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Abstract

Security and privacy of users’ information in mobile communication networks
have drawn increasing attention. The development of 5G system has de-
manded new protocols to realize authentication and key management service.
AKMA (Authentication and Key Management for Application) service aims
at establishing authenticated communication between users and application
functions. For this purpose, the 3GPP group has standardized 5G AKMA
service in Technical Specifications defining the 5G AKMA security architec-
ture and procedures. To ensure security of communication between users and
applications, AKMA service should meet strong security properties. In this
paper, we apply formal methods to model and analyze the AKMA service.
We construct a formal model of AKMA in the Tamarin verification tool, and
specify the authentication, secrecy, and privacy properties extracted from
informal descriptions given in the Technical Specifications. We identify as-
sumptions for each security property during the modeling process. We prove
that some properties are not satisfied, and by analyzing the counterexamples
constructed by Tamarin, put forward some potential attacks. Moreover, we
propose some suggestions for the 5G AKMA service.

Keywords: 5G AKMA, security, formal modeling, verification

1. Introduction

With mobile communication networks widely used across the world, more
and more people subscribe to home networks and communicate with each
other or use online services, such as phone calls, emails, and entertainment
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applications. Much of these communications occur through public channels,
which can be intercepted or suffer from other kinds of attacks. In order to
ensure security and privacy of subscribers and application providers commu-
nicating along insecure channels, 3GPP (3rd Generation Partnership Project)
has been specifying the security architecture, i.e. security features and mech-
anisms, for the 5G System and the 5G Core, and the security procedures
performed within the 5G System including 5G Core and 5G New Radio in
the Technical Specification (TS)[1]. One of the main mechanisms is to sup-
port authentication and key management aspects for applications, that is
mutual authentication between users and application providers. Specifically,
a major aim of this service is to allow application providers to authenticate
users without knowing the users’ identifier, with the home network of the
user as an intermediary.

5G AKMA (Authentication and Key Management for Application) is
a novel cellular-network-based delegated authentication service. This ser-
vice, specified in 3GPP TS 33.535 [2], aims to provide a protocol to support
authentication and key management aspects for applications based on sub-
scription credentials. In AKMA, application provider, denoted by AKMA
Application Function (AF), delegates the authentication of application user
(UE) to the corresponding home network (HN) where the user subscribes. In
this way, application provider could verify the identity of the user through
home network without having chance to acquire knowledge and information
of the user, especially, the real identifier of the user. The standardization
of 5G AKMA service started with Release 16 in 2019 and the latest version
was specified in Release 17. In this paper, according to the version 17.4.0 of
Release 17 of the Technical Specification (TS) [2], we will provide the first
formal model of 5G AKMA and also verify formally the security requirements
using Tamarin.

In this paper, we apply formal methods to analyze the AKMA service,
using the Tamarin verification tool [3]. Tamarin specifies protocols as a
set of rewrite rules acting on a multiset of facts, and properties as two-
sorted first-order logic assertions. By writing appropriate actions in the rules
and in the trace, it is possible to formulate various threat models, such as
Dolev-Yao [4] and eCK [5], as well as various authentication specifications [6].
Using a backward-search style algorithm [7], Tamarin attempts to prove the
properties or find a counterexample. The counterexamples help users find
potential attacks of protocols.
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Contribution. In this work, we formally specify the standard’s security as-
sumptions and requirements of 5G AKMA, and build the first formal model
of 5G AKMA for a precise security analysis. First, we construct a formal
model of 5G AKMA, as specified in TS 33.535 [2], as a set of rewrite rules in
Tamarin. As we describe in Section 4, the model contains main features and
functions in the protocol. During the modeling process, we identity the secu-
rity assumptions about the protocol for guaranteeing the security properties,
which are implicitly stated in the standard documents. Next, we model the
classical properties (e.g. secrecy, authentication and privacy) and check them
in Tamarin. During the verification, for some of these security properties,
Tamarin returns a counterexample showing that the model does not satisfy
the given property. We then analyze the attacks according to the counterex-
amples and put forward the potential security and privacy problems about
AKMA protocol. Also, we give suggestions to fix these problems.

This paper is an extension of our work in SETTA 2021 [8], which contains
the following updates and extensions:

1. We modify and update our model according to version 17.4.0 of the
Technical Specification [2] to make our model closer to reality and bet-
ter describe the protocol, while the model given in the conference paper
was based on version 17.1.0 of the Technical Specification. For exam-
ple, the version 17.4.0 adds the identity of the user in the message that
the home network sends to the application, and we add a corresponding
identifier to our model.

2. We use the observational equivalence mode of Tamarin to specify and
verify some common privacy properties of the AKMA service. Hence,
we classify the properties we consider into authentication, secrecy and
privacy properties. Moreover, we give a more detailed introduction to
the theory underlying the Tamarin Prover, including its observational
equivalence mode.

3. Due to the improvements to our model, in particular adding identifiers
to relevant messages, we excluded from the model one counterexample
that is considered unnatural in the conference paper.

4. Besides, we analyze the implicit authentication phase, i.e., key confir-
mation round trip, between the user and the application added at the
end of the protocol, and analyze the verification results of the security
properties with/without this phase. The verification results show that
the addition of the key confirmation will promote the authentication
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level of the protocol. We also present and explain more critical rules
that construct the model.

1.1. Related Work

In the earlier generations of mobile network, the corresponding services
were also specified by 3GPP. GBA (Generic Bootstrapping Architecture) [9]
and BEST (Battery Efficient Security for very low Throughput Machine
Type Communication (MTC) devices) [10], served use cases similar to that
of AKMA in the 3rd and 4th generation respectively. 5G AKMA inher-
its and evolves features of GBA and BEST, performs better in all kinds of
requirements (refering to 3GPP TR33.835 [11]). In [12], Khan et al ana-
lyzed potential AKMA requirements and compared AKMA with GBA and
BEST. Beyond that, they put forward two new privacy requirements arose
from AKMA applications, developed a privacy mode for fulfilling them and
analyzed the security and privacy of their solution informally. In another
work [13], they introduced delegated authentication system and summarized
recent work about AKMA.

There are lots of work on formal modeling and verification of security sys-
tems. For adversaries, the most important models are Dolev-Yao model [4],
eCK model [5], and its extension SeCK model [14]. The adversaries are
given different powers for each of them. Especially, the eCK model inherits
the spirit of Bellare and Rogaway [15] and Canetti and Krawczyk [16, 17]
by an experiment in which the adversary is given many corruption powers
for various key exchange sessions and must solve a challenge on a test ses-
sion. Formal modeling languages and logics are used for modeling security
protocols, and for capturing security properties, facilitating verification and
debugging. These work include the process algebra CSP [18, 19, 6, 20], BAN
logic [21], applied π-calculus [22], Horn clauses [23], TLA [24, 25], rewriting
system [3] and so on.

Some security protocol verification tools are developed based on these
theories, such as Tamarin [3], Maude-NPA [26], ProVerif [23], and so on.
Tamarin will be introduced in Section 3. The Maude-NPA tool [26] supports
protocols specified as linear role-scripts and properties specified as symbolic
states [27]. ProVerif [23] models a protocol as a set of Horn clauses, analyzes
them using a two-phase resolution algorithm, and uses abstractions to obtain
an efficient analysis method.

There are lots of work on verification of security protocols. Protocols
with loops and non-monotonic mutable global states such as TESLA proto-
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cols, YubiKey and YubiHSM protocols were considered in [28, 29]. In [30],
ARPKI protocol with many messages and multiple parties was modeled and
analyzed. The group protocols STR and GDH based on Diffie-Hellman were
verified on security and privacy. TLS 1.3 and 5G AKA protocol were an-
alyzed in [31, 32, 33], which are important for Internet security and also
widely used to establish secure channels in a variety of contexts. Signifi-
cantly, 3GPP [34] formally analyzes the 3G AKA protocol using TLA [25] on
the absence of failure scenarios and uses BAN logic [21] on proving security
goals respectively.

There are also a large number of studies to conceptualize privacy, both
informally and formally, in the literature. The definition of privacy was
discussed and distinguished as hard privacy and soft privacy in [35, 36].
The work [37] presented a hierarchy of privacy notions that covers multiple
anonymity and unlinkability variants. In [38], they proposed the notion of
enforced privacy, meaning that a user’s privacy is preserved even if the user
collaborates with the adversary, and formalized the notions using applied
π-calculus.

2. AKMA in 5G system

In this section, we give an informal introduction to the 5G AKMA service.
We first describe the main entities of the service, and then present the steps of
the protocol in detail. Our models are based on version 17.4.0 of the Technical
Specification. See the specification document [2] for further information.

2.1. General Architecture

There are three main entities (roles) in the 5G AKMA service, as shown
in Figure 1. We explain them below.

1. User Equipment (UE): represents user of the service, consisting of two
parts: Mobile Equipment (ME) and Universal Integrated Circuit Card
(UICC).

2. Home Network (HN): represents the mobile network provider. HN has
all of the information about its subscribers, and is always considered
to be credible. Home network plays the role of authenticating users
and helps application providers to reach an agreement with the user on
session keys in the AKMA service. There are several functions located
within the HN, as follows:
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Figure 1: AKMA Architecture

• UDM (Unified Data Management): stores information about all
subscribers of the home network.

• AAnF (AKMA Anchor Function): manages temporary informa-
tion about subscribers, and generates temporary session keys KAF

for the application functions.

• AUSF (Authentication Server Function): connection between UDM
and AAnF, obtains the 5G authentication vector from UDM and
generates relative AKMA materials.

• NEF (Network Exposure Function): when the target AF is located
outside the HN, establishes connection between AAnF and AF.

In general, there is also a Serving Network (SN) which the users con-
nects directly to when roaming. Well, the roaming aspect is not consid-
ered in the technical specification of 5G AKMA service[2]. Therefore,
in this paper, we consider only the case when the user is not roaming,
that is, SN is part of the HN. We do not consider SN separately.

3. Application Function (AF or AApF): also called application provider
or service provider, represents the online services that the user may
wish to use. The goal of AKMA is to help to establish a secure channel
(exchange a secret key) between AF and UE, with authentication of
UE delegated to its corresponding HN.
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Every user in the cellular network subscribes to a home network and has
a unique long-term identifier SUPI (Subscription Permanent Identifier) and
a long-term key K. These are stored at both UE and HN.

It is worth noting that the mutual authentication between HN and AF
is not part of the AKMA service. That is, it should be prepared before the
execution of the protocol. According to TS 33.501 [1], mutual authentication
based on client and server certificates shall be performed between the HN and
AF using TLS protocol. In our modeling of the protocol in Section 4, we will
model their communication in a private channel.

2.2. 5G AKMA Protocol

5G AKMA protocol specifies the functions and behaviors of the AKMA
service. We will begin by introducing the primary authentication step, which
is a prerequisite but not a key part of the protocol. Next, we will present the
interactions between UE, HN and AF step by step.

2.2.1. Primary Authentication

Before AKMA service can start, UE and HN must execute mutual authen-
tication. This primary authentication step is known as 5G Authentication
and Key Agreement (5G AKA [1]). Prior generations of cellular networks
have different AKA protocols: 3G has UMTS AKA protocol [39]; 4G has LTE
AKA protocol [40]; in 5G, besides AKA protocol, there exists EAP-AKA′ [1].
Whether to use 5G AKA or EAP-AKA′ is decided by HN.

As mentioned above, UE has its unique and permanent identifier SUPI
and secret key K, which are also stored in HN. Roughly speaking, UE starts
the 5G AKA protocol by encrypting its SUPI and sends to the corresponding
HN. With the random number that HN sends to the UE, some authentication
information and the sequence number, HN and UE agree on the authenti-
cation and freshness. When the primary authentication is finished, both
UE and AUSF in HN side would generate KAUSF, which will be used for
generating subsequent keys during AKMA service.

2.2.2. Deriving AKMA Materials

The steps for deriving AKMA materials are shown in Figure 2. After UE
finishes primary authentication with HN, and before it initiates communica-
tion with an AKMA Application Function (AF), it generates the AKMA An-
chor Key KAKMA and A-KID from KAUSF (Steps 3, 4). The A-KID (AKMA
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Figure 2: Deriving AKMA Materials

Key Identifier) consists of A-TID (AKMA Temporary UE Identifier) and
HN-ID (identity of home network).

After receiving KAUSF from UDM, AUSF stores this key and generates
the AKMA Anchor Key KAKMA and A-KID from KAUSF (Steps 3, 4). Then
AUSF sends the AKMA key materials (KAKMA, A-KID) together with the
SUPI of UE to AAnF (Step 5). AUSF does not need to store any AKMA
key materials after sending them to AAnF.

When AAnF receives the AKMA key materials from AUSF, it first deletes
the old materials with the same SUPI (if there exists any). This means, if
re-authentication runs, AAnF only stores the latest materials from AUSF,
and each UE only has one AKMA key material at any time in AAnF. Then
AAnF would give a response back to AUSF (Step 6).

2.2.3. Deriving AKMA application key for a specific AF

The steps for deriving AKMA application key are shown in Figure 3
and 4. If UE attempts to connect to AF without initiating AKMA protocol,
AF would reject the request with an AKMA initiation message. Then UE
would re-send the request in accordance to AKMA.
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Figure 3: Deriving AKMA application key for a specific AF located within HN

UE initiates the AKMA protocol by sending the A-KID to AF (Step 7).
Since the A-KID contains identity of HN, AF would attempt to establish
connection with the HN. The following steps are divided into two cases,
depending on whether AF is located within HN or not.

If AF is located within HN(see figure 3), it connects with AAnF directly.
AF forwards the A-KID together with its own identity (AF-ID) to the AAnF
in the HN (Step 8). Then AAnF checks the presence of the UE specific
KAKMA key corresponding to the received A-KID. If the material does not
exist, AAnF returns an error message. Otherwise, according to the AF-ID
received and the AKMA key material, AAnF generates KAF (Step 9). More-
over, AAnF decides an expiration time for the key. It then sends the corre-
sponding SUPI, the session key KAF with its expiration time as a response
back to AF (Step 10). The sending of identity SUPI is added in version 17.4.0
of the specification. If any step in the procedure fails, UE would receive a
reject response and need to re-request with the latest A-KID.

If AF is located outside HN (see Figure 4), it connects to NEF rather than
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Figure 4: Deriving AKMA application key for a specific AF located outside HN

AAnF, which enables and authorizes external AF accessing AKMA service
and forwards the request to AAnF. NEF plays a role of intermediary between
AF and AAnF and performs AAnF selection(Step 9). Most of the procedure
is the same as above. The major difference is that HN will translate SUPI to
GPSI (external ID) and optionally include GPSI (external ID) in the response
(Steps 12 and 13). Similar to the case when AF is located within HN, the
addition of SUPI, the translation of SUPI to GPSI and the optional inclusion
of GPSI in the response are added in version 17.4.0 of the specification. The
NEF shall not send the SUPI to the AF directly otherwise it will result in
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leakage of the most important private information.
When AF receives the session key KAF and KAF expiration time, it re-

sponds to UE. Since UE has all AKMA key materials, i.e. the latest KAKMA,
it can also generate KAF by itself. Significantly, when the session key expires,
AF ends the session with UE, but UE has a chance to refresh KAF, depending
on the protocol at the interface between AF and UE, i.e. the Ua∗ protocol.
If this protocol supports refresh of KAF, AF may refresh KAF at any time
using the Ua∗ protocol.

The case when AF is located within HN is secure, as no external commu-
nication occurs. So we will model the case that AF is located outside HN,
to be presented in Section 4.2.

2.3. KDFs in the protocol

There are several Key Derivation Functions (KDFs) involved in the AKMA
protocol. Each KDF accepts a number of input arguments. For generat-
ing each kind of key, some of the arguments are constant, while others de-
pend on identifiers and existing keys. The key KAKMA is derived from SUPI
and KAUSF. The temporary identifier A-TID is also derived from SUPI and
KAUSF, but with different settings of constants. The key KAF is derived from
identifiers for AF and KAKMA. See [2] for more details.

3. Tamarin Prover

In this section, we give a brief introduction to the Tamarin verification
tool [41]. Tamarin is a powerful tool for symbolic modeling and analysis of
security protocols. It takes as input a security protocol model, specifying
the actions taken by agents running the protocol in different roles (e.g., the
protocol initiator, the responder, and the trusted server), a specification of
the adversary, and a specification of the protocol’s desired properties [41].
With the above inputs, Tamarin verifies whether the protocol satisfies the
properties. Tamarin supports verification when there are an arbitrary num-
ber of sessions. This is reflected in modeling the state as a multiset of facts,
where each new session is modeled by applying the corresponding initializa-
tion rule and adding new (linear) facts to the state. Hence, the state space
is potentially infinite. Tamarin deals with the infinite state space using a
backward-search style algorithm, starting from the violation of the property
to be verified, and checking how the violation can result from applying the
rules. The search does not always terminate as the verification problem can
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be shown to be undecidable. If the search terminates, Tamarin either proves
that the property is satisfied, or finds a trace as counterexample against the
property. The user interface shows the trace as a visual chart, which can
be examined, to analyze for possible mistakes in the constructed model, the
statement of properties, or the protocol itself. Since the verification problem
is undecidable, to partially remedy the situation that does not terminate,
Tamarin also provides an interactive mode where the user can guide the tool
through the verification. We now introduce the usage of Tamarin from two
aspects: modeling and property specification.

3.1. Modeling

In Tamarin, messages are described using terms, which are formed from
variables, constants, and functions. For example, the theory of symmetric
encryption is given by two functions dec and enc. The term enc(m, k) de-
notes encryption of message m with key k, and the term dec(m, k) denotes
decryption. Moreover, a set of identities specify the equational theory. For
example, symmetric encryption has the equation dec(enc(m, k), k) = m.

The protocol is specified using an expressive language based on multi-
set rewriting rules. These rules construct a labeled transition system whose
states are multisets of facts, which give a symbolic representation of the
current state of the protocol, messages on the network, and adversary knowl-
edge. In Tamarin, the sort of a variable is expressed using the following
prefixes: ~ for fresh variables, $ for public variables, # for temporal vari-
ables, indicating the order of actions. There are three types of builtin fact
symbols: Fr for generating a fresh value, In for receiving a message from
the untrusted network, Out for sending a message to the untrusted network.
As Tamarin assumes Dolev-Yao style attackers [4], the adversary can inter-
cept any message that is output through Out, and insert any message as
In. The adversary can construct new terms from existing knowledge (mod-
ulo rewriting rules), but cannot break the cryptography. For example, in
the symmetric encryption theory above, the adversary cannot derive m if
he knows only enc(m, k), but will be able to do so if he additionally knows
k, by constructing dec(enc(m, k), k) and rewriting to m. In addition to the
three builtin fact symbols, Tamarin allows defining any number of custom
fact symbols. By default, a fact symbol is linear, meaning each fact with that
symbol can be used only once. A fact symbol can be declared as permanent
by prepending an exclamation sign (!).
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Each rule consists of a list of premises, a list of conclusions, and a list
of actions. A rule can be executed if each premise in the rule is present
in the current multiset. The transition corresponding to executing this rule
removes all premises from the multiset (except the permanent facts), and
inserts conclusions into the multiset. The actions of the rule are appended
together to form the trace of execution.

We illustrate these concepts with an example, in which agents A and B
share a long-term key k, and A uses this key to send an encrypted message
to B.

Example 3.1 In the protocol, A encrypts m with k and sends it to B.

rule Initial: [Fr(k)] --> [!Ltk($A, k), !Ltk($B, k)]

rule Send_A: [!Ltk($A, k), Fr(m)] --[Send(A, m)]-> [Out(enc(m, k))]

rule Recv_B: [!Ltk($B, k), In(enc(m, k))] --[Recv(B, m)]-> []

In the above code, each line specifies a rule of the protocol. If there
are no actions in the rule, the premises and conclusions are joined by -->.
Otherwise, the list of actions is written in the middle of the arrow. Terms
preceded by the symbol $ are public terms (known to everyone including the
adversary).

3.2. Property Specification

Tamarin Prover provides two kinds of property specifications: Trace
and Observational Equivalence properties. Trace properties are given as
guarded first-order logic formulas and observational equivalence properties
are specified using the diff operator, which we will introduce below.

3.2.1. Trace Properties

Security properties are defined over traces, formulated in terms of many-
sorted first-order logic formulas over messages and timepoints, and checked
against traces of the transition system. Using this logic, we can specify
various secrecy and authentication properties.

Continuing Example 3.1, we show how to describe various levels of au-
thentication specifications according to [6]. The following lemma specifies
non-injective agreement between two agents A and B, meaning whenever
B completes a run of the protocol, apparently with A, then A has been
previously running the protocol, apparently with B, and they agree on the
message m:
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lemma Non_injective_agreement:

"All m #i. Recv(B, m) @ i ==> (EX #j. Send(A, m) @ j & j < i)"

This property holds for the above example. The only way Recv(B,m) can
appear in the trace is for rule Recv B to be executed. This can occur only
if a term enc(m,k) is input. Since the adversary does not know k, there is
no way for him to construct the message enc(m,k). So the input can only
come from rule Send A, which creates the action Send(A,m) at an earlier
timepoint.

However, the following stronger property, injective agreement, does not
hold:

lemma Injective_agreement:

"All m #i. Recv(B, m) @ i

==> (Ex #j. Send(A, m) @ j & j < i

& not (Ex #i2. Recv(B, m) @ i2 & not (#i2 = #i)))

This is because the adversary can intercept the message enc(m,k) and
resend it, resulting in another execution of the rule Recv B. Clearly this
protocol is too weak to guard against replay attacks.

3.2.2. Observational Equivalence

In contrast to trace properties, i.e., properties that are defined on each
trace independently, observational equivalence properties reason about two
similar systems (for example two instances of a protocol), by showing that
a specific adversary can not distinguish between these two systems. This
kind of property is used to specify privacy properties, indistinguishability
property, etc.

Tamarin can prove properties for two systems that only differ in those
terms specified using the operator diff( , ). Any model containing the
diff operator specifies two models: one model where each diff(x,y) is
replaced with x, and the other where each diff(x,y) is replaced with y.
We call these two systems LHS (left hand side) and RHS (right hand side),
respectively. In the observational equivalence mode, there is a new builtin
Lemma Observational Equivalence, which is used to represent the obser-
vational equivalence property between LHS and RHS models. To prove this
lemma, Tamarin computes for each rule all possible executions on both sides,
and verifies whether an “equivalent” execution exists on the other side. Here
we show the toy example in the Tamarin manual [41]:
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Example 3.2 The entity generates a public key and outputs it and chooses
two fresh values a and b and reveals one of it. Then it encrypts either a or b
and outputs the ciphertext. The observational equivalence property is whether
adversaries can know which value is encrypted in the last message.

rule example:

[ Fr(~a),

Fr(~b),

Fr(~ltk) ]

--[ Secret(b) ]->

[ Out(pk(~ltk),

Out(~a),

Out(aenc(diff(~a,~b), pk(~ltk))) ]

Actually in this example, the observational equivalence is not satisfied since
the adversary can take the output value a, encrypt it with the public key and
compare it to the published ciphertext. Then the adversary knows whether
a or b is encryted. The counterexample provided by Tamarin shows the
execution.

4. Modeling and Specifying Properties of AKMA

In this section, we describe the detailed model of AKMA protocol and
specify its properties of interest in Tamarin.

4.1. Threat Model

As we mentioned above, Tamarin assumes Dolev-Yao model for attack-
ers. Adversary obeys the assumption of encryption, i.e., they can decrypt
the secret messages only when having the corresponding key. In addition, we
consider more advanced security properties corresponding to more powerful
adversaries or compromised parties, following the eCK model [5]. In particu-
lar, we take into account the possibility of key reveal and the possibility that
some of the entities have been compromised. In our protocol, the SUPI and
K of a compromised UE could be revealed and the adversary would imperson-
ate its identity to communicate with HN and AF. If HN is compromised, the
information in UDM would be revealed and all information of the subscribers
would be leaked, together with their asymmetric encryption key pairs, which
play an important role in other protocols such as 5G AKA. Following [5], we
define the concept of clean session as follows:
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Definition 4.1 (Clean session) We say a session is clean if neither of the
following conditions holds:

1. One of the parties is an adversary-controlled party. This means in
particular that adversary could reveal all private information known to
the party, and perform all communications and computations on behalf
of the compromised party;

2. Any of the long-term, temporary and session keys is revealed by adver-
sary.

Considering the following lemma:

All x #i. Secret(X) @i ==> not (Ex #j. K(x) @j)

it would be unsatisfiable when the agent is compromised. We call an agent is
Honest(written as Honest(X)) if and only if the agent is not compromised.
We indicate assumptions on honest agents by labeling the corresponding
rule that the required action fact appears in with an Honest(A) action fact,
where we assume A is honest. Intuitively, we explain the meaning of Honest
by comparing the case where Honest is present in the properties and actions,
and the case where it is not. If Honest is not present, then the meaning
is that secrecy (or some other desired property) can be violated when any
agent is compromised, whereas if Honest is present, then the meaning is that
the desired property can be violated only when an agent participating in the
protocol is compromised.

Therefore, following standard techniques of modeling using Tamarin [7,
31], we model Honest participants and key reveals as follows. For each long-
term, temporary, and session key that could be revealed, we add a rule which
outputs the key (so it becomes known to the adversary), with an action of
the form Reveal(X,type), where X is the participant who owns the key, and
type specifies the type of the key. Moreover, at steps of the protocol where
Running, Commit and Confirmation actions are inserted (see the protocol
rules in 4.2.4), we also insert actions of the form Honest(X), which indicates
that X should be an honest participant of the protocol, i.e., should not be
compromised. Hence, Ex X m #r. Reveal(X, m) @ r & Honest(X) @ i
means some participant of the protocol who is running (or finished) at time
i has its secret key revealed (the session is not clean) at some time r. With
this proposition, the considered lemma would be modified:

All x #i. Secret(X) @i

==> not (Ex #j. K(x) @j) | (Ex X m #r. Reveal(X, m) @r & Honest(X)@i)
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Propositions of this form will appear frequently in the properties stated
below, which are usually of the form either security conditions are satisfied,
or the session is not clean.

4.2. Modeling the AKMA Service in Tamarin

In this part, we analyze the functions and behaviors of AKMA service,
including some of the underlying assumptions, then describe the model of
the protocol in Tamarin.

4.2.1. Assumptions

As mentioned in Section 2, we make several reasonable assumptions about
AKMA service:

1. Communication between UE and AF occurs along public channels.
Hence it is subject to eavesdropping, interception and injection by the
adversary. The protocol should remain secure under such attacks.

2. We assume that the communication inside HN is always clean and
credible. See the definition of clean in Section 4.1.

3. As mentioned previously, we consider the case where AF is located out-
side the HN. However, we do not include the NEF function and AAnF
selection step in our model. Relaxing this assumption requires only
dividing the communication between AF and AAnF to two communi-
cation steps, which should not affect the security arguments about the
protocol.

4. Mutual authentication between AAnF and AF occurs before running
AKMA using the TLS protocol [1], which provides integrity, replay,
and secrecy protection of communication along a private channel. Fol-
lowing previous work [31, 42], we abstract this to a secure channel
between HN and AF. In Tamarin, the channel is modeled with four
rules, representing four behaviors respectively: sending messages into
the channels, receiving messages from the channel, injecting messages
into the channel, and eavesdropping messages from the channel (the
latter two describe the behavior of the adversary):

rule send_secure:

[ SndS(~cid,A,B,m) ] --> [ Sec(~cid,A,B,m) ]

rule receive_secure:

[ Sec(~cid,A,B,m) ] --> [ RcvS(~cid,A,B,m) ]

rule secureChannel_compromised_in:

17



[ In(<~cid,A,B,x>) ]

--[Reveal(A,‘secureChannel’), Injected(x)]->

[ Sec(~cid,A,B,x) ]

rule secureChannel_compromised_out:

[ Sec(~cid,A,B,m) ]

--[ Reveal(B,‘secureChannel’) ]->

[ Out(<~cid, m>) ]

5. Primary authentication using AKA is a prerequisite but not a proper
part of AKMA service, and there are already a lot of work on analyzing
the 5G AKA protocol [31, 33]. Therefore, we assume the communica-
tion between HN and UE to be secure and private.

Significantly, we make some assumptions about permanent information:
the subscriber credentials, i.e. SUPI, K of the UE, which are shared between
UE and HN, should initially be secret, provided they are not compromised.

We also make some assumptions about compromised entities. In our
model, there are no private and permanent information related to AFs.
Therefore, we only need to consider compromised UE and HN. For com-
promised UEs, adversaries would know all secret information like SUPI and
K. Likewise, adversaries could access SUPI and K of all subscribers from
compromised HNs (Although in a very small probability).

4.2.2. KDFs in the protocol

Parameters of each key derivation function have been specified by 3GPP.
These are abstracted for convenience of modeling. We define the KDF of
KAUSF with three parameters: identity of HN, K of UE and the random
number HN sent to UE, while actually the parameters of KAUSF derivative
function contains ⟨CK, IK⟩ generated from K of UE, identity of HN and the
random number; The A-KID and KAKMA are generated from the same key
KAUSF, and the only difference is the setting of constants, so the parameters
are SUPI of UE, KAUSF and C1 (or C2); The parameters of the KDF of
KAF contain KAKMA and identity of the AF; The extenal ID GPSI translate
function GPSI(ID).

4.2.3. Implicit Authentication

We equip the model with an optional key-confirmation round trip where
the UEs and AFs confirm their target session key KAF by MACing different
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constants. Although the key-confirmation phase is not mentioned in the re-
quirements and specification of the protocol, we find that the AKMA service
fails to meet several security goals, especially authentication, without the
key-confirmation phase. We introduce the details of the key-confirmation in
the protocol rules in Section 4.2.4 and later when analyzing the verification
results, we will show the importance of this phase.

4.2.4. Protocol rules

We list some important rules in the protocol and the corresponding Tamarin
code below, in order to illustrate the modeling process.

Primary Authentication. Before UE starts a communication with AF, UE
should execute primary authentication with HN. As it is not a key part
of this protocol, we assume it is carried out successfully and only show the
results of primary authentication, i.e., both UE and HN (the AUSF function)
possess the key KAUSF. And after the AKMA materials are derived, AUSF
will transfer the AKMA materials to AAnF.

rule Init_Pri_Auth:

let

K_AUSF = KDF_AUSF(~K, ~id_HN, ~R)

in

[ Fr(~R),

!Sub_K(~SUPI, ~id_HN, ~K)]

--[ Pri_Auth(K_AUSF, ~SUPI, ~id_HN) ]->

[ UE_Auth(~SUPI, K_AUSF, ~id_HN),

AUSF(~SUPI, ~id_HN, K_AUSF) ]

rule K_AKMA_Register:

[ AUSF_KEY(~SUPI, K_AUSF, ~id_HN, K_AKMA, <A_TID, ~id_HN>)]

--[ K_AKMA_Register(~id_HN) ]->

[ AAnF(~id_HN, ~SUPI, <A_TID, ~id_HN>, K_AKMA) ]

Re-primary Authentication. When AAnF receives a new AKMA key via fact
AUSF KEY, it deletes the old AKMA key materials by removing AAnF1 (to
be produced by Rule K AF Generation AAnF presented later this section) and
only stores the latest message from AUSF by adding AAnF. The restriction
in the action indicates that the rule would only trigger when K AKMA new
does not equal K AKMA and A TID new does not equal A TID.
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rule Re_pri_auth:

[ AAnF1(~id_HN, ~SUPI, <A_TID, ~id_HN>, K_AKMA),

AUSF_KEY(~SUPI, K_AUSF, ~id_HN, K_AKMA_new, <A_TID_new, ~id_HN>) ]

--[ _restrict(NotEqual(K_AKMA_new, K_AKMA)),

_restrict(NotEqual(A_TID_new, A_TID)),

K_AKMA_Re_Register(~id_HN) ]->

[ AAnF(~id_HN, ~SUPI, <A_TID_new, ~id_HN>, K_AKMA_new) ]

Application Session Establishment Request. After UE and HN generated AKMA
key materials, UE starts a session request to AF with its A-KID (con-
taining the AKMA Temporary UE Identifier A-TID and id-HN). We show
the complete rule UE send request constructed in Tamarin as follows. Fact
UE Auth KEY indicates that UE possesses all the information defined by the
parameters. Meanwhile, UE will generate corresponding session key KAF and
a new fact UE KEY, meaning the UE possesses more information containing
the KAF, should be added into the conclusion of this rule. ~tid is the session
id from the UE’s point of view.

For two-party protocols, to analyze the desired authentication proper-
ties, we label the appropriate rules in the responder party B with an ac-
tion fact Commit(b, a, <‘A’, ‘B’, t>) and in the initiator party A with
the corresponding action fact Running(a, b, <‘A’, ‘B’, t>). Likewise,
Confirmation(a, b, <‘A’, ’B’, t>) is added into the action fact in ap-
propriate rules. These actions are used for defining agreement between dif-
ferent parties required by the protocol.

In the following rule, for the actions, Secret(<‘A KID’, <A TID, ~id HN>>,

~SUPI)means that the information SUPI should be kept secret; Running(<A TID,

~id HN>, ~id AF, <‘UE’, ‘AF’, <‘A KID’, <A TID, ~id HN>>>)means that
the UE (here has the temporary ID A-KID, which includes A-TID and the
entity HN) sends the A-KID to the AF; Honest(~id AF) means that the
entity AF, which is assumed honest, participates in this rule. The meaning
of other actions can be understood similarly.

rule UE_send_request:

let

K_AF = KDF_AF(K_AKMA, ~id_AF)

in

[ UE_Auth_KEY(~SUPI, K_AUSF, K_AKMA, <A_TID, ~id_HN>),

Fr(~tid),

!Sub(~SUPI, ~id_HN),
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!AF(~id_AF) ]

--[ UE_send_request(~SUPI),

Secret(<‘A_KID’, <A_TID, ~id_HN>>, ~SUPI),

Running(<A_TID, ~id_HN>, ~id_AF,

<‘UE’, ‘AF’, <‘A_KID’, <A_TID, ~id_HN>>>),

Running(~SUPI, ~id_HN, <‘UE’, ‘HN’, <‘A_KID’, <A_TID, ~id_HN>>>),

Running(<A_TID, ~id_HN>, ~id_AF, <‘UE’, ‘AF’, <‘K_AF’, K_AF>>),

Honest(<A_TID, ~id_HN>),

Honest(~id_AF),

Honest(~id_HN) ]->

[ Out(<A_TID, ~id_HN>),

UE_KEY(~tid, ~SUPI, K_AUSF, K_AKMA, <A_TID, ~id_HN>, K_AF, ~id_AF) ]

Naanf AKMA ApplicationKey Get Request. After receiving the communi-
cation request from UE, AF forwards the request of UE with the iden-
tity of AF to HN, indicated by msg, via a secure channel cid. The action
Commit(~id AF, <A TID, ~id HN>, <‘UE’, ‘AF’, <‘A KID’, <A TID, ~id HN>>>)

is corresponding to the Running action in Rule UE send request, and it
means that the AF responds to UE with the same message.

rule AF_send_KeyRequest:

let

msg = < <A_TID, ~id_HN>, ~id_AF >

in

[ !AF(~id_AF),

In(<A_TID, ~id_HN>),

Fr(~cid),

Fr(~tid) ]

--[ AF_send_KeyRequest(~id_AF),

Secret(<‘A_KID’, <A_TID, ~id_HN>>, ~id_AF),

Commit(~id_AF, <A_TID, ~id_HN>,

<‘UE’, ‘AF’, <‘A_KID’, <A_TID, ~id_HN>>>),

Running(~id_AF, ~id_HN, <‘AF’, ‘HN’, <‘A_KID’, <A_TID, ~id_HN>>>),

Running(~id_AF, ~id_HN, <‘AF’, ‘HN’, <‘id_AF’, ~id_AF>>),

Honest(~id_AF),

Honest(<A_TID, ~id_HN>),

Honest(~id_HN) ]->

[ SndS(~cid, ~id_AF, ~id_HN, msg),

AF_request(~tid, ~id_AF, <A_TID, ~id_HN>, ~cid) ]

21



Derive AF key. HN generates the session key KAF based on the AKMA key
and AF, using function KDF AF. After KAF is generated, a new fact AAnF1 is
produced to indicate that the AKMA key materials have already been used
for the generation of the session key.

rule K_AF_Generation_AAnF:

let

K_AF = KDF_AF(K_AKMA, ~id_AF)

in

[ AAnF(~id_HN, ~SUPI, <A_TID, ~id_HN>, K_AKMA),

!AF(~id_AF) ]

--[ Session_Key_Generation_AAnF(~id_HN) ]->

[ AAnF_KEY(~id_HN, ~SUPI, <A_TID, ~id_HN>, K_AKMA, K_AF, ~id_AF),

AAnF1(~id_HN, ~SUPI, <A_TID, ~id_HN>, K_AKMA) ]

Naanf AKMA ApplicationKey Get Response. HN generates the session key
KAF and sends it through the secure channel cid with the expiration time, the
GPSI identity (indicated by session msg together) back to AF as a response.

rule AAnF_Send_K_AF:

let

session_msg = < K_AF, ~exptime, GPSI(<A_TID, ~id_HN>) >

msg_In = < <A_TID, ~id_HN>, ~id_AF >

in

[ Fr(~exptime),

AAnF_KEY(~id_HN, ~SUPI, <A_TID, ~id_HN>, K_AKMA, K_AF, ~id_AF),

RcvS(~cid, ~id_AF, ~id_HN, msg_In) ]

--[ HN_Response(~id_HN, K_AF),

Secret(<‘K_AF’, K_AF>, ~id_HN),

Commit(~id_HN, ~SUPI, <‘UE’, ‘HN’, <‘A_KID’, <A_TID, ~id_HN>>>),

Commit(~id_HN, ~id_AF, <‘AF’, ‘HN’, <‘A_KID’, <A_TID, ~id_HN>>>),

Commit(~id_HN, ~id_AF, <‘AF’, ‘HN’, <‘id_AF’, ~id_AF>>),

Running(~id_HN, ~id_AF, <‘HN’, ‘AF’, <‘K_AF’, K_AF>>),

Running(~id_HN, ~id_AF, <‘HN’, ‘AF’, <‘K_AF_exptime’, ~exptime>>),

Honest(~id_HN),

Honest(~id_AF) ]->

[ SndS(~cid, ~id_HN, ~id_AF, session_msg) ]
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Application Session Establishment Response. In the specification [2], after
receiving the session key together with other information from HN, AF would
return a response without any parameters to UE. As mentioned above, in
order to let UE and AF confirm the session key, we suggest that there should
be an implicit authentication started by AF. As shown by the following rule,
AF hashes the session key with “AF” via function f and sends the hash value
to UE.

rule AF_Response_Key:

let

confmess1 = f(K_AF, ‘AF’)

msg_IN = < K_AF, ~exptime, GPSI(<A_TID, ~id_HN>) >

in

[ RcvS(~cid, ~id_HN, ~id_AF, msg_IN),

AF_request(~tid, ~id_AF, <A_TID, ~id_HN>, ~cid) ]

--[ AF_session_response(~id_AF, K_AF),

Secret(<‘K_AF’, K_AF>, ~id_AF),

Commit(~id_AF, <A_TID, ~id_HN>, <‘UE’, ‘AF’, <‘K_AF’, K_AF>>),

Commit(~id_AF, ~id_HN, <‘HN’, ‘AF’, <‘K_AF’, K_AF>>),

Commit(~id_AF, ~id_HN, <‘HN’, ‘AF’, <‘K_AF_exptime’, ~exptime>>),

Honest(~id_AF),

Honest(~id_HN),

Honest(<A_TID, ~id_HN>)

]->

[ Out(confmess1),

AF_Confirmation(~tid, ~id_AF, K_AF, <A_TID, ~id_HN>, ~cid) ]

Implicit Authentication. Here we present the rest rules for implicit authen-
tication. After AF sends the hash to UE, UE would confirm the hash value,
then hash the session key with “UE” and send the hash value to AF. The
implicit authentication is finished when UE and AF have both confirmed the
hash values. The key confirmation phase is listed as followed:

rule UE_Key_Confirmation:

[ In(f(K_AF, ‘AF’)),

UE_KEY(~tid, ~SUPI, K_AUSF, K_AKMA, <A_TID, ~id_HN>, K_AF, ~id_AF),

!AF(~id_AF) ]

--[ UE_Key_Confirmation(~SUPI, K_AF),

Confirmation(<‘UE’, ~SUPI>, <‘AF’, ~id_AF>,

<‘UE’, ‘AF’, <‘K_AF’, K_AF>>) ]->

[ Out(f(K_AF, ‘UE’)) ]
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rule AF_Key_Confirmation:

[ In(f(K_AF, ‘UE’)),

AF_Confirmation(~tid, ~id_AF, K_AF, <A_TID, ~id_HN>, ~cid) ]

--[ End_protocol(~id_AF, K_AF),

Confirmation(<‘AF’, ~id_AF>, <‘UE’, <A_TID, ~id_HN>>,

<‘UE’, ‘AF’, <‘K_AF’, K_AF>>)]->

[]

4.3. Security Requirements and Properties Specification

Now we introduce common security requirements and describe them as
properties in the Tamarin prover. In 5G system, the requirements in the
Technical Specification and Requirements are mainly divided into three parts:
Authentication, Secrecy and Privacy. In the following, we will show the
properties that we concern and its specification in Tamarin.

4.3.1. Authentication

Before specifying authentication properties, we first introduce Lowe’s tax-
onomy of authentication properties [6], which specifies four authentication
levels from one party’s view and many security properties are extended from
these four basic properties. Considering the authentication of the given two
parties A and B, from party A’s point of view, the authentication levels are
defined as follows:

1. Aliveness: Whenever A completes a run of the protocol, apparently
with B, then B has previously been running the protocol (not neces-
sarily with A);

2. Weak agreement: Whenever A completes a run of the protocol, ap-
parently with B, then B has previously been running the protocol,
apparently with A (but not necessary agreeing on the same messages);

3. Non-injective agreement: In addition to the condition for weak
agreement, the parties A and B also agree on the same message;

4. Injective agreement: In addition to the conditions for non-injective
agreement, there is a unique matching partner instance for each com-
pleted run of an agent, which effectively prevents replay attacks.

In Technical Specifications and Technical Requirements by 3GPP [11, 1,
2], we find that many security requirements are based on these four authen-
tication properties, as well as secrecy of messages. Therefore, we will mainly
characterize security of AKMA service in terms of these properties.
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Property 4.1 (Agreement between UE and AF) By the end of the pro-
tocol execution, AF must obtain injective agreement on KAF, and weak agree-
ment with UE.

This one is the most important property as the target of the protocol is
to make UE and a specific AF perform authentication and agree on a session
key KAF, therefore the UE can communicate with the AF. As we add an
optional key-confirmation round trip between UE and AF to the protocol,
there would be two models, one with the key confirmation and one without.
Here we consider the agreement properties with respect to both cases. The
first three properties are weak agreement, non-injective agreement, injective
agreement without key confirmation, and the last three are the properties
with key confirmation, respectively. We select two representative lemmas to
display here.

This lemma states that AF satisfies injective agreement on K AF with UE,
in the case without key confirmation.

lemma Injective_agreement_UE_AF_without_KC:

all-traces

"All A B t #i. Commit(A, B, <‘UE’, ‘AF’, <‘K_AF’, t>>) @i

==> (Ex #j. Running(B, A, <‘UE’, ‘AF’, <‘K_AF’, t>>) @j

& not(Ex A2 B2 #i2.

Commit(<‘AF’, A2>, <‘UE’, B2>, <‘UE’, ‘AF’, <‘K_AF’, t>>) @i2

& not(#i2 = #i)))

| (Ex D m #l. Reveal(D, m) @l & Honest(D) @i )

| (Ex D #l. Reveal(D, ‘secureChannel’)@l & Honest(D) @i)"

This lemma states that AF satisfies weak agreement with UE, in the case with
key confirmation.

lemma weak_agreement_UE_AF_with_KC:

all-traces

"All A B t1 #i.

Confirmation(<‘AF’, A>, <‘UE’, B>, t1) @i

==> (Ex t2 #j . Running(B, A, t2) @j

& j < i)

| (Ex D m #l. Reveal(D, m) @l & Honest(D) @i )"

Property 4.2 (Agreement between UE and HN) By the end of the pro-
tocol execution, HN must obtain weak agreement with UE.
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lemma weakagreement_UE_HN:

all-traces

"All A B t #i. Commit(A, B, <‘UE’, ‘HN’, t>)@i

==> (Ex t2 #j. Running(B, A, t2)@j)

| (Ex X m #r. Reveal(X, m)@r & Honest(X)@i)

| (Ex D #l. Reveal(D, ‘secureChannel’)@l & Honest(D) @i) "

Property 4.3 (Agreement between AF and HN) By the end of proto-
col execution, the AF and HN must both obtain injective agreement on KAF

and A-KID, and weak agreement with each other.

This property ensures that HN and AF participate in the same session
started by one UE. Injective agreement between AF and HN (agreeing on
the target session key KAF) is defined by the following lemma. The inverse
property, i.e. injective agreement between HN and AF, can be defined simi-
larly.

lemma Injective_agreement_AF_HN_K_AF:

all-traces

"All A B t #i. Commit(A, B, <‘HN’, ‘AF’, <‘K_AF’, t>>) @i

==> (Ex #j. Running(B, A, <‘HN’, ‘AF’, <‘K_AF’, t>>) @j

& not(Ex A2 B2 #i2.

Commit(<‘AF’, A2>, <‘HN’, B2>, <‘HN’, ‘AF’, <‘K_AF’, t>>) @i2

& not(#i2 = #i)))

| (Ex D m #l. Reveal(D, m) @l & Honest(D) @i )

| (Ex D #l. Reveal(D, ‘secureChannel’)@l & Honest(D) @i)"

Injective agreement between AF and HN (agreeing on the same A-KID)
is defined by the following lemma. The inverse property, i.e. injective agree-
ment between HN and AF, can be defined similarly.

lemma Injective_agreement_AF_HN_A_KID:

all-traces

"All A B t #i. Commit(A, B, <‘HN’, ‘AF’, <‘A_KID’, t>>) @i

==> (Ex #j. Running(B, A, <‘HN’, ‘AF’, <‘A_KID’, t>>) @j

& not(Ex A2 B2 #i2.

Commit(<‘AF’, A2>, <‘HN’, B2>, <‘HN’, ‘AF’, <‘A_KID’, t>>) @i2

& not(#i2 = #i)))

| (Ex D m #l. Reveal(D, m) @l & Honest(D) @i )

| (Ex D #l. Reveal(D, ‘secureChannel’)@l & Honest(D) @i)"
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4.3.2. Secrecy

We mainly focus on the secrecy of the target session key, i.e., the KAF, as
the privacy goal usually implies the secrecy of some important information,
such as, session key and long-term user identity, which we will mention later.
This protocol must prevent the session key KAF from being revealed, i.e.,
adversaries will never know the session key. The property is specified as
follows:

Property 4.4 (Session Key Secrecy) KAF must be kept secret.

lemma secure_K_AF:

all-traces

"All n A #i. Secret(<‘K_AF’, n>, A) @i

==> (not (Ex #j. K(n) @j))

| (Ex X data #r. Reveal(X, data) @r & Honest(X) @i)"

Moreover, we verify that A-KID will not be kept secret by the protocol, as
the secrecy of A-KID is not a goal in its design. However, we note that the
counterexample to be described later exposing a security problem in AKMA
contains the leakage of A-KID as one of the initial steps. Hence, it may be
advantageous to modify the protocol to keep A-KID secret as well.

Property 4.5 (A-KID Secrecy) A KID may be kept secret.

lemma secure_A_KID:

all-traces

"All n A #i. Secret(<‘A_KID’, n>, A) @i

==> (not (Ex #j. K(n) @j))

| (Ex X data #r. Reveal(X, data) @r & Honest(X) @i)"

4.3.3. Privacy

Privacy is also an important part in the AKMA study phase, which con-
centrates on protecting security of user identity and personal information,
e.g., anonymity, unlinkability, etc. Privacy issues in delegated authentica-
tion systems have been identified by many researchers. In [12, 13], Khan et
al summarized three of the most frequently identified privacy issues in 5G
AKMA service, and they are specified in natural language as follows:

1. The AFs should not know a user’s identity at the HN;
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2. One AF cannot link one of its users with a user of another AF, even
when those two AFs collude;

3. The HN should not know the name of the AFs that a UE connects to.

For the first privacy issue, we decompose this issue into two properties
that can be formally described: secrecy of UE’s identity SUPI and UE in-
distinguishability. The former one, which is also one of the most important
requirements in communication system, can be described as maintaining se-
crecy of identity SUPI, while the latter one is specified as an observational
equivalence property, and will be verified in the observational equivalence
mode in Tamarin.

Property 4.6 (Secrecy of SUPI) SUPI must be kept secret.

lemma secure_SUPI:

all-traces

"All n A #i. Secret(<‘SUPI’, n>, A) @i

==> (not (Ex #j. K(n) @j))

| (Ex X data #r. Reveal(X, data) @r & Honest(X) @i)"

The secrecy of SUPI obviously holds as SUPI is never transferred along any
channel in the protocol.

Property 4.7 (UE indistinguishability) Given two UE entities denoted
by UE1 and UE2, and an AKMA execution started by UE1 (or UE2), no
attacker can determine whether it is interacting with UE1 or UE2.

In the observational equivalence mode in Tamarin, the model will have two in-
stances corresponding to two UE entities respectively, and then Property 4.7
can be specified by the default built-in property Observational Equivalence.

For the second privacy issue, it is not able to be specified in Tamarin.
But later in next section, we will describe the linkability attack, showing the
unlinkablity property is not satisfied by AKMA service.

For the last privacy issue, actually this one can not be satisfied as when
UE starts an AKMA service, HN would know the AKMA key materials
(containing KAKMA and A-KID), and when AF forwards the request of UE
(containing A-KID) with its own identity, HN would connect A-KID and the
corresponding AF. As HN has generated A-KID from SUPI, therefore HN
can connect SUPI and AF, knowing the name of the AFs that a UE connects
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to. [12] provided a privacy mode of AKMA service to fix this flaw, but it is
rather complex and has not yet been widely used.

Except for all the above properties, we specify the executability of the
AKMA protocol, i.e., it is possible to complete the protocol and agree on a
session key for the first time and more than once.

We specified our model and properties through Tamarin1. The total
number of lines of code is approximately 700.

5. Results and Analysis

We verify the properties listed in Section 4.3 using Tamarin. The verifica-
tion results are shown in Table 1 and Table 2. For the properties that fail to
hold, we analyze the counterexamples returned by Tamarin. Moreover, based
on the analysis, we put forward some potential attacks and suggestions.

Agreement Weak Non-Injective Injective
Results SAT Time SAT Time SAT Time

Without KC × 3s × 2s × 2s
With KC ✓ 23s ✓ 24s - ∞

Table 1: Agreement between UE and AF

5.1. Verification Results and Analysis

Figure 1 lists the verification results for agreement between UE and AF,
and Figure 2 lists the verification results for the other security properties.
We will explain them below. First of all, the executability of the protocol
(existence of one execution), the weak agreement between UE and HN turn
out to be correct. The mutual agreement between AF and HN (containing
weak agreement, injective agreement on KAF and A-KID) turns out to be
correct, showing that the session they participate in is the same one at a
time.

The secrecy of KAF turns out to be correct, indicating that the protocol
indeed protects the secrecy of the session key. The secrecy of A-KID turns

1The code is publicly available at https://github.com/TengshunYang/5G-AKMA.

29



Properties Satisfaction Time
Injective agreement between AF and HN on A-KID ✓ 2.5s
Injective agreement between AF and HN on KAF ✓ 2.3s

Injective agreement between HN and AF on A-KID ✓ 2.2s
Injective agreement between HN and AF on KAF ✓ 2s
Weak agreement between UE and HN on A-KID ✓ 6.6s
Executability without re-primary authentication ✓ 16.5s
Executability with re-primary authentication ✓ 5s

Secrecy of KAF ✓ 24s
Secrecy of A-KID × 1.7s

UE indistinguishability ✓ 5s

Table 2: Other Security Properties

out to be incorrect, which is obvious because A-KID is transferred along
public channels.

About the privacy property, the UE indistinguishability turns out to be
correct, indicating that any adversary, even the AF, could not distinguish
two UEs just according to the messages transferred in the channel all alone.

Next we discuss the main properties, i.e. agreement between UE and AF,
as presented in Table 1.

Agreement between UE and AF. For the agreement between UE and AF
without key confirmation, there are three properties respectively correspond-
ing to three authentication levels: weak agreement, non-injective agreement
and injective agreement. All of them turn out to be incorrect and Tamarin
returns the same counterexample: (1) UE starts a session request to an AF
(denoted by AF1) with A-KID of UE; (2) the leakage of A-KID occurs, then
adversary M connects another AF (denoted by AF2) with this A-KID; (3)
AF2 thinks that UE should have connected AF2 before and asks HN for
the session key KAF, while UE only connects to AF1 and generates KAF1.
Therefore M would not communicate with AF2 and could not complete the
protocol. In conclusion, if there is no implicit authentication to confirm the
session key, weak agreement between UE and AF would not be satisfied.

According to the verification results, the weak agreement and non-injective
agreement on KAF between UE and AF with key confirmation turn out to be
correct. Compared with the case that without key confirmation, the authen-
tication level is promoted. Therefore, we suggest adding a key confirmation
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round trip in the protocol, which will improve the security and authentica-
tion level. Unfortunately, we fail to verify the injective agreement between
UE and AF in the case with key confirmation as the verification process does
not terminate. May be we need to turn to the interactive mode provided by
Tamarin.

linkability between AFs. Now we will review a violated privacy issue men-
tioned in Section 4.3.3. According to the counterexamples provided by
Tamarin, we find that the main problem is the leakage of A-KID. In real life,
adversaries would eavesdrop the A-KID, or a malicious AF would play the
role of adversary and forward the received A-KID to another AF, i.e. linka-
bility between AFs, which is also mentioned as a privacy violation in [12, 13].
Adversary could impersonate UE’s identity and start a session with AF. Al-
though the adversary has no way to obtain the session key except by stealing
from the UE, it would result in waste of trust and materials. Here we de-
scribe the situation of linkability between AFs as follows: (1) UE starts a
session with an AF (denoted by AF1), and completes AKMA service with
AF1 successfully; (2) With the possession of A-KID, AF1 would forward it to
another AF (denoted by AF2). Knowing the A-KID helps AF2 distinguish
the UEs, even without knowing the user’s true identity. AFs in the collusion
group would share all the information of users with the same A-KID with
each other, which would result in leakage of users such as history, hobbies
and habits, etc. After combining all the information, the user’s true identity
could be revealed.

Moreover, in our conference paper [8], we propose a fix to add A-KID
to the message sent from HN to AF. In the newest version of Technical
Specification [2], as we mentioned in Section 2, a similar information GPSI
(the extenal ID of UE) is added into the message sent from HN to AF.

5.2. Suggestions

According to the results of verification using Tamarin, several of the se-
curity properties that we expect to hold actually fail for the initial model we
constructed for AKMA. We find that leakage of A-KID plays an important
role in disturbing the protocol, such as, waste of materials and causing linka-
bility between AFs, which are harmful to users’ privacy. So we suggest adding
protection for the communication of A-KID. For example, pre-constructing a
channel for UE and AF with asymmetric encryption, or using TLS protocol,
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can both achieve this. Aiming at resolving the collusion among AFs, dy-
namic A-KID or increasing the frequency of primary authentication is worth
considering.

The second suggestion we propose is the addition of key confirmation.
The protocol containing this implicit authentication can satisfy more au-
thentication properties, improve authentication and security level.

At last, in the technical specification [2], the session key KAF can still be
used while UE restarts a primary authentication. We find that the leakage of
KAF would result in the situation where more than one dishonest UEs (im-
personating the original UE) connect to one AF with the leaked KAF, which
would use the service from AF or even steal private information, although
these dishonest UEs have never started primary authentication. We suggest
that HN could inform the AF when the session key KAF expires ahead of the
time when UE re-starts a primary authentication. It would reduce the risk
of leakage, at the price of only one message.

6. Conclusion

We have formalized for the first time the 5G AKMA service specified in
TS 33.535 [2], using Tamarin verification tool. The formalization includes
the formal model of the AKMA service, the properties including authenti-
cation, secrecy and privacy that are expected to hold, the verification, the
potential attacks of the AKMA service and some suggestions for fixing the
problems. During the modeling, we identify formally the assumptions for
the security properties to hold. For the security properties that do not hold,
we analyze the corresponding counterexamples and construct the potential
attacks, and at the end, suggest some fixes for the model to resolve the at-
tacks and weaknesses. For future work, we will continue to follow the future
development of the AKMA standard and update the formalization. We will
also consider more privacy requirements of 5G AKMA and their formaliza-
tion, e.g. the privacy caused by the linkability between AFs mentioned in
this paper deserving further consideration.
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[29] R. Künnemann, G. Steel, Yubisecure? formal security analysis results
for the yubikey and yubihsm, in: A. Jøsang, P. Samarati, M. Petrocchi
(Eds.), Security and Trust Management - 8th International Workshop,
STM 2012, Pisa, Italy, September 13-14, 2012, Revised Selected Papers,
volume 7783 of Lecture Notes in Computer Science, Springer, 2012, pp.
257–272.

[30] D. A. Basin, C. Cremers, T. H. Kim, A. Perrig, R. Sasse, P. Szala-
chowski, Design, analysis, and implementation of ARPKI: an attack-
resilient public-key infrastructure, IEEE Trans. Dependable Secur. Com-
put. 15 (2018) 393–408.

[31] D. A. Basin, J. Dreier, L. Hirschi, S. Radomirovic, R. Sasse, V. Stet-
tler, A formal analysis of 5g authentication, in: D. Lie, M. Mannan,
M. Backes, X. Wang (Eds.), Proceedings of the 2018 ACM SIGSAC Con-
ference on Computer and Communications Security, CCS 2018, Toronto,
ON, Canada, October 15-19, 2018, ACM, 2018, pp. 1383–1396.

[32] C. Cremers, M. Horvat, J. Hoyland, S. Scott, T. van der Merwe, A
comprehensive symbolic analysis of TLS 1.3, in: B. M. Thuraising-
ham, D. Evans, T. Malkin, D. Xu (Eds.), Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, CCS
2017, Dallas, TX, USA, October 30 - November 03, 2017, ACM, 2017,
pp. 1773–1788.

[33] Y. Wang, Z. Zhang, Y. Xie, Privacy-preserving and standard-compatible
AKA protocol for 5g, in: M. Bailey, R. Greenstadt (Eds.), 30th
USENIX Security Symposium, USENIX Security 2021, August 11-13,
2021, USENIX Association, 2021, pp. 3595–3612.

[34] 3GPP, TR33.902 v4.0.0 3g Security; Formal Analysis of the 3g Au-
thentication Protocol, https://portal.3gpp.org/desktopmodules/

36



Specifications/SpecificationDetails.aspx?specificationId=

2337, 2001.

[35] M. Deng, K. Wuyts, R. Scandariato, B. Preneel, W. Joosen, A privacy
threat analysis framework: supporting the elicitation and fulfillment of
privacy requirements, Requir. Eng. 16 (2011) 3–32.

[36] D. J. Solove, A taxonomy of privacy, University of Pennsylvania Law
Review 154 (2006) 477–560.

[37] J. Bohli, A. Pashalidis, Relations among privacy notions, in: R. Dingle-
dine, P. Golle (Eds.), Financial Cryptography and Data Security, 13th
International Conference, FC 2009, Accra Beach, Barbados, February
23-26, 2009. Revised Selected Papers, volume 5628 of Lecture Notes in
Computer Science, Springer, 2009, pp. 362–380.

[38] N. Dong, H. Jonker, J. Pang, Enforcing privacy in the presence of others:
Notions, formalisations and relations, in: J. Crampton, S. Jajodia,
K. Mayes (Eds.), Computer Security - ESORICS 2013 - 18th European
Symposium on Research in Computer Security, Egham, UK, September
9-13, 2013. Proceedings, volume 8134 of Lecture Notes in Computer
Science, Springer, 2013, pp. 499–516.

[39] 3GPP, TS33.102 v16.0.0 3G Security; Security architecture,
https://portal.3gpp.org/desktopmodules/Specifications/

SpecificationDetails.aspx?specificationId=2262, 2020.

[40] 3GPP, TS33.401 v16.3.0 3GPP System Architecture Evolution (SAE);
Security architecture, https://portal.3gpp.org/desktopmodules/

Specifications/SpecificationDetails.aspx?specificationId=

2296, 2020.

[41] Tamarin Team, Tamarin-Prover Manual: Security Protocol Analysis in
the Symbolic Model, https://tamarin-prover.github.io/manual/,
Accessed: January 7, 2021.

[42] D. A. Basin, S. Radomirovic, L. Schmid, Modeling human errors in
security protocols, in: IEEE 29th Computer Security Foundations Sym-
posium, CSF 2016, Lisbon, Portugal, June 27 - July 1, 2016, IEEE
Computer Society, 2016, pp. 325–340.

37


