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Safety Verification for Random Ordinary
Differential Equations

Bai Xue, Member, IEEE, Martin Fränzle, Naijun Zhan, Sergiy Bogomolov and Bican Xia

Abstract—Random ordinary differential equations (RODEs)
are ordinary differential equations (ODEs) that contain a stochas-
tic process in their vector field functions. They have been used
for many years in a wide range of applications, but have been
a shadow existence to stochastic differential equations (SDEs)
despite being able to model a wider and often physically more
adequate range of disturbances. In this paper we study the
safety verification problem over both finite time horizons and the
infinite time horizon for RODEs incorporating Wiener processes.
Concretely, we investigate the p-safety problem, where we identify
the set of initial states from which the probability to satisfy
safety specifications is at least p. Based on identifying a set of
sample paths whose probability measure is larger than p, we
propose a method of reducing stochastic reachability to adversary
reachability of ODEs for solving the p-safety problem over finite
time horizons. This method permits an efficient lifting of reach-
set computation methods for perturbed ODEs to RODEs. In
this method the p-safety problem over finite time horizons is
reduced to the problem of inner-approximating robust backward
reachable sets for ODEs with time-varying perturbation inputs.
We then extend the method to the p-safety problem over the
infinite time horizon. Finally, we demonstrate our method on
several examples.

Index Terms—Safety Verification, Random Ordinary Differen-
tial Equations, Perturbed Ordinary Differential Equations.

I. INTRODUCTION

Christiaan Huygens, 1673, see [33] “I believe that
we do not know anything for certain, but everything
probably.”

The rapidly increasing deployment of cyber-physical sys-
tems into diverse safety-critical application domains ranging
from transportation systems to medical systems renders safety
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verification for these systems important [31]. The safety ver-
ification problem is often reduced to a reachability problem,
which justifies whether the reach states enter a specified set of
unsafe states [12]. However, the exact computation of reach-
able sets of a nonlinear system is generally impossible. Despite
existence of solvable cases [14], reachability analysis usually
employs either over-approximations of the exact reach set to
prove that a system starting from the initial states satisfies its
safety specifications [5], [7], [32], or under-approximations to
identify a set of states such that the system starting from them
violates specified safety properties [15], [43]–[45].

Ordinary differential equations (ODEs) are often used to
model deterministic systems. Consequently, significant re-
search has been invested in reachability analysis of such
systems. However, ODEs are often an idealized model in
modeling real-world systems, as stochastic processes are often
involved in many areas such as physics, engineering, ecology,
biology and other disciplines [6]. For example, the motion
model of a car cannot be formalized exactly in general if
we do not know all the external forces affecting the car and
the acts of the driver. In many scenarios the unknown sub-
phenomena can be modeled as stochastic processes, which
leads to mathematical models involving stochastic processes.
In contrast to the Boolean safety verification of deterministic
systems, when considering stochastic systems, i.e., systems
involving stochastic processes, the safety notion is relaxed.
Usually, the p-safety problem is considered. The stochastic
system is p-safe if it respects safety specifications with a
probability of at least p, i.e., the probability that the system
trajectories satisfy safety specifications is at least p.

In the literature stochastic differential equations (SDEs) are
equations that are often used to describe certain stochastic
processes. Early work on SDEs was pursued to describe
Brownian motion in Einstein’s famous paper [10], and at the
same time by Smoluchowski [40]. Afterwards, mathematical
formulations of Brownian motion were attempted by many
mathematicians. Itô derived an SDE of the following form

dX(t) = a(t,X(t))dt+ σ(t,X(t))dW (t),

where W (t) denotes a Wiener process which is a Brownian
motion. It can be reformulated in the following integral form:

X(t) =X(t0) +

∫ t

t0

a(s,X(s))ds+

lim
|∆|→0

n∑
i=1

σ(si−1, X(si−1))(W (si)−W (si−1))

(1)
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for t0 = s0 < . . . < sn = t and ∆ = max1≤i≤n(si − si−1)
for nonanticipative process σ(t,X(t)), i.e., independent of the
future increments of the Wiener process. For a thorough study
of SDEs we refer to the literature [4], [30]. There also exists
work on safety verification of systems modelled by SDEs, e.g.,
[11], [21], [22], [26], [28], [41].

Another important modeling approach to include noise
terms in differential equations is random ordinary differential
equations (RODEs) [37], which seem to have been long
overshadowed by SDEs. SDEs and RODEs are two different
models. RODEs are ODEs which have a stochastic process
in their vector field functions, while SDEs are not ODEs.
Recently, there is evidence that SDEs fail to describe dynamics
of certain systems however, RODEs are able to do so. A typical
example can be found in [8], which shows that RODE is better
than SDE in describing the SIR system. In general, RODEs
can be written in the form:

dx

dt
= f(x,Y (t)), (2)

where Y (t) is a stochastic process such as Brownian motion,
fractional Brownian motion, and the noise processes with
jumps, e.g., a Poisson process or compound Poisson process.
In some situations it is considerably easier to develop models
with noise in the form of RODEs than it is with SDEs. RODEs
have also been used in a wide range of applications such as
biology, medicine, population dynamics, and engineering and
play an important role in the theory of random dynamical
systems [16], [24]. Yet, to the best of our knowledge, there is
so far no work on studying safety verification of RODEs with
the aforementioned stochastic processes.

In this paper we investigate the safety verification problem
over both finite time horizons and the infinite time horizon for
systems modeled by RODEs incorporating a Wiener process,
which is a widely used random process in engineering, finance,
and physical sciences. The proposed method is based on the
reduction of stochastic reachability for RODEs to adversarial
reachability of ODEs. This method can be straightforwardly
extended to RODEs with other types of stochastic processes
such as fractional Brownian motions or Poisson processes.
Concretely, we attempt to solve the p-safety problem, which is
to identify the set of p-safe initial states from which the prob-
ability to satisfy safety specifications is at least p. The safety
specification we consider in the case of finite time horizons is
a finite-time reach-avoid problem [39], i.e., the requirement
of maintaining the system within a specified safe set over
the given finite time horizon while entering a target region
at the terminal time. When addressing this p-safety problem,
we first identify a set of sample paths such that its probability
measure is larger than p, and then by regarding the identified
sample paths as perturbation inputs we reduce the p-safety
problem for RODEs to the problem of inner-approximating
robust backward reachable sets for perturbed ODEs. As to
the safety verification problem over the infinite time horizon,
the safety specification is the requirement of maintaining the
system always within a safe set. For solving this problem, by
identifying a set of sample paths with probability measure one
as perturbation inputs, we first compute a robust invariant set

for perturbed ODEs, which is a set of p-safe initial states. Then
the method of addressing the p-safety problem over finite time
horizons can be used to further expand the set of p-safe initial
states by taking the computed robust invariant set as a target
set. Several examples are used to illustrate our method.

The main contributions are summarized below:
1). We investigate the safety verification of RODEs with

Wiener processes, which appear frequently in practice. To the
best of our knowledge, the method in this paper is the first one
on safety verification of RODEs with time-varying stochastic
processes.

2). We propose a method of reducing stochastic reachability
to adversarial reachability of ODEs for safety verification
of RODEs, thus permitting the efficient lifting of reach-set
computation methods for perturbed ODEs to RODEs with
time-varying stochastic processes.

Related Work

Existing literature on safety verification of stochastic sys-
tems mainly focuses on stochastic hybrid systems. Stochastic
hybrid systems are dynamical systems involving interacting
continuous and stochastic dynamics. They arise naturally
when modelling embedded systems consisting of components
with uncertainty, exhibiting random behavior. The pronounced
interest of the research community in safety verification of
stochastic hybrid systems has produced a number of different
types of stochastic hybrid models and verification methods.
The main difference between these classes of stochastic hybrid
models lies in the way the stochasticity enters the process
[27]. Some models allow SDEs to model continuous evolution
[18], [29], while others do not [19], [35]. Some models force
transitions to take place from certain states [13], [46], others
only allow transitions to take place randomly [42], while some
allow both [36]. Also, there are some works on discrete-
time stochastic hybrid systems, e.g., [1], whose dynamics are
described by difference equations generally. Modeling and
verification of more general stochastic hybrid systems are
discussed in [41]. However, RODEs do not fall into any
existing class of stochastic hybrid systems, thus enriching
existing stochastic systems in verification community.

In existing literature only simple kinds of RODEs are
investigated with the vector field depending on random time-
constant parameters, e.g., [17], [35]. Reachability analysis
methods for deterministic systems modeled by ODEs are
extended to verify such simple RODEs over finite time hori-
zons. The present paper, however, considers more general
RODEs with time-varying stochastic processes such as a
Wiener process. By taking the sample paths in stochastic
processes as perturbation inputs, our method reduces the p-
safety problem for RODEs to the safety verification problem
for perturbed ODEs, thereby enabling an efficient lifting of
safety verification methods for perturbed ODEs to RODEs.

This paper is structured as follows. In Section II we in-
troduce Wiener processes, RODEs and the p-safety problem.
Section III elucidates our approach for solving the p-safety
problem over both finite time horizons and the infinite time
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horizon. After demonstrating our approach on several exam-
ples in Section IV, we conclude this paper in Section V.

II. PRELIMINARIES

In this section we first introduce the concept of a Wiener
process in Subsection II-A, and then formulate RODEs and
the p-safety problem in Subsection II-B.

A. Wiener Processes
In this subsection we introduce Wiener processes. Through-

out this paper, Ck[0, T ] denotes the space of continuous
functions mapping [0, T ] into Rk, Ck[0,∞) denotes the space
of continuous functions for the time interval [0,∞), and R+

denotes the set of non-negative values in R. R[·] denotes the
ring of polynomials in variables given by the argument.

Consider a probability space (Ω,F , P ). A family of σ-
algebra {Ft, t ≥ 0} is called a filtration on this space
if Fs ⊆ Ft ⊆ F for 0 ≤ s ≤ t. Let EFt and PFt
denote expectation and probability up to the σ−algebra Ft,
respectively. The notion of Wiener processes is formally given:

Definition 1 (Wiener Process). Let (Ω,F , P ) be a probability
space and let {Ft, t ≥ 0} be a filtration defined on it. A
process {W (t, w) : R+ × Ω → R} is called an Ft−Wiener
process if it satisfies the following conditions: for w ∈ Ω,

1) W (0, w) = 0;
2) the increments W (s, w) −W (t, w) are independent of
Ft for every s ≥ t;

3) the increments W (s, w) − W (t, w) are normally dis-
tributed with mean 0 and variance δ2(s− t) > 0 for all
s ≥ t ≥ 0; and

4) the sample path W (·, w) : [0,∞)→ R is in C1[0,∞).

For the details of the Wiener process we refer the reader
to [20]. In Definition 1 we directly define a continuous
modification of the Wiener process, which is unique up to
indistinguishability due to Kolmogorov’s criterion [38].

If δ = 1 in Definition 1, then the process W (·, ·) is called a
standard Ft-Wiener process. If Ft simply is a natural filtration,
i.e., Ft = σ({W (s, w), 0 ≤ s ≤ t}), then the Ft prefix is
often suppressed and we refer to W (·, ·) simply as a Wiener
process. It is worth remarking here that −W (·, ·) is also a
Wiener process.

The reflection principle is one of the most important prop-
erties of the Wiener process, which states that the maximum
of a Wiener process over the time horizon [0, t] has the same
law as the absolute value at the terminal time.

Theorem 1 (Reflection Principle, Theorem 2.21 in [23]). For
a ∈ (0,∞) and t ∈ R+,

P ({w ∈ Ω | St ≥ a})

= P ({w ∈ Ω | |W (t, w)| ≥ a}) =
2√

2πδ2t

∫ ∞
a

e−
x2

2δ2t dx,

where St = max0≤s≤tW (s, w). Similarly, for b ∈ (−∞, 0)
and t ∈ R+,

P ({w ∈ Ω | S̃t ≤ b})

= P ({w ∈ Ω | |W (t, w)| ≥ −b}) =
2√

2πδ2t

∫ b

−∞
e−

x2

2δ2t dx,

where S̃t = min0≤s≤tW (s, w).

Definition 2. A finite collection of m mutually indepen-
dent Wiener processes Wi(·, ·) : [0,∞) × Ωi → R, i =
1, . . . ,m, is called an m-dimensional Wiener process, where
Wi(·, ·) is a Wiener process defined on the probability space
(Ωi,Fi, Pi). For convenience, we denote the m Wiener pro-
cesses (W1(·, ·), . . . ,Wm(·, ·))> by W (·, ·), which maps from
[0,∞) to Rm, and its probability space by (Ω,F ,P ).

Therefore, for an m-dimensional Wiener process W (·, ·),
we have that for any ai > 0, i = 1, . . . ,m, and t ∈ R+,

P ({w ∈ Ω | S1,t ≥ a1, . . . , Sm,t ≥ am})

=

m∏
i=1

Pi({wi ∈ Ωi | Si,t ≥ ai}),
(3)

where w = (w1, . . . , wm)> and Si,t = max0≤s≤tWi(s, wi).

B. Random Ordinary Differential Equations

In this subsection we formally present the concept of
random ordinary differential equations (RODEs) that is of
interest for this paper as we will solve their p-safety problem.

The type of RODE addressed in this paper is as follows:

ẋ(s) = f(x(s),W (s,w)), (4)

where x(·) : [0,∞)→ Rn and W (·, ·) : [0,∞)×Ω→ Rm is
an m-dimensional Wiener process defined on the probability
space (Ω,F ,P ) equipped with the natural filtration.

We assume in what follows that the vector field f : Rn ×
Rm → Rn satisfies the following two conditions:

1) f(x,d) is continuous over x ∈ Rn and d ∈ Rm;
2) for each d ∈ Rm, f(x,d) is locally Lipschitz continu-

ous over x, i.e., for each d ∈ Rm and each compact set
X̃ in Rn, there is some constant L such that

‖f(x,d)− f(z,d)‖ ≤ L‖x− z‖,∀x, z ∈ X̃,

where ‖ · ‖ denotes the usual Euclidean norm.
Consequently, according to [16], for the Wiener path

W (·,w) : [0,∞) → Rm, there exists a unique continuously
differentiable solution to (4) for some time interval. We denote
the unique solution as φWw

x0
(·) with φWw

x0
(0) = x0.

Given a safe state set X = {x ∈ Rn | g(x) ≤ 0} with
g(·) : Rn → R and a target set TR = {x ∈ Rn | l(x) ≤ 0}
with l(·) : Rn → R, the p-safety problem for system (4) is
defined as follows.

Definition 3. Given a safe probability threshold p ∈ (0, 1),
an initial state x0 is p-safe,

1) for a finite time horizon [0, T ] iff the probability that the
induced trajectories of system (4) starting from x0 reach
the target set TR at time instant t = T while staying
within the safe set X over the time horizon [0, T ] is
larger than p, i.e.,

P
({

w ∈ Ω

∣∣∣∣∣ ∀s ∈ [0, T ]. φWw
x0

(s) ∈ X
∧

φWw
x0

(T ) ∈ TR

})
≥ p,

where T ∈ [0,∞).
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2) for the infinite time horizon iff the probability that the
induced trajectories of system (4) starting from x0 stay
within the safe set X over the infinite time horizon
[0,∞) is larger than p, i.e.,

P ({w ∈ Ω | ∀s ∈ [0,∞). φWw
x0

(s) ∈ X}) ≥ p.

The p-safety problem is to identify a set of p-safe initial states
x0 over both finite time horizons and the infinite time horizon.

In this paper we will extend the existing qualitative reach-
ability analysis methods for perturbed ODEs, i.e., ODEs with
time-varying perturbation inputs, to solve the quantitative p-
safety problem for RODEs.

III. SAFETY VERIFICATION

In this section we elucidate our method of addressing
the p-safety problem for system (4) over both finite time
horizons and the infinite time horizon by reducing stochastic
reachability of RODEs to adversary reachability of ODEs. We
first present our method for addressing the p-safety problem
over finite time horizons in Subsection III-A and then extend
this method, together with the robust invariant sets generation
method for perturbed ODEs, to solve the p-safety problem
over the infinite time horizon in Subsection III-B.

A. Safety Verification over Finite Time Horizons

This subsection focuses on solving the p-safety problem
over finite time horizons. The solution consists of two steps.
The first one is to identify a set of Wiener paths covering a
probability mass of at least p. The second step is to construct
a perturbed ODE based on the identified set of Wiener paths
and compute an inner approximation of the robust backward
reachable set over the specified time horizon [0, T ] for the
constructed ODE. The robust backward reachable set over the
time horizon [0, T ] is the set of initial states from which all
trajectories of the ODE enter the target set TR at time t = T
while staying within the safe state set X throughout the time
horizon [0, T ]. By construction, this also constitutes a set of p-
safe initial states for RODE (4), i.e., the construction computes
an inner approximation of the exact set of p-safe initial states.
This description is formally reflected in Theorem 2.

Theorem 2. Suppose the probability of Wiener paths staying
within a bounded set D ⊂ Rm over the time horizon [0, T ]
is larger than p, i.e., P ({w ∈ Ω | W (t,w) ∈ D,∀t ∈
[0, T ]}) ≥ p, and D is the set of continuous functions
mapping [0, T ] to D, i.e., D = {d(·) ∈ Cm[0, T ] | d(t) ∈
D,∀t ∈ [0, T ]}. If IN is an inner approximation of the robust
backward reachable set for perturbed ODE (5) over the time
horizon [0, T ], with

ẋ(s) = f(x(s),d(s)), s ∈ [0, T ], (5)

where d(·) ∈ D is the perturbation input, then every state in
the set IN is p-safe.

Proof. Over the time horizon [0, T ], we denote the trajectory
to ODE (5) with the perturbation input d(·) : [0, T ]→ D and
the initial state x0 by ψd

x0
(·) : [0, T ] → Rn. Therefore, the

robust backward reachable set for perturbed ODE (5) is {x0 ∈
Rn | ∀t ∈ [0, T ]. ∀d(·) ∈ D. ψd

x0
(t) ∈ X ∧ ψd

x0
(T ) ∈ TR},

denoted by Ru. Clearly, IN ⊆ Ru.
Besides, we denote the set of Wiener paths staying within

the bounded set D ⊂ Rm over the time horizon [0, T ] by W .
Obviously, W ⊆ D.

For x0 ∈ IN, we have that

P ({w ∈ Ω | ∀t ∈ [0, T ]. φWw
x0

(t) ∈ X ∧ φWw
x0

(T ) ∈ TR})
≥ A+B ≥ A,

where

A = P
(w ∈ Ω

∣∣∣∣∣∣
∀s ∈ [0, T ]. W (·,w) ∈ W

∧
φWw

x0
(s) ∈ X

∧
φWw

x0
(T ) ∈ TR

)
and

B = P
({

w ∈ Ω

∣∣∣∣∣ ∀s ∈ [0, T ]. W (·,w) /∈ W
∧

φWw
x0

(s) ∈ X ∧ φWw
x0

(T ) ∈ TR

})
.

Moreover, since W ⊆ D, W (·,w) ∈ D if W (·,w) ∈ W .
Likewise, as φWw

x0
(s) = ψWw

x0
(s) for s ∈ [0, T ], it follows

φWw
x0

(s) ∈ X for s ∈ [0, T ] and φWw
x0

(T ) ∈ TR if W (·,w) ∈
W . Thus,

P
({

w ∈ Ω

∣∣∣∣∣ ∀s ∈ [0, T ]. W (·,w) ∈ W
∧

φWw
x0

(s) ∈ X ∧ φWw
x0

(T ) ∈ TR

})
= P ({w ∈ Ω |W (·,w) ∈ W) ≥ p.

Hence, P ({w ∈ Ω | ∀s ∈ [0, T ]. φWw
x0

(s) ∈ X ∧ φw
x0

(T ) ∈
TR}) ≥ p. Definition 3 indicates that x0 is p-safe.

Based on Theorem 2, a method for solving p-safety prob-
lems over finite time horizons is summarized in Alg. 1.

Algorithm 1 The Framework for Solving the p-Safety Problem
over Finite Time Horizons via Reducing Stochastic Reacha-
bility to Adversary Reachability of ODEs
Require: RODE (4) and time horizon [0, T ]; safe set X; target

set TR; probability threshold p ∈ (0, 1) for safety.
Ensure: A set of p-safe initial states.

1) Obtain a setW of sample paths covering a probability
mass of at least p via the reflection principle;

2) Construct a perturbed ODE (5) by regarding the sam-
ple paths in W as perturbation inputs;

3) Apply existing reachability techniques to the con-
structed ODE (5) for computing an inner approxima-
tion IN of the robust backward reachable set over the
time horizon [0, T ];

4) Return the computed inner approximation IN of the
set of p-safe initial states.

In practice, in order to facilitate computationally less ex-
pensive computations, the perturbed ODE (5) in Alg. 1 can
be further relaxed into another perturbed ODE, which is
relatively easily manipulated with its trajectories including the
ones of ODE (5). We in the following use a simple example
to illustrate the idea behind our method.
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Example 1. Consider a one-dimensional simple RODE,

ẋ(s) = −x(s) + 10 sin

(
W (s, w)

10

)
x3(s), s ∈ [0, T ], (6)

where T = 1, X = {x ∈ R | g(x) ≤ 0} with g(x) = x2−0.9,
TR = {x ∈ R | l(x) ≤ 0} with l(x) = x2− 0.5, and W (·, ·) :
[0,∞) × Ω → R is a standard Wiener process. The p-safety
problem is to identify a set of (1 − 1.2 × 10−6)-safe initial
states.

Step 1 of Alg. 1: Based on the reflection principle in
Theorem 1 we identify the set W = {W (·, w) : [0, T ] →
D | w ∈ Ω}, which is the set of all continuous Wiener paths
staying within the interval D = (−5, 5) over the time horizon
[0, T ], with probability of at least 1− 1.2× 10−6, i.e.,

P ({w ∈ Ω |W (·, w) ∈ W}) ≥ 1− 1.2× 10−6.

This is done as follows: Since

P ({w ∈ Ω |W (t, w) ∈ (b, a),∀t ∈ [0, 1]})
− P ({w ∈ Ω | τa ∧ τb ≤ 1})
+ P ({w ∈ Ω | τa ≤ 1}) + P ({w ∈ Ω | τb ≤ 1}) = 1

(7)

where a > 0 and b < 0, τa = inf{s ∈ [0,∞) | W (s, w) ≥
a}, τb = inf{s ∈ [0,∞) | W (s, w) ≤ b} and τa ∧ τb =
max{τb, τa},

P ({w ∈ Ω |W (t, w) ∈ (b, a),∀t ∈ [0, 1]})
≥ 1− P ({w ∈ Ω | τa ≤ 1})− P ({w ∈ Ω | τb ≤ 1})

holds. According to the reflection principle in Theorem 1, we
have

P ({w ∈ Ω | τa ≤ 1})

= P ({w ∈ Ω | |W (1, w)| ≥ a)} = 2
1√
2π

∫ ∞
a

e−
x2

2 dx

and

P ({w ∈ Ω | τb ≤ 1})

= P ({w ∈ Ω | |W (1, w)| ≥ −b)} = 2
1√
2π

∫ b

−∞
e−

x2

2 dx.

Therefore, we just need to solve the following optimization
problem:

min a− b

s.t. 1− 2
1√
2π

∫ ∞
a

e−
x2

2 dx

− 2
1√
2π

∫ b

−∞
e−

x2

2 dx ≥ 1− 1.2× 10−6,

a ≥ 0, b ≤ 0.
(8)

The objective function a − b corresponds to
the Lebesgue measure of the set D. Since
1 − 2 1√

2π

∫∞
a
e−

x2

2 dx − 2 1√
2π

∫ b
−∞ e−

x2

2 dx =

1 − 2 1√
2π

∫∞
a
e−

x2

2 dx − 2 1√
2π

∫∞
−b e

− x22 dx is monotonically
increasing over a and monotonically decreasing over b, the
simplest approach for solving the optimization (8) is linear
search. Via solving (8) based on linear search, we obtain
a = −b = 5.0.

du ds1 ds2 ds3 ds4 ds5 ds6 R
10 10 10 10 10 10 10 1

TABLE I
Parameters for solving the semi-definite program (11). du denotes the

degree of the polynomial u(x, t). dsi denotes the degree of the
sum-of-squares polynomial si, i = 1, . . . , 6.

Step 2 of Alg. 1: By regarding the Wiener paths W (·, w) in
W as perturbation inputs, we consider the perturbed ODE:

ẋ(s) = −x(s) + 10 sin

(
d(s)

10

)
x3(s), s ∈ [0, T ], (9)

where T = 1, X = {x ∈ R | g(x) ≤ 0}, TR = {x ∈
R | l(x) ≤ 0}, d(·) : [0, 1] → (−5, 5) is the continuous
perturbation input. Since sin d

10 is monotonically increasing
over d ∈ (−5, 5), we further relax (9) to (10)

ẋ(s) = −x(s) + 10d(s)x3(s), s ∈ [0, T ], (10)

where T = 1, X = {x ∈ R | g(x) ≤ 0}, TR = {x ∈ R |
l(x) ≤ 0}, d(·) : [0, 1] → [− sin 5

10 , sin
5
10 ] is the continuous

perturbation input and D = {d ∈ R | h(d) ≥ 0} with h(d) =
sin2 5

10 − d
2. Clearly, the trajectories of Eq. (10) include the

ones of Eq. (9).
Step 3 of Alg. 1: From [43] an inner approximation of

the robust backward reachable set IN = {x | u(x, 0) ≤ 0}
for ODE (10) can be computed by solving the semi-definite
program (11):

inf c> ·m
s. t.

− Lu(x, t)− s1gR(x)− s2t(T − t)− s3h(d) ∈
∑

[x, t, d],

u(x, t)− g(x)− s4gR(x)− s5t(T − t) ∈
∑

[x, t],

u(x, T )− l(x)− s6gR(x) ∈
∑

[x],

(11)

where c> ·m =
∫
BR

u(x, 0)dx, m is the vector of moments of
the Lebesgue measure over BR indexed in the same basis in
which the polynomial u(x, 0) with coefficients c is expressed,
and Lu(x, t) = ∂tu(x, t) +∇xu(x, t) · (−x+ 10dx3). BR =
{x ∈ R | gR(x) ≥ 0}, where gR(x) = R − x2 with R being
a positive number such that X ⊆ BR and ∂X ∩ ∂BR =
∅.
∑

[·] denotes the set of sum-of-squares polynomials over
the argument. The minimum is over polynomial u(x, t) and
sum-of-squares polynomials s1(x, t, d), s2(x, t, d), s3(x, t, d),
s4(x, t), s5(x, t) and s6(x).

Step 4 of Alg. 1: We obtain an inner approximation
IN = {x ∈ BR | u(x, 0) ≤ 0}, which is illustrated in
Fig. 1. The computation time is 45.68 seconds on an i7-
7500U 2.70GHz CPU with 32G RAM running Windows 10.
According to Theorem 2, every initial state in IN for RODE
(6) is (1− 1.2× 10−6)-safe. The parameters for solving (11)
are presented in Table I.

In Example 1, the semi-definite programming based method
(11) is only applicable to perturbed polynomial ODEs with
semi-algebraic safe state sets, semi-algebraic target sets and
semi-algebraic perturbation sets, i.e., f(x,d) ∈ R[x,d],
g(x) ∈ R[x], l(x) ∈ R[x] and h(d) ∈ R[d]. Actually,
any existing (inner-approximate) reachability techniques for
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Fig. 1. An illustration of the computed p-safe initial states for Example 1.
Above: Five sample paths of the Wiener process over the time horizon [0, T ]
are presented. Below: The solid blue curve denotes u(x, 0) computed by
solving (11). The computed p-safe initial states are the states between the
two dashed blue lines, i.e., IN = {x ∈ X | u(x, 0) ≤ 0}.

perturbed ODEs can be used to implement Alg. 1. This is why
we did not customize Alg. 1, thus providing more flexibility to
users such that they can customize the algorithm themselves
for the system of interest. For instance, if the perturbed ODE is
not polynomial, we can use a reach-set computation method
based on the time-dependent Hamilton-Jacobi equation [43]
to compute an inner approximation of the robust backward
reachable set. Besides, in Example 1 the setW of Wiener paths
staying within a bounded set and having probability of at least
p is not unique. However, the set W of the smallest Lebesgue
measure is unique, which is used in Example 1 and can be
easily concluded from the symmetric ”bell curve” shape of
the graph of a Gaussian. A set of perturbation inputs with the
smallest Lebesgue measure is commonly preferred in practice
since it generally results in less conservative results.

B. Safety Verification over the Infinite Time Horizon

This subsection focuses on solving the p-safety problem
over the infinite time horizon.

Generally, it is more challenging to solve the p-safety
problem over the infinite time horizon. Unlike safety problem
over finite time horizons, since the probability for Wiener paths
to stay within a bounded set always is zero, we generally
cannot obtain a set of p-safe initial states for the infinite
time horizon based on a set of bounded Wiener paths with
a probability of at least p ∈ (0, 1). Consequently, we propose
a novel computational procedure of reducing the p-safety
problem for the infinite time horizon to the one for finite
time horizons, which consists of three steps. Based on the
set of Wiener paths with probability one, the first step is to
construct a perturbed ODE and compute a robust invariant
set for the constructed ODE. This is the key step in our
approach of solving the p-safety problem over the infinite time
horizon, and this also limits our approach to system (4) with

f(x,W (s,w)) satisfying

∃B ∈ [0,∞).∀x ∈ X.∀s ∈ [0,∞).

∀w ∈ Ω.‖f(x,W (s,w))‖ ≤ B.
The robust invariant set is a set of initial states such that every
possible trajectory to the ODE starting from them always stays
within the set X . Also, the computed robust invariant set is
also a set of p-safe initial states. Then we identify a finite time
horizon, and a set of Wiener paths staying within a bounded
set over the identified finite time horizon having a probability
of at least p. Finally, we take the computed robust invariant set
as the target set TR and apply the method in Subsection III-A
to compute an inner approximation of the robust backward
reachable set, therefore expanding the set of p-safe initial
states. Every state x0 in the union of the computed robust
invariant set and the computed inner approximation is p-safe
over the infinite time horizon. The rationale behind these
procedures is formally reflected in Theorem 3.

Theorem 3. Suppose the probability of Wiener paths staying
within a bounded set D ⊂ Rm over the time horizon [0, τ ]
is larger than p, i.e., P ({w ∈ Ω | ∀s ∈ [0, τ ]. W (s,w) ∈
D}) ≥ p, D is the set of continuous functions mapping [0, τ ]
to D, i.e., D = {d(·) ∈ Cm[0, τ ] | d(·) : [0, τ ]→ D}. If IN is
a set of initial states from which all trajectories to ODE (12)
enter the target set T̃R at time t = τ while staying within
the safe state set X over the time horizon [0, τ ], where T̃R is
a robust invariant set for ODE (13) such that all trajectories
starting from it stay within the safe state set X forever, where

ẋ(s) = f(x(s),d(s)), (12)

with d(·) ∈ D being the perturbation input, and

ẋ(s) = f(x(s),d′(s)), (13)

with d′(·) ∈ Cm[0,∞) being the perturbation input. Then
every initial state in IN∪T̃R is p-safe over the infinite time
horizon.

Proof. We denote the trajectory to ODE (12) with the per-
turbation input d(·) : [0, τ ] → D and the initial state x0 by
ψd

x0
(·) : [0, τ ]→ Rn. Also, we denote the set of Wiener paths

staying within the bounded set D ⊂ Rm over the time horizon
[0, τ ] byW . Clearly,W ⊆ D. We denote the trajectory to ODE
(13) with the perturbation input d′(·) : [0,∞)→ Rm and the
initial state x0 by ϕd′

x0
(·).

Since φWw
x0

(s) = ϕWw
x0

(s) for W (·,w) ∈ Cm[0,∞) and
t ∈ [0,∞), we have that if x0 ∈ T̃R,

P ({w ∈ Ω | ∀s ∈ [0,∞). φWw
x0

(s) ∈ X})
= P ({w ∈ Ω |W (·,w) ∈ Cm[0,∞)}) = 1 ≥ p.

If x0 ∈ IN, we have that

P ({w ∈ Ω | ∀s ∈ [0,∞). φWw
x0

(s) ∈ X})
≥ P ({w ∈ Ω | ∀s ∈ [0, τ ]. φWw

x0
(s) ∈ X ∧ φWw

x0
(τ) ∈ T̃R})

= A+B ≥ A,
where

A = P
({

w ∈ Ω

∣∣∣∣∣ ∀s ∈ [0, τ ]. W (·,w) ∈ D
∧

φWw
x0

(s) ∈ X ∧ φWw
x0

(τ) ∈ T̃R

})
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and

B = P
(w ∈ Ω

∣∣∣∣∣∣
∀s ∈ [0, τ ]. W (·,w) /∈ D

∧
φWw

x0
(s) ∈ X

∧
φWw

x0
(τ) ∈ T̃R

).
Since W ⊆ D, W (·,w) ∈ D if W (·,w) ∈ W . Also, since
φWw

x0
(s) = ψWw

x0
(s) for s ∈ [0, τ ],

P
({

w ∈ Ω

∣∣∣∣∣ ∀s ∈ [0, τ ]. W (·,w) ∈ D
∧

φWw
x0

(s) ∈ X ∧ φWw
x0

(τ) ∈ T̃R

})
= P ({w ∈ Ω |W (·,w) ∈ D}) ≥ p.

(14)

Consequently, P ({w ∈ Ω | ∀s ∈ [0,∞). φWw
x0

(s) ∈ X}) ≥
p. Definition 3 indicates that x0 ∈ IN ∪ T̃R is p-safe.

Reflecting the constructions from the proof of Theorem 3,
our method for solving p-safety problem over the infinite time
horizon is summarized in Alg. 2.

Algorithm 2 The Framework for Solving the p-Safety Prob-
lem over the Infinite Time Horizon via Reducing Stochastic
Reachability to Adversary Reachability of ODEs
Require: RODE (4); safe state set X; probability threshold
p ∈ (0, 1) for safety.

Ensure: A set of p-safe initial states.
1) Obtain a perturbed ODE (13) by regarding the set of

all sample paths as perturbation inputs;
2) Apply robust invariant sets generation techniques to

the obtained ODE for computing a robust invariant set
T̃R;

3) Choose a finite time horizon [0, τ ];
4) Obtain an inner approximation IN by applying Alg. 1

to RODE (4) with the safe set X , target set T̃R, time
horizon [0, τ ] and safety level p;

5) Return the set IN ∪ T̃R, which constitutes a (in general
not maximal) set of p-safe initial states.

Like in Subsection III-A, in order to facilitate computations
the perturbed ODEs (12) and (13) in Alg. 2 can be further
relaxed into another perturbed ODEs, which are relatively
easily manipulated with their trajectories including the ones of
ODEs (12) and (13) respectively. Similarly, we use a simple
example to illustrate the idea behind our method as well.

Example 2. Consider a one-dimensional simple RODE again,

ẋ(s) = −x(s) + 0.09x2(s) + 0.5 sin(
W (s, w)

10
)x3(s) (15)

with X = {x ∈ R | g(x) ≤ 0} with g(x) = x2 − 2,
and the stochastic process W (s, w) : [0,∞) × Ω → R is
a standard Wiener process. The p-safety problem considered
for this example is to identify a set of 1-safe initial states.

Step 1 of Alg. 2: since sin(·) : R → [−1, 1], by regarding
sin(W (·,·)

10 ) : [0,∞) × Ω → [−1, 1] as perturbation inputs
d(·) : [0,∞)→ [−1, 1], we consider the perturbed ODE

ẋ(s) = −x(s) + 0.09x2(s) + 0.5d(s)x3(s) (16)

du ds1 ds2 ds3 gR
8 8 8 8 2.1− x2

TABLE II
Parameters for solving the semi-definite program (17) for Example 2. du
denotes the degree of the polynomial u(x). dsi denotes the degree of the

sum-of-squares polynomial si, i = 1, . . . , 3.

du ds1 ds2 ds3 ds4 ds5 ds6 R
8 8 8 8 8 8 8 2.1

TABLE III
Parameters for solving the program (11) for Example 2.

where X = {x ∈ R | g(x) ≤ 0} and d(·) : [0,∞)→ D is the
perturbation with D = {d ∈ R | h(d) ≥ 0} and h(d) = 1−d2.
Clearly, the trajectories of (16) include the ones of (15).

Step 2 of Alg. 2: We compute a robust invariant set of
perturbed ODE (16) such that every trajectory starting from
it will always stay within the safe set X , regardless of
perturbation inputs d(·) : [0,∞) → [−1, 1]. From [45], a
robust invariant set R = {x ∈ X | u(x) ≤ 0} of perturbed
ODE (16) could be computed by solving the semi-definite
program (17):

inf c> ·m
s. t.

− Lu(x)− s1h(d)− s2gR(x) ∈
∑

[x, d],

(1 + g2(x))u(x)− g(x)− s3gR(x) ∈
∑

[x],

(17)

where c> · m =
∫
BR

u(x)dx is the vector composed of
unknown coefficients in u(x) ∈ R[x], m is the constant
vector computed by integrating the monomials in u(x) over
BR, BR = {x ∈ R | gR(x) ≥ 0} with gR(x) ∈ R[x]
such that X ⊆ BR and ∂X ∩ ∂BR = ∅, and Lu(x) =
∇xu(x) · (−x + 0.09x2 + 0.5dx3).

∑
[·] denotes the set of

sum-of-squares polynomials over the argument. The minimum
is over the polynomial u(x) and sum-of-squares polynomials
s1(x, d), s2(x, d), and s3(x).

The computed robust invariant set T̃R = {x ∈ BR | u(x) ≤
0} for ODE (16) is illustrated in Fig. 2. Obviously, it is a set of
1-safe initial states for RODE (15). The parameters in solving
(17) are presented in Table II. The computation time is 4.70
seconds.

Step 3 of Alg. 2: We choose the time horizon [0, τ ] with
τ = 1.

Step 4 of Alg. 2: Via taking the computed robust invariant
set T̃R = {x ∈ BR | u(x) ≤ 0} as the target set, we further
compute a set IN of p-safe initial states such that

P ({w ∈ Ω | ∀s ∈ [0, τ ]. φWw
x0

(s) ∈ X∧φWw
x0

(τ) ∈ T̃R}) ≥ p,

where τ = 1. Like Example 1, we first identify a set W of
Wiener paths. Since p = 1, therefore, we use all of Wiener
paths. That is, W = {W (·, w) ∈ C1[0, τ ] | w ∈ Ω}. The
probability P ({w ∈ Ω | W (·, w) ∈ W}) is equal to 1. An
inner-approximation IN = {x ∈ BR | u′(x, 0) ≤ 0}, which
is also illustrated in Fig. 2, of the robust backward reachable
set for ODE (16) with d(·) : [0, 1]→ D is obtained by solving
(11). The parameters in solving (11) are presented in Table
III. The computation time is 31.35 seconds.

Step 5 of Alg. 2: We obtain a set IN∪T̃R. According to
Theorem 3, every state in IN ∪ T̃R is 1-safe for RODE (15).
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Fig. 2. An illustration of 1-safe initial states for Example 2. Red and blue
solid curves denote u(x) and u′(x, 0), respectively. The computed robust
invariant set T̃R is the set of states between the two dashed red lines. The
computed inner approximation IN of the robust backward reachable set over
the time horizon [0, τ ] is the set of states between the two dashed blue lines.

Like Example 1, if the perturbed ODE is not polynomial,
we can use other reach-set computation methods such as the
time-independent Hamilton-Jacobi equation based method in
[45] to compute an approximation of the maximal robust
invariant set. Besides, a finite time horizon [0, τ ] is required for
computations to further expand the set of p-safe initial states
in Alg. 2. Generally, a bigger τ corresponds to a bounded
set D with larger Lebesgue measure (the set D is defined in
Theorem 3, which is a bounded set such that the probability
of Wiener paths staying within it over the time horizon [0, τ ]
is larger than p.), which may result in more conservative sets.
We would consider the choice of appropriate τ in future work.

IV. EXPERIMENTS

In this section we illustrate our approach on five examples
based on solving the programs (11) and (17), where three
examples are on safety verification over finite time horizons
and two examples on safety verification over the infinite time
horizon. All computations were performed on an i7-7500U
2.70 GHz CPU with 32 GB RAM running Windows 10.

A. Safety Verification over Finite Time Horizons

In this subsection we illustrate our approach for safety
verification over finite time horizons on three examples.

Example 3. Consider the RODE (6) described in Example 1
again. In this example we discuss the effect of the probability
threshold p ∈ (0, 1) on the computed set of p-safe initial states
over finite time horizons.

We first use the set W of all Wiener paths W (·, w) :
[0, T ]→ (−∞,∞) to attempt computing a set of 1-safe initial
states. That is, W = {W (·, w) : [0, T ]→ (−∞,∞) | w ∈ Ω}
and P ({w ∈ Ω |W (·, w) ∈ W}) = 1. Thus, the set D in (16)
is equal to {d ∈ R | h(d) ≥ 0} with h(d) = 1−d2. Via solving
the semi-definite program (11) with the parameters listed in
Table I, we obtain an empty set of 1-safe initial states, which
is a correct but useless inner approximation.

Then we use the set W of Wiener paths W (·, w) : [0, T ]→
(−2, 2). That is, W = {W (·, w) : [0, T ]→ (−2, 2) | w ∈ Ω}.
Its probability is larger than 0.90, i.e., P ({w ∈ Ω |W (·, w) :
[0, T ] → (−2, 2)}) ≥ 0.90. Thus, the set D in (10) is equal
to {d ∈ R | h(d) ≥ 0} with h(d) = sin2 2

10 − d
2. Via solving

the semi-definite program (11) with the parameters listed in

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
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Fig. 3. An illustration of sets of p-safe initial states for Example 3. The states
between the two dashed black lines, red lines and blue lines, are (1− 1.2×
10−6)-safe, 0.90-safe and 0.36-safe, respectively.

Table I, we obtain a set of 0.90-safe initial states, which is also
illustrated in Fig. 3. The computational time is 48.24 seconds.

Finally, we use the set W of Wiener paths W (·, w) :
[0, T ] → (−1, 1). Its probability is larger than 0.36, i.e.,
P ({w ∈ Ω | W (·, w) : [0, T ] → (−1, 1)}) ≥ 0.36. Thus,
the set D in (16) is equal to {d ∈ R | h(d) ≥ 0} with
h(d) = sin2 1

10 − d2. Via solving the semi-definite program
(11) with the parameters listed in Table I, we obtain a set
of 0.36-safe initial states, which is illustrated in Fig. 3. The
computation time here is 51.32 seconds.

By choosing different probability levels p, we can separate
the state space into several safe levels. For instance, we can
observe from Fig. 3 that the computed set of p-safe initial
states expands with p decreasing. However, the safe level is
decreasing.

Example 4. Consider a model for the horizontal slow drift
motion of a moored floating platform or ship responding to
incoming irregular waves from [25]:

ẍ(s) + a0ẋ(s) + β2x(s) = (T0 − α0ẋ(s))ηW (s, w), (18)

which is equivalent to the two-dimensional first-order RODE:

ẋ(s) = y(s)

ẏ(s) = −a0y(s)− β2x(s) + (T0 − α0y(s))ηW (s, w),
(19)

where W (·, ·) is 1-dimensional standard Wiener process, a0 =
1, β = 1, T0 = 1, α0 = 1, η = 0.01, T = 1, X = {x | g(x) ≤
0} with g(x) = x2 + y2 − 2 and TR = {x | l(x) ≤ 0} with
l(x) = (x− 0.2)2 + (y − 0.2)2 − 0.25.

Since W (·, ·) is a 1-dimensional standard Wiener process
and is unbounded, it is impossible to compute a non-trivial
set of 1-safe initial states. The considered p-safety problem is
to identify a set of 0.9-safe initial states over the time [0, T ].

We identify the set W of Wiener paths W (·, w) : [0, T ] →
(−2, 2), i.e., W = {W (·, w) : [0, T ] → (−2, 2) | w ∈ Ω}.
Its probability is at least 0.90, i.e., P ({w ∈ Ω | W (·, w) :
[0, T ] → (−2, 2)}) ≥ 0.9. Thus, the set D in this example
equals {d ∈ R | h(d) ≥ 0} with h(d) = 4 − d2. Via solving
the semi-definite program (11) with the parameters in Table
IV, we obtain a set of 0.9-safe initial states, which is illustrated
in Fig. 4. The computation time amounts to 94.25 seconds.

In order to shed light on the effect of stochastic pertur-
bations on the system, we further consider the system free
of stochastic perturbations. When the stochastic perturbations
are not taken into account, i.e., W (s, w) ≡ 0 for s ∈ [0, T ] in
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du ds1 ds2 ds3 ds4 ds5 ds6 R
10 10 10 10 10 10 10 2.1

TABLE IV
Parameters for solving (11) for Example 4.
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Fig. 4. An illustration of 0.9-safe initial states for Example 4. The black
and red curves denote the boundary of the safe set X and the target set TR,
respectively. The green curve denotes the boundary of the computed set of
0.9-safe initial states over the time horizon [0, T ]. The gray region denotes
the reach-avoid set corresponding to Eq. (19) with W (s, w) ≡ 0. Blue curves
denote trajectories of RODE (19) over the time horizon [0, T ].

(19), the reach-avoid set, which is a set of initial states such
that the system (19) enters the target set TR at t = T while
staying inside the set X before the target hitting time, is shown
in Fig. 4. It is estimated by simulation techniques. From Fig.
4 we observed that the computed set of 0.9-safe initial states
is close to the reach-avoid set.

Example 5. The dynamics of a car in the two dimensions
(x1, x2)> of the plane are governed by Newton’s law:

f(t) = ma(t),

where a(t) is the acceleration (in vectorial form), m is the
mass of the car, and f(t) is a vector of (unknown) forces
acting on the car. Let us model f(t)

m as a two-dimensional
Wiener process [34]:

d2x1

dt2
= W1(t, w1),

d2x2

dt2
= W2(t, w2),

which can be written as a first-order RODE:

dx1

dt
= x3(t),

dx2

dt
= x4(t),

dx3

dt
= W1(t, w1),

dx4

dt
= W2(t, w2),

where T = 1, X = {x ∈ R4 | g(x) ≤ 0} with g(x) =∑2
i=1 x

2
i +

∑4
i=3(xi − 0.5)2 − 1, TR = {x ∈ R4 | l(x) ≤ 0}

with l(x) =
∑2
i=1(xi − 0.5)2 +

∑4
i=3(xi − 0.5)2 − 0.25.

When setting x3 := x3−0.5 and x4 := x4−0.5, we obtain
the RODE:

dx1

dt
= x3(t) + 0.5,

dx2

dt
= x4(t) + 0.5,

dx3

dt
= W1(t, w1),

dx4

dt
= W2(t, w2).

(20)

where T = 1, X = {x ∈ R4 | g(x) ≤ 0} with g(x) =∑4
i=1 x

2
i − 1, TR = {x ∈ R4 | l(x) ≤ 0} with l(x) =∑2

i=1(xi − 0.5)2 +
∑4
i=3 x

2
i − 0.25.

In this model W (·, ·) = (W1(·, ·),W2(·, ·))> is a
2−dimensional Wiener process with δ = 0.005. This process

Fig. 5. An illustration of the car dynamic model.

du ds1 ds2 ds3 ds4 ds5 ds6 R
6 6 6 6 6 6 6 1.1

TABLE V
Parameters for solving (11) for Example 4.

is unbounded, therefore it is impossible to compute a non-
trivial set of 1-safe initial states. The p-safety problem we
consider is to identify a set of 0.8-safe initial states over
time horizon [0, T ]. We identify the set W of Wiener paths
W (·,w) : [0, T ]→ (−0.01, 0.01)× (−0.01, 0.01), i.e., W =
{W (·,w) : [0, T ]→ (−0.01, 0.01)×(−0.01, 0.01) | w ∈ Ω},
with probability mass of at least 0.8, i.e., P ({w ∈ Ω |
W (·,w) : [0, T ] → (−0.01, 0.01) × (−0.01, 0.01)}) ≥ 0.8.
Thus, the set D in this example is equal to {d ∈ R2 |
h1(d) ≥ 0, h2(d) ≥ 0} with h1(d) = 0.012 − d2

1 and
h2(d) = 0.012 − d2

2. Via solving the semi-definite program
(11) with the parameters listed in Table V, we obtain a set
of 0.8-safe initial states illustrated in Fig. 6. The computation
time here amounts to 175.84 seconds.

Like Example 4, we also estimate the reach-avoid set,
which is obtained by simulation techniques when the stochastic
perturbations are not taken into account, i.e., W1(s, w1) ≡ 0
and W2(s, w2) ≡ 0 for s ∈ [0, T ] in (19). The reach-avoid set
is shown in Fig. 6.

B. Safety Verification over the Infinite Time Horizon

In this subsection we illustrate our approach for the infinite
time horizon verification on two examples.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x1

x 2

Fig. 6. An illustration of 0.8-safe initial states for Example 5 on the plane
x1 − x2 with x3 = x4 = 0. The black curve denotes the boundary of the
set X . The red curve denotes the boundary of the set TR. The green curve
denotes the boundary of the computed set of 0.8-safe initial states over the
time horizon [0, T ]. The gray region denotes the reach-avoid set corresponding
to Eq. (20) with W1(s, w1) ≡ 0 and W2(s, w2) ≡ 0. The blue curves denote
trajectories of RODE (20) over time horizon [0, T ].
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Fig. 7. An illustration of sets of p-safe initial states for Example 6. The
states between the two dashed red curves are the 1-safe initial states falling
within the computed robust invariant set. The states between the two dashed
green curves are the 1-safe initial states falling within the computed backward
reachable set with T = 1. The states between the two dashed purple curves
are the 1-safe initial states falling within the computed backward reachable
set with T = 1.5. The states between the two dashed blue curves are the (1−
1.2 × 10−6)-safe initial states falling within the computed robust backward
reachable set with T = 1.

Example 6. Consider the RODE (15) in Example 2 again. In
this example we discuss the effect of the probability threshold
p ∈ (0, 1) and the time horizon [0, τ ] on the computed set of
p-safe initial states over the infinite time horizon.

We use the robust invariant set T̃R computed in Example 2.
Then we first choose the time horizon [0, 1.5] and the set W
of Wiener paths in C1[0,∞) such that W (·, w) : [0, 1.5]→ R.
That is, W = {W (·, w) ∈ C1[0, 1.5] | w ∈ Ω} includes the
set of all continuous Wiener paths. Its probability measure
is 1. Thus, the set D in (16) is {d ∈ R | h(d) ≥ 0} with
h(d) = 1−d2. The computed inner-approximation IN over the
time horizon [0, 1.5] is illustrated in Fig. 7. The computation
time is 31.47 seconds.

Besides we choose the time horizon [0, 1] again and the set
W of Wiener paths in C1[0,∞) such that W (·, w) : [0, 1] →
(−5, 5). That is, W = {W (·, w) ∈ C1[0, 1] | w ∈ Ω}. Its
probability measure is larger than 1− 1.2× 10−6. Thus, the
set D in (16) is {d ∈ R | h(d) ≥ 0} with h(d) = sin2 5

10 −d
2.

The computed inner approximation IN over the time horizon
[0, 1] is also illustrated in Fig. 7. The computation time here
is 31.80 seconds.

For ease of comparison, Fig. 7 also presents the set of 1-safe
initial states, which was computed in Example 2.

From the results illustrated in Fig. 7, we observe that a
less conservative set of p-safe initial states could be computed
using a larger time horizon for this example when the same
set of Wiener paths is used. For instance, we can obtain a less
conservative set of 1-safe initial states using the time horizon
[0, 1.5] rather than the time horizon [0, 1] when the set of all
continuous Wiener paths is used. However, one can further
reduce this conservativeness by only considering a subset of
Wiener paths rather than all the Wiener paths. For instance, a
(1−1.2×10−6)-safe initial state is practically 1-safe. However,
the set of (1− 1.2× 10−6)-safe initial states computed based
on the set of continuous Wiener paths with a probability of at
least (1 − 1.2 × 10−6) over the time horizon [0, 1] is larger
than the set of 1-safe initial states computed based on the set
of all continuous Wiener paths over the time horizon [0, 1.5].

Example 7. Consider a seven-dimensional academic example

presented below,

ẋ1 = −(
√

1.5 sin(
W1(s, w1)

10
) + 2)x1 + 0.5x2

ẋ2 = −(
√

1.5 sin(
W2(s, w2)

10
) + 2)x2 + 0.4x3

ẋ3 = −x3 + 0.5x4

ẋ4 = −x4 + 0.7x5

ẋ5 = −x5 + 0.6x6

ẋ6 = −x6 + 0.8x7

ẋ7 = −x7 +
√

1.5 sin(
W1(s, w1)

10
)x6 + 10x2

1

+ x2
2 − x2

3 − x2
4 + x2

5

(21)

with X = {x ∈ R7 | g(x) ≤ 0}, g(x) =
∑7
i=1 x

2
i − 0.25 and

the stochastic process W (·, ·) = (W1(·, ·),W2(·, ·))> being a
2-dimensional standard Wiener process. The p-safety problem
for this example is to identify a set of 0.98-safe initial states.

Like in Example 2, since sin(·) : R→ [−1, 1], by regarding
sin(W1(·,·)

10 ) : [0,∞) × Ω1 → [−1, 1] and sin(W2(·,·)
10 ) :

[0,∞)×Ω2 → [−1, 1] as perturbation inputs d1(·) : [0,∞)→
[−1, 1] and d2(·) : [0,∞)→ [−1, 1] respectively, we consider
the perturbed ODE

ẋ1 = −(
√

1.5d1(s) + 2)x1 + 0.5x2

ẋ2 = −(
√

1.5d2(s) + 2)x2 + 0.4x3

ẋ3 = −x3 + 0.5x4

ẋ4 = −x4 + 0.7x5

ẋ5 = −x5 + 0.6x6

ẋ6 = −x6 + 0.8x7

ẋ7 = −x7 +
√

1.5d1(s)x6 + 10x2
1

+ x2
2 − x2

3 − x2
4 + x2

5

(22)

where X = {x ∈ R7 | g(x) ≤ 0}, d(·) : [0,∞) → D is the
perturbation, D = {d ∈ R2 | h1(d) ≥ 0, h2(d) ≥ 0} with
h1(d) = 1− d2

1 and h2(d) = 1− d2
2. Clearly, the trajectories

of (22) include the ones of (21).
We first compute a robust invariant set of perturbed ODE

(22) such that every trajectory starting from it will always stay
within the safe set X , regardless of perturbation inputs d(·) :
[0,∞)→ [−1, 1]2. Via solving the semi-definite program (17),
we obtain a robust invariant set T̃R = {x ∈ BR | u(x) ≤ 0}
for ODE (22), which is illustrated in Fig. 8–10. Obviously, it
is a set of 1-safe initial states for RODE (21). The parameters
in solving (17) are presented in Table VI and the computation
time is 320.65 seconds.

Then we choose the time horizon [0, 2] and identify the set
W of Wiener paths W (·,w) : [0, 2]→ (−4, 4)× (−4, 4), i.e.,
W = {W (·,w) : [0, 2] → (−4, 4) × (−4, 4) | w ∈ Ω}, with
probability of at least 0.98, i.e., P ({w ∈ Ω | W (·,w) :
[0, 2] → (−4, 4) × (−4, 4)}) ≥ 0.98. Thus, the set D in
this case is equal to {d ∈ R2 | h1(d) ≥ 0, h2(d) ≥ 0}
with h1(d) = sin2 4

10 − d2
1 and h2(d) = sin2 4

10 − d2
2. An

inner-approximation IN over the time horizon [0, 2.0], which
is computed via solving (11), is illustrated in Fig. 8–10. The
parameters in solving (11) are presented in Table VII and the
computation time is 260.58 seconds.
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du ds1 ds2 ds3 gR
4 4 4 4 0.26−

∑7
i=1 x

2
i

TABLE VI
Parameters for solving the semi-definite program (17) for Example 7. du
denotes the degree of the polynomial u(x). dsi denotes the degree of the

sum-of-squares polynomial si, i = 1, . . . , 3.

du ds1 ds2 ds3 ds4 ds5 ds6 R
4 4 4 4 4 4 4 0.26

TABLE VII
Parameters for solving the program (11) for Example 7.

Besides we use the time horizon [0, 2] and the set W of
two-dimensional Wiener paths in C2[0, 2] such that W (·,w) :
[0, 2] → R2. That is, the set W = {W (·,w) ∈ C2[0, 2] |
w ∈ Ω} includes the set of all continuous Wiener paths. Its
probability measure is 1. Thus, the set D in this case is {d ∈
R2 | h1(d) ≥ 0, h2(d) ≥ 0} with h1(d) = 1−d2

1 and h2(d) =
1 − d2

2. An inner-approximation IN’ over the time horizon
[0, 2.0], which is computed via solving (11), is illustrated in
Fig. 8–10. The parameters in solving (11) are presented in
Table VII and the computation time is 288.27 seconds.

Similar to Example 6, the comparison results illustrated in
Fig. 8–10 imply that the conservativeness in estimating the set
of safe initial states of interest can be reduced by considering
a smaller subset of Wiener paths. For instance, the set of
0.98-safe initial states computed based on the set of Wiener
paths with probability of at least 0.98 is larger than the one
computed based on the set of all continuous Wiener paths.

The scalability of our approach, which reduces stochastic
reachability to adversary reachability of ODEs for solving the
p-safety problem of RODEs over both finite and infinite time
horizons, depends on the underlying reachability techniques
for perturbed ODEs. In this paper, the semi-definite program-
ming methods from [43] and [45] are employed to illustrate
our approach. The resulting semi-definite program falls within
the convex programming framework and can be efficiently
solved by interior point methods in polynomial time. Yet the
size of the programs (11) and (17) grows extremely fast with
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Fig. 8. An illustration of sets of p-safe initial states for Example 7 on the
plane x1 − x2 with x3 = x4 = x5 = x6 = x7 = 0. The red curve
denotes the boundary of the computed robust invariant set T̃R. The green
curve denotes the boundary of the computed inner-approximation IN’ of 0.98-
safe initial states. The blue curve denotes the boundary of the computed inner-
approximation IN of 0.98-safe initial states. The black curves denote the
trajectories of RODE (21) in finite time.
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Fig. 9. An illustration of sets of p-safe initial states for Example 7 on the
plane x1 − x3 with x2 = x4 = x5 = x6 = x7 = 0. The red curve
denotes the boundary of the computed robust invariant set T̃R. The green
curve denotes the boundary of the computed inner-approximation IN’ of 0.98-
safe initial states. The blue curve denotes the boundary of the computed inner-
approximation IN of the 0.98-safe initial states. The black curves denote the
trajectories of RODE (21) in finite time.
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Fig. 10. An illustration of sets of p-safe initial states for Example 7 on the
plane x1 − x7 with x2 = x3 = x4 = x5 = x6 = 0. The red curve
denotes the boundary of the computed robust invariant set T̃R. The green
curve denotes the boundary of the computed inner-approximation IN’ of 0.98-
safe initial states. The blue curve denotes the boundary of the computed inner-
approximation IN of the 0.98-safe initial states. The black curves denote the
trajectories of RODE (21) in finite time.

the number of state and perturbation variables and the degree
of the polynomials occurring in them. Fortunately, the use
of template polynomials such as diagonally dominant sum-
of-squares (DSOS) and scaled diagonally dominant-sum-of-
squares (SDSOS) polynomials [2], which convert the semi-
definite programming relaxations into linear programs and
second-order cone programs with lower complexity than the
semi-definite programs, can enhance the computational effi-
ciency and thus advance scalability of the methods exploiting
semi-definite programming.

V. CONCLUSION

In this paper we studied the safety verification problem
for systems modeled by RODEs, which are ODEs that con-
tain stochastic processes. This is the first work on studying
the safety verification of RODEs incorporating time-varying
stochastic processes. Given a threshold p ∈ (0, 1), the safety
verification problem is to compute a set of initial states such
that the probability of the system staying safe is larger than p
from each initial state. We considered the safety verification
problem over both finite time horizons and the infinite time
horizon. Our approach was based on the reduction of stochastic
reachability of RODEs to adversary reachability of ODEs,
thereby lifting the existing reachability analysis techniques
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for perturbed ODEs to RODEs. Finally, we demonstrated our
method on several examples.

In this paper we confined ourselves to RODEs incorporating
a Wiener process, but the method of reducing stochastic reach-
ability to adversary reachability for ODEs is more generally
applicable to RODEs comprising Lévy processes such as a
Poisson process. This hinges on the fact that each Lévy process
has a measurable modification [3] and that the semi-definite
programs (11) and (17) are equally applicable to systems with
measurable inputs. One has to furthermore employ Doob’s
martingale inequality instead of the reflection principle in
Alg. 1 to obtain a set of sample paths covering a probability
mass of at least p. The remaining procedures stay unaltered.

In future work we will investigate the conservativeness of
our approach and explore more advanced methods for safety
verification of RODEs. Also, since RODEs can incorporate
bounded noise processes, which reflect the nature of many
real physical quantities [9], in our future work we want to
apply the proposed safety verification approaches to the safe
design of cyber-physical systems such as autonomous vehicles
modelled by RODEs with bounded stochastic processes.
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