti′)}

= ∃ti∗, s∗, tr∗ ·
∧ {

HP0 [ti∗, s∗, tr∗, 𝑓0, 𝑔0/ti′, s′, tr ′,∼𝑥, ¤∼𝑥]
����𝑓0 : [ti, ti′) → D ∧ 𝑔0 : (ti, ti′) ⇀ D

∧ CON(𝑓0, 𝑔0, ti, ti′)

}
∧ ∧ {

HP1 [ti∗, s∗, tr∗, 𝑓1, 𝑔1/ti′, s′, tr ′,∼𝑥, ¤∼𝑥]
����𝑓1 : [ti, ti′) → D ∧ 𝑔1 : (ti, ti′) ⇀ D

∧ CON(𝑓1, 𝑔1, ti, ti′)

}
= ∃ti∗, s∗, tr∗ ·

∧ {
HP0 [ti∗, s∗, tr∗, 𝑓0, 𝑔0/ti′, s′, tr ′,∼𝑥, ¤∼𝑥]
∧HP1 [ti∗, s∗, tr∗, 𝑓1, 𝑔1/ti, s, tr,∼𝑥, ¤∼𝑥]

����� 𝑓0 : [ti, ti∗) → D ∧ 𝑔0 : (ti, ti∗) ⇀ D∧
𝑓1 : [ti∗, ti′) → D ∧ 𝑔1 : (ti, ti∗) ⇀ D∧
CON(𝑓0, 𝑔0, ti, ti∗) ∧ CON(𝑓1, 𝑔1, ti∗, ti′)

}
= ∃ti∗, s∗, tr∗ ·

∧ { (
HP0 [ti∗, s∗, tr∗, 𝑓0, 𝑔0/ti′, s′, tr ′,∼𝑥, ¤∼𝑥]
∧HP1 [ti∗, s∗, tr∗, 𝑓1, 𝑔1/ti, s, tr,∼𝑥, ¤∼𝑥]

)
[𝑓 , 𝑔/∼𝑥, ¤∼𝑥]

����� 𝑓 : [ti, ti′) → D∧
𝑔 : (ti, ti′) ⇀ D∧
CON(𝑓 , 𝑔, ti, ti′)

}
⊑ ∧ {

∃ti∗, s∗, tr∗ ·
(
HP0 [ti∗, s∗, tr∗, 𝑓0, 𝑔0/ti′, s′, tr ′,∼𝑥, ¤∼𝑥]
∧HP1 [ti∗, s∗, tr∗, 𝑓1, 𝑔1/ti, s, tr,∼𝑥, ¤∼𝑥]

)
[𝑓 , 𝑔/∼𝑥, ¤∼𝑥]

����� 𝑓 : [ti, ti′) → D∧
𝑔 : (ti, ti′) ⇀ D∧
CON(𝑓 , 𝑔, ti, ti′)

}
=
∧{(HP0 # HP1) [𝑓 , 𝑔/∼𝑥, ¤∼𝑥] | 𝑓 : [ti, ti′) → D ∧ 𝑔 : (ti, ti′) ⇀ D ∧ CON(𝑓 , 𝑔, ti, ti′)}

= ∀∼𝑥 · (HP0 # HP1)

where 𝑓 is the concatenation of 𝑓0 and 𝑓1, 𝑔 is the concatenation of 𝑔0 and 𝑔1, and

CON(𝑓 , 𝑔, ti, ti′) =̂ ∀𝑡 ∈ (ti, ti′) · ¤𝑓 (𝑡−) = 𝑔(𝑡−) ∧ ¤𝑓 (𝑡+) = 𝑔(𝑡+)

□

Property 6 (Well-Definedness).𝑀𝐼 is well-defined.

Proof. The conditions (1) and (2) of well-definedness of 𝑀𝐼 hold by its definition. We prove

the condition (3) also holds for 𝑀𝐼 . First, if |tr𝑋 | < +∞ and |tr𝑌 | < +∞, by the definition of ∥𝐼 ,
|tr ′ | < +∞. Then, if |tr𝑋 | = +∞ or |tr𝑌 | = +∞, say |tr𝑋 | = +∞, there are two cases: (a) |tr | = +∞,

since tr ≤ tr ′ byH0, |tr ′ | = +∞; (b) |tr | < +∞, meaning |tr𝑋 − tr | = +∞. According to the definition

of ∥𝐼 , the composed trace is not shorter than the individual traces, i.e., |tr ′ − tr | ≥ |tr𝑋 − tr | = +∞,

implying |tr ′ | = +∞. Therefore, the condition (3) holds, indicating𝑀𝐼 is well-defined. □

Property 7 (Monotonicity). The operators #, ⊔, ⊓, ◁▷, ∃ and ∥𝑀 are monotonic and ¬≀ is
anti-monotone, with respect to the refinement order ⊑.

Proof. These operators except ¬≀ are constructed by monotonic atom operators. □

Theorem 4.6 (Complete Lattice). Let HP be the image of HHP, i.e., it is the set of all hybrid
processes, then it forms a complete lattice with top and bottom:

⊤HP =̂
⊔
HP = HHP (false)

⊥HP =̂
d
HP = HHP (true)

Proof. Since HHP is idempotent and monotonic by Theorem 4.2, the complete lattice can be

proved directly by the properties of

d
and

⊔
. □

Theorem 4.11 (Miracle). ⊤HP is the only miracle of hybrid processes.
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Proof. As mentioned in the proof of Property 2 (see (22)), a hybrid process HHP (𝑋 ) can be

unfolded as H014 (♮ ◁ inf ▷ ((∃s′ · 𝑋 ) ◁ inf ′ ▷ 𝑋 )), where H014 =̂H0 ◦ H1 ◦ H4. Then,

HHP ◦ MIR(𝑋 ) = H014 (♮ ◁ inf ▷ ((∃s′ · 𝑋 ∧ inf) ◁ inf ′ ▷ (𝑋 ∧ inf)))
= H014 (♮ ◁ inf ▷ (false ◁ inf ′ ▷ false))
= H014 ◦ H2 ◦ H3 (false) = HHP (false)

which is equivalent to ⊤HP. □

Property 8 (Left Zero of #). ⊤HP # HP = ⊤HP for any hybrid process HP.

Proof. As mentioned in the proof (see (23)) of Property 3, ⊤HP # HHP (𝑋 ) is equivalent to

HHP (false) # HHP (𝑋 ) = H014 (♮ ◁ inf ▷ (∃s′ · (false # 𝑋 ∨ false) ◁ inf ′ ▷ (false # 𝑋 )))

which can be simplified to HHP (false) = ⊤HP. □

Property 9 (Zero of ∥𝑀 ). HP∥𝑀⊤HP = ⊤HP∥𝑀HP = ⊤HP for any hybrid process HP.

Proof. As mentioned in the proof (see (22)) of Property 2, ⊤HP can be unfolded as

H014 (♮ ◁ inf ▷ false) = inf ∧H014 (♮)

Then, ⊤HP,𝑋 = inf ∧H014 (♮)𝑋 (note that inf has no primed variables). Therefore,

⊤HP∥𝑀HP = HHP

(
⊤HP,𝑋 ∧ HP𝑌 ∧ II # 𝑀

)
= HHP (inf ∧ (H014 (♮)𝑋 ∧ HP𝑌 ∧ II # 𝑀))
= H0 ◦ H1 ◦ H4 ◦ H3 ◦ H2 (inf ∧ (H014 (♮)𝑋 ∧ HP𝑌 ∧ II # 𝑀))

where II =̂ ti = ti′ ∧ s = s′ ∧ tr = tr ′. Notice that H2 (inf ∧ (H014 (♮)𝑋 ∧ HP𝑌 ∧ II # 𝑀)) is

♮ ◁ inf ▷ (inf ∧ (H014 (♮)𝑋 ∧ HP𝑌 ∧ II # 𝑀)) = ♮ ◁ inf ▷ false = H2 (false)

which means

⊤HP∥𝑀HP = H0 ◦ H1 ◦ H4 ◦ H3 ◦ H2 (false) = ⊤HP .

Similarly, we can prove HP∥𝑀⊤HP = ⊤HP. □

Theorem 4.13 (Idempotence and Monotonicity).Ha
HP

is idempotent and monotonic.

Proof. First, Ha

HP
is monotonic as it is constructed by monotonic operators. Then, it can be

proved thatHa

0
,Ha

2
,Ha

3
andH4 are idempotent and commutative with each other, thusHa

HP
=

Ha

0
◦ Ha

2
◦ Ha

3
◦ H4 is idempotent. □

A.3 Proofs for Hybrid Designs
Theorem 5.2 (Operations).

(1) (HC0 ⊢ HP0) ⊓ (HC1 ⊢ HP1) = (HC0 ∧ HC1) ⊢ (HP0 ∨ HP1)
(2) (HC0 ⊢ HP0) ⊔ (HC1 ⊢ HP1) = (HC0 ∨ HC1) ⊢ ((HC0 ⇒≀ HP0) ∧ (HC1 ⇒≀ HP1))
(3) (HC0 ⊢ HP0) # (HC1 ⊢ HP1) = (HC0 ∧ ¬≀ (HP0 # ¬≀HC1)) ⊢ (HP0 # HP1)

Proof. The matrix representations of HC0 ⊢ HP0 and HC1 ⊢ HP1 are respectively(
⊥HP ⊥HP

¬≀HC0 HC0 ⇒≀ HP0

)
and

(
⊥HP ⊥HP

¬≀HC1 HC1 ⇒≀ HP1

)
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Their meet (⊓, ∨) and join (⊔, ∧) can be computed component-wisely as

©«
⊥HP ∨ ⊥HP ⊥HP ∨ ⊥HP

¬≀HC0 ∨ ¬≀HC1

(HC0 ⇒≀ HP0)∨
(HC1 ⇒≀ HP1)

ª®¬ =
©«

⊥HP ⊥HP

¬≀ (HC0 ∧ HC1)
(HC0 ∧ HC1) ⇒≀
(HP0 ∨ HP1)

ª®¬©«
⊥HP ∧ ⊥HP ⊥HP ∧ ⊥HP

¬≀HC0 ∧ ¬≀HC1

(HC0 ⇒≀ HP0)∧
(HC1 ⇒≀ HP1)

ª®¬ =
©«

⊥HP ⊥HP

¬≀ (HC0 ∨ HC1)
(HC0 ⇒≀ HP0)∧
(HC1 ⇒≀ HP1)

ª®¬
respectively, which are respectively equivalent to

(HC0 ∧ HC1) ⊢ (HP0 ∨ HP1) and (HC0 ∨ HC1) ⊢ ((HC0 ⇒≀ HP0) ∧ (HC1 ⇒≀ HP1))

according to (2). Imagine # and ∨ as matrix multiplication and addition, respectively, then(
⊥HP ⊥HP

¬≀HC0 HC0 ⇒≀ HP0

)
#
(
⊥HP ⊥HP

¬≀HC1 HC1 ⇒≀ HP1

)
=

©«
(⊥HP # ⊥HP) ∨ (⊥HP # ¬≀HC1) (⊥HP # ⊥HP) ∨ (⊥HP # (HC1 ⇒≀ HP1))

(¬≀HC0 # ⊥HP)∨
((HC0 ⇒≀ HP0) # ¬≀HC1)

(¬≀HC0 # ⊥HP)∨
((HC0 ⇒≀ HP0) # (HC1 ⇒≀ HP1))

ª®®®¬
=

(
⊥HP ⊥HP

¬≀HC0 ∨ (HP0 # ¬≀HC1) ¬≀HC0 ∨ (HP0 # ¬≀HC1) ∨ (HP0 # HP1)

)
=

(
⊥HP ⊥HP

¬≀ (HC0 ∧ ¬≀ (HP0 # ¬≀HC1)) (HC0 ∧ ¬≀ (HP0 # ¬≀HC1)) ⇒≀ (HP0 # HP1)

)
which is equivalent to (HC0 ∧ ¬≀ (HP0 # ¬≀HC1)) ⊢ (HP0 # HP1) by (2). □

Theorem 5.3 (Parallel Composition).

(HC0 ⊢ HP0)∥NHD(𝑀) (HC1 ⊢ HP1) =
©«
¬≀ (¬≀HC0∥⊥HP

¬≀HC1)
∧¬≀ (¬≀HC0∥⊥HP

HP1)
∧¬≀ (¬≀HC1∥⊥HP

HP0)
ª®¬ ⊢ HP0∥𝑀HP1

Proof. According to Section 4.2.5, (HC0 ⊢ HP0)∥NHD(𝑀) (HC1 ⊢ HP1) can be unfolded as

HHP ((HC0 ⊢ HP0)𝑋 ∧ (HC1 ⊢ HP1)𝑌 ∧ II # NHD(𝑀)) (24)

where II =̂ (ti = ti′ ∧ s = s′ ∧ tr = tr ′). With the aid of the matrix representation, the predicate

(HC0 ⊢ HP0)𝑋 ∧ (HC1 ⊢ HP1)𝑌 ∧ II can be rewritten as

¬ok′
𝑋 ∧ ¬ok′

𝑌 ok′
𝑋 ∧ ¬ok′

𝑌 ¬ok′
𝑋 ∧ ok′

𝑌 ok′
𝑋 ∧ ok′

𝑌©«
ª®®¬

⊥𝑋
HP

∧ ⊥𝑌
HP

∧ II ⊥𝑋
HP

∧ ⊥𝑌
HP

∧ II ⊥𝑋
HP

∧ ⊥𝑌
HP

∧ II ⊥𝑋
HP

∧ ⊥𝑌
HP

∧ II ¬ok

(¬≀HC0)𝑋∧
(¬≀HC1)𝑌 ∧ II

(¬≀HC0)𝑋 ∧ II∧
(HC1 ⇒≀ HP1)𝑌

(¬≀HC1)𝑌 ∧ II∧
(HC0 ⇒≀ HP0)𝑋

(HC0 ⇒≀ HP0)𝑋 ∧ II

∧(HC1 ⇒≀ HP1)𝑌
ok

Similarly, NHD(𝑀) can also be represented by the transpose of the following matrix:

NHD(𝑀)T =

¬ok𝑋 ∧ ¬ok𝑌 ok𝑋 ∧ ¬ok𝑌 ¬ok𝑋 ∧ ok𝑌 ok𝑋 ∧ ok𝑌( )
⊥HP ⊥HP ⊥HP ⊤HP ¬ok′

⊥HP ⊥HP ⊥HP 𝑀 ok′
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Then, (HC0 ⊢ HP0)𝑋 ∧ (HC1 ⊢ HP1)𝑌 ∧ II #NHD(𝑀), where ∧ takes precedence over #, is equivalent
to the following matrix, by treating # and ∨ as matrix multiplication and addition, respectively.

¬ok′ ok′

©«
ª®®®®®®¬

⊥HP ⊥HP ¬ok

(¬≀HC0)𝑋 ∧ (¬≀HC1)𝑌 ∧ II # ⊥HP∨
(¬≀HC0)𝑋 ∧ (HC1 ⇒≀ HP1)𝑌 ∧ II # ⊥HP

∨(HC0 ⇒ HP0)𝑋 ∧ (¬≀HC1)𝑌 ∧ II # ⊥HP

(¬≀HC0)𝑋 ∧ (¬≀HC1)𝑌 ∧ II # ⊥HP∨
(¬≀HC0)𝑋 ∧ (HC1 ⇒≀ HP1)𝑌 ∧ II # ⊥HP∨
(HC0 ⇒ HP0)𝑋 ∧ (¬≀HC1)𝑌 ∧ II # ⊥HP∨

(HC0 ⇒ HP0)𝑋 ∧ (¬≀HC1 ⇒≀ HP1)𝑌 ∧ II # 𝑀

ok

This matrix can be simplified as follows:

¬ok′ ok′

©«
ª®®®®®®¬

⊥HP ⊥HP ¬ok

(¬≀HC0)𝑋 ∧ (¬≀HC1)𝑌 ∧ II # ⊥HP

∨(¬≀HC0)𝑋 ∧ (HP1)𝑌 ∧ II # ⊥HP

∨(HP0)𝑋 ∧ (¬≀HC1)𝑌 ∧ II # ⊥HP

(¬≀HC0)𝑋 ∧ (¬≀HC1)𝑌 ∧ II # ⊥HP

∨(¬≀HC0)𝑋 ∧ (HP1)𝑌 ∧ II # ⊥HP

∨(HP0)𝑋 ∧ (¬≀HC1)𝑌 ∧ II # ⊥HP

∨(HP0)𝑋 ∧ (HP1)𝑌 ∧ II # 𝑀

ok

Therefore, the hybrid process of (24) is equivalent to the following matrix:

¬ok′ ok′

©«
ª®®¬

⊥HP ⊥HP ¬ok

(¬≀HC0∥⊥HP
HP1) ∨ (HP0∥⊥HP

¬≀HC1)
∨(¬≀HC0∥⊥HP

¬≀HC1)
(¬≀HC0∥⊥HP

¬≀HC1) ∨ (¬≀HC0∥⊥HP
HP1)

∨(HP0∥⊥HP
¬≀HC1) ∨ (HP0∥𝑀HP1)

ok

which is equivalent to

¬≀

(
(¬≀HC0∥⊥HP

HP1) ∨ (HP0∥⊥HP
¬≀HC1)

∨(¬≀HC0∥⊥HP
¬≀HC1)

)
⊢ (HP0∥𝑀HP1)

by the matrix representation of hybrid designs (see (2)). □

Lemma A.2. HHP (𝑋 ) # ⊥HP = HHP (𝑋 # ⊥HP).

Proof. As mentioned in the proof (see (23)) of Property 3, HHP (𝑋 ) # ⊥HP is equivalent to

HHP (𝑋 ) # HHP (⊥HP) = H014 (♮ ◁ inf ▷ (∃s′ · (𝑋 # ⊥HP ∨ 𝑋 ) ◁ inf ′ ▷ 𝑋 # ⊥HP))

which can be simplified to HHP (𝑋 # ⊥HP) according to (22). □

Theorem 5.5 (Closure). Normal hybrid designs are closed on ⊓, ⊔, #, ∥NHD(𝑀) and ∥HP
𝑀
.

Proof. We only prove the closure of normal hybrid designs on ∥NHD(𝑀) . The key is to prove

Assumption =̂ ¬≀ (¬≀HC0∥⊥HP
HP1) ∧ ¬≀ (HP0∥⊥HP

¬≀HC1) ∧ ¬≀ (¬≀HC0∥⊥HP
¬≀HC1)

is HHC-healthy, i.e., ¬≀Assumption # ⊥HP = ¬≀Assumption. Concretely,

¬≀Assumption # ⊥HP =
(
(¬≀HC0∥⊥HP

HP1) ∨ (HP0∥⊥HP
¬≀HC1) ∨ (¬≀HC0∥⊥HP

¬≀HC1)
)
# ⊥HP
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By Lemma A.2, (¬≀HC0∥⊥HP
HP1) # ⊥HP is equivalent to

HHP (¬≀HC𝑋
0
∧ HP𝑌

1
∧ II # ⊥HP) # ⊥HP = HHP (¬≀HC𝑋

0
∧ HP𝑌

1
∧ II # ⊥HP # ⊥HP)

= HHP (¬≀HC𝑋
0
∧ HP𝑌

1
∧ II # ⊥HP)

= ¬≀HC0∥⊥HP
HP1

Similarly, we can prove that (HP0∥⊥HP
¬≀HC1) # ⊥HP and (¬≀HC0∥⊥HP

¬≀HC1) # ⊥HP are equivalent

to HP0∥⊥HP
¬≀HC1 and ¬≀HC0∥⊥HP

¬≀HC1, respectively. Thus, ¬≀Assumption #⊥HP = ¬≀Assumption,
i.e., Assumption is HHC-healthy. □

Lemma A.3. HP0 ⊑ HP1 iff HP0 ⊓ ¬≀HP1 = ⊥HP for HP0 and HP1 are hybrid processes.

Proof. HP0 ⊑ HP1 iff ¬≀HP1 ⊑ ¬≀HP0 iff

⊥HP ⊑ (HP0 ⊓ ¬≀HP1) ⊑ (HP0 ⊓ ¬≀HP0) = ⊥HP

according to the monotonicity of ⊓ (Property 7). □

Theorem 5.6 (Refinement). (HC0 ⊢ HP0) ⊑ (HC1 ⊢ HP1) iff

HC1 ⊑ HC0 and HP0 ⊑ (HC0 ∧ HP1)

Proof. According to the matrix representation, (HC0 ⊢ HP0) ⊑ (HC1 ⊢ HP1) iff(
⊥HP ⊥HP

¬≀HC0 HC0 ⇒≀ HP0

)
⊑

(
⊥HP ⊥HP

¬≀HC1 HC1 ⇒≀ HP1

)
iff ¬≀HC0 ⊑ ¬≀HC1 and (HC0 ⇒≀ HP0) ⊑ (HC1 ⇒≀ HP1). Then,

⊥HP = (HC0 ⇒≀ HP0) ⊓ ¬≀ (HC1 ⇒≀ HP1) [Lemma A.3]
= ¬≀HC0 ⊓ HP0 ⊓ (HC1 ⊔ ¬≀HP1)
= ¬≀HC0 ⊓ HP0 ⊓ ¬≀HP1 [¬≀HC0 ⊑ ¬≀HC1 and Lemma A.3]

Applying Lemma A.3 again, the above result is equivalent to

HP0 ⊑ ¬≀ (¬≀HC0 ⊓ ¬≀HP1) ≡ (HC0 ∧ HP1)

□

Property 10 (Contra-variance). If HC0 ⊒ HC1 and HP0 ⊑ HP1 then

(HC0 ⊢ HP0) ⊑ (HC1 ⊢ HP1)

Proof. It can be proved directly from Theorem 5.6. □

Property 11 (Monotonicity). Operators ⊔, ⊓, #, ∥NHD(𝑀) and ∥HP
𝑀

for normal hybrid designs are
monotonic with respect to ⊑.

Proof. These operators are constructed from monotonic atomic operators. □

Theorem 5.7 (Complete Lattice). Normal hybrid designs from a complete lattice with top

⊤NHD =̂ ⊥HP ⊢ ⊤HP

and bottom
⊥NHD =̂ ⊤HP ⊢ ⊥HP
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Proof. According to Theorem 5.2, ⊓ and ⊔ can be generalised to

d
𝑖 (HC𝑖 ⊢ HP𝑖 ) = (∧𝑖 HC𝑖 ) ⊢ (∨𝑖 HP𝑖 )⊔
𝑖 (HC𝑖 ⊢ HP𝑖 ) = (∨𝑖 HC𝑖 ) ⊢ (∧𝑖 (HC𝑖 ⇒≀ HP𝑖 ))

Therefore, normal hybrid designs form a complete lattice under ⊑ with

⊤NHD =̂ ⊥HP ⊢ ⊤HP

⊥NHD =̂ ⊤HP ⊢ ⊥HP

□

Property 12 (Chaos). ⊥NHD = ⊤HP ⊢ HP for any hybrid process HP.

Proof. By the matrix representation,

⊤HP ⊢ HP =

(
⊥HP ⊥HP

¬≀⊤HP ⊤HP ⇒≀ HP

)
=

(
⊥HP ⊥HP

⊥HP ⊥HP

)
= ⊥NHD

□

Property 13 (Non-termination). For any normal hybrid design NHD,

⊥NHD # NHD = ⊥NHD and ⊤NHD # NHD = ⊤NHD

Proof. Let NHD =̂ HC ⊢ HP. By matrix representations,

⊥NHD # NHD =

(
⊥HP ⊥HP

⊥HP ⊥HP

)
#
(
⊥HP ⊥HP

¬≀HC HC ⇒≀ HP

)
=

(
⊥HP ⊥HP

⊥HP ⊥HP

)
= ⊥NHD

⊤NHD # NHD =

(
⊥HP ⊥HP

⊤HP ⊤HP

)
#
(
⊥HP ⊥HP

¬≀HC HC ⇒≀ HP

)
=

(
⊥HP ⊥HP

⊤HP ⊤HP

)
= ⊤NHD

□

Property 14 (Parallel Composition). For any normal hybrid design NHD,

NHD∥NHD(𝑀)⊤NHD = ⊤NHD∥NHD(𝑀)NHD = ⊤NHD

Proof. It can be proved by Property 9 and Theorem 5.3. □

Property 15 (Parallel Composition). For any normal hybrid design NHD,

NHD∥HP
𝑀
⊥NHD = ⊥NHD∥HP𝑀 NHD = ⊥NHD

Proof. Let NHD =̂ HC ⊢ HP, then by Definition 5.4 and Property 12 we can get

⊥NHD∥𝑀NHD = (⊤HP ⊢ ⊥HP)∥𝑀 (HC ⊢ HP) = ⊤HP ⊢ (⊥HP∥𝑀HP) = ⊥NHD

Similarly, we can prove NHD∥𝑀⊥NHD = ⊥NHD. □
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A.4 Proofs for Reflection of HCSP and Simulink with HUTP
Property 16 (Unit). ⌈⌋ is a unit of hybrid processes w.r.t. #.

Proof. According to the intermediate result (23) from Property 3,

HHP (𝑋 ) # ⌈⌋ = HHP (𝑋 ) # HHP (ti = ti′ < +∞ ∧ s = s′ ∧ tr = tr ′)
= H014 (♮ ◁ inf ▷ ((∃s′ · 𝑋 ) ◁ inf ′ ▷ 𝑋 )) = HHP (𝑋 )

by the intermediate result (22) from Property 2. Similarly, we can prove ⌈⌋ #HHP (𝑋 ) = HHP (𝑋 ). □

Corollary 1 (Unit). ⊢ ⌈⌋ is a unit of hybrid processes w.r.t. #.

Proof. According to Property 16 and Theorem 5.2(3), for any normal hybrid design HC ⊢ HP,
(⊢ ⌈⌋) # (HC ⊢ HP) = (⊥HP ∧ ¬≀ (⌈⌋ # ¬≀HC)) ⊢ (⌈⌋ # HP) = HC ⊢ HP
(HC ⊢ HP) # (⊢ ⌈⌋) = (HC ∧ ¬≀ (HP # ¬≀⊥HP)) ⊢ (HP # ⌈⌋) = HC ⊢ HP

□

Theorem 6.1 (Semantics Consistency). The HUTP semantics of HCSP is consistent with the
operational semantics of HCSP.

Proof. We say the HUTP semantics and the structural operational semantics (SOS) of an HCSP

process are consistent iff they keep consistent on time, state and trace. The proof for the consistency

is divided into two stages: first, we prove the consistency between the SOS and the HUTP semantics

of the syntactic entities in (3); then, we prove the semantics consistency for the operators, such

as sequential and parallel compositions, which connect the syntactic entities. For brevity, we just

show the key points of the proof in the following content.

The semantics consistency for ODE with communication interruption (ODE⊵) has been proved

in the end of Section 6.2. ODE⊵ is representative because it covers the characteristic features of
HCSP, such as continuous evolution, communication and interruption. The semantics consistency

for other syntactic entities of HCSP like ⟨𝐹 (¤s, s) = 0&𝐵⟩ and ch?𝑥 can be proved similarly. So, we

only focus on proving the semantics consistency for the connector of parallel composition as it

plays an important role in composite systems.

The SOS for parallel composition of HCSP processes is described by the following rules, where 𝐼

is the common channel set between parallel operands.

(𝜀∥𝜀, (ti, s𝑃 ⊎ s𝑄 )) → (𝜀, (ti, s𝑃 ⊎ s𝑄 ))
[Par0]

(P, (ti, s𝑃 ))
𝜏−→ (P′, (ti, s′

𝑃
))

(P∥Q, (ti, s𝑃 ⊎ s𝑄 ))
𝜏−→ (P′∥Q, (ti, s′

𝑃
⊎ s𝑄 ))

[Par1]

ch ∈ 𝐼 (P, s𝑃 )
⟨ch?,𝑑 ⟩
−−−−−→ (P′, s′

𝑃
)

(Q, s𝑄 )
⟨ch!,𝑑 ⟩
−−−−−→ (Q ′, s′

𝑄
)

(P∥Q, s𝑃 ⊎ s𝑄 )
⟨ch,𝑑 ⟩
−−−−→ (P′∥Q ′, s′

𝑃
⊎ s′

𝑄
)
[Par2]

ch ∉ 𝐼 (P, (ti, s𝑃 ))
⟨ch∗,𝑑 ⟩
−−−−−→ (P′, (ti, s′

𝑃
))

(P∥Q, s𝑃 ⊎ s𝑄 )
⟨ch∗,𝑑 ⟩
−−−−−→ (P′∥Q, s′

𝑃
⊎ s𝑄 )

[Par3]

(P, (ti, s𝑃 ))
⟨ti′−ti,RS𝑃 ⟩−−−−−−−−→ (P′, (ti′, s′

𝑃
),∼s𝑃 )

(Q, (ti, s𝑄 ))
⟨ti′−ti,RS𝑄 ⟩
−−−−−−−−−→ (Q ′, (ti′, s′

𝑄
),∼s𝑄 ) RS𝑃 ∩ RS𝑄 = ∅

(P∥Q, (ti, s𝑃 ⊎ s𝑄 ))
⟨ti′−ti,RS𝑃⊎RS𝑄 ⟩
−−−−−−−−−−−−−→ (P′∥Q ′, (ti′, s′

𝑃
⊎ s′

𝑄
),∼s𝑃 ⊎∼s𝑄 )

[Par4]

Since parallel HCSP processes do not share variables, the HUTP semantics and the SOS of

the parallel connector are consistent on state variables naturally. Then, we focus on the parallel
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composition of timed traces, i.e., prove the consistency on timed traces. The above five rules

correspond to the respective five composition rules of timed traces in Section 3.3. Concretely, [Par0],

[Par1], [Par2], [Par3] and [Par4] relate to [Empty], [𝜏-Act], [SynIO], [NoSynIO] and [SynWait],

respectively.

Consider two HCSP processes P andQ with respective states s𝑃 and s𝑄 . Their execution histories

are recorded by timed traces tt𝑃 and tt𝑄 , respectively, denoted by

(P, (ti, s𝑃 ))
tt𝑃−−−→
∗

(𝜀, (ti′, s′𝑃 ),∼s𝑃 ) and (Q, (ti, s𝑄 ))
tt𝑄−−−→
∗

(𝜀, (ti′, s′𝑄 ),∼s𝑄 )

where∼s𝑃 and∼s𝑄 can be removed if there is no flow generated. The proof is by induction because all

the traces involved are finite in the semantics of HCSP. So, this proceeds by induction on the length

of traces and start from cases that |tt𝑃 |, |tt𝑄 | ≤ 1, such as tt𝑃 = tt𝑄 = 𝜖 or tt𝑃 and tt𝑄 are

just trace blocks. Then, by induction on the derivation of tt𝑃 ∥𝐼tt𝑄 { tt, we can prove that the

parallel composition ∥𝐼 of timed traces in HUTP can be interpreted by the structural operational

semantics of the parallel composition of HCSP. On the other side, we can prove that the SOS of the

parallel composition of HCSP can also be interpreted by ∥𝐼 of timed traces in HUTP by induction

on the derivation of

(P∥Q, (ti, s𝑃 ⊎ s𝑄 ))
tt−−→
∗

(𝜀, (ti′, s′𝑃 ⊎ s′𝑄 ))
from the cases that |tt| ≤ 1. In summary, the SOS and the HUTP semantics of the parallel

composition of HCSP are consistent on time, state and trace. The semantics consistency for other

operators can be proved similarly. □
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