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The reachability problem is one of the most important issues in the verification of hybrid systems. But unfortunately the reachable sets for most
of hybrid systems are not computable. In the literature, only some special families of linear vector fields are proved with decidable reachability
problem, let alone non-linear ones. In this paper, we investigate the reachability problem of non-linear vector fields by identifying three families of
non-linear vector fields with solvability and prove their reachability problems are decidable. An n-dimension dynamical system is called solvable if
its state variables can be partitioned into m groups such that the derivatives of the variables in the ith group are linear in themselves, but possibly
non-linear in the variables from the 1st to i−1th groups. The three families of non-linear solvable vector fields under consideration are: the matrices
corresponding to the linear parts of any vector field in the first family are nilpotent; the matrices corresponding to the linear parts of any vector
in the second family are only with real eigenvalues; the matrices corresponding to the linear parts of any vector field in the third family are only
with pure imaginary eigenvalues. The experimental results indicate the efficiency of our approach.
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I. INTRODUCTION

Hybrid systems (HSs) integrate computation with physical process-
es: embedded computers and networks monitor and control physical
processes and feedback loops continuously influence computations,
which are known as Cyber-Physical Systems (CPSs) nowadays.
Applications of CPS span over many safety-critical domains, e.g.,
communication, healthcare, manufacturing, aerospace, transportation,
etc. To guarantee the correctness of these systems is vital so that
we can bet our lives on them, and challenging [40]. Therefore,
formal methods has been widely used in the verification of HSs.
The reachability problem of HSs is to verify that unsafe states are
not reachable from the set of the initial states for a given HS, which
is one of most important issues in the verification of HSs.

As HSs consist of intangibly interaction between continuous evo-
lutions and discrete transitions, the reachability problem of most of
HSs is undecidable [21], except for some simple cases, either their
vector fields, i.e., their continuous evolution parts, are quite simple
such as timed automata [4] and multi-rate automata [3], or there are
very restrictive constraints on their discrete transitions like o-minimal
HSs [26].

In [27], Lafferriere et al. investigated vector fields of the form

ξ̇ = Aξ +u, (1)

where ξ (t) ∈ Rn is the state of the system at time t, A ∈ Rn×n

is the system matrix, and u : R → Rn is a piecewise continuous
function which is called the input. They obtained the decidability
of the reachability problems of the following three families of vector
fields:

1) A is nilpotent, i.e. An = 0, and each component of u is a
polynomial;

2) A is diagonalizable with rational eigenvalues, and each compo-

nent of u is of the form
m
∑

i=1
cieλit , where λis are rationals and

cis are subject to semi-algebraic constraints;
3) A is diagonalizable with purely imaginary eigenvalues, whose

imaginary parts are rationals, and each component of u of the

form
m
∑

i=1
ci sin(λit)+di cos(λit), where λis are rationals and cis

and dis are subject to semi-algebraic constraints.
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The above results are achieved by reducing the problems into Tarski’s
algebra [39].

In [5], Anai and Weispfenning presented a systematic approach
on how to reduce the reachability problem and control parameter
set problem of parametric inhomogeneous linear differential systems,
with the form

ξ̇ = Aξ +u(t,r),1 (2)

where A ∈ Rn×n is an n× n matrix, r = (r1, . . . ,rk) is a vector
of parameters, to the transcendental implicitization problem of a
fundamental system of solutions of ξ̇ = Aξ by quantifier elimination.
They further proved (Corollary 2 of [5]) that exact semi-algebraic
implicitization is possible for a fundamental system of solutions of
ξ̇ = Aξ if and only if one of the following cases holds:

1’) All eigenvalues of A are zero, i.e., A is nilpotent.
2’) All eigenvalues λ1, · · · ,λn of A are non-zero, pairwise distinct

reals, and dimQ(span(λ1, · · · ,λn))≤ 1.
3’) All eigenvalues λ1, · · · ,λn of A are purely imaginary, say of

the form λi = µii with non-zero, pairwise distinct reals µis,
and dimQ(span(µ1, · · · ,µn))≤ 1.

Obviously, Anai and Weispfenning’s work extended Lafferriere et
al.’s further, and particularly proved the largest families of linear
vector fields whose exact reachable set computations are computable
by reduction to Tarski’s algebra.

In [16], [17], we extended the decidability results of reachability
problems of linear vector fields due to Lafferriere et al. [27] and Anai
and Weispfenning [5].

• In [16], we generalized the above cases 2) and 2’) to

– A is diagonalizable with real eigenvalues, and each com-
ponent of u is of the form ∑

m
i=1 cieλit , where λis are reals

and cis are subject to semi-algebraic constraints.

Note that compared with the case 2’) in [5], we dropped
the constraint dimQ(span(λ1, · · · ,λn)) ≤ 1, which restrict the
eigenvalues to be linearly dependent over Q. Such extension
is substantial, since the new family is strictly more expressive,
whose reachability problem cannot be essentially reduced to
Tarski’s algebra any more as in [27], [5]. To obtain the decid-

1This form can be generalized to ξ̇ = A(t)ξ +u(t,r).



ability, we have to resort to the decidability of the extension of
Tarski’s algebra with functions of the form

f (t,x) =
m

∑
i=0

fi(t,x)eλit , (3)

where m ∈ N, fi(t,x) ∈ R[t,x], λi ∈ R, i = 0,1, · · · ,m, and e is
an irrational and transcendental number approximately equal to
2.718281828459. We denote the extension by Te.

• In [17], we generalized the above cases 3) and 3’) to
– A is diagonalizable with purely imaginary eigenvalues,

whose imaginary parts are reals, and each component of u
is of the form

m
∑

i=1
ci sin(λit)+di cos(λit), where λis are reals

and cis and dis are subject to semi-algebraic constraints.
This is achieved still by reducing the decidability to Tarski’s
algebra [39] using the density results in number theory [20],
rather either by direct replacement like [27] or by reduction to
the transcendental implicitization problem like [5]. Note that
compared to the case 3’) in [5], we dropped the constraint
dimQ(span(µ1, · · · ,µn))≤ 1.

It is also worth noting that for linear vector fields, some other
problems which are quite related to the reachability problem, have
been investigated and proved to be decidable in the literature, such as
the Polytope Escape Problem [32], Recurrent Reachability Problem
[8], and the Skolem Problem [9]. But a main restriction on all of the
results is that the unsafe set should only be linear and represented
as a polyhedra, while in our results, the unsafe set can be non-linear
and represented by a semi-algebraic set. For an effective verification
method for the reachability problem of the former case, we refer to
Yazarel and Pappas’s work [43].

Tarski’s algebra is the first-order theory of reals over the structure
〈R;+,−, ·,0,1〉, which is also called the elementary algebra and
geometry. In [39], Tarski showed the decidability of Tarski’s algebra.
But whether the extension of Tarski’s algebra with exponentiation
over real closed fields is decidable (so-called “Tarski’s conjecture”)
is still open. In [2], [30], Weispfenning et al. gave a partial solution
to Tarski’s conjecture by showing the decidability of the extension
of Tarski’s algebra by allowing terms of the form f (t,x,et), where
f (t,x,y) ∈ R[t,x,y]. In [41], Xu et al. considered how to generalize
Weispfenning et al.’s approach by allowing functions of the form
(3), but with the restriction that all the λis are nonnegative integers.
Obviously, Te is strictly more expressive than the ones considered
in [2], [30], [41].

In the literature, there is very little decidability results on the
reachability problems of non-linear vector fields. The first decidability
results are given in [42] on the reachability problems for some specific
solvable non-linear vector fields, which are proper subsets of the
second family below we consider, by exploiting Weispfenning et
al.’s result on Tarski’s conjecture [2]. In this paper, we investigate
this issue by identifying three families of solvable vector fields and
proving their reachability problems are decidable by exploiting the
techniques developed in our previous work [16], [17], which are the
three largest non-linear vector fields with decidable reachability to
the best of our knowledge.

The notion of solvability was first proposed in [35] for a class
of polynomial programs, and was extended to dynamical and hybrid
systems in [42]. Formally, a dynamical system

ξ̇ = F(ξ ,u(t))

is called solvable system (SS) if the variable vector ξ = (ξ1, . . . ,ξn)
can be classified into m groups (m≤ n)

ζ1 = (ξ11, . . . ,ξ1n1), . . . ,ζm = (ξm1, . . . ,ξmnm),

and the dynamical system can be represented as the form:

ξ̇ =


ζ̇1
ζ̇2
...

ζ̇m

=


A1ζ1 +u1(t)

A2ζ2 +u2(t,ζ1)
...

Amζm +um(t,ζ1, . . . ,ζm−1)

 , (4)

where 0 < n1 < .. . < nm = n are integers, m ∈N, A1, . . . ,Am are real
matrices with corresponding dimensions, u1, . . . ,um are polynomial-
exponential-trigonometric functions (PETFs, the definition will be
given later). E.g. ẋ

ẏ
ż

=

 x+ e−t

2y+ x2− e−
√

2t
√

3z+ xy+2e−t

 , (5)

is a solvable system which is beyond the expression of the linear
system. Obviously, all linear dynamical systems (LDSs) are also SSs.

Thus, the main contributions of this paper can be summarized as
follows:

1”) If A1, . . . ,Am in (4) are nilpotent, i.e. Ak1
1 = 0, . . . ,Akm

m = 0, for
some k1, . . . ,km ∈N, and each component of ui is a polynomial,
then the reachability problem of (4) is decidable. This is
achieved by reduction to Tarski’s algebra similarly to [27].

2”) If each Ai is diagonalizable with real eigenvalues, and each

component of ui is of the form
mi

∑
j=1

ci jeλi jt , where λi js are

reals and ci js are subject to semi-algebraic constraints, then
the reachability problem of (4) is decidable, where i = 1, . . . ,m.
The technique adopted for this case is adapted from [16]. In
[16], it is assumed that any expression of Te has no multiple
real roots, we will drop such restriction in this paper.

3”) If each Ai is diagonalizable with purely imaginary eigenvalues,
whose imaginary parts are reals, and each component of ui of

the form
mi

∑
j=1

ci j sin(λi jt) + di j cos(λi jt), where λi js are reals

and ci js and di js are subject to semi-algebraic constraints, the
reachability problem of (4) is decidable, where i= 1, . . . ,m. The
technique adopted for this case is essentially same as what we
used in [17], but the reduction procedure is more complicated
for the non-linear case.

Additionally, similar to [5], [17], we present an abstraction of
general solvable dynamical systems of the form (4). That is,
• each Ai is a real matrix, and each component of ui is of the

form ∑
ri
k=0 pik(t)expαikt cos(βikt + γik), where i = 1, . . . ,m, ri ∈

N, αik,βik,γik ∈ R and pik(t) ∈ R[t].
The basic idea of our approach is as follows: for each eigenvalue
α±β i of Ai, we introduce two fresh variables a and b, and let a =
sinβ t and b = cosβ t. So, it derives a new constraint a2 + b2 = 1.
Using such replacement, the reachable set of (4) can be essentially
represented as the form

f (t,x,a,b) =
m

∑
i=0

ni

∑
j=0

fi j(t,x,a,b)eαi jt .

Clearly, constraints over such expressions together with all the derived
constraints fall into the decidable theory Te.

We implement a prototypical tool of our approach, and some
case studies are conducted. To demonstrate the efficiency of our
approach, first, we compare our tool with CT1D [38], a generalized
CAD implementation of Mathematica’s Reduce command, which
can cope with quantifier elimination of Te. For Te formulas only
with strict inequalities, our tool outperforms CT1D, and for the rest
cases, their efficiencies are nearly same. As other state-of-the-art
tools for quantifier elimination, e.g., REDLOG [14], QEPCAD, and



SyNRAC [24] cannot handle the decidability problems we considered
in this paper in general, it is thus not comparable. Second, we also
compare our tool with several well-known reachability computation
tools based on approximation and numeric computation, e.g., HSolver
[33], FLOW* [7], dReach [25], etc., although such comparisons are
not fairly as they deal with different problems in general. After
necessary preprocessing in order to make the comparison reasonable,
our tool is more efficient.

The rest of this paper is organized as follows: In Section II, we first
introduce some basic notions and theories, then explain the problem
we consider. Section III gives a decision procedure to the reachability
problem when all Ais in (4) are nilpotent. Section IV is devoted to
the case when all Ais are only with real eigenvalues in (4). Section V
is devoted to the case when all Ais are only with purely imaginary
eigenvalues in (4). In Section VI, we present an abstraction of general
solvable non-linear differential systems. In Section VII, a prototypical
implementation and experiments are reported. Section VIII concludes
this paper and discusses future work.

II. PRELIMINARIES

In this section, we first introduce some basic notions and theories,
then explain the problem we consider. We use x to stand for a
vector variable (x1, . . . ,xn), N,Q,R,C for natural, rational, real and
complex numbers respectively, R[x] for the polynomial ring in x with
coefficients in R in what follows. We denote by Λ(M) the set of all
the eigenvalues of matrix M. For any c ∈ C, denote by Im(c) the
imaginary part of c.

A. Basic Notions

A term f (t,x) is called polynomial-exponential function (PEF)
w.r.t. t if it can be written in the form of (3).

A term f (t,x) is called trigonometric function (TMF) w.r.t. t if it
can be written with the following form:

f (t,x) =
r

∑
l=1

cl(x)cos(µlt)+dl(x)sin(µlt), (6)

where r ∈ N,cl(x),dl(x) ∈ R[x] and µl ∈ R, l = 1, . . . ,r. Denote by
Γ( f (t,x)) the set {µ1,µ2, . . . ,µr} in the sequel.

A term f (t,x) is called a polynomial-exponential-trigonometric
function (PETF) w.r.t. t, if it can be written with the following form:

f (t,x) =
r

∑
k=0

pk(t,x)eαkt cos(βkt + γk), (7)

where r ∈ N, αk,βk,γk ∈ R and pk(t,x) ∈ R[t,x]. Obviously, PEFs
and TMFs are PETFs as sin(α) can be seen as cos( π

2 +α).
A function vector is said to be PEF (TMF or PETF) if every

component is a PEF (TMF or PETF).
A set X⊂ Rn is said to be semi-algebraic if it is defined as

X = {x ∈ Rn | p1(x)B0, · · · , p j(x)B0},

for some polynomials p1(x), · · · , p j(x)∈R[x], where B∈{≥,>} and
j ∈ N. X is called open semi-algebraic if there is a ball bδ (x) such
that bδ (x)⊆X, where δ is the radius and x is the center of the ball,
for any x ∈ X.

B. Density Results in Number Theory

In this part, we introduce some theoretical results on density in
number theory.

Definition 1 (Rational Linear Independent). Let a1, . . . ,ak are some
real numbers. We say a1, . . . ,ak are rational linear independent if
∑

k
i=1 ciai = 0 implies

∧k
i=1 ci = 0, for all c1, . . . ,ck ∈Q.

Definition 2 (Basis). Let A ⊂ R with #(A) ≤ +∞ be a set of real
numbers, where #(A) means the number of elements in A. A set B⊆
A is said be a basis of A, if the elements in B are rational linear
independent and for any element a ∈ A\B, where A\B denotes the
set of all the elements in A but not in B, then the elements in {a}∪B
are not rational linear independent.

Let A = {a1, . . . ,ak} be a set of real number, B = {b1, . . . ,b j} ⊆ A
be a basis of A. It is easy to see that for any ai ∈ A, there exists
c = (ci1, . . . ,ci j) ∈Q such that

ai = ci1b1 + . . .+ ci jb j. (8)

For 1≤ l ≤ j, let

dl = lcm(denom(c1l), . . . ,denom(ckl)), (9)

where denom(c) is the denominator of rational number c and lcm
means the least common multiple. Let B = { b1

d1
, . . . ,

b j
d j
} be a basis

of A, then for any a ∈ A, a can be written as an integer linear
combination of the elements in B. We call such basis B an integer-
basis of A.

The following Kronecker Theorem gives a nice density property
of a rational or integer linear independent set [20].

Theorem 1 (Kronecker). The set {({ξ1t}1, . . . ,{ξkt}1) | t ∈ N} is
dense in [0,1]k, if 1,ξ1, . . . ,ξk are integer linear independent, where
{ξ}1 ∈ [0,1) is the decimal part of the real number ξ .

Corollary 1. The set {({ξ1t}2π , . . . ,{ξkt}2π ) | t ≥ 0} is dense in
[0,2π]k, if ξ1, . . . ,ξk are integer linear independent, where {ξ}2π ∈
[0,2π) is the remainder of ξ by 2π .

Proof. Let ξ ′i =
ξi
2π

, for i = 1, . . . ,k. It is easy to see that we just need
to prove that

{({ξ ′1t}1, . . . ,{ξ ′kt}1) | t ≥ 0} (10)

is dense in [0,1]k.
Since ξ1, . . . ,ξk are integer linear independent, ξ ′1, . . . ,ξ

′
k are also

integer linear independent. Thus, it is easy to see that there exists
ξ0 > 0 such that 1,ξ0ξ ′1, . . . ,ξ0ξ ′k are integer linear independent. By
Theorem 1, it follows

{({ξ0ξ
′
1n}1, . . . ,{ξ0ξ

′
kn}1) | n ∈ N} (11)

is dense in [0,1]k. As ξ0 > 0 implies {ξ0n | n ∈ N} ⊂ {t | t ≥ 0}, we
have that the set in (11) is a subset of the set in (10). Thus, the set
in (10) is dense in [0,1]k.

Theorem 2. Let a1, . . . ,ak be rational linear independent, and

S = {(sin(a1t),cos(a1t), . . . ,sin(akt),cos(akt)) | t ≥ 0}, (12)

S = {(α1,β1, . . . ,αk,βk) ∈ R2k |
k∧

i=1
α

2
i +β

2
i = 1}, (13)

then S is dense in S.

Proof. a1, . . . ,ak are rational linear independent, then also integer
linear independent. By Corollary 1, we have that

D0 = {({a1t}2π , . . . ,{akt}2π ) | t ≥ 0}

is dense in D = [0,2π]k. On the other hand, obviously, (sin,cos) :
D0 7→ S, and (sin,cos) : D 7→ S, and (sin,cos) is continuous, hence
(sin,cos)(D0) is dense in (sin,cos)(D), i.e., S is dense in S.

Corollary 2. Let f (α1,β1, . . . ,αk,βk) be a polynomial in
α1,β1, . . . ,αk,βk. a1, . . . ,ak are real numbers that are rational linear
independent and S,S defined as (12),(13), then f (S) is dense in f (S).



Proof. By Theorem 2 we have S is dense in S, and S, S are both
bounded sets. Since f is a polynomial, i.e. f is continuous, it is easy
to see that f (S) is dense in f (S).

C. Problem

Given an SS of the form (4) and an initial state ξ (0) = x, the
solution of this system at time t ≥ 0 is denoted by ξ (t) = Φ(x, t).
Then the forward reachable set Post(X) of (4) from a given set X is
defined as follows:

Post(X) = {y ∈ Rn | ∃x∃t : x ∈ X∧ t ≥ 0∧Φ(x, t) = y}. (14)

The safety problem is: given an initial set X and an unsafe set
Y, verify whether any unsafe state in Y is not reachable by some
trajectory starting from X, i.e., whether Post(X)∩Y = /0. Let

F (X,Y) = ∃x∃y∃t : x ∈ X∧y ∈ Y∧ t ≥ 0∧Φ(x, t) = y. (15)

That is, the safety problem is to verify whether the formula F (X,Y)
is true or false. If it is false then the safety property holds, otherwise
the safety property does not hold.

III. NILPOTENT

In this section, we give a decision procedure to the reachability
problem (15) in section II-C when all Ais in (4) are nilpotent.

A. Reformation of the Problem

Given an SS as (4), the initial set X and the unsafe set Y are two
semi-algebraic sets, all the matrices A1, . . . ,Am are nilpotent and every
component of u1,u2, . . . ,um is a polynomial vector w.r.t. t, determine
whether the following formula holds or not,

F (X,Y) = ∃x∃y∃t : x ∈ X∧y ∈ Y∧ t ≥ 0∧Φ(x, t) = y. (16)

B. The Solution Form

In this section, we compute the solution form of an SS of (4) in
which all the matrices A1, . . . ,Am are nilpotent and all u1,u2, . . . ,um
are polynomials, and show the solution is a polynomial in R[x, t] by
induction on the number of blocks of variables.

We first prove it when m = 1, i.e. the linear case.

Lemma 1. Given a linear system ξ̇ =Aξ +u(t) satisfying A∈Rn1×n1

is a nilpotent matrix, and u(t) ∈R[t]n1 , a given initial point x ∈Rn1 ,
the solution Φ(x, t) of the linear system is a polynomial in R[x, t].

Proof. Clearly, in this case,

Φ(x, t) = eAtx+
∫ t

0
eA(t−τ)u(τ)dτ.

Since A ∈ Rd×d is a nilpotent matrix, Ak = 0 for any k ≥ d. Thus,
eAt = ∑

d−1
k=0

tk

k! Ak. Moreover,

Φ(x, t) =
d−1

∑
k=0

tk

k!
Akx+

∫ t

0

(
d−1

∑
k=0

(t− τ)k

k!
Aku(τ)

)
dτ.

As A, . . . , Ad−1 are all real matrices in Rn1×n1 , it is easy to see that
∑

d−1
k=0

tk

k! Akx is a polynomial vector in x and t, and ∑
d−1
k=0

(t−τ)k

k! Aku(τ)
is a polynomial vector in x, t and τ . Hence,∫ t

0

(
d−1

∑
k=0

(t− τ)k

k!
Aku(τ)

)
dτ

is a polynomial in x and t. Thus,

d−1

∑
k=0

tk

k!
Akx+

∫ t

0

(
d−1

∑
k=0

(t− τ)k

k!
Aku(τ)

)
dτ

is a polynomial vector in x and t, i.e. Φ(x, t) ∈ R[x, t]n1 .

Theorem 3. Given an SS as (4) in which all the matrices A1, . . . ,Am
are nilpotent and all u1,u2, . . . ,um are polynomial vectors, then for
a given initial point x, the solution Φ(x, t) is a polynomial vector in
R[x, t]n, where n = n1 + · · ·+nm.

Proof. Let x = (z1, . . . ,zm) correspond to (ζ1, . . . ,ζm) in (4). For ζ1,
by Lemma 1, we know ζ1(t,x) ∈ R[x, t]n1 .

Now, suppose that ζ1(t,x), . . . ,ζk−1(t,x) are all polynomial vectors
in R[x, t]n1 , . . . ,R[x, t]nk−1 , respectively, for k ≤ m. We prove that
ζk ∈ R[x, t]nk . Since uk(t,ζ1, . . . ,ζk−1) is a polynomial vector, sub-
stituting ζ1(t,x), . . . ,ζk−1(t,x) for ζ1, . . . ,ζk−1 in uk(t,ζ1, . . . ,ζk−1),
it follows uk(t,ζ1, . . . ,ζk−1) = uk(t,x) ∈ R[x, t]nk . Thus, the sub-
dynamical system w.r.t. ζk is reduced to ζ̇k = Akζk + uk(t,x). By
Lemma 1, this implies that ζk(t,x) is a polynomial vector. All in all,
the solution Φ(x, t) ∈ R[x, t]n.

Thus, (16) becomes decidable according to the decidability of
Tarski algebra [39]. I.e.,

Theorem 4. The problem (16) is decidable.

IV. REAL EIGENVALUES

In this section, we give a decision procedure to the problem (15)
when all Ais are only with real eigenvalues and all uis are PEF vectors
in (4).

A. Reformulation of the Problem

Given an SS as (4), the initial set X and the unsafe set Y are
two semi-algebraic sets, all the matrices A1, . . . ,Am have only real
eigenvalues and u1,u2, . . . ,um are PEF vectors, determine whether
the following formula holds,

F (X,Y) = ∃x∃y∃t : x ∈ X∧y ∈ Y∧ t ≥ 0∧Φ(x, t) = y.

B. Reduction to the Decision Problem of Te

In this part, we prove that the reachability problem above can be
reduced to the decision problem of Te, therefore is decidable under
the assumption of Schanuel’s conjecture according to Strzeboński’s
result in [38].

Before proving the solution of (4) in this case can be represented
as PEFs, we first show some properties on PEFs.

Lemma 2. The set of PEFs is closed under add, subtract, multiply
and integral operations.

Proof. It is easy to see that the set of PEFs is closed under add,
subtract and multiply operations. For the integral operation, since∫

eλ tdt =
1
λ

eλ t , and∫
tneλ tdt =

tn

λ
eλ t − ntn−1

λ 2 eλ t + . . .+(−1)n n(n−1) · · ·1t
λ n+1 eλ t ,

the integral of a PEF is still PEF.

Lemma 3. Let A ∈ Rn×n has real eigenvalues only, then eAt is a
matrix with dimension n×n, and all entries of eAt are PEFs.

Proof. Let J be the Jordan normal form of A, so there exist an
invertible matrix Q such that A = QJQ−1. Then, it follows

eAt = QeJtQ−1.



Let

J =


J1

J2
. . .

Jm

 ,
where J1,J2, . . . ,Jm be the corresponding Jordan blocks. Then

eAt = QeJtQ−1 = Q


eJ1t

eJ2t

. . .
eJmt

Q−1.

Without loss of generality, we just need to prove that all the elements
of eJ1t are PEFs. Suppose that the dimension of J1 is d×d and the
diagonal entry is λ , i.e.

J1 = λ I +


0 1

0
. . .
. . . 1

0

 .
Denote the second summand of J1 by M, obviously Md = 0. So, we
have

eJ1t = eλ tI · eMt

= eλ tI · (I + tM+
t2

2
M2 + . . .+

td−1

(d−1)!
Md−1)

=


eλ t

eλ t

. . .
eλ t

 ·


1 t · · · td−1

(d−1)!
1 t · · ·

. . .
1

 .
Hence all the entries of eJ1t are PEFs, and so are all entries of eAt .

Theorem 5. Given an SS of (4) in which all Ais are only with real
eigenvalues and all uis are PEF vectors, and an initial x ∈Rn, then
its solution Φ(x, t) can be represented as of the following form

(Φ(x, t))i =
si

∑
j=1

φi j(x, t)eνi jt , (17)

for i = 1, . . . ,n, where φi j(x, t) ∈ R[x, t], Ji ∈ N and νi j ∈ R for i =
1, . . . ,n, j = 1, . . . ,si.

Proof. Let x = (z1, . . . ,zm) corresponding to (ζ1, . . . ,ζm) in (4).
We proceed the proof by induction on m.
When m= 1, thus the solvable system (4) becomes a linear system.

Whence the solution is

ζ1(t,x) = eA1tz1 +
∫ t

0
eA1(t−τ)u1(τ)dτ.

By Lemma 3, it follows that all entries in eA1t and eA1(t−τ) are PEFs.
Moreover, using Lemma 2, we have eA1tz1 +

∫ t
0 eA1(t−τ)u1(τ)dτ is a

PEF. Hence, ζ1(t,x) is a PEF vector.
Now, suppose that ζ1(t,x), . . . ,ζk−1(t,x), k < m, are all PEF

vectors, we prove that ζk(t,x) is also a PEF vector. Since
uk(t,ζ1, . . . ,ζk−1) and ζ1, . . . ,ζk−1 are all PEF vectors, substituting
ζ1(t,x), . . . ,ζk−1(t,x) for ζ1, . . . ,ζk−1 in uk(t,ζ1, . . . ,ζk−1), it follows
uk(t,ζ1, . . . ,ζk−1)= uk(t,x) is a PEF vector. Thus, the sub-dynamical
system w.r.t. ζk is reduced to

ζ̇k = Akζk +uk(t,x).

From the basis case, this implies that ζk(t,x) is a PEF vector.

In a word, the solution Φ(x, t) is a PEF vector, i.e. each of its
component is of the following form

(Φ(x, t))i =
si

∑
j=1

φi j(x, t)eνi jt , (18)

for i = 1, . . . ,n, where φi j(x, t) ∈ R[x, t], Ji ∈ N and νi j ∈ R for i =
1, . . . ,n, j = 1, . . . ,si.

Example 1. ξ̇1
ξ̇2
ξ̇3

=

 ξ1
ξ1−ξ2 + et

−ξ3 +ξ 2
1

 ,
with an initial state x = (x1,x2,x3) ∈R3, the corresponding solution
is

ξ1(t,x) = etx1,

ξ2(t,x) = (
x1

2
+

1
2
)et − (

x1

2
+

1
2
− x2)e−t ,

ξ3(t,x) =
x2

1
3

e2t − (
x2

1
3
− x3)e−t ,

which are PEFs.

Since X and Y are two semi-algebraic sets, there exist polynomials
p1(x), . . . , pJ(x) such that

X = {x ∈ Rn | p1(x)B0, . . . , pJ1(x)B0},
Y = {x ∈ Rn | pJ1+1(x)B0, . . . , pJ(x)B0},

where B ∈ {≥,>}. Then (15) can be reduced to verify whether

F (X,Y) = ∃x∃y∃t : Ω (19)

holds, where,

Ω =p1(x)B0∧·· ·∧ pJ1(x)B0∧ pJ1+1(y)B0∧·· ·∧ pJ(y)B0

∧ t ≥ 0∧
n∧

i=1
yi =

si

∑
j=1

φi j(x, t)eνi jt .

C. Decision Procedure for Te

In this part, we give a decision procedure for Te based on
cylindrical algebraic decomposition (CAD), due to Collins [10].

The basic idea of CAD is: given a set S of polynomials in R[x],
CAD is used to partition Rn into connected semi-algebraic sets, called
cells, such that each polynomial in S keeps constant sign (either +,
− or 0) on each cell. As CAD plays a fundamental role in computer
algebra and real algebraic geometry, in the literature, a numerous
works are done on improvement of CAD, e.g., [29], [22], [11], [13],
[6], [19]. When constraints are open sets, GCAD [36] or openCAD
[19] is enough, which partitions the space Rn into a set of open cells
instead of cells (i.e., takes sample points from open cells only), such
that on each of which every polynomial in S keeps constant nonzero
sign (either + or −). For example, suppose f1 = y−x, f2 = y+x. The
graphs of f1 = 0 and f2 = 0 decompose R2 into 9 cells with different
dimensions: four of which are 2-dimensional (open) cells (i.e., f1 ∼
0∧ f2 ∼ 0, where ∼∈ {>,<}); four of which are 1-dimensional cells
(i.e., f1 ∼ 0∧ f2 = 0, f1 = 0∧ f2 ∼ 0, where ∼∈ {>,<}); and one
of which is 0-dimensional cell (i.e., f1 = 0∧ f2 = 0). Complete CAD
takes at least one sample point from each of the 9 cells, while GCAD
or openCAD takes at least one sample point only from each of the
four 2-dimensional (open) cells. Formally,

Definition 3. For a polynomial f (x1, ...,xn) ∈ R[x1, ...,xn], a CAD
(openCAD) defined by f under the order x1 ≺ x2 ≺ ·· · ≺ xn is a set
of sample points in Rn obtained through the following three phases:



Projection: Apply CAD (openCAD) projection operator on
f to get a set of projection polynomials { fn =
f (x1, ...,xn), fn−1(x1, ...,xn−1), . . . , f1(x1)};

Base: Choose a rational point in each of the (open) intervals
defined by the real roots of f1;

Lifting: Substitute each sample point in Ri−1 for (x1, ...,xi−1) in fi
to get a univariate polynomial f ′i (xi), and then, as in Base
phase, choose sample points for f ′i (xi). Repeat this process
for i from 2 to n.

Using CAD (openCAD), we develop a decision procedure for Te
as follows:

Step 1 Check whether X∩Y = /0, if not, it’s easy to see that (19)
holds.

Step 2 Translate the problem to an openCAD solvable problem
if X and Y are open sets, otherwise a CAD solvable
problem. By (18), yi(x, t) = ∑

si
j=1 φi j(x, t)eνi jt . So, we can

replace p j(y) with p j(y(x, t)), which is polynomial in x
and polynomial-exponential in t, abbreviated as p j(x, t), for
j = J1 + 1, · · · ,J. Simply, we define p j(x, t) as p j(x), for
j = 1, · · · ,J1. Thus, F (X,Y) in (19) can be reformulated
as F = ∃x∃t

∧J
j=1 p j(x, t)B0∧ t ≥ 0.

Step 3 Eliminate x1, · · · ,xn one by one using CAD (open-
CAD) projection operator on ∏

J
j=1 p j and obtain a set

of projection polynomials {qn(x1, . . . ,xn, t) = ∏
J
j=1 p j ,

qn−1(x2, . . . ,xn, t)}, . . . ,q0(t)}.
Step 4 Isolate the real roots of the resulted PEF q0 based on Rolle’s

theorem, which will be elaborated in the next subsection.
Step 5 Lift the solution using openCAD or CAD lifting procedure

corresponding to Step 2 according to the order t, xn, · · · ,x1
based on {q0, · · · ,qn}, and obtain a set S of sample points.

Step 6 Check if F holds by testing if there exists α in S such that
∧J

j=1 p j(α)B0.
In [38], Strzeboński presented another decision procedure for Te

completely based on CAD. Our decision procedure differentiates from
Strzeboński’s in the following points:
• When all constraints are open sets, our method is based on
openCAD, which requires less computation compared to the
corresponding complete CAD, as we do not need to consider
the cells that are represented as roots of equations involving
polynomial-exponential functions, which are extremely difficult,
during the base and lifting phases in openCAD. Therefore, as
indicated later in the experiments, our decision procedure is
more efficient in this case. But the two decision procedures share
the same complexity in general case.

• In [38], an algorithm for isolating real roots of a given PEF
based on weak Fourier sequence [37] is given. It is claimed that
the algorithm is complete under the assumption of Schanuel’s
conjecture [34]. While, in this paper, we give another algorithm
to isolate real roots of the resulted PEF q0(t) based on Rolle’s
theorem. We prove that our approach is also complete under
the assumption that q0(t) does not have any multiple real roots,
which can be implied by Schanuel’s conjecture.

D. Isolating Real Roots of PEFs

In this part we give an algorithm PEFIsolation to isolate the
finitely many real roots of a PEF.

Definition 4. Consider a PEF in t as

f (t) =
s

∑
i=0

fi(t)eνit , (20)

where s ∈ N, 0 6≡ fi ∈ R[t] and νi ∈ R are pairwise different. Real
root isolation of the equation f (t) = 0 is to obtain a set of intervals

{I j = (a j,b j) | a j,b j ∈ R∧a j < b j, j = 1, . . . ,J} such that Ii∩ I j = /0
if i 6= j, in each I j there exists only one real root of f (t), and all real
roots of f (t) are contained in

⋃J
j=1 I j.

Given an open interval I, real root isolation of f (t) over I can be
defined similarly.

Without loss of generality, in (20), we can assume

0 = ν0 < ν1 < ν2 < · · ·< νs, fi(t) 6≡ 0, for i = 0,1, · · · ,s, (21)

since we can always multiply out by eν0t for the smallest ν0 to ensure
this happens. When s = 1 or every νi (0≤ i≤ s) is a positive integer,
in [2] an algorithm named ISOL was proposed to isolate all real roots
of f (t). This algorithm can be easily extended to the case when all
νi (i = 0, · · · ,s) are rationals or there exists a nonzero real number κ

such that for every 0≤ i≤ s, νiκ is a rational.
1) Lower and Upper Bounds on Real Roots
Similar to [2], we can prove the following theorem, which indicates

that there is a lower and upper bound on real roots for any given PEF.

Theorem 6 (upper bound). Let f (t) be a PEF of the form (20).
Then we can obtain an upper bound C on its real roots through the
following procedure:

1) Find C1 ≥ 0, M > 0 such that for all t >C1, | fs(t)|> 1
M ;

2) Find C2 ≥ 0 and k ∈ N such that for all t > C2 and for all
0≤ i < s, | fi(t)|< tk

sM ;
3) Find C3 ≥ 0 such that for all t >C3, tk < e(νs−νs−1)t ;
4) Set C = max{C1,C2,C3}.

Proof. Let t >C, then we have | fs(t)|> 1
M , tk < e(νs−νs−1)t , | fi(t)|<

tk

sM , for i = 0, · · · ,s−1. Whence

| f0(t)+
s−1

∑
i=1

fi(t)eνit | ≤ | f0(t)|+
s−1

∑
i=1
| fi(t)eνit |< tk

sM
+

s−1

∑
i=1

tk

sM
eνit

<
tk

sM
eνs−1t +

s−1

∑
i=1

tk

sM
eνs−1t =

1
M

tkeνs−1t <
1
M

eνst < | fs(t)eνst |.

Thus, | f0(t) + ∑
s−1
i=1 fi(t)eνit | < | fs(t)eνst |, and we have f0(t) +

∑
s−1
i=1 fi(t)eνit + fs(t)eνst 6= 0. This implies f (t) 6= 0 for any t ≥C. So

C is an upper bound on the real roots of f (t).

In order to get a lower bound, a commonly used method is to
replace f (t) with g(t) = f (−t)eνst . Then, by Theorem 6, there is an
upper bound B on the real roots of g(t) = 0. It’s easy to see that −B
is a lower bound on the real roots of f (t) = 0. Thus, we see that
all roots of f (t) = 0 are in the interval (−B,C). In what follows, we
denote by L( f ) =−B,U( f ) =C, the lower and upper bounds on the
real roots of f (t), respectively.

2) Algorithm
In this part, we present our algorithm PEFIsolation for isolat-

ing all real roots of a given nonzero PEF f (t) of the form (20).

Definition 5. Let f (t) be a nonzero PEF of the form (20), then we
define

coff( f )=̂( f0, f1, . . . , fs)
T , nu( f )=̂(0,ν1, . . . ,νs)

T ,

deg( f )=̂(deg( f0), deg( f1), . . . ,deg( fs))
T ,

where deg(g) means the degree of g, and as a convention, deg(0) =
−1. So, (20) can be shorten as

f (t) = coff( f )T · enu( f )t ,

where enu( f )t = (1,eν1t , . . . ,eνst)T , a ·b stands for the inner product
of the two vectors, i.e., ∑

n
i=1 aibi.

From Definition 5, it follows

coff( f ′) = ( f ′0, f ′1 +ν1 f1(t), . . . , f ′s +νs fs(t))T , nu( f ′) = (0,ν1, . . . ,νs)
T ,

deg( f ′) = (max{deg( f0)−1,−1}, deg( f1), . . . ,deg( fs))
T ,



where f ′ denotes the derivative of f w.r.t. t.
In the following, we will explain the basic idea behind

PEFIsolation through the following simple example.

Example 2. Consider f̂ (t) = t +1+ e
√

2t − (t +2)e
√

5t .

Firstly, in order to isolate the real roots of f̂ (t) = 0, we need to
calculate the upper and lower bounds on all its real roots according
to Theorem 6.

Regarding the upper bound of f̂ (t) = 0, we have: (i) C1 = 0, M = 1,
∀t ≥ 0, |t+2|> 1; (ii) C2 = 4, k = 2, ∀t ≥ 4, |t+1|< t2

2 , 1 < t2

2 ; (iii)
C3 = 12, ∀t ≥ 12, t2 < e(

√
5−
√

2)t . Thus, we obtain U( f̂ ) = 12.
In order to obtain the lower bound, we have to calculate the upper

bound U(g) of g(t) = f̂ (−t)e
√

5t , i.e., g(t) = t−2+e(
√

5−
√

2)t− (t−
1)e
√

5t . Because (i) C1 = 3, M = 1, ∀t ≥ 3, |t− 1| > 1; (ii) C2 = 4,
k= 2, ∀t ≥ 4, |t−2|< t2

2 and 1< t2

2 ; (iii) C3 = 1, ∀t ≥ 1 and t2 < e
√

2t ,
we obtain the upper bound U(g) = 4.

Therefore, the lower bound L( f̂ ) = −U(g) = −4 is obtained.
Obviously, all real roots of f̂ (t)= 0 should be in the interval (−4,12),
which implies that we just need to isolate all real roots in (−4,12).

From differential mean value theorem (i.e., Rolle’s theorem), we
know there must exist at last one real root of f ′(t) = 0 between
every two real roots of f (t) = 0, if f (t) is continuous differentiable.
In order to obtain the real roots of f (t) = 0, we can try to get the real
roots of f ′(t) = 0 first. Likewise, in order to obtain the real roots of
f ′(t) = 0, we can try to get the real roots of f ′′(t) = 0 first. We can
repeat the above procedure until the real solutions of the ith derivative
of f (t) for some i can be achieved. Then, we lift the real solutions
of the respective derivative in the inverse order until f (t) itself. We
illuminate the procedure by continuing the running example.

At the beginning,

S0 = f̂ (t) = t +1+ e
√

2t − (t +2)e
√

5t ,
coff(S0) = (t +1,1,−t−2)T ,

nu(S0) = (0,
√

2,
√

5)T ,deg(S0) = (1,0,1)T .

Then, we obtain the derivative of f̂ is

S1 = f̂ ′(t) = 1+
√

2e
√

2t − (
√

5t +2
√

5+1)e
√

5t ,

coff(S1) = (1,
√

2,−
√

5t−2
√

5−1)T ,

nu(S1) = (0,
√

2,
√

5)T ,deg(S1) = (0,0,1)T .

Furthermore, the derivative of f̂ ′ is

f̂ ′′(t) = 0+2e
√

2t − (5t +2
√

5+10)e
√

5t ,

coff( f̂ ′′) = (0,2,−5t−2
√

5−10)T ,

nu( f̂ ′′) = (0,
√

2,
√

5)T ,deg( f̂ ′′) = (−1,0,1)T .

Clearly, f̂ ′′ and the following S2 share the same real roots:

S2 = f̂ ′′(t)e−
√

2t = 2− (5t +2
√

5+10)e(
√

5−
√

2)t , (22)

coff(S2) = (0,2,−5t−2
√

5−10)T , (23)

nu(S2) = (0,0,
√

5−
√

2)T ,deg(S2) = (−1,0,1)T .

Now, the derivative of S2 is

S3 = S′2 = 0+0+he(
√

5−
√

2)t ,coff(S3) = (0,0,h)T ,

nu(S3) = (0,0,
√

5−
√

2)T ,deg(S3) = (−1,−1,1)T .

where h=−(5(
√

5−
√

2)t+15+10
√

5−2
√

10−10
√

2). Obviously,
S3 = 0 if and only if h = 0, while the real zeros of h can be easily
achieved by any real root isolation procedure for polynomials [12].

Remark 1. In general, suppose Si(t) = f0(t)+∑
J
j=1 f j(t)eν jt with

0 6≡ f j(t) ∈ R[t], 0 < ν1 < · · · < νJ , and 0 < J ∈ N, then we define
Si+1(t) = S′i(t) if f ′0(t) 6≡ 0; otherwise, Si+1(t) = S′i(t)e

−ν1t = ( f ′1(t)+
ν1 f1(t))+∑

J
j=2( f ′j(t)+ν j f j(t))e(ν j−ν1)t . It’s obvious that Si+1 = 0

shares the same real roots of S′i(t) = 0. We construct Si+1 from Si,

for i = 0, · · · . This procedure terminates when Sk is a polynomial for
some k.

Theorem 7. Let f (t) be a PEF, f ′(t) the derivative of f (t) w.r.t. t,
I = (a,b) a non-empty open interval, and LI( f ′) = {I j| j = 1, . . . ,J}
a real root isolation of f ′ in I, in which I j = (a j,b j) with a =
b0 < a1 < b1 < · · · < aJ < bJ < aJ+1 = b. Furthermore, f (t) has
no real roots in any closed interval [a j,b j], 1 ≤ j ≤ J. Then,
{ (b j,a j+1) | f (b j) f (a j+1)< 0, 0≤ j ≤ J } is a real root isolation
of f (t) in I.

Proof. Since f (t) has no real roots in any closed interval [a j,b j], 1≤
j≤ J, all real roots of f (t) are in

⋃J
j=0(b j,a j+1) and f (b j) f (a j+1) 6=

0. Moreover, f (t) has at most one real root in each (b j,a j+1),
otherwise, there must be at least one real root of f ′(t) = 0 on it
by Rolle’s theorem, which is a contradiction with the definition of
LI( f ′). So, if f (b j) f (a j+1)< 0 then there exists only one real root
of f (t) in (b j,a j+1), otherwise no real root of f (t) in (b j,a j+1). This
completes the proof.

Now, let’s continue the running example. As e(
√

5−
√

2)t 6=
0, by S3 = he(

√
5−
√

2)t = 0, it follows h(t) = 0. Thus, t =

− 15+10
√

5−2
√

10−10
√

2
5(
√

5−
√

2)
∈ (−5,−4). As (−5,−4)∩(−4,12) = /0, there

is no real root of S3 = 0 in (−4,12). Hence, we have L (S3) = /0. In
addition, from (22), we have

S2(−4) = 2+(10−2
√

5)e−4(
√

5−
√

2) > 0,

S2(12) = 2− (70+2
√

5)e12(
√

5−
√

2) < 0.

So, there exists only one real root of S2 in (−4,12) by Theorem 7.
Clearly, the real root isolation of S2 in (−4,12) is same as that of
f̂ ′′.

In order to construct L(−4,12)(S1), a real root isolation of S1 in
(−4,12), from L(−4,12)(S2) by Theorem 7, the condition that there
is no real root of S1 in [a,b] for any (a,b) in L(−4,12)(S2) should
be guaranteed. This means that we have to refine the intervals in
L(−4,12)(S2) until the condition holds. This is achieved by Algorith-
m 2 below (see lines 2-13).

The following table is the bisection procedure (line 2-13) in
Algorithm 2 to refine the interval (−4,12), in which ‘∃’ (resp. ‘¬∃’)
means there exists (no) a real root in the observed interval.

(-4,12) (-4,4) (-4,0) (-2,0) (-2,-1)
S2 ∃ ∃ ∃ ∃ ∃
S1 ∃ ∃ ∃ ∃ ¬∃

Finally, a refined interval (a,b) = (−2,−1) is obtained, which
satisfies the condition of Theorem 7. Thus, (−4,−2) and (−1,12)
are two intervals that may contain at most one real root of S1(t) = 0.
In addition, as S1(−4)S1(−2) > 0 and S1(−1)S1(12) < 0, (−1,12)
contains a real root of S1(t)= 0, but (−4,−2) does not by Theorem 7.
Thus, we get a real root isolation for S1(t) = 0 in (−4,12), i.e.,
L(−4,12)(S1) = {(−1,12)}.

In order to compute L(−4,12)(S0), we repeat the above procedure,
and obtain L(−4,12)( f̂ ) = {(−4,−0.59375),(−0.390625,12)}.

Up to now, we have already explained the main idea of our
approach how to isolate real roots of a PEF by the running example.
This procedure is implemented in Algorithm 1, whose main steps can
be understood as follows:

Step 1: In line 1, compute upper and lower bounds of the real
roots of f (t);

Step 2: In line 3, construct a sequence S0(t) =
f (t), S1(t), S2(t), . . . , Sr(t), where Si is a PEF
which has the same real roots as the derivative of Si−1,
i = 1,2, . . . ,r, r ∈ N, and Sr(t) is a polynomial in t.



Step 3: Isolate all real roots of Sr(t) by calling
UPIsolating(Sr(t)) in line 4. Note that the problem
of isolating real roots of a univariate polynomial is well
studied (e.g. in [12]).

Step 4: In line 6, for i = r− 1 down to 0, construct a real root
isolation of Si from that of Si+1 using Theorem 7 by calling
PEFI. Note that during this procedure, we use I1 to record
all subintervals in which f (t) has no real roots, while I2
to record all subintervals in which f ′(t) has no real roots.
So, we only need to construct a real root isolation of Si
from that of Si+1 on the remainder part of the considered
interval by excluding all subintervals in I1 and I2, and
accordingly update I1 and I2 in each iteration, see the
detail in Algorithm 2.

Algorithm 1: PEFIsolation
Input: f (t), a PEF of the form (20) with the assumption (21),

which has no multiple real roots
Output: L , a real root isolation of f (t)

1 Calculate a lower bound a and an upper bound b on real roots
of f (t) = 0;

2 set I1← /0,I2← /0;
/* I1 records all closed subintervals of

[a,b] in which f (t) has no real roots, while
I2 records all closed subintervals of
[a,b] in which f ′(t) has no real roots. */

3 Construct a sequence, S0(t) = f (t), S1(t), S2(t), . . . , Sr(t),
where Si is a PEF, which shares the common real roots with the
derivative of Si−1, i = 1,2, . . . ,r, r ∈ N, and Sr(t) is a
polynomial;

4 L(a,b)(Sr) := UPIsolating(Sr(t)), a real root isolation of
Sr(t);

5 for i = r−1; i≥ 0; i−− do
6 [I1,I2,L ]← PEFI(S0,S1,Si,Si+1,(a,b),I1,I2,L );

7 for [c,d] ∈I2 do
8 if S0(c)S0(d)< 0 then
9 L ←L ∪{(c,d)};

10 return L ;

Theorem 8 (Correctness of PEFI). Algorithm PEFI always termi-
nates correctly.

Proof. The termination of PEFI is obvious because f1(t) = 0 and
f2(t) = 0 have no common real roots. Then we prove its correctness.

I ′1 and I ′2 are updated in line 5 and line 7, respectively. Obviously,
after every update, the properties of I ′1 and I ′2 still hold, i.e., f1(t)
has no real roots in ∪I ′1, f2(t) has no real roots in ∪I ′2, and ∪I ′1∩
∪I ′2 = /0. It is also easy to see that, after the for loop at lines 15-18,
L ′ is a real root isolation of g1(t) on (a,b)\∪(I ′1 ∪I ′2).

Theorem 9 (Correctness of PEFIsolation). Algorithm
PEFIsolation always terminates and returns a real root
isolation for a given PEF f , if f does not have multiple real roots.

Proof. Termination is immediately obtained from Theorem 8. Then
we prove its correctness. After the for loop in line 2, L is a real root
isolation of S0(t) = 0 ( i.e., f (t) = 0) on (a,b)\∪(I1∪I2). Because
f ′(t) has a constant nonzero sign in each interval of I2, f (t) has at
most one real root in each interval of I2 and this can be decided by
checking the signs of f (t) at two endpoints of the interval. Moreover,
since there is no real root of f (t) = 0 in ∪I1, so L2 is a real root
isolation of S0(t) in (a,b).

Algorithm 2: PEFI
Input: (1) PEFs f1(t), f2(t),g1(t),g2(t) s.t. f2(t) and f ′1(t)

share same real zeros, g2(t) and g′1(t) share same real
zeros, and f1(t) and f2(t) have no common real zeros;

(2) an open interval (a,b);
(3) I1,I2, two sets of closed intervals contained in (a,b), s.t.
f1(t) has no real zeros in ∪I1, f2(t) has no real zeros in ∪I2,
∪I1∩∪I2 = /0 ;
(4) L , a real root isolation of g2(t) on (a,b)\∪(I1∪I2).
Output: (1) I ′1 and I ′2 with the same properties as I1 and

I2, respectively;
(2) L2, a real root isolation of g1(t) on (a,b)\∪(I ′1 ∪I ′2).

1 I ′1←I1, I ′2←I2;
2 for (l,u) in L do
3 while 0 ∈ g1([l,u]) do
4 if 0 6∈ f1([l,u]) then
5 I ′1←I ′1 ∪{[l,u]}; break;

6 if 0 6∈ f2([l,u]) and f1(l) f1(u) 6= 0 then
7 I ′2←I ′2 ∪{[l,u]}; break;

8 if g2(l)g2(
l+u

2 )< 0 then
9 u← l+u

2 ;

10 else if g2(
l+u

2 ) = 0 then
11 l← 3l+u

4 ; u← l+3u
4 ;

12 else
13 l← l+u

2 ;

14 L1←L ; L2← /0; L3←{(a1,b1), . . . ,(am,bm)};
/* where a1,b1, · · · ,am,bm are the endpoints of

the intervals in I1 and I1 s.t.
a≤ a1 < b1 < · · ·< am < bm ≤ b, (ai,bi)⊆ (a,b)\
∪(I1∪I2) for i = 1, . . . , m, and
∪m

i=1(ai,bi) = (a,b)\∪(I1∪I2). */
15 for (c,d) in L3 do
16 L1(c,d)←{I | I ∈L1 and I ⊂ (c,d)};
17 Obtain a real root isolation L(c,d) for g1(t) on (c,d) from

L1(c,d) by Theorem 7;
18 L2←L2∪L(c,d);

19 return I ′1, I ′2, L2;

3) Multiple Real Roots of PEFs

Termination of the algorithm PEFIsolation with an input
PEF f rely on that f does not have multiple real roots, which is
however not obvious to check. In this section, we deal with multiple
real roots of PEF based on Schanuel’s conjecture.

Definition 6 (Algebraic independence). A set of complex numbers
S= {a1, . . . ,an} is algebraically independent over Q if the elements of
S do not satisfy any non-trivial polynomial equation with coefficients
in Q.

Definition 7 (Transcendence degree). Let L be a field extension of
Q, the transcendence degree of L over Q is defined as the largest
cardinality of an algebraically independent subset of L over Q.

Conjecture 1 (Schanuel’s conjecture). Given any complex numbers
z1, . . . ,zn that are linearly independent over Q, the extension field
Q(z1, . . . ,zn,ez1 , . . . ,ezn) has transcendence degree of at least n over
Q.



In what follows, we handle the multiple real roots of PEF. Let

f (t) = f0(t)+ f1(t)eλ1t + · · ·+ fr(t)eλrt ,

where f0, . . . , fr ∈Q[t], and λ1, . . . ,λr are different algebraic numbers.
Let a1, . . . ,an be an integer-basis of λ1, . . . ,λr. Then a1, . . . ,an
are linearly independent over Q, and f (t) is a polynomial w.r.t.
t,ea1t , . . . ,eant , denoted by f (t,ea1t , . . . ,eant).

Since f (t,y1, . . . ,yn) is a polynomial, by factorization we have

f (t,y1, . . . ,yn) = f m1
1 (t,y1, . . . ,yn) · · · f ms

s (t,y1, . . . ,yn),

whose square free part is denoted by

f̂ (t,y1, . . . ,yn) = f1(t,y1, . . . ,yn) · · · fs(t,y1, . . . ,yn).

This yields a PEF f̂ (t,ea1t , . . . ,eant), denoted as the square free part
of f (t,ea1t , . . . ,eant).

The following corollaries can be derived based on Schanuel’s
conjecture:

Corollary 3. Let a1, . . . ,an be algebraic numbers that are linearly
independent over Q. The transcendence degree of the field extension
Q(t,ea1t , . . . ,eant) is at least n, if t 6= 0.

Proof. Since a1, . . . ,an are linearly independent over Q and t 6= 0,
a1t, . . . ,ant are linearly independent over Q. By Schanuel’s conjec-
ture, the transcendence degree of the field extension

Q(a1t, . . . ,ant,ea1t , . . . ,eant)

is at least n. Besides, a1, . . . ,an are algebraic numbers, thus
Q(t) = Q(a1t, . . . ,ant), i.e., Q(a1t, . . . ,ant,ea1t , . . . ,eant) =
Q(t,ea1t , . . . ,eant). Therefore, The transcendence degree of the
field extension Q(t,ea1t , . . . ,eant) is at least n.

Corollary 4. Let f (t,ea1t , . . . ,eant) be a PEF w.r.t. t, and thus a poly-
nomial w.r.t. t,ea1t , . . . ,eant , where a1, . . . ,an are linearly independent.
Suppose f (t,y1, . . . ,yn) is square free, then f (t,ea1t , . . . ,eant) has no
multiple real root except 0.

Proof. Since f (t,y1, . . . ,yn) is square free, we may write

f (t,y1, . . . ,yn) = f1(t,y1, . . . ,yn) · · · fm(t,y1, . . . ,yn),

where, for any 1 ≤ i, j ≤ m, i 6= j, fi(t,y1, . . . ,yn) is irreducible and
fi(t,y1, . . . ,yn) and f j(t,y1, . . . ,yn) are co-prime.

We first prove, by contradiction, that fi(t,ea1t , . . . ,eant) and
f j(t,ea1t , . . . ,eant) have no nonzero common real root. Suppose t0 6= 0
is a common real root of fi(t,ea1t , . . . ,eant) and f j(t,ea1t , . . . ,eant).
By Corollary 3, we have that the transcendence degree of
Q(t0,ea1t0 , . . . ,eant0) is at least n. Then there must exist n elements
in {t0,ea1t0 , . . . ,eant0} that are algebraically independent. Without loss
of generality, let {t0,ea1t0 , . . . ,ean−1t0} be the n elements that are alge-
braically independent. Besides, let g(t,y1, . . . ,yn−1) be the resultant of
fi(t,y1, . . . ,yn) and f j(t,y1, . . . ,yn) w.r.t. yn, then (t0,ea1t0 , . . . ,ean−1t0)
is a real root of g(t,y1, . . . ,yn−1). Further since fi(t,y1, . . . ,yn) and
f j(t,y1, . . . ,yn) are co-prime, g(t,y1, . . . ,yn−1) is non-trivial poly-
nomial, indicating that (t0,ea1t0 , . . . ,ean−1t0) is a real root of some
non-trivial polynomial. This contradicts that {t0,ea1t0 , . . . ,ean−1t0}
are algebraically independent. Consequently, fi(t,ea1t , . . . ,eant) and
f j(t,ea1t , . . . ,eant) have no nonzero common real root.

Next, we prove that fi(t,ea1t , . . . ,eant) has no multiple real root.
Suppose

fi(t,ea1t , . . . ,eant) = h0(t)+
s

∑
j=1

h j(t)(ea1t)b j1 · · ·(eant)b jn ,

where, h0(t), . . . ,hn(t) are non-trivial polynomials, b jk ∈N, 1≤ j≤ s,
and 1≤ k ≤ n. Then we have

f ′i (t,e
a1t , . . . ,eant) = h′0(t)+

s

∑
j=1

(h′j(t)+(a1b j1 + · · ·+anb jn)h j(t))(ea1t)b j1 · · ·(eant)b jn .

Moreover,

fi(t,y1, . . . ,yn) = h0(t)+
s

∑
j=1

h j(t)y
b j1
1 · · ·y

b jn
n ,

f ′i (t,e
a1t , . . . ,eant) = h′0(t)+

s

∑
j=1

(h′j(t)+(a1b j1 + · · ·+anb jn)h j(t))y
b j1
1 · · ·y

b jn
n .

Consider the degree and h0(t) to be non-trivial, it is evident to
see that fi(t,y1, . . . ,yn) - f ′i (t,y1, . . . ,yn). Then fi(t,y1, . . . ,yn) and
f ′i (t,y1, . . . ,yn) are co-prime, since fi(t,y1, . . . ,yn) is irreducible. For
the same reason as above, fi(t,ea1t , . . . ,eant) and f ′i (t,e

a1t , . . . ,eant)
have no common real root. Therefore, fi(t,ea1t , . . . ,eant) has no
multiple real root.

4) Complexity analysis of PEFIsolation
Here we give a rough complexity analysis of PEFIsolation.

Suppose f (t) = f0(t)+ f1(t)eν1t + · · ·+ fs(t)eνst , L( f ) and U( f ) are
respectively a lower bound and an upper bound on real roots of f (t),
deg( f ) = (d0,d1, · · · ,ds). PEFIsolation computes all real roots
for a PEF chain f (t) = 0, f ′(t) = 0, f ′′(t) = 0, · · · , totally, d0 + · · ·+
ds−1 + s+1 such PEFs at most, with the corresponding degree. The
last element in the chain is a polynomial with degree ds, so it has
at most ds real roots. Clearly, for each function in the chain, the
number of intervals in its real root isolation is at most d0+d1+ · · ·+
ds + s+ 1. In addition, suppose the lower bound on the distances
between real roots of Si and those of Si+1 is δ , then the while loop
(line 3-13) in Algorithm 2 always terminates after the length of an
interval is less than δ . Since the length of every interval is less than or
equal to U( f )−L( f ), the while loop must terminate in log2

U( f )−L( f )
δ

steps. In a summary, the complexity of PEFIsolation is about
O((∑s

i=0 di + s+1)2 log2
U( f )−L( f )

δ
).

V. PURELY IMAGINARY EIGENVALUES

In this section, we give a decision procedure for the purely
imaginary case described in Section II-C.

A. Reformulation of the Problem

Given an SS as (4), in which all the matrices A1, . . . ,Am have only
purely imaginary eigenvalues, every component of u1,u2, . . . ,um is
a TMF w.r.t. t and

∧m
i=1 Λ(Ai)∩Γ(ui) = /0, the initial set X and the

unsafe set Y, which both are two open semi-algebraic sets, the goal
is to determine whether

F (X,Y) = ∃x∃y∃t : x ∈ X∧y ∈ Y∧ t ≥ 0∧Φ(x, t) = y, (24)

holds or not.

B. Solution Form

Theorem 10. Given an SS as (4) as described above, for any initial
point x ∈ Rn, the solution Φ(x, t) is of the following form

(Φ(x, t))i =
Ki

∑
k=1

zc
ik(x)cos(γikt)+ zs

ik(x)sin(γikt), (25)

for i = 1, . . . ,n, where zc
ik(x),z

s
ik(x) ∈ R[x] and γik ∈ R.



Proof. Similar to Theorem 5.

Example 3. Let 
ξ̇1
ξ̇2
ξ̇3
ξ̇4

=


−ξ2
ξ1

2ξ3 +2ξ4−ξ 2
1

−3ξ3−2ξ4 +ξ1ξ2

 , (26)

an initial state x = (x1,x2,x3,x4) ∈ R4, then the solution is

ξ1(t,x) = x1 cos(t)− x2 sin(t),

ξ2(t,x) = x1 sin(t)+ x2 cos(t),

ξ3(t,x) =
√

2
2

(x2
1 +2x1x2−2x2

2 +2c+2d)sin(
√

2t)

+(2x1x2 + x2
2 + c)cos(

√
2t)

+
1
2
(x2

1−4x1x2− x2
2)cos(2t)

− (x2
1 + x1x2− x2

2)sin(2t)−
x2

1 + x2
2

2
,

ξ4(t,x) =
1
2
(x2

1−2x1x2−4x2
2 +2x4)cos(

√
2t)

−
√

2
2

(x2
1 +4x1x2− x2

2 +3x3 +2x4)sin(
√

2t)

+
1
4
(−5x2

1 +5x2
2 +4x1x2)cos(2t)

− 1
2
(x2

1− x2
2 +5x1x2)sin(2t)+

3
4
(x2

1 + x2
2),

which is a TMF vector.

As X and Y are two open semi-algebraic sets, there exist some
polynomial p1(x), . . . , pJ(x) such that

X = {x ∈ Rn | p1(x)> 0, . . . , pJ1(x)> 0},
Y = {x ∈ Rn | pJ1+1(x)> 0, . . . , pJ(x)> 0}.

Thus, the problem (24) can be further reduced to

F (X,Y) = ∃x∃y∃t : Ω, (27)

where,

Ω = p1(x)> 0, . . . , pJ1(x)∧ pJ1+1(y)> 0, . . . , pJ(y)> 0

∧ t ≥ 0∧
n∧

i=1
yi =

Ki

∑
k=1

zc
ik(x)cos(γikt)+ zs

ik(x)sin(γikt). (28)

C. Reduction to Decision Problem of Tarksi’s Algebra

In this part, we show the problem (27) can be reduced to the
decision problem of Tarski’s algebra [39]. There have been many
tools available for the decision procedure, e.g., [29], [22], [11],
[13], [6], [19], [36], all of which are based on cylindrical algebraic
decomposition (CAD) [10].

From now on, we will focus on how to reduce (28) to Tarski’s
algebra equivalently.

For (28), let Γ = {γik | 1 ≤ k ≤ Ki,1 ≤ i ≤ n}, i.e., the set of all
reals appearing in some trigonometric expression in (28), and ∆ =
{δ1, . . . ,δN} be an integer-basis of Γ, i.e., for any γ ∈ Γ, γ can be
written as a linear combination of ∆ with integer coefficients.

In addition, obviously, cos(γt) and sin(γt) both are polynomials
in sin(δ1t),cos(δ1t), . . . ,sin(δNt),cos(δNt), for 1≤ k≤ Ki,1≤ i≤ n,
that is,

cos(γikt) = f c
ik(sin(δ1t),cos(δ1t), . . . ,sin(δNt),cos(δNt)), (29)

sin(γikt) = f s
ik(sin(δ1t),cos(δ1t), . . . ,sin(δNt),cos(δNt)), (30)

where f c
ik, f S

ik are polynomials in their arguments. Denote the follow-
ing formula by Ξ, i.e.,

Ξ =̂ x ∈ X∧y ∈ Y∧
N∧

j=1
u2

j + v2
j = 1∧

n∧
i=1

yi =
Ki

∑
k=1

(
zc

ik(x) f c
ik(u1,v1, . . . ,uN ,vN)

+zs
ik(x) f s

ik(u1,v1, . . . ,uN ,vN)

)
.

Theorem 11. Suppose X,Y both are open semi-algebraic sets, Γ is
defined as above, which is a set of real numbers, ∆ is an integer-
basis of Γ, f c

ik and f s
ik are defined as (29), (30), and Ω and Ξ are

two formulas defined as above, then

∃x∃y∃t : Ω⇔∃x∃y∃N
j=1u j∃N

j=1v j : Ξ. (31)

Proof. It is obviously that

∃x∃y∃t : Ω⇒∃x∃y∃N
j=1u j∃N

j=1v j : Ξ, (32)

since if there exist x,y, t satisfying Ω, let u j = sin(δ jt),v j = cos(δ jt),
then Ξ is satisfied. So, we just need to prove that

∃x∃y∃N
j=1u j∃N

j=1v j : Ξ⇒∃x∃y∃t : Ω. (33)

Let

S = {(sin(δ1t),cos(δ1t), . . . ,sin(δNt),cos(δNt)) | t ≥ 0},

S = {(u1,v1, . . . ,uN ,vN) ∈ R2N |
N∧

i=1
u2

i + v2
i = 1}.

From Theorem 2, it follows that S is dense in S. Denote w =
(u1,v1, . . . ,uN ,vN). Let x′,y′,u′1, . . . ,u

′
N ,v
′
1, . . . ,v

′
N satisfy Ξ, i.e.,

x′ ∈ X∧y′ ∈ Y∧w′ ∈ S∧
n∧

i=1
y′i =

Ki

∑
k=1

zc
ik(x
′) f c

ik(w
′)+ zs

ik(x
′) f s

ik(w
′),

where w′ = (u′1,v
′
1, . . . ,u

′
N ,v
′
N). Since Y is an open set, y′ ∈Y, there

exists an open ball Bε (y′)⊂ Y, where Bε (y′) is the ball with center
y′ and radius ε > 0. Moreover,

yi =
Ki

∑
k=1

zc
ik(x
′) f c

ik(w)+ zs
ik(x
′) f s

ik(w),

is a continuous function on w (denote by y= y(w)). Thus, there must
exist an open ball Bσ (w′) such that y(Bσ (w′))⊂ Bε (y′)⊂Y, where
σ > 0. Besides, as w′ ∈ S and S is dense in S, there must exist w0 ∈
Bσ (w′), i.e., there exists t0 > 0 with (a1t0, . . . ,aNt0) ∈ Bσ (w′) and
y0 = y(w0) ∈ Bε (y′)⊂ Y. Hence, x′,y0, t0 satisfy Ω. This completes
the proof.

From the decidability of Tarski’s algebra [39], an immediate result
of Theorem 11 is

Theorem 12. The problem described in (27) is decidable.

Example 4. For a given SS as(
ξ̇1
ξ̇2

)
=

(
2 2
−3 −2

)(
ξ1
ξ2

)
+

(
cos(t)
sin(t)

)
,

and an initial point ξ (0) = (x1,x2), its solution is

Φ((x1,x2), t) =(
(x1 +2)α1 +

√
2(x1 + x2)β1−2α2−β2

(x2−2)α1−
√

2( 3
2 x1 + x2 +1)β1 +2α2 +2β2

)
,



where α1 = cos(
√

2t), β1 = sin(
√

2t), α2 = cos(t), β2 = sin(t). Given
an initial set X and unsafe set Y defined as

X = {(x1,x2) | x2
1 + x2

2 < 1},
Y = {(y1,y2) | y1 + y2 > 4},

we want to check whether this system is safe or not. By Theorem 11,
we just need to check whether

F := x2
1 + x2

2 < 1∧α
2
1 +β

2
1 = 1∧α

2
2 +β

2
2 = 1

∧ (x1 + x2)α1−
√

2(
1
2

x1 +1)β1 +β2 > 4,

is satisfiable or not. It is easy to prove that there does not exist any
x1, x2, α1, α2, β1, β2 ∈R such that the above formula holds. Thus,
the system is safe.

On the other hand, if the unsafe set Y is replaced by

Y′ = {(y1,y2) | y1 + y2 > 3},

then

F ′ = x2
1 + x2

2 < 1∧α
2
1 +β

2
1 = 1∧α

2
2 +β

2
2 = 1

∧ (x1 + x2)α1−
√

2(
1
2

x1 +1)β1 +β2 > 3.

Let x1 = 0.99, x2 = 0, α1 =
√

5
5 , β1 = − 2

√
5

5 , α2 = 0, β2 = 1, then
(x1 + x2)α1 −

√
2( 1

2 x1 + 1)β1 + β2 ≈ 3.334 > 3. Thus, the system
becomes unsafe.

Example 5. Continue to consider the Example 3. Let the initial set
X and unsafe set Y defined as following,

X = {(x1,x2,x3,x4) | −1 < x1 < 1∧ x2 = 0∧ x2
3 + x2

4 < 1},
Y = {(y1,y2,y3,y4) | y3 + y4 > 4},

we want to check whether this system is safe or not. In order to use
Theorem 11, we first introduce some new variables as,

α1 = sin(t),β1 = cos(t),α2 = sin(
√

2t),q = cos(
√

2t).

Then the solution of (26) is

ξ1(t,x) = x1β1− x2α1,

ξ2(t,x) = x1α1 + x2β1,

ξ3(t,x) =
√

2
2

(x2
1 +2x1x2−2x2

2 +2c+2d)α2

+(2x1x2 + x2
2 + c)β2

+
1
2
(x2

1−4x1x2− x2
2)(β

2
1 −α

2
1 )

−2(x2
1 + x1x2− x2

2)α1β1−
x2

1 + x2
2

2
,

ξ4(t,x) =
1
2
(x2

1−2x1x2−4x2
2 +2x4)β2

−
√

2
2

(x2
1 +4x1x2− x2

2 +3x3 +2x4)α2

+
1
4
(−5x2

1 +5x2
2 +4x1x2)(β

2
1 −α

2
1 )

− (x2
1− x2

2 +5x1x2)α1β1 +
3
4
(x2

1 + x2
2).

By Theorem 11, we just need to check whether

F := −1 < x1 < 1∧ x2
3 + x2

4 < 1∧α
2
1 +β

2
1 = 1∧

α
2
2 +β

2
2 = 1∧

(
1
4 (3α2

1 −3β 2
1 −4α1β1 +1)x2

1
+ 1

2 (x
2
1 +2x3 +2x4)β2−

√
2

2 x3α2

)
> 4,

is satisfiable or not. It is easy to prove that there does not exist any
x1, x2, x3, x4, α1, α2, β1, β2 ∈R such that the above formula holds.
Thus, the system is safe.

Remark 2. Note that the openness of the initial set X and the unsafe
set Y plays a very important role in our approach. Otherwise, there
may be some point on the boundary of X or Y , which cannot be
contained by any ball contained correspondingly in X or Y . But in
case either of them is not open, we can resort to the below approach
to approximate the reachable set.

VI. ABSTRACTION OF SOLVABLE DYNAMICAL SYSTEMS

In this section, we present an approach to approximate the reach-
able sets of the general solvable dynamical systems SS (4) by
abstracting to the case only with real eigenvalues as discussed in
Section IV.

A. Solution Form of the General Case

Given an SS of (4), we will show that its solution is a PETF
vector. Namely,

Theorem 13. Given an SS as (4) and an initial point x ∈ Rn, then
its solution Φ(x, t) can be represented by the following form

(Φ(x, t))i =
Ki

∑
k=1

eαikt(zc
ik(x)cos(γikt)+ zs

ik(x)sin(γikt)), (34)

for i = 1, . . . ,n, where zc
ik(x),z

s
ik(x) ∈ R[x] and αik,γik ∈ R.

Proof. Similar to Theorem 5.

B. Approximation of Reachable Sets by Abstraction

Using the solution form above, the reachability of Y from X , i.e.
the safety problem, can be formally described as
∃x∃y∃t : Ω, where the quantifier free part Ω is defined by

Ω =̂ x ∈ X∧y ∈ Y∧ t ≥ 0∧
n∧

i=1
yi =

Ki

∑
k=1

eαikt(zc
ik(x)cos(γikt)+ zs

ik(x)sin(γikt)).

The reachability problem of this form is generally undecidable due
to the trigonometric functions in the formula. However, if there are
no such functions it becomes decidable, and a decision procedure
has been proposed in [16]. This fact hints us to eliminate the
trigonometric functions by overapproximation of the reachable set,
which is analogous to the technique used in Section V. Let

Ξ =̂ x ∈ X∧y ∈ Y∧ t ≥ 0∧
N∧

j=1
u2

j + v2
j = 1∧

n∧
i=1

yi =
Ki

∑
k=1

eαikt
(

zc
ik(x) f c

ik(u1,v1, . . . ,uN ,vN)
+zs

ik(x) f s
ik(u1,v1, . . . ,uN ,vN)

)
.

Then it follows immediately that

Theorem 14. ∃x∃y∃t : Ω⇒∃x∃y∃t∃N
j=1u j∃N

j=1v j : Ξ.

Hence, we can conclude, by Theorem 14, the system to be verified
is safe, i.e., Y is not reachable from X , as long as we can prove
∃x∃y∃t∃N

j=1u j∃N
j=1v j : Ξ does not hold.

VII. IMPLEMENTATION AND EXPERIMENTAL RESULTS

We have discussed the reachability problem for four cases: nilpo-
tent, real, purely imaginary and general case. For the nilpotent and
purely imaginary case, the reachability problem can be reduced to
a quantifier elimination problem in Tarski’s algebra by introducing
some new variables. Therefore, it is easy to obtain the decidability
since the quantifier elimination of Tarski’s algebra is decidable. We
implement a tool to decide the reachability problem for the real case.
And then using such tool to obtain an incomplete method for the
general case.



A. Part 1: Only With Real Eigenvalues

We have implemented the proposed approach for the case only
with real eigenvalues described in section IV in Mathematica as a
prototype, called LinR 2, which takes an SS reachability problem as
input, and gives either False if the problem is not satisfiable, or True
otherwise associated with some valid sample points.

Remark 3. When we implement the above algorithms, some optimiz-
ing strategies are adopted for improving efficiency. For example, if
the input function can be factorized, then we isolate the real roots of
each factor rather than the input function itself, and then refine the
resulted intervals if necessary. We omit the implementation details
here.

In the following, we report some experimental results with LinR.

Example 6. Consider the following linear dynamical system

ξ̇ =

√2
−
√

2
−1

ξ +

1− t
tet

e−t

 .
Let

X = {(x1,x2,x3)
T | 1− x2

1− x2
2− x2

3 > 0},
Y = {(y1,y2,y3)

T | y1 + y2 + y3 +2 < 0}.

The safety property to be verified is to check if some state in Y is
reachable from X.

Obviously, X∩Y = /0, and

ξ (t) =

x1e
√

2t +
√

2t−
√

2+1
2 +

√
2−1
2 e

√
2t

x2e−
√

2t +
(1+
√

2)t−1
3+2
√

2
et + e−

√
2t

3+2
√

2
x3e−t + te−t


is the solution of the LDS. Thus, the reachability problem becomes

F = ∃x1∃x2∃x3∃t. Φ(x1,x2,x3, t);

Φ(x1,x2,x3, t) = 1− x2
1− x2

2− x2
3 > 0∧ t > 0

∧ x1e
√

2t + x2e−
√

2t + x3e−t +h(t)< 0,

where h(t) = e−
√

2t

3+2
√

2
+ te−t +

√
2t−
√

2+5
2 +

(1+
√

2)t−1
3+2
√

2
et +

√
2−1
2 e

√
2t .

Then, using Brown’s projection operator [19] to eliminate x1,x2,x3
successively (Step 3 in Section IV-C), we have

q3(x1,x2,x3, t) = (x2
1 + x2

2 + x2
3−1)(ax1 +bx2 + cx3 +h)

q2(x2,x3, t) = a(x2
2 + x2

3−1)
(−a2 +a2x2

2 +a2x2
3 +b2x2

2 +2bcx2x3 +2bhx2 + c2x2
3 +2chx3 +h2),

q1(x3, t) = a(x3−1)(x3 +1)(a2 +b2)(2chx3 +h2−b2 +b2x2
3 + c2x2

3)
(−a2 +a2x2

3 +2chx3 +h2−b2 +b2x2
3 + c2x2

3),

q0(t) = ab(c−h)(c+h)(b2 + c2−h2)(a2 +b2 + c2)
(a2 +b2)(b2 + c2)(a2 +b2 + c2−h2),

where a = e
√

2t , b = e−
√

2t and c = e−t .
Isolate all real roots of q0(t) = 0 in (0,+∞) (as we only care t > 0)

(Step 4 in Section 4), and obtain L (q0) = {(1.08,1.29)}.
Lift the real root isolation in the order t,x3,x2,x1 successively

using the openCAD lifting procedure (Step 5 in Section 4), fi-
nally, we obtain 48 sample points, in which the sample point
{−0.835,−0.212,0.184,2.} satisfies Φ, which implies that the safety
property is not satisfied with the counter example starting from
(−0.835,−0.212,0.184) ∈ X , and ending at time t = 2.

2Both the tool and the case studies in this section can be found at http:
//lcs.ios.ac.cn/∼chenms/tools/LinR.tar.bz2

Example 7 (Adapted from [1]). Consider a vessel of water con-
taining a radioactive isotope, to be used as a tracer for the food
chain, which consists of aquatic plankton varieties phytoplankton
A and zooplankton B. Let ξ1(t) be the isotope concentration in
the water, ξ2(t) the isotope concentration in A and ξ3(t) the iso-
tope concentration in B. The dynamics of the vessel is modelled

as ξ̇ = Aξ , where A =

−3 6 5
2 −12 0
1 6 −5

. The initial radioactive

isotope concentrations ξ1(0) = x1 > 0,ξ2(0) = 0,ξ3(0) = 0.

The safety property of our concern is whether ∀t > 0 ξ1(t) ≥
ξ2(t) + ξ3(t). To this end, we consider a more general problem:
For which n1,n2 ∈ N s.t. F (n1,n2) = ∃x1 > 0 ∃t > 0 ξ1(t) <
n1ξ2(t)+n2ξ3(t) holds.

It is easy to see that the matrix A is diagonalizable with eigenvalues
0,−10+

√
6,−10−

√
6. When (n1,n2) = (1,1), using the method

in Section IV-C, we obtain two sample points for (x1, t), i.e.,
(−0.1,1),(0.1,1). But none of them satisfies F (1,1), which simply
implies the safety property holds. When (n1,n2) = (2,2), similarly,
we obtain four sample points for (x1, t), i.e., (−0.1,0), (0.1,0),
(−0.1,1), (0.1,1), in which (0.1,1) satisfies F (2,2). It can be proved
that ξi(t) ≥ 0 for any t > 0 and i = 1,2,3. So, it is clear that, if
F (n1,n2) holds, F (m1,m2) holds for m1 ≥ n1 and m2 ≥ n2. Then,
by checking some pairs of (n1,n2)∈N×N in a similar way as above,
we conclude that all pairs (n1,n2) ∈N×N satisfy F (n1,n2), except
for the pairs {(0,0),(0,1),(0,2), (1,0),(1,1),(1,2), (2,0),(2,1),
(3,0),(3,1), (4,0), (5,0)}.

Example 8 ([Adapted from [1]). Consider a typical home with
attic, basement and insulated main floor. Let x3(t),x2(t),x1(t) be the
temperature in the attic, main living area and basement respectively,
and t is the time in hours. Assume it is winter time, the outside
temperature is nearly 35◦F, and the basement earth temperature is
nearly 45◦F. Suppose a small electric heater is turned on, and it
provides a 20◦F rise per hour. We want to verify that the temperature
in main living area will never reach too high (maybe 70◦F). Analyze
the changing temperatures in the three levels using Newton’s cooling
law and given the value of the cooling constants, we obtain the model
as follows:

ẋ1 =
1
2
(45− x1)+

1
2
(x2− x1),

ẋ2 =
1
2
(x1− x2)+

1
4
(35− x2)+

1
4
(x3− x2)+20,

ẋ3 =
1
4
(x2− x3)+

3
4
(35− x3),

with the initial set X = {(x1,x2,x3)
T | 1− (x1−45)2− (x2−35)2−

(x3−35)2 > 0} and the unsafe set Y = {(y1,y2,y3)
T | y2−70 > 0}.

The safety property we are concerning is to check if some state in Y
is reachable from X, which holds by using LinR.

Example 9. Consider a non-linear SS as follows,

ξ̇1 =−ξ1 +2ξ2,

ξ̇2 = ξ1−ξ2,

ξ̇3 =−ξ3 +ξ1ξ2,

with the initial set X = {(x1,x2,x3)
T | −x1+x2−x3+2 < 0} and the

unsafe set Y = {(y1,y2,y3)
T | −y1 + y2− y3−2 > 0}. For an initial

http://lcs.ios.ac.cn/~chenms/tools/LinR.tar.bz2
http://lcs.ios.ac.cn/~chenms/tools/LinR.tar.bz2


point x = (x1,x2,x3), the solution is,

ξ1(t,x) = (
1
2
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√
2

2
b)e(

√
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2
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√
2

2
b)e−(

√
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1
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The safety property we are concerning is to check if some state in
Y is reachable from X, i.e., check whether the following formula is
true of not,

∃x1∃x2∃x3∃t :− x1 + x2− x3 +2 < 0∧ t ≥ 0

∧−ξ1 +ξ2−ξ3−2 > 0.

Using our tool, a point (x1,x2,x3, t) = (−36.1203, 20.7631, 59.1,1)
can be found that satisfy the above formula, which means that the
system will reach Y from the initial point (−36.1203,20.7631,59.1)∈
X at time t = 1. Thus, it is unsafe.

The above four examples are verified by LinR. Both the time
and memory costs on a 64-bit Linux computer with a 2.93GHz
Intel Core-i7 processor and 4GB of RAM are shown in Table I.
Besides, we have also compared on the same platform with the
performance of Strzeboński’s approach (i.e., CT1D) [38], as well
as verification tools dReach [25], HSolver [33], and Flow* [7] on
these examples. Note that, both dReach and Flow* cannot handle
unbounded model checking, and even for BMC, they are less efficient
than our tool in many cases (see Example 6, Example 7 and Example
9) 3. In particular, Flow* accepts only rectangular initial set, i.e.
each variable needs to be specified within a closed interval and
polynomial constraints are not allowed, and thus we tried different
cube to approximate the spherical initial set in Example 6, while
none of them can derive a desired result (“unsafe”). As for HSolver,
due to the rejection of “sqrt”, we simplify the original model by
replacing all the irrational numbers with their approximate decimals,
however, 2 of the 3 examples still can not be answered by HSolver
in reasonable time and memory.

Remark 4. In the above examples, all constraints are open sets.
Actually, more general initial and unsafe sets, i.e., when either Pre(X)
or Post(X) is not open semi-algebraic, can be coped with in our
approach also, as we have implemented CAD in the algorithms. For
the Example 3.4 in [27], where A is diagonalizable with rational
eigenvalues and Pre(X) and Post(X) are both closed sets, it takes 57
milliseconds using Lafferriere et al.’s approach based on quantifier
elimination by QEPCAD [11]. In contrast, LinR takes 39 milliseconds,
and CT1D takes 33 milliseconds. In brief, our approach shares
nearly same complexity as Strzeboński’s in general case, but is
still better than other approaches, see Table II (QEPCAD stands for
Lafferriere et al.’s approach).

Remark 5. It is worth clarifying the aim of the comparison done
in this section, though we recognize that the comparisons with
dReach, Flow* and HSolver are not essentially fair in general, due

3Here, we set the time bounds 2s, 2s, 5s and 2s resp. for examples 6, 7, 8
and 9 when using dReach and Flow*.

to distinction of their scopes. A more reasonable way of doing the
comparison might be with several state-of-the-art tools for quanti-
fier elimination, e.g. REDLOG [14], QEPCAD, and SyNRAC [24].
However, these implementations are not capable of dealing with the
examples listed in Table I, as we are considering more general classes
of systems featuring decidability results. For instance, SyNRAC per-
forms quantifier elimination only over polynomial formulas, yet not
available for constraints involving transcendental functions. Whilst,
CT1D, a generalized CAD implementation of Mathematica’s Reduce
command, is theoretically competent in solving those examples, and
thus is listed as one of the candidates in Table I.

Aiming at an extensive evaluation of our algorithms, especially for
the efficiency, we resort to the verification community by performing
comparisons with tools therein for reachability computation. Whereas
unfortunately, neither dReach, Flow*, HSolver nor SpaceEx [15]
is fully compatible with our examples, and therefore some simpli-
fications or approximations over the examples are conducted before
triggering those tools. For instance, we feed dReach and Flow* with
a time bound respectively for each example, as they cannot handle
unbounded verification; we replace the unbounded initial set with a
small compact one in Example 7 and 9 when evaluating HSolver,
dReach and Flow*, due to their intractability of unbounded initial
set; while a rectangular approximation of the initial set is always
needed for Flow* if the variables are not originally specified within
closed intervals.

Particularly, for systems considered in this paper, if no simplifi-
cation or approximation techniques are involved, one could get an
immediate overview of the advantages of our approach through Table
III.

B. Part 2: Abstraction of Solvable Dynamical Systems

To demonstrate the effectiveness of our technique which uses
abstraction for general solvable dynamical systems with complex
eigenvalues, we have extended our tool called LinR [16] in Math-
ematica, which has been demonstrated more efficient than existing
approaches based on approximation and numeric computation in
general, e.g., HSolver, dReach, FLOW*, etc. For systems with real
or purely imaginary eigenvalues, the tool produces an exact result
in finite time declaring the system “SAFE” or “UNSAFE”; while
for systems with complex eigenvalues where overapproximation is
used, the algorithm is guaranteed to terminate in a finite number
of steps, either by finding a real counterexample (sample point) in
the concrete system and declaring the system “UNSAFE”, or by
claiming the system “SAFE” when the abstracted system is safe,
i.e. no counterexample is detected, or returning an “UNKNOWN”
answer when the abstracted system is unsafe but the concrete system
is safe, where only spurious counterexamples can be derived. In what
follows, we illustrate our approach by several real-world examples.

1) Pond Pollution
Consider three ponds connected by streams, where the first pond

has an external pollution source that spreads via the connecting
streams to the other two ponds. Denote x1(t),x2(t),x3(t) as the
amount (lbs) of pollutant in ponds 1, 2, 3 respectively, and t as the
time in minutes. Assume that the pollutant is well-mixed in each
pond, and we plan to verify that the amount of pollutant in pond 2
stays higher than that in pond 3 with an offset, 6 lbs for instance. By
using a compartment analysis and instantiating the parameters4, we

4For more details, please refer to http://www.math.utah.edu/∼gustafso/
s2013/2250/systemsExamplesTheory2008.pdf

http://www.math.utah.edu/~gustafso/s2013/2250/systemsExamplesTheory2008.pdf
http://www.math.utah.edu/~gustafso/s2013/2250/systemsExamplesTheory2008.pdf


LDS
Time (sec) Memory (kb)

LinR CT1D dReach HSolver Flow* LinR CT1D dReach HSolver Flow*
Example 6 1.35 × 37.36 – – 112 × 3812 – –
Example 7 0.03 0.20 0.71 – – 131 2018 3816 – –
Example 8 1.68 × 0.05 0.72 16.50 166 × 3812 1076932 113492
Example 9 17.56 × 22.48 – – 580 × 3820 – –
× : the verification fails by non-termination within reasonable amount of time (10 hours)
– : the verification fails because of giving an answer as ”safety unknown”

TABLE I
EVALUATION RESULTS OF DIFFERENT METHODS

LinR CT1D QEPCAD dReach HSolver Flow*
39 33 57 110 – –

TABLE II
TIME CONSUMPTION (IN MILLISECONDS) ON EXAMPLE 3.4 FROM [27]

Features LinR HSolver dReach Flow* SpaceEx
unbounded time verification

√ √
– –

√#

unbounded initial set
√

– – – –
non-linear semi-algebraic initial set

√ √ √
– –

non-linear solvable systems
√ √ √ √

–√# : based on existence of fixed-points of the reachable states

TABLE III
FEATURES SUPPORTED BY DIFFERENT TOOLS

obtain the specialized dynamics as

ẋ1(t) = 0.001x3(t)−0.001x1(t)+0.01,

ẋ2(t) = 0.001x1(t)−0.001x2(t),

ẋ3(t) = 0.001x2(t)−0.001x3(t),

with the initial set X = {(x1,x2,x3)
T | (x1− 1)2 +(x2− 1)2 +(x3−

1)2 < 1} and the unsafe set Y = {(y1,y2,y3)
T | y2−y3 +6 < 0}. The

safety property we are concerning is to check if some state in Y
is reachable from X. Since X∩Y = /0, we need further reduce the
reachability problem to a quantifier elimination problem.

Observe that the system matrix is diagonalizable with three com-
plex eigenvalues 0, (−3− i

√
3)/2000, and (−3 + i

√
3)/2000. By

using the solution of this system w.r.t. an initial state (x1,x2,x3)
T ∈X,

the reachability problem thus becomes

F =̂ ∃x1∃x2∃x3∃t :(x1−1)2 +(x2−1)2 +(x3−1)2−1 < 0

∧a+bcos

( √
3t

2000

)
+ csin

( √
3t

2000

)
< 0∧ t > 0,

where the second constraint corresponds to the unsafe set Y, with
a = 28e3t/2000, b = 3x2−3x3−10, and c =

√
3(2x1− x2− x3−10).

To further reduce the above problem to Tarski’s algebra with
exponentiations, we abstract the second constraint by eliminating
trigonometric functions with overapproximation, i.e.

a+bu+ cv < 0∧u2 + v2 = 1. (35)

As a quantifier elimination procedure, we can eliminate u and v in
(35) by using the Cauchy-Schwarz inequality and thus get

a2−b2− c2 < 0. (36)

The reduced reachability problem is then successfully solved in LinR
due to its kernel that implements CAD. The original system is verified
to be safe inasmuch as no counterexamples of the abstracted system
is derived, namely the overapproximation of the original system is
safe. In a more intuitive way, Fig. 1 depicts the overapproximation
(the tube) of one single trajectory (the curve) starting from (1,1,1)T

Fig. 1. Overapproximation of the trajectory starting from (1,1,1)T

initially. Note that the approximation tends to be tighter as the
system evolves along with time, which is essentially on account of
the intrinsic convergence of the original system. In other words,
the system matrix has three eigenvalues whose real parts are all
non-positive. This implies the stability property and thus makes our
approach more competitive for checking properties in terms of a long
span of time.

2) PID Controller
Consider a proportional-integral-derivative (PID) controller (taken

from [31]) which is used to control a simple mass, spring, and damper
problem. The modelling equation of the mass, spring, and damper
system (plant) is

Mẍ+bẋ+ kx = F

where M = 1kg,b = 10Ns/m,k = 20N/m are given parameters of the
plant, and F is the controllable force. Suppose the goal is to control
the plant to reach a steady state where x = 1 with some requirements
on the overshoot and rise time. Let r(t) denote the desired trajectory



for reaching the steady state x = 1, which follows as a step function:
r(t) = 0 for t < 0 and r(t) = 1 for t > 0.

Given a PID controller, the model describing the composed plant
and controller is

Mẍ+bẋ+ kx = Kd( ˙r− x)+Kp(r− x)+Ki

∫
(r− x)

where Kd , Kp and Ki are parameters indicating gains of the derivative,
proportional and integral respectively, while r− x is the error in
tracking the desired trajectory r.

We consider the case of using a PI controller, i.e. Kd = 0, and
choose Kp = 350 and Ki = 300. We will prove the following property
of the system using our approach:

G(t > 0.5⇒ x≥ 0.9∧ x≤ 1.1). (37)

Note that this case has been studied in [31] but unfortunately it cannot
be proved by the method proposed there.

Let x = [
∫

x,x, ẋ, t]T, then ẋ = Ax+u, where

A =


0 1 0 0
0 0 1 0
−300 −370 −10 300

0 0 0 0


and u= [0,0,350,1]T. The initial value is x(0)= [0,0,0,0] and unsafe
set is Y = {x | t > 0.5∧ (x < 0.9∨ x > 1.1)}. Now the problem has
been written in the form of reachability of an LDS. The eigenvalues
of A are 0,λ0,λ1, and λ2, where λi (i = 0,1,2) are roots of the
characteristic equation f (λ ) = λ 3 +10λ 2 +370λ +300. Solving the
LDS we get

x = 1+ c0λ0eλ0t + c1λ1eλ1t + c2λ2eλ2t ,

where c0
c1
c2

=

 1 1 1
λ0 λ1 λ2
λ 2

0 λ 2
1 λ 2

2

−11/15
−1
0

 .
Observe that f (λ ) has only one real root, denoted by λ0, and by λ1
and λ2 the other two conjugate complex roots. Let λ1,2 = α ± β i,
then the solution can be rewritten as

x = 1+ c0λ0eλ0t +2eαt(Re(c1λ1)cos(β t)− Im(c1λ1)sin(β t)).

Now by abstraction, we put u = cos(β t), v = cos(β t) and require
that u2 + v2 = 1. Then the reachability of Y becomes

∃u∃v∃t : u2 + v2 = 1∧ t > 0.5∧
(φ(u,v, t)<−0.1∨φ(u,v, t)> 0.1),

(38)

where φ(u,v, t) = c0λ0eλ0t +2(Re(c1λ1)u− Im(c1λ1)v)eαt . Then us-
ing the method proposed in [16], we prove that (i) φ(u,v, t)> 0.1 is
invalid, and thus x≤ 1.1 in Eq. (37) is verified; and (ii) the interval
(0.5,T ] covers all t that make φ(u,v, t)<−0.1 satisfiable in Eq. (38).
Here T is the unique root of |c0λ0|eλ0t +2|c1λ1|eαt−0.1, which can
be approximated by real root isolation with arbitrary precision. We
adopt 0.6 as an overapproximation of T here (see Fig. 2).

Using our method it has been shown that Y can only be reached
when t is in (0.5,0.6]. Moreover, it can be checked by bounded
model checking or simulation based verification [18], [23] that even
for t ∈ (0.5,0.6] Y can not be reached. Therefore, we have proved
the property (37) for the given system.

1.1

0.9

Fig. 2. Overapproximation (the “broom”) of the trajectory of x (the curve)
starting from 0. Here the two horizontal dashed lines specify the boundaries
of the safe set, while T indicates a point in time, after which the behaviour
of the overapproximated system stays within the safe region.

VIII. CONCLUSION

In this paper, we extended our previous approaches on reachability
analysis for linear vector fields given in [16], [17] to solvable non-
linear vector fields. To this end, we first identified three families of
solvable non-linear vector fields, i.e., the cases when the matrices
in (4) are respectively nilpotent, only with real eigenvalues and
only with pure imaginary eigenvalues, and proved their reachability
problems are decidable. In addition, we presented an approach on how
to abstract the reachability problem of general solvable dynamical
systems (4) to the decision problem of Te. A prototypical tool has
been implemented, and experimental results indicate our approach is
efficient.

As a future work, it could be interesting to investigate whether the
reachable set computation of general non-linear vector fields, even
non-polynomial vector fields can be abstracted to that of solvable
ones, further to that of linear ones, by exploiting our previous work
in [28].
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