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Abstract—In this paper we study the maximal robust invariant
set estimation problem for discrete-time perturbed nonlinear
systems within the optimal control framework. The maximal
robust invariant set of interest is a set of all states such that
every possible trajectory starting from it never violates a specified
state constraint, regardless of actual disturbances. The maximal
robust invariant set is shown to be the zero level set of the
unique bounded solution to a Bellman type equation, which
is a functional equation being widely used in discrete-time
optimal control. Consequently, the maximal robust invariant
set estimation problem is reduced to a problem of solving a
Bellman type equation. This is the main contribution of this
work. The uniqueness of bounded solutions enables us to solve
the derived Bellman type equation using numerical methods such
as the value iteration and policy iteration, which provide an
approximation of the maximal robust invariant set.Finally, two
examples demonstrate the performance of our Bellman equation
based method.

Index Terms—Discrete-time Perturbed Nonlinear Systems;
Maximal Robust Invariant Sets; Bellman Equations

I. INTRODUCTION

The computation of robust invariant sets is central to the
validation of systems such as nonlinear dynamical systems and
hybrid-state extensions thereof [9], [11]. A robust invariant set
of interest in this paper refers to a set of states such that every
possible trajectory initialized in it never violates a specified
safe state constraint irrespective of the actual disturbance.
It has many other names in the literature, e.g., reachability
tubes [20] and invariance kernels [2]. Due to its widespread
applications in systems and control for stability analysis and
control design [5], robust invariant sets generation has been
the subject of extensive research over past several decades,
e.g., [2], [4], [7], [10], [13], [18], [22].

One popular line for studying robust invariant sets gen-
eration problem is by exploiting the link to optimal control
problems. When the system is continuous-time, Hamilton-
Jacobi equations, which are widely used in optimal control
theory [3], are explored for performing reachability analysis,
e.g., [2], [14], [16]. From a theoretical point of view, one
advantage of this method is that the exact reach sets of interest
could be characterized by level sets of viscosity solutions to
Hamilton-Jacobi equations. From a computational point of
view, there exist well-developed numeric methods [1], [15],
[23] for solving Hamilton-Jacobi equations with appropriate
number of state variables, rendering possible the gain of
exact reach sets. Recently, [24] proposed a Hamilton-Jacobi

type equation and characterized the maximal robust invariant
set as the zero level set of the unique Lipschitz continuous
viscosity solution to this Hamilton-Jacobi type equation for
state-constrained continuous-time perturbed systems.

Despite significant progress towards the computation of
robust invariant sets for continuous-time systems within the
optimal control framework, works on the computation of
robust invariant sets for its counterpart, i.e. discrete-time sys-
tems, are relatively rare in this regard, especially for discrete-
time nonlinear systems. Nonlinear discrete-time systems are
widespread in many practical systems such as biological
systems and economic systems, where the underlying models
are in discrete-time [12]. Moreover, a growing number of
digital devices are being used for information processing and
control purposes in a variety of complex systems applications,
including industrial processes, power networks and commu-
nication networks. For these applications, it is reasonable
to model the system using a discrete-time nonlinear state
space model [17]. Thus, the study of robust invariant sets
for discrete-time nonlinear systems is conducive to improving
these applications, as mentioned before.

In this paper we study the maximal robust invariant set
estimation for discrete-time perturbed nonlinear systems in the
framework of optimal control. We firstly define a bounded
value function with a positive-valued parameter falling be-
tween zero and one such that its zero sub-level set equals
the maximal robust invariant set. Then the value function is
reduced to a bounded solution to a Bellman type equation.
The Bellman equation, named after Richard Bellman, is a
functional equation being widely used in discrete-time optimal
control [3]. When the value of the positive-valued parameter
is strictly less than one, the bounded solution to the Bellman
type equation is unique. Both the value iteration and the policy
iteration are capable of solving the equation, thereby enabling
the gain of an estimation of the maximal robust invariant
set. The estimation is just an approximation of the maximal
robust invariant set. It is neither an outer-approximation nor
an inner-approximation as in [19]. That is, trajectories starting
from it may violate the specified state constraint and thus
the invariance property of interest in this paper may not be
guaranteed generally. Finally, two examples demonstrate the
performance of our Bellman equation based method.

The works mostly close to the present one are [26] and
[25]. The maximal robust non-termination set is equivalent
to the maximal robust invariant set in this paper when the
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computer program in [26] is transformed into a discrete-time
nonlinear system. The main difference between this work and
[26] is that the derived Bellman type equation in this work
has a unique bounded solution, thereby facilitating the use of
existing numerical methods such as the value iteration and
policy iteration to estimate the maximal robust invariant set.
However, the equation in [26] does not feature this uniqueness
property. A resulting consequence is that the value iteration
and policy iteration for solving the equation in [26] cannot
guarantee to terminate generally and thus we cannot obtain an
estimation of the maximal robust invariant set. The work [25]
presents a Bellman type equation for computing the maximal
robust region of attraction. The maximal robust region of
attraction is a set of all states such that every trajectory
initialized in it will approach an equilibrium while never
violating a specified state constraint, regardless of the actual
perturbation. It differs from the maximal robust invariant set
considered in this paper in that the maximal robust invariant
set is not required to contain equilibria and trajectories starting
from it are not required to approach an equilibrium. Recently,
a Bellman equation based method was proposed for computing
finite time horizon maximal invariant sets in [8]. Unlike [8],
the present work focuses on generating the maximal robust
invariant set over the infinite time horizon rather than finite
time horizons.

The main contribution of this paper is summarized below:
1) The maximal robust invariant set is shown to be the zero

level set of the unique bounded solution to a Bellman
type equation. To our knowledge this is the first work
on linking maximal robust invariant sets with Bellman
type equations exhibiting unique bounded solutions.

2) Both the value iteration and policy iteration are capable
of resolving the derived Bellman type equation for
obtaining an estimation of the maximal robust invariant
set. Due to the merits that some nice properties such
as the rate of convergence and the maximum iteration
number can be obtained a priori for the value iteration,
we in this paper use the value iteration as the main
tool to illustrate our Bellman equation based method.
The convergence rate of the value iteration is linear
and the same for all discrete-time nonlinear systems.
This convergence property is generally not attainable
for existing methods. Furthermore, the convergence rate
is adjustable and can achieve a nearly superlinear one,
enabling the value iteration to outperform the policy
iteration when the convergence rate is close enough to
the accuracy tolerance.

II. PRELIMINARIES

In this section we describe discrete-time perturbed nonlinear
systems, and maximal robust invariant sets of interest in this
paper.

A. Problem Description

Before posing the problem studied, let us introduce some
basic notions used in the rest of this paper: N stands for the

set of nonnegative integers and R for the set of real numbers;
Vectors are denoted by boldface letters.

In this paper we consider a discrete-time perturbed nonlinear
system (abbr., DPNS), which could be modeled by iterative
nonlinear maps of the following form:

x(l + 1) = f(x(l),d(l)),∀l ∈ N,
x(0) = x0,

(1)

where x(·) : N → Rn are states, d(·) : N → D are the
disturbances with D being a compact set in Rm, and f(·, ·) :
Rn ×D → Rn.

Remark 1. It is worth remarking here that the continuity on
the vector function f(x,d) in (1) is not required. It is allowed
to be discontinuous.

In the following we define disturbance policies and their
associated trajectories for DPNS.

Definition 1. A disturbance policy π for DPNS is a sequence
(d(l))l∈N, where d(·) : N→ D. Furthermore, we define Π as
the set of all disturbance policies.

Definition 2. Given an initial state x0 ∈ Rn and a disturbance
policy π = (d(l))l∈N, the trajectory of DPNS, induced by x0

and π, is a sequence (φπx0
(l))l∈N satisfying φπx0

(l + 1) =
f(φπx0

(l),d(l)) for l ∈ N.

Now, we define the maximal robust invariant set such that
DPNS starting from it never leaves the state constraint set
X = {x ∈ Rn |

∧n0

i=1 hi(x) ≤ 0}, where hi(·) : Rn → R for
i = 1, . . . , n0.

Remark 2. Similar to Remark 1, the continuity on functions
hi(x) defining the set X is not required, i = 1, . . . , n0. They
are allowed to be discontinuous as well.

Definition 3 (Maximal Robust Invariant Set). The maximal
robust invariant set R0 is the set of all states in the state
constraint set X such that every possible trajectory of DPNS
starting from it never leaves X , i.e.

R0 = {x0 ∈ X | φπx0
(l) ∈ X,∀l ∈ N,∀π ∈ Π}.

Consequently, a robust invariant set is a subset of the maximal
robust invariant set R0.

It is worth remarking here that a robust invariant set in
Definition 3 is not an invariant set in the classical sense. Unlike
invariant sets in the classical sense in which trajectories get
trapped, it is a set of states such that every possible trajectory
of DPNS starting from it does not leave the state constraint
set X . Thus, trajectories starting from a robust invariant set in
Definition 3 may leave it but cannot leave X .

The focus of this paper is on the computation of the maximal
robust invariant set R0. In the rest of this paper we assume
that the interior of the maximal robust invariant set R0 exists
for DPNS.

Assumption 1. R◦0 6= ∅, where R◦0 is the interior of the
maximal robust invariant set R0.
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III. COMPUTING MAXIMAL ROBUST INVARIANT SETS

In this section we present our approach of synthesizing the
maximal robust invariant set for DPNS.

In our approach we reduce the maximal robust invariant set
R0 as the zero (sub)level set of the bounded solution v(x) :
Rn → R to a Bellman type equation of the following form:

min
{

inf
d∈D

(v(x)− αv(f(x,d))),

v(x)− max
j∈{1,...,n0}

h′j(x)
}

= 0,
(2)

where h′j(x) =
hj(x)

1+h2
j (x)

and α ∈ (0, 1] is a user-specified
constant. When α ∈ (0, 1), the bounded solution to (2) is
unique. The proofs of the aforementioned claims will be
presented afterwards. The uniqueness of bounded solutions
facilitates the use of both the value iteration and the policy
iteration in reinforcement learning to solve (2). A question
arises naturally: how can the solution to the equation (2) be
obtained?

In order to solve the above mentioned question, we first
present a value function constructed based on a scalar value
α ∈ (0, 1] and the family of functions (hj(x))n0

j=1 defining the
state constraint set X . Then, based on its underlying property
of satisfying the dynamic programming principle as shown in
Lemma 1, this value function finally boils down to the unique
bounded solution to (2) when α ∈ (0, 1), which is formally
formulated in Theorem 1.

The value function V : Rn → R is defined by:

V (x) := sup
π∈Π

sup
l∈N

max
j∈{1,...,n0}

{
αlh′j(φ

π
x(l))

}
, (3)

where α ∈ (0, 1] is a user-specified constant. Obviously,

−1 < h′j(x) < 1

over x ∈ Rn for j = 1, . . . , n0. Thus,

−1 ≤ V (x) ≤ 1,∀x ∈ Rn.

Unlike [26], we introduce a positive-valued parameter α
and new bounded functions (h′j(x))n0

j=1 into the construction
of the value function (3). This enables us to reduce V (x) to
the unique bounded solution to (2) when α ∈ (0, 1). When
α = 1, V (x) in (3) is a bounded solution to (2). As discussed
in [26], the uniqueness of bounded solutions to (2) with α = 1
cannot be guaranteed and thus we cannot obtain the maximal
robust invariant set via solving (2) generally.

The following proposition shows the relationship between
the value function V and the maximal robust invariant set R0,
The zero level set of V (x) is equal to the maximal robust
invariant set R0 when α ∈ (0, 1), and the zero sub-level set
of V (x) is equal to R0 when α = 1.

Proposition 1. R0 = {x ∈ Rn | V (x) ≤ 0}, where R0 is
the maximal robust invariant set in Definition 3. Furthermore,
when α ∈ (0, 1), V (x) ≥ 0 for x ∈ Rn and thus R0 = {x ∈
Rn | V (x) = 0}.

Proof. Let y ∈ R0. According to Definition 3, we have

hj(φ
π
y(i)) ≤ 0,∀i ∈ N,∀π ∈ Π,∀j ∈ {1, . . . , n0} (4)

holds, implying that

h′j(φ
π
y(i)) ≤ 0,∀i ∈ N,∀π ∈ Π,∀j ∈ {1, . . . , n0}

and thus V (y) ≤ 0. Therefore, y ∈ {x | V (x) ≤ 0}.
On the other hand, if y ∈ {x ∈ Rn | V (x) ≤ 0}, then

V (y) ≤ 0, implying that (4) holds and consequently y ∈ R0.
Therefore, R0 = {x ∈ Rn | V (x) ≤ 0}.

As to the case of α ∈ (0, 1), it is obvious that V (x) ≥ 0
for x ∈ Rn since

lim
l→∞

αl max
j∈{1,...,n0}

{h′j(φπx(l))} = 0,∀x ∈ Rn,∀π ∈ Π.

Therefore, R0 = {x ∈ Rn | V (x) = 0} if α ∈ (0, 1).

Proposition 1 tells us that the maximal robust invariant set
R0 can be obtained if the value function V (x) in (3) is
computed. However, it is too challenging to tackle the value
function V (x) in (3) directly, since it involves the manipula-
tion of trajectories for DPNS over the infinite time horizon.
Therefore, we reduce it to the unique bounded solution to
the Bellman type equation (2) when α ∈ (0, 1) and thus
the problem of computing the maximal robust invariant set
is reduced to solving the equation (2). The link between the
value function (3) and the equation (2) is established via the
following dynamic programming principle.

Lemma 1. For x ∈ Rn and l ∈ N, we have:

V (x) = sup
π∈Π

max
{
αlV (φπx(l)),

sup
i∈[0,l)∩N

max
j∈{1,...,n0}

αih′j(φ
π
x(i))

}
.

(5)

Proof. Let

W (l,x) := sup
π∈Π

max
{
αlV (φπx(l)),

sup
i∈[0,l)∩N

max
j∈{1,...,n0}

αih′j(φ
π
x(i))

}
.

We will prove that for ε > 0, |W (l,x)− V (x)| < ε.
According to the definition of V (x), i.e., (3), for any ε1,

there exists an input policy π′ = (d′(i))i∈N ∈ Π such that

V (x) ≤ sup
i∈N

max
j∈{1,...,n0}

{αih′j(φπ
′

x (i))}+ ε1.

We then introduce two input policies π1 = (d1(i))i∈N ∈
Π and π2 = (d2(i))i∈N ∈ Π with d1(j) = d′(j) for j =
0, . . . , l − 1 and d2(j) = d′(j + l) for j ∈ N respectively.
Thus we obtain that

W (l,x) ≥ max
{
αlV (y), sup

i∈[0,l)∩N
max

j∈{1,...,n0}
αih′j(φ

π1
x (i))

}
≥ max

{
sup

i∈[l,+∞)∩N
max

j∈{1,...,n0}
{αih′j(φπ2

y (i− l))},

sup
i∈[0,l)∩N

max
j∈{1,...,n0}

{αih′j(φπ1
x (i))}

}
= max

{
sup

i∈[l,+∞)∩N
max

j∈{1,...,n0}
{αih′j(φπ

′

x (i))},

sup
i∈[0,l)∩N

max
j∈{1,...,n0}

{αih′j(φπ
′

x (i))}
}

= sup
i∈N

max
j∈{1,...,n0}

{αih′j(φπ
′

x (i))}

≥ V (x)− ε1,
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where y = φπ1
x (l). Therefore,

V (x) ≤W (l,x) + ε1. (6)

On the other hand, by the definition of W (l,x), for every
ε1 > 0, there exists π1 = (d1(i))i∈N ∈ Π such that

W (l,x) ≤max
{
αlV (φπ1

x (l)),

sup
i∈[0,l)∩N

max
j∈{1,...,n0}

{αih′j(φπ1
x (i))}

}
+ ε1.

Also, by the definition of V (x), i.e., (3), for every ε1 > 0,
there exists π2 = (d2(i))i∈N ∈ Π such that

V (y) ≤ sup
i∈N

max
j∈{1,...,n0}

{αih′j(φπ2
y (i))}+ ε1,

where y = φπ1
x (l). We define π = (d(i))i∈N such that d(i) =

d1(i) for i = 0, . . . , l − 1 and d(i + l) = d2(i) for i ∈ N.
Obviously, π ∈ Π. Then, it follows

W (l,x) ≤max
{

sup
i∈N∩[l,∞)

max
j∈{1,...,n0}

{αih′j(φπ2
y (i− l))},

sup
i∈[0,l)∩N

max
j∈{1,...,n0}

{αih′j(φπ1
x (i))}

}
+ 2ε1

≤ sup
i∈[0,+∞)∩N

max
j∈{1,...,n0}

{αih′j(φπx(i))}+ 2ε1

≤V (x) + 2ε1.

Therefore,
V (x) ≥W (l,x)− 2ε1. (7)

Combining (6) and (7), we finally have |V (x)−W (l,x)| ≤
ε = 2ε1. Since ε1 is arbitrary, V (x) = W (l,x) holds for
x ∈ Rn and l ∈ N. This completes the proof.

Based on Lemma 1, we derive (2), to which V (x) is a
unique bounded solution when α ∈ (0, 1).

Theorem 1. If α ∈ (0, 1], the value function V (x) : Rn → R
in (3) is a bounded solution to the Bellman type equation (2).
Moreover, V (x) is the unique bounded solution to (2) when
α ∈ (0, 1).

Proof. When l = 1, (5) is reduced to

V (x) = sup
π∈Π

max
{
αV (φπx(1)),

sup
i∈[0,1)∩N

max
j∈{1,...,n0}

αih′j(φ
π
x(i))

}
,

which is further equivalent to

V (x) = sup
d∈D

max
{
αV (f(x,d)), max

j∈{1,...,n0}
h′j(x)

}
.

Thus, (2) is the special case of (5) when l = 1. In the rest
we just prove the statement that V (x) is the unique bounded
solution to (2) when α ∈ (0, 1).

Assume that U(x) is a bounded solution to (2) as well, and
there exists y ∈ Rn such that U(y) 6= V (y). Without loss
of generality, we assume that U(y) < V (y), i.e., there exists
δ > 0 such that V (y)− U(y) = δ.

Since U(y)−maxj∈{1,...,n0} h
′
j(y) ≥ 0,

V (y)− max
j∈{1,...,n0}

h′j(y) > 0

holds. Consequently, we have that V (y) =
α supd∈D V (f(y,d)). Also, due to the fact that
U(y) ≥ α supd∈D U(f(y,d)),

α sup
d∈D

V (f(y,d))− α sup
d∈D

U(f(y,d)) ≥ δ

holds, implying that

α sup
d∈D

(V (f(y,d))− U(f(y,d))) ≥ δ.

Therefore, for 1 < β < 1
α , there exists d ∈ D such that

α(V (f(y,d))− U(f(y,d))) ≥ βαδ.

Let d1 satisfy

V (f(y,d1))− U(f(y,d1)) ≥ βδ,

and y1 = f(y,d1). It is obvious that

V (y1)− U(y1) ≥ βδ.

Repeating the above procedure, we can construct a sequence
(yj)

∞
j=1 satisfying V (yj)− U(yj) ≥ βjδ. Thus,

V (yj) ≥ U(yj) + βjδ, ∀j ∈ N.

Since U is bounded over Rn and limj→∞ βjδ = ∞, we
have that V (yj) approach infinity when j tends to infinity,
contradicting that V is bounded over Rn. Thus, V (y) = U(y).
Based on the above deduction technique, a similar contradic-
tion can be obtained for the case when U(y) > V (y).

Thus, this concludes that the value function V (x) : Rn → R
in (3) is the unique bounded solution to (2).

Remark 3. In this paper we take the function h′j(x) of
the particular form hj(x)

1+h2
j (x)

, j = 1, . . . , n0. Actually, it can

take various forms such as hj(x)
1+|hj(x)| which can still make

Proposition 1, Lemma 1 and Theorem 1 hold, but it should
satisfy the following properties:

1) {x |
∧n0

j=1 h
′
j(x) ≤ 0} = {x |

∧n0

j=1 hj(x) ≤ 0} = X;
2) h′j(x) is bounded over Rn, j = 1, . . . , n0.

The difference with various h′j(x)’s in computing the maximal
robust invariant set will be investigated as the future work.

From Theorem 1, we conclude that the maximal robust
invariant set R0 can be obtained by solving (2). A technique
for solving (2) with α ∈ (0, 1) is the value iteration in the
framework of reinforcement learning.

Theorem 2. Suppose the sequence of functions (Vi(x))i∈N
with Vi(·) : Rn → R is generated by the value iteration
starting from some bounded function V0 : Rn → R according
to

Vi+1(x) = max
{

sup
d∈D

αVi(f(x,d)),

max
j∈{1,...,n0}

h′j(x)
} (8)

for x ∈ Rn and i ∈ N, then Vi(x) uniformly approximates
V (x) over Rn if α ∈ (0, 1) as i tends to infinity, where V (x)
is the unique bounded solution to (2).
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Proof. According to (8), we have

Vi+1(x)− Vi(x)

= max
{
α sup

di∈D
Vi
(
f(x,di)

)
, max
j∈{1,...,n0}

h′j(x)
}
−

max
{
α sup

di∈D
Vi−1

(
f(x,di)

)
, max
j∈{1,...,n0}

h′j(x)
}

≤ max
{
α sup

di∈D

(
Vi
(
f(x,di)

)
− Vi−1

(
f(x,di)

))
, 0
}

≤ max
{
αi sup

d1∈D
· · · sup

di∈D

(
V1

(
g(x,d1, · · · ,di)

)
−

V0

(
g(x,d1, · · · ,di)

))
, 0
}

(9)

and

Vi+1(x)− Vi(x)

= −min
{
α inf

di∈D
−Vi

(
f(x,di)

)
,− max

j∈{1,...,n0}
h′j(x)

}
+ min

{
α inf

di∈D
−Vi−1

(
f(x,di)

)
,− max

j∈{1,...,n0}
h′j(x)

}
≥ min

{
α inf

di∈D

(
Vi
(
f(x,di)

)
− Vi−1

(
f(x,di)

))
, 0
}

≥ min
{
αi inf

d1∈D
· · · inf

di∈D

(
V1

(
g(x,d1, · · · ,di)

)
−

V0

(
g(x,d1, · · · ,di)

))
, 0
}
,

(10)

where

g(x,d1, · · · ,di) =

f

(
f
(
· · ·f

(
f︸ ︷︷ ︸

i

(x,di),di−1

)
, · · · ,d2

)
,d1

)
.

Moreover, since V0 and maxj∈{1,...,n0} h
′
j are bounded over

Rn, therefore, V1 is bounded as well. Thus, according to
(9), (10) and α ∈ (0, 1), we have that Vi(x) uniformly
approximates a function V ′(x) over Rn as i tends to in-
finity. In the rest we just need to prove that V ′(x) =
V (x) over x ∈ Rn. This conclusion can be assured by
replacing Vi+1(x) − Vi(x in (9) and (10) with Vi+1(x) −
V (x), resulting in that Vi+1(x) uniformly approximates
V (x) over Rn as i tends to infinity, where V (x) =
max{α supd∈D V (f(x,d)),maxj∈{1,...,n0} h

′
j(x)}.

Remark 4. From Theorem 2, we observe that the initial
function V0(x) for the value iteration (8) can be an arbitrary
bounded function from Rn to R. Let |V0(x)| ≤M for x ∈ Rn
and α ∈ (0, 1), where M ≥ 0. From (9) and (10) we can
obtain that

sup
x∈Rn

|Vi+1(x)− Vi(x)| ≤ αi max{2M, 1 +M}. (11)

Consequently, Vi(x) converges to V (x) over Rn with the rate
of convergence α. This also implies that the smaller the rate
of convergence α is, the faster the convergence is. This will
be reflected in the experimental section as well.

In addition, (11) indicates that a smaller M results in a
faster convergence to the unique bounded solution to (2). Thus,
M = 0, i.e., V0(x) ≡ 0 for x ∈ Rn, is the best choice. This

claim holds when V (x) in (3) is unknown. Due to the fact that
V (x) = max{α supd∈D V (f(x,d)),maxj∈{1,...,n0} h

′
j(x)},

we have that V0(x) = V (x) for x ∈ Rn is the best choice if
V (x) is known.

The value iteration for addressing (2) with α ∈ (0, 1) is
described in Alg. 1.

Algorithm 1 The value iteration for solving (2)
1) Set V0(x) := 0 over x ∈ Rn and k := 0, and decide on

a grid Λ = {x1, . . . ,xN} on X for the state variable x,
and a grid ∆ = {d1, . . . ,dM} in D for the disturbance
variable d.

2) Choose a value in (0, 1) for α;
3) Choose an accuracy tolerance ε > 0;
4) For each xi ∈ Λ, i = 1, . . . , N , compute

x′i,j = f(xi,dj), j = 1, . . . ,M,

then compute an interpolated value function at each
x′i,j : Ṽk(x′i,j) and compute

Vk+1(xi) = max{α max
j∈{1,...,M}

Ṽk(x′i,j),

max
j∈{1,...,n0}

h′j(xi)}.

5) If maxx∈Λ |Vk+1(x) − Vk(x)| < ε, go to step 6);
otherwise, k := k + 1 and go back to 4);

6) Obtain the final solution V (x) as V (x) ≈ Vk+1(x).

Remark 5. From (11) we can obtain that given the accuracy
tolerance ε, the maximum iteration number in Alg. 1 is
predictable a priori, i.e., the maximum iteration number is
less than or equal to max{dlogα εe, 1}, where dlogα εe is the
smallest integer being larger than or equal to logα ε.

The termination of the value iteration algorithm described
in Alg. 1 is guaranteed by Theorem 2. In this way the value
of V (x) can be calculated on the grid points of the set X .

When α = 1, we cannot guarantee the convergence of
(Vi)i∈N in (8). This is also reflected in Remark 4. Even if
the sequence (Vi)i∈N converges, the convergence to V (x) is
not guaranteed, where V (x) is the value function in (3), since
(2) may not have a unique bounded solution.

IV. EXPERIMENTS

In this section we evaluate the performance of our Bellman
equation based method equipped with Alg. 1 on two illustra-
tive examples. Moreover, we compare the Bellman equation
based method in this paper with that in [26] based on these two
examples, and compare the Bellman equation based methods
propsoed in this paper equipped with the value iteration and
the policy iteration based on these two examples.

The parameters that control the performance of our method
are presented in Table I. All computations were performed
on an i7-7500U 2.70GHz CPU with 32GB RAM running
Windows 10. For the value iteration in Alg. 1, uniform grids
are adopted for state and disturbance spaces. The computa-
tional state spaces for Examples 1 and 2 are restricted to
[−1.1, 1.1]× [−1.1, 1.1] and [−1, 1]× [−1, 1], respectively.
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Ex. α ε N M TVI
1 10−16 10−20 104 10 88.10
2 10−16 10−20 104 10 87.05

TABLE I
Parameters and performance of our implementations on the Examples 1 and

2. α: the parameter value in (3); ε: the stopping criterion in the value
iteration method in Alg. 1; N,M : numbers of elements in Λ and ∆

respectively in the value iteration method in Alg. 1; TVI: computation times
(seconds) in solving (2) using the value iteration method in Alg. 1.

Example 1. In this example we consider a computer-based
model of the following perturbed continuous-time system de-
scribing the motion of a whirling pendulum [6],{

ẋ1 = x2,

ẋ2 = − 2
dx2 + 0.81 sin(x1) cos(x1)− sin(x1),

where d ∈ [0.9, 1.1].
When performing computer simulations, the Euler’s method

is used. It utilizes the idea of local linearity or linear approx-
imation. When the simulation time step is 0.4, the resulting
discrete-time system is:

x1(l + 1) = x1(l) + 0.4x2(l),

x2(l + 1) = x2(l) + 0.4
(
− 2

d(l)x2(l)+

0.81 sin(x1(l)) cos(x1(l))− sin(x1(l))
)
,

where D = [0.9, 1.1] and l ∈ N.
We take the state constraint set X = {(x1, x2) | x2

1 + x2
2 ≤

1}. The computed maximal robust invariant set is illustrated
in Fig. 1, which also showcases the computed V (x). Four
trajectories, where two trajectories respect the state constraint
and two trajectories violate the state constraint, are illustrated
in Fig. 1 as well. These trajectories are generated by extracting
the disturbance d(l) from D randomly for l ∈ N.

Example 2. We consider a DPNS with f(x, y) = 1X1
·

f1(x, y, d) + 1X2
· f2(x, y, d), where 1Xi

: Xi → {0, 1}
represents the indicator function of the set Xi, i = 1, 2, i.e.,

1Xi
:=

{
1, if x ∈ Xi,

0, if x /∈ Xi,

f1(x, y, d) = (x; (0.5 + d)x− 0.1y),

f2(x, y, d) = (y; 0.2x− (0.1 + d)y + y2),

X = {(x, y) | x2 + y2 − 0.8 ≤ 0}, X1 = {(x, y) | 1 − (x −
1)2 − y2 ≤ 0}, X2 = {(x, y) | −1 + (x− 1)2 + y2 < 0} and
D = {d | d2 − 0.01 ≤ 0}.

Fig. 2 presents the maximal robust invariant set and the
level sets of the solution to (2), which are computed via Alg.
1. Six trajectories, where three trajectories respect the state
constraint and three trajectories violate the state constraint,
are illustrated in Fig. 2 as well. Like Example 1, these
trajectories are generated by extracting the disturbance d(l)
from D randomly for l ∈ N.

The plots in Fig. 1 and Fig. 2 confirm the statement in
Proposition 1 that the solution to (2) with α ∈ (0, 1) is
non-negative. In the following we first compare the Bellman

x
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Fig. 1. An illustration of the maximal robust invariant set computed via
Alg. 1 for Example 1. Above: Green and red curves denote the boundaries
of the state constraint set X and the computed maximal robust invariant set,
respectively. Red and black stars denote the initial states and subsequent states,
respectively. The dash blue line denotes the transition between states. Below:
Level sets of V obtained via the value iteration in Alg. 1.
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Fig. 2. An illustration of the maximal robust invariant set computed via
Alg. 1 for Example 2. Above: Green and red curves denote the boundaries
of the state constraint set X and the computed maximal robust invariant set,
respectively. Red and black stars denote the initial states and subsequent states,
respectively. The dash blue line denotes the transition between states. Below:
Level sets of V obtained via the value iteration in Alg. 1.
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equation based method equipped with Alg. 1 and the Bellman
equation based method in [26] equipped with Alg.1, then we
compare the value iteration and the policy iteration for solving
(2) via tuning the parameter α based on the other parameters
listed in Table I. Policy iteration, which manipulates the policy
directly rather than finding it directly via the optimal value
function, is also able to deal with the Bellman type equation
(2). The policy iteration is presented in Alg.2 in Appendix. It
is also guaranteed to converge to the unique bounded solution
to (2). The convergence analysis is omitted here and can be
reasoned about by following the one in, e.g., [21].

We compare the Bellman equation based method in the
present paper with the one in [26] based on Examples 1
and 2. Based on the same parameter inputs listed in Table
I, the value iteration to solve the Bellman type equation in
[26] does not terminate after one and a half hours for both
Examples 1 and 2. The underlying reason is that the value
iteration for solving the Bellman type equation in [26] may
not converge. Consequently, it cannot be directly used to
compute the maximal robust invariant set. Also, we use the
value iteration in Alg. 1 to solve the Bellman type equation
(2) with α = 1 for these two examples, the value iteration does
not terminate after one and a half hours for both Examples 1
and 2 as well.

Next, we compare the value iteration in Alg. 1 and the policy
iteration in Alg. 2 via varying α. Like the value iteration
in Alg. 1, the policy iteration in Alg. 2 also takes uniform
grids for state and disturbance spaces, and the corresponding
computational state spaces are also restricted to [−1.1, 1.1]×
[−1.1, 1.1] and [−1, 1]× [−1, 1] for Examples 1 and 2, respec-
tively. We first take α = 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.5 as
instances to make comparisons. The maximal robust invariant
sets for Example 1 computed via Alg. 1 and Alg. 2 with these
values are almost the same as that presented in Fig. 11. This
statement is also applicable to Example 2. The corresponding
computation times are summarized in Fig. 3. Fig. 3 indicates
that the computation time for both the value iteration and
the policy iteration increases as α goes up. Also, the policy
iteration is more efficient than the value iteration generally
when α takes the values aforementioned. However, it does
not indicate that the policy iteration outperforms the value
iteration for any α ∈ (0, 1). As uncovered in Remark 4,
smaller α results in faster convergence of the value iteration.
Also, as indicated in Remark 5, when the convergence rate α is
approaching the accuracy tolerance ε, the iteration number in
Alg. 1 is reducing. We take 10−16, 10−14, 10−12 as instances
to make further comparisons between the value iteration in
Alg. 1 and the policy iteration in Alg. 2. Analogously, the
computed maximal robust invariant sets for Example 1 and
Example 2 are also almost the same as those in Fig. 1 and Fig.
2, respectively. The corresponding computation times are listed
in Table II, which reflects that the value iteration nevertheless
outperforms the policy iteration when the convergence rate α
is close enough to the given accuracy tolerance ε.

Finally, it is worth remarking here that the main contribution

1‘almost the same’ means that the computed maximal robust invariant sets
showing on the graph are indistinguishable.
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Fig. 3. An illustration of the effect of relatively large α on the computation
times. The red and blue lines denote the relationship between the computation
time and α in the value iteration method for Example 1 and 2, respectively.
The red and blue dashed lines denote the relationship between the computation
time and α in the policy iteration method for Example 1 and 2, respectively.
The red and blue stars denote the computations times corresponding to α =
0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.5 for Examples 1 and 2, respectively.

α 10−16 10−14 10−12

Ex. 1 TVI 88.10 89.26 87.50
TPI 107.25 112.12 107.07

Ex. 2 TVI 87.05 90.73 87.98
TPI 106.49 110.68 107.03

TABLE II
The effect of small α on computation times for both the value iteration and

policy iteration. TVI and TPI: computation times (seconds) in solving (2)
using the value iteration in Alg. 1 and policy iteration in Alg. 2, respectively.

of our method lies in the reduction of a non-convex problem
of computing maximal robust invariant sets to a problem of
solving a single mathematical equation (2). Although numeric
computation based methods such as the value iteration and
the policy iteration for solving the equation (2) give us
approximate solutions (with arbitrary accuracy) rather than
the exact solution generally, the estimated maximal robust
invariant sets are still useful in practice. For instance, they
provide insights into the boundaries of maximal robust in-
variant sets, facilitating both the conservativeness gauge of
the widely computed inner-approximations of maximal robust
invariant sets and the gain of a feasible initial state enabling
the system to respect the specified state constraints. Besides,
if the discrete-time nonlinear system (1) is restricted to be the
polynomial type, i.e., f(x,d) is a polynomial or piecewise
polynomial in x and d, and the state constraint set X is
semi-algebraic, the equation (2) facilitates the construction of
a semi-definite program for computing inner-approximations
of maximal robust invariant sets. The semi-definite program
can be obtained by following the reasoning in [26] and is not
the focus of this work.

V. CONCLUSION AND FUTURE WORK

In this paper we studied the maximal robust invariant set
estimation for discrete-time perturbed nonlinear systems. We
for the first characterized the maximal robust invariant set
as the zero level set of the unique bounded solution to a
Bellman type equation. Value iteration and policy iteration can
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be used to solve such equation with appropriate number of
state and disturbance variables. Two examples demonstrated
the performance of our Bellman equation based method.

In near future we would extend our method to the com-
putation of robust invariant sets for state-constrained hybrid
systems subject to competing inputs (control and disturbance).
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APPENDIX

The policy iteration for addressing (2) with α ∈ (0, 1) is
described in Alg. 2.

Algorithm 2 The policy iteration for solving (2)
1) Set V0(x) := 0 over x ∈ Rn and k := 0, and decide on

a grid Λ = {x1, . . . ,xN} on X for the state variable x,
and a grid ∆ = {d1, . . . ,dM} in D for the disturbance
variable d.

2) Choose disturbances π̂ = (d1, . . . ,dN );
3) Choose a value in (0, 1) for α;
4) Choose an accuracy tolerance ε > 0;
5) For each xi ∈ Λ, i = 1, . . . , N , compute

x′i = f(xi,d
i),

then compute an interpolated value function at each x′i :
Ṽk(x′i) and compute

Vk+1(xi) = max{αṼk(x′i), max
j∈{1,...,n0}

h′j(xi)}.

6) If maxx∈Λ |Vk+1(x) − Vk(x)| < ε, go to step 7);
otherwise, k := k + 1 and go back to 5);

7) π̂′ := π̂ and for each xi ∈ Λ, i = 1, . . . , N ,

di = arg max
dj∈∆

Vl(f(xi,dj)).

π̂ := (d1, . . . ,dN ) and go to step 8);
8) If π̂′ = π̂, obtain the final solution V (x) as V (x) ≈

Vk(x). Otherwise, go back to 5).
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