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Abstract Hybrid systems are dynamic systems with interacting discrete computation and continuous

physical processes, which have become more common, more indispensable, and more complicated in our

modern life. Particularly, many of them are safety-critical, and therefore are required to meet a critical

safety standard. Invariant generation plays a central role in the verification and synthesis of hybrid

systems. In our previous work, we gave a necessary and sufficient condition for a semi-algebraic set

being an invariant of a polynomial autonomous dynamical system, which gave a confirmative answer to

the open problem. In addition, based on which a complete algorithm for generating all semi-algebraic

invariants of a given polynomial autonomous hybrid system with the given shape was proposed. In this

paper, we consider how to extend our previous work to non-autonomous dynamical and hybrid systems.

Non-autonomous dynamical and hybrid systems are with inputs, which are very common in practice;

in contrast, autonomous ones are without inputs. Furthermore, we present a sound and complete

algorithm to verify semi-algebraic invariants for non-autonomous polynomial hybrid systems. Based
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on which, we propose a sound and complete algorithm to generate all invariants with a pre-defined

template.

Keywords Hybrid Systems, polynomial ideals, semi-algebraic sets, non-autonomous systems, invari-

ants

1 Introduction

Hybrid systems (HSs), also known as cyber-physical systems nowadays, are dynamic systems

with interacting discrete computation and continuous physical processes, which have become

more common, more indispensable, and more complicated in our modern life. Many hybrid

systems in real applications, such as automotive, aerospace, and medical systems, are safety-

crucial, and therefore are required to meet a rigid safety standard. In HSs, the physical processes

evolve continuously with respect to time, and the discrete computers monitor and control the

physical processes, to meet the safety requirement. The correct functionality of the control

from the controllers is essential to guarantee the safety of HSs. In the literature, this issue has

been studied extensively through system verification or controller synthesis. For an HS with

a given controller, the verification of the HS, i.e., whether under the given controller the HS

can achieve the desired safety requirement, can be done either through model-checking mainly

depending on reachability computation [1–6] or through deductive way mainly depending on

invariant generation [7–12]. As an alternative, given an incomplete HS and a specification,

one can synthesize a correct controller which ensures that the given specification is satisfied

by the system by restricting its behaviour. There are many approaches proposed for controller

synthesis for HSs, e.g., [13–18], most of which essentially depend on invariant generation also.

So, the concept of invariant plays a central role in the verification and controller synthesis

of HSs. An invariant of an HS is a property φ that holds in all the reachable states of the

system. An inductive invariant of an HS is an assertion φ that holds at the initial states of the

system, and preserved by all discrete and continuous state changes. Any inductive invariant is

also an invariant. The key issue in generating and verifying inductive invariants of an HS is to

deal with continuous dynamics, i.e. to construct and verify so-called continuous invariant of

the continuous dynamics at each mode of the system. A mode of an HS is usually represented

by a constrained continuous dynamical system (CCDS for short) of the form (D, f), where f is

a vector field and D is a domain restriction of continuous evolution. A property ϕ is called a

continuous invariant (CI for short) [10, 11] of (D, f), if for any trajectory ω starting from D, ϕ

is satisfied along ω as long as ω still remains in the restricted domain D. An inductive invariant

of an HS consists of a set of CIs such that the initial condition of the system entails the CI of

the initial mode, and if there is a discrete transition between two modes of the system then the

CI at the pre-mode implies the CI at the post-mode with respect to the discrete transition. We

will call an inductive invariant of an HS a global inductive invariant, or just global invariant

(GI for short) to distinguish from continuous invariants.

The problem of (inductive) invariant generation and verification have received wide atten-

tion in the analysis of programs [19–22] and hybrid systems [7, 8, 10, 11, 15, 23–27]. The
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basic idea behind most of these approaches is as follows: first, predefine a property template

(linear or non-linear, depending on the property to be verified); then, encode the conditions

of a property to be inductive (discretely and/or continuously) into some constraints on state

variables and parameters; finally, find out solutions to the constraints by symbolic computation,

or numeric computation, or their combination. So, how to define inductive conditions and the

power of constraint solving are essential to these approaches. In [28, 29], the authors inde-

pendently proposed different approaches for constructing inductive invariants for linear HSs.

Sankaranarayanan et al. presented a computational method to automatically generate algebra-

ic invariants for algebraic HSs in [30], based on the theory of pseudo-ideals over polynomial

rings and quantifier elimination. Prajna et al. in [31, 32] provided a new notion of inductive

invariants called barrier certificates (BC) for verifying the safety of semi-algebraic HSs using

the technique of sum-of-squares (SOS). Their approach was further extended by Kong et al. in

[33] and by Dai et al. in [12] by considering how to relax the condition of BCs, but remain the

condition to be convex so that synthesizing BCs can still be done using SDP efficiently. In [10],

Platzer and Clarke extended the idea of BCs by considering Boolean combinations of multiple

polynomial inequalities. In [9, 15], Tiwari et al. investigated how to generate inductive invari-

ants with more expressiveness for semi-algebraic HSs through relaxing the inductive conditions

by considering inductiveness only on the boundaries of predefined invariant templates. While

in [11], Liu et al. considered how to further relax the inductive condition given in [9, 15] and

established a first finite complete inductive condition to determine if a polynomial formula is an

invariant for a given semi-algebraic HS, which gave a confirmative answer to an open problem

proposed in [15]. In [34], Sloth et al. proposed an approach to constructing global inductive

invariants from local differential invariants using optimization techniques.

However, most of existing approaches are only applicable to autonomous dynamical and

hybrid systems, i.e., without inputs, but in practice, dynamical and hybrid systems with inputs

(i.e., non-autonomous) are quite common. A simple solution to non-autonomous case is to

reduce to autonomous case by treating time as a normal variable. But the disadvantages of this

approach are obvious, including:

Scalability: Some invariants of some dynamical systems can not be synthesized by homoge-

nizing, which is similar to stability analysis of dynamical systems.

Sucinctness: Invariants synthesized using homogenizing normally contain time, which is not

what we expected.

Efficiency: This approach is not so efficient in general.

In this paper, we give a different approach to this issue by extending Liu et al.’s approach in

another way. The basic idea behind our approach is as follows: We treat inputs as parameters,

and extend Liu et al.’s approach to parametric case. That is, for any instantiation of the

inputs, we construct an ascending chain of polynomial ideals obtained from higher-order Lie-

derivatives of the polynomials occurring in the invariant template w.r.t. the considered vector

fields (the details will be discussed later); Then, exploiting the results given in [12, 35, 36], we
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can compute a uniform bound on the length of the family of ascending chains of parametric

polynomial ideals; Thus, based on which, we can obtain a necessary and sufficient condition

to verify whether a given semi-algebraic set is an invariant of a considered non-autonomous

dynamical and hybrid systems. Furthermore, we can easily design an algorithm to synthesize

all semi-algebraic invariants with a given shape for a considered non-autonomous dynamical

and hybrid systems similar to [11]. In addition, an explicit complexity analysis of our approach

is given, while the complexity of Liu et al.’s approach remains unknown. The advantages of

our approach include:

Scalability: it can be applied to any kind of non-autonomous dynamical and hybrid systems.

Efficiency: we do not need to consider time.

Succinctness: The generated invariants do not contain time, therefore more succinct.

The rest of this paper is organized as follows: Section 2 introduces basic definitions and

theories on which our approach is developed; Section 3 discusses our method in a simple case

when initial set, domain and invariant are all defined by a single polynomial; complexity analysis

and some experimental results are reported in Section 4; we discuss how to generalize the simple

case to the general case in Section 5, and conclude this paper in Section 6.

2 Preliminaries

In this section, we introduce some basic notions and theories, based on which our approach

is developed.

In what follows, we will use R to stand for the set of real numbers, x for the variable vector

(x1, · · · , xn), K[x] for the polynomial ring in variables x with coefficients in K.

2.1 Semi-algebraic Sets

A semi-algebraic set is a subset of Rn defined by a conjunction of finitely many polynomial

equations and inequalities , or a union of finitely many these sets. Formally,

Definition 2.1 (Semi-algebraic Set) A set S ⊆ Rn is a semi-algebraic set if there exists

formula ψ such that S = S(ψ) = {x ∈ Rn | ψ(x) satisfies}, where ψ is of the form

ψ
.
=

K∨
k=1

Jk∧
j=1

pkj B 0

where pkj ∈ R[x] and B ∈ {≥, >}.
It is easy to prove that there is a correspondence between the operations on semi-algebraic

sets and their counterparts (i.e., the logical connectives) on formulas, i.e.,

• S(ψ1) ∩ S(ψ2) = S(ψ1 ∧ ψ2)

• S(ψ1) ∪ S(ψ2) = S(ψ1 ∨ ψ2)

• S(ψ)c = S(¬ψ)
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• S(ψ1)\S(ψ2) = S(ψ1) ∩ S(ψ2)c = S(ψ1 ∧ ¬ψ2)

2.2 Hybrid Systems

As discussed in the introduction section, the hardest part in the invariant generation for

HSs is how to deal with continuous dynamics, i.e., CI generation. If we know how to verify

and/or generate invariant for HSs with one mode, i.e., constrained dynamical systems, it can

be easily extended to HSs with multiple modes, e.g., see [37, 38]. So for simplicity, we only

concentrate on HSs with one mode throughout this paper. Therefore, all HSs are referred to

HS with one mode hereafter if not otherwise stated.

Definition 2.2 (Hybrid System (HS)) An HS is a tuple (H, I, f), where:

(i) H ⊆ Rn is the domain of system state;

(ii) I ⊆H is the set of initial states, which will be called the initial set; and

(iii) f ∈ H × [0,+∞) → Rn is the evolution function of system. The evolution is subject to:

ẋ(t) = f(x(t), t).

An HS is called autonomous if f is independent of time t, i.e., without inputs; otherwise, called

non-autonomous.

Definition 2.3 (Trajectory) For an HS M , the trajectory originating from state x0 and

time t0 in time T is a differentiable function x ∈ [t0, t0 + T )→ Rn satisfying

(i) for t ∈ [t0, t0 + T ), ẋ(t) = f(x(t), t); and

(ii) x(t0) = x0.

When it is clear from context, we will omit the phrase “from x0”, “from time t0”.

Definition 2.4 (Safety Problem) Given an unsafe set XU ⊆ Rn, we say an HS is safe, if

no trajectories satisfy:

(i) x(0) ∈ I; and

(ii) ∃τ ≥ 0 : x(τ) ∈ XU .

Definition 2.5 (Continuous Invariant) The continuous invariant (CI) of an HS (H, I, f)

is a set A ⊆ Rn satisfying

(i) Initial Condition: I ⊆ A , and

(ii) Continuous Inductiveness: for any t0 ≥ 0, x0 ∈ A and T > 0, any trajectory x with

x(t0) = x0 guarantees that

(∀t ∈ [t0, t0 + T ],x(t) ∈H)⇒ (∀t ∈ [t0, t0 + T ],x(t) ∈ A).

Hereafter, the phase invariant always refers to CI if not otherwise stated.
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Definition 2.6 (Polynomial Hybrid System (PHS)) An HS (H, I, f) is polynomial, if

(i) domain H is a semi-algebraic set;

(ii) initial set I is a semi-algebraic set; and

(iii) vector field f is polynomial, i.e., fi(x, t) ∈ R[x, t] for every fi(x, t) in f(x, t) where R[x, t]

is an abbreviation of R[x1, x2, . . . , xn, t] and f(x, t) = (f1(x, t), f2(x, t), . . . , fn(x, t)).

Thus, in what follows, we always assume all HSs are polynomial, if not otherwise stated.

It is easy to verify that all polynomials satisfy local Lipschitz condition, therefore, by the

famous Picard-Lindelöf theorem, there exists a unique solution to the initial value problem

locally for any given polynomial HS.

2.3 Lie Derivatives

Lie derivatives describe the change of a tensor field along the flow of a vector field.

Definition 2.7 (Lie Derivatives) For a given function θ(x), a vector field f(t,x), we define

Lie derivatives Lkt,f (θ(x)) inductively as follows

L0
t,fθ(x) = θ(x)

Lkt,fθ(x) = 〈 ∂
∂x
Lk−1t,f θ(x) · f(x, t)〉, k > 0

where 〈∗ · ∗〉 is dot product.

Example 2.8 Assume f(x, y, t) = (−x+ t, y − t) and θ(x, y) = x+ y2, then:

L0
t,fθ(x, y) = x+ y2

L1
t,fθ(x, y) = 2y2 − x− 2ty + t

L2
t,fθ(x, y) = 4y2 + x− 6ty + 2t2 − t

. . . . . .

Definition 2.9 (Pointwise Rank) For a given state x and time t, we define pointwise rank

of Lie derivatives as:

γf ,θ(x, t) = min{k ∈ N | Lkt,fθ(x) 6= 0}

Note that Lie derivatives and their pointwise rank both are functions in variable t.

2.4 Polynomial Ideal Theories

Polynomial ideal theories play an important role in our approach, so, let’s recall some basic

notions and results on polynomial ideal theories. Please refer to [39] for the detail.

Definition 2.10 (Polynomial Ideals) A subset I ⊆ R[x] is called ideal if

(i) 0 ∈ I;

(ii) for any p(x), q(x) ∈ I, then p(x) + q(x) ∈ I; and
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(iii) for any p(x) ∈ I and h(x) ∈ R[x], then p(x)h(x) = h(x)p(x) ∈ I.

Definition 2.11 (Basis of an Ideal) we call

I
.
=

⋂
p1,p2,...,pk∈I′,I′is an ideal

I ′

an ideal generated by p1, p2, . . . , pk, denoted by 〈p1, p2, . . . , pk〉. {p1, p2, . . . , pk} is called a basis

(generator) of I.

It is easy to prove that

〈p1, p2, . . . , pk〉 = {
k∑
i=1

pihi | ∀i : hi ∈ R[x]}.

A well-known result on polynomial ideals is that every polynomial ideal of R[x] can be

generated by a finite basis, i.e.,

Theorem 2.12 (Hilbert’s Basis Theorem) Any polynomial ideal I ⊆ R[x] can be generated

by a finite basis. That is, for any ideal I ⊆ R[x], there exist p1, p2, . . . , pk ∈ R[x] such that

I = 〈p1, p2, . . . , pk〉.
A corollary of the above theorem is:

Theorem 2.13 (Ascending Chain Theorem) For any infinite ascending chain of polyno-

mial ideals of R[x] I1 ⊆ I2 ⊆ · · · Ik ⊆ · · · , there exists N such that for any k ≥ N , Ik = IN .

3 Invariant Generation in Simple Case

In this section, we focus on a simplified version of the original problem in order to explain

the basic idea behind our approach. More specifically, we only consider invariants that is

represented by a single polynomial inequality θ(x) ≥ 0, denoted by Φ. Also, we assume that

the domain H and initial set I can be defined by a single polynomial inequality. We will use

H(x) ≥ 0 and I(x) ≥ 0 to denote them respectively.

3.1 Basic Idea

Intuitively, an invariant is such a set that at any time if the system state falls inside it,

then the trajectory starting from the state will never go out of the set if the trajectory stays

inside the domain. Obviously, when a system state is inside Φ, the trajectory starting from the

point must reach the boundary of Φ before it goes out of Φ because of the continuity of the

trajectory. So the invariant of Φ can only be violated at the boundary of Φ. That is to say, in

this simple case, Φ is an invariant if and only if, for every state x0 and time t0, if θ(x0) = 0

with x0 = x(t0), then there exists a constant ε > 0 such that the trajectory originating from

state x0 at time t0 keeps θ(x(t)) nonnegative for all t ∈ [t0, t0 + ε).

Theorem 3.1 Given a polynomial θ and an HS (H, I, f), γf ,θ(x0, t) 6= 0 if and only if

x0 ∈ S(θ(x) = 0), where S(θ(x) = 0) stands for the set of solutions of equation θ(x) = 0.

Moreover, let x(t0) = x0, then



8 WANG QIUYE · LI YANGJIA · XIA BICAN · ZHAN NAIJUN

(i) if γf ,θ(x0, t0) <∞ and Lγf,θ(x0,t0)
t0,f

θ(x0) > 0, then ∃ε > 0,∀t ∈ (t0, t0 + ε), θ(x(t)) > 0;

(ii) if γf ,θ(x0, t0) <∞ and Lγf,θ(x0,t0)
t0,f

θ(x0) < 0, then ∃ε > 0,∀t ∈ (t0, t0 + ε), θ(x(t)) < 0;

(iii) if γf ,θ(x0, t0) =∞, then ∃ε > 0,∀t ∈ (t0, t0 + ε), θ(x(t)) = 0.

Proof First, recall Definition 2.9, γf ,θ(x0, t) 6= 0 if and only if L0
t,fθ(x) = 0, which, by

Definition 2.7, is equivalent to θ(x0) = 0.

Next, assume now γf ,θ(x0, t) 6= 0. Since f is a polynomial vector function, we know f is

analytic. So the initial value problem for differential equation ẋ(t) = f(x(t), t) and x(t0) = x0

exists a unique solution near t0 [40]. Since θ is also a polynomial function, we can conclude

that θ(x(t)) is analytic near t0. So we have:

θ(x(t)) = θ(x(t0)) +
dθ

dt
(t0) ∗ (t− t0) +

d2θ

dt2
∗ (t− t0)2

2!
+ . . .

= L0
t0,fθ(x0) + L1

t0,fθ(x0) ∗ (t− t0) + L2
t0,fθ(x0) ∗ (t− t0)2

2!
+ . . .

at the neighbourhood of t0.

For the first two cases, we see that the first γf ,θ(x0, t0) terms of the right side equation all

are equal to 0, and the coefficient of the dominant term has the same sign as Lγf,θ(x0,t0)
t0,f

θ(x0),

so we can immediately get the corresponding conclusions.

As for the last case, γf ,θ(x, t0) = ∞ implies that every term of the right side expansion is

equal to 0, which means θ(x(t)) = 0 on the interval.

Note that the inverse of Theorem 3.1 also holds, i.e.,

Corollary 3.2 For a sequence {ti} with ti > t0 and limi→∞ ti = t0, let x0
.
= x(t0), then

(i) if for all i, θ(x(ti)) > 0, then γf ,θ(x0, t0) <∞ and Lγf,θ(x0,t0)
t0,f

θ(x0) > 0;

(ii) if for all i, θ(x(ti)) < 0, then γf ,θ(x0, t0) <∞ and Lγf,θ(x0,t0)
t0,f

θ(x0) < 0;

(iii) if for all i, θ(x(ti)) = 0, then γf ,θ(x0, t0) =∞.

3.2 Transverse Set and Invariant

In the following, for our purpose, we will extend some notions and results for autonomous

HSs given in [11] to nonautonomous HSs.

Definition 3.3 (Transverse Set [11]) Given an HS (H, I, f), the transverse set of a region

S(p(x) ≥ 0) is defined as

Trans
(t)
f↑p

.
= {x ∈ Rn|γf ,p(x, t) <∞∧L

γf,p(x,t)
t,f p(x) < 0}

Intuitively, the transverse set of region S(p(x) ≥ 0) contains all elements that are either not

in the region or will leave the region immediately when the system continuously evolves.

Like [11], using transverse set, we can give a necessary and sufficient condition of continuous

invariants as follows.
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Theorem 3.4 S(θ(x) ≥ 0) is an invariant of a given HS (H, I, f) if and only if

(i) it implies the initial set I, i.e., (I(x) ≥ 0)⇒ (θ(x) ≥ 0);

(ii) at any time, any trajectory starting from any state on the boundary S(θ(x) = 0) will never

leave the region S(θ(x) ≥ 0), as long as the system evolves within its domain, i.e.,

(θ(x) = 0)⇒ (∀t > 0 : x ∈ (Trans
(t)
f↑θ)

c ∪ Trans
(t)
f↑H)

Proof First we consider the necessary part. If the first condition is not satisfied, then we

have (I(x) ≥ 0) ; (θ(x) ≥ 0). That is to say I 6⊆ S(θ(x) ≥ 0), which contradicts the first

condition of Definition 2.5.

Now if the second condition is not satisfied, then there exists x0 and t0 > 0 such that

θ(x0) = 0 and x0 ∈ Trans
(t0)
f↑θ ∩ (Trans

(t0)
f↑H)c. By Definition 3.3 and Theorem 3.1, it follows

∃ε > 0,∀t ∈ (t0, t0 + ε), (H(x(t)) ≥ 0) ∩ (θ(x(t)) < 0)

which contradicts the second condition of Definition 2.5. This concludes the necessary part.

Now, let’s consider the sufficient part. It’s easy to see that the first condition of this

theorem is essentially the same as the first condition of Definition 2.5. So we only need to prove

S(θ(x) ≥ 0) also satisfies the second condition of Definition 2.5. Suppose the second condition

does not satisfy, which means there exists t0 ≥ 0, x0 ∈ S(θ(x) ≥ 0) and T0 > 0 such that for a

certain trajectory x with x(t0) = x0,

(∀t ∈ [t0, t0 + T0],x(t) ∈H) ; (∀t ∈ [t0, t0 + T0],x(t) ∈ S(θ(x) ≥ 0)),

which is equivalent to

(∀t ∈ [t0, t0 + T0],H(x(t)) ≥ 0) ∧ (∃t ∈ [t0, t0 + T0], θ(x(t)) < 0).

Now, consider θ(x(t)) as a function. We know that θ(x(t0)) = θ(x0) ≥ 0 and for some

tc ∈ [t0, t0 + T0], θ(x(tc)) < 0. By the continuity of x, there exists tz ∈ [t0, tc) such that

θ(x(tz)) = 0, which means the set {t ∈ [t0, tc) | θ(x(t)) = 0} is not empty. Set tm
.
=

sup{t ∈ [t0, tc] | θ(x(t)) = 0}. By the definition of supremum and continuity of θ(x(t)),

θ(x(tm)) = 0. Denote x(tm) by xm. As tm is the rightmost zero point of θ(x(t)) and

θ(x(tc)) < 0, we know: ∀t ∈ (tm, tc), θ(x(t)) < 0. Use Corollary 3.2, we get: γf ,θ(xm, tm) <∞
and Lγf,θ(xm,tm)

tm,f
θ(x(tm)) < 0. Recall Definition 3.3, that is exactly xm ∈ Trans

(tm)
f↑θ .

Since ∀t ∈ [t0, t0 + T0],H(x(t)) ≥ 0, it follows ∀t ∈ (tm, tc),H(x(t)) ≥ 0. Combine the first

and third cases of Corollary 3.2, we get

(i) γf ,H(xm, tm) <∞ and Lγf,H(xm,tm)
tm,f

H(x(tm)) > 0, or:

(ii) γf ,H(xm, tm) =∞.

In either way, we have xm /∈ Trans
(tm)
f↑H . But θ(xm) = 0 contradicts the second condition of this

theorem. The sufficient part is proved.
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3.3 Ideals Generated by Lie Derivatives

Definition 3.5 (Ideal Generated by Lie Derivatives) Given a PHS (H, I, f) and a poly-

nomial θ(x), in R[x], we call I
(t)
k

.
= 〈L0

t,fθ(x),L1
t,fθ(x), . . . ,Lkt,fθ(x)〉 as k-th ideal generated

by Lie derivatives, and I(t) .
=

⋃
k I

(t)
k as ideal generated by Lie derivatives, where t ∈ R is a

parameter.

In order to make the above parameterized ideals generated by Lie derivatives computable,

we can see the parameter itself as a normal variable, and obtain so-called total ideals generated

by Lie derivatives. Thus, all members of k-th total ideal generated by Lie derivatives and total

ideal generated by Lie derivatives are from R[x, t].

Regarding the parameterized ideals generated by Lie derivative, we can prove the following

theorem, which is similar to the one in autonomous HSs in [11].

Theorem 3.6 There exists N ∈ N such that for every t ∈ R, I(t) = I
(t)
N .

Proof Total ideals generated by Lie derivatives form an ascending ideal chain in R[x, t],

i.e.,

I0 ⊆ I1 ⊆ · · · ⊆ Ik ⊆ . . .

By Theorem 2.13, we know that there exists N such that for any l ≥ N , Il = IN , which

means IN = I.

Now for arbitrary t0 ∈ R, we claim that I
(t0)
N = I(t0). Clearly, IN = I derives that for any

l ≥ N , Llt,fθ ∈ 〈L0
t,fθ,L1

t,fθ, . . . ,LNt,fθ〉, which implies that there exists {gj} ∈ R[x, t] such that

Llt,fθ =
∑

0≤j≤N

gjLjt,fθ.

Replace t with t0 in the both side of the above equation, we get

Llt,fθ =
∑

0≤j≤N

gj [t0/t]Ljt,fθ.

Therefore, for any t ∈ R, any l ≥ N , Llt,fθ ∈ I
(t)
N holds, which immediately leads us to the final

conclusion.

Corollary 3.7 There exists N ∈ N, which is independent of x and t, such that γf ,θ(x, t) <

∞ if and only if γf ,θ(x, t) ≤ N .

Proof The sufficient part is obvious. We only need to consider the necessary part.

Take N as defined in Theorem 3.6, suppose γf ,θ(x, t) > N , since IN = I, it follows

Lγf,p(x,t)t,f p(x) ∈ IN . So,

Lγf,p(x,t)t,f p(x) =
∑

0≤j≤N

gjLjt,fp(x)

for some gjs in R[x].

On the other hand, as γf ,θ(x, t) > N , for 0 ≤ j ≤ N , we have Ljt,fp(x) = 0. Thus, it follows

Lγf,p(x,t)t,f = 0, which contradicts to Definition 2.9.
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Lemma 3.8 (Fixed Point Theorem [11]) If Li+1
t,f θ ∈ I

(t)
i for some i, then Lmt,fθ ∈ I

(t)
i for

any m > i.

Proof The proof can be given similarly to [11].

Algorithm 1: Computing Upper Bound N : Naive

i := 0;

B := {L0
t,f};

while true do

Compute Li+1
t,f from Lit,f ;

Generate ideal I from basis B ;

Check whether Li+1
t,f ∈ I using Gröbner basis ;

if Li+1
t,f /∈ I then

B := B ∪ {Li+1
t,f };

i := i+ 1;

else

break;
N := i

Algorithm 1 is a naive algorithm to implement Lemma 3.8, a more efficient algorithm will

be presented in Algorithm 2. To this end, we need some basic notions and results.

Definition 3.9 A monomial ideal of R[x] is an ideal that can be generated by a set of

monomials (maybe infinite). More specifically, I is a monomial ideal of R[x] if and only if

I = {
∑
i

gimi | gi ∈ R[x],mi ∈M},

where M is a set of monomials in R[x].

In what follows, we adopt the degree-lexicographic order over monomials.

For simplicity, we use 〈M〉 to denote the monomial ideal generated by M , and m(p) to

denote the leading term of polynomial p, i.e., the largest term w.r.t. the given order. For a

polynomial ideal I, we define m(I)
.
= 〈{m(p) | p ∈ I}〉.

Lemma 3.10 Given polynomials p0, p1, . . . , pn, let Ii = 〈p0, . . . , pi〉. If I0 ( I1 ( · · · (
In then m(I0) ( m(I1) ( · · · ( m(In).

Proof Since Ii ( Ii+1, it derives pi+1 /∈ Ii. If m(pi+1) /∈ m(Ii), then m(Ii) ( m(Ii+1).

Otherwise, there is some j ≤ i such that m(pj) divides m(pi+1). In that case, replace pi+1 with

the non-zero remainder p′i+1 of the ordered division of pi+1 by pj . Clearly, Ik and m(Ik) keep

unchanged. As the degree of pi+1 decreases, the process will terminate in finite steps, so we

have m(Ii) ( m(Ii+1).

Take i from 0 to n− 1, we get the conclusion of this lemma.

Now an improved algorithm to compute N can be given in Algorithm 2.
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Algorithm 2: Computing Upper Bound N : Improved

i := 0;

p0 := L0
t,f ;

B := {m(p0)} ;

while true do

Compute Li+1
t,f from Lit,f ;

pi+1 := Li+1
t,f ;

while pi+1 6= 0 and there exists m(pj) ∈ B divides m(pi+1) do

pi+1 := the remainder of the division of pi+1 by pj ;

if pi+1 equals to 0 then

break;

B := B ∪ {m(pi+1)};
i := i+ 1 ;

N := i;

Every execution of the inner while loop decreases the degree of pi+1 strictly at least 1, so the

inner while loop can only be executed finitely many times. On the other hand, each execution

of the outer loop generates a strictly ascending monomial ideal chain, so by Theorem 2.13 it

also terminates after finitely many iterations.

3.4 A Necessary and Sufficient Condition

Based on the previous discussion, we can present the following necessary and sufficient

condition on a polynomial formula being an invariant in the simple case.

Theorem 3.11 Given an HS (H, I, f) and a polynomial θ(x). We can construct a finite

length formula Π(θ,H, f ,x, t) such that θ(x) ≥ 0 is an invariant if and only if formula (I(x) ≥
0)→ (θ(x) ≥ 0) and Π(θ,H, f ,x, t) hold.

Proof By Theorem 3.4, obviously, I ⊆ S(θ(x) ≥ 0) if and only if

(I(x) ≥ 0)→ (θ(x) ≥ 0).

By Definition 3.3, ∀t ≥ 0,x ∈ (Trans
(t)
f↑θ)

c ∪ Trans
(t)
f↑H if and only if

∀t ≥ 0,¬(γf ,θ(x, t) <∞∧L
γf,θ(x,t)
t,f < 0) ∨ (γf ,H(x, t) <∞∧Lγf,H(x,t)

t,f < 0).

According to Corollary 3.7, it is equivalent to

∀t ≥ 0,¬(γf ,θ(x, t) ≤ N ∧ L
γf,θ(x,t)
t,f < 0) ∨ (γf ,H(x, t) ≤ N ∧ Lγf,H(x,t)

t,f < 0),

for some natural number N .
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Thus, let

π(0)(θ, f ,x, t)
.
= θ(x) < 0

π(i)(θ, f ,x, t)
.
= (

∧
0≤j<i

Ljt,fθ(x) = 0) ∧ Lit,fθ(x) < 0 for i > 0

π(θ, f ,x, t)
.
=

∨
0≤i≤N

π(i)(θ, f ,x, t),

then ∀t ≥ 0,x ∈ (Trans
(t)
f↑θ)

c ∪ Trans
(t)
f↑H if and only if formula

∀t((t ≥ 0)→ (¬π(θ, f ,x, t) ∨ π(H, f ,x, t)))

which is further equivalent to

∀t((t < 0) ∨ (¬π(θ, f ,x, t) ∨ π(H, f ,x, t))).

Now, let

Π(θ,H, f ,x, t) .
= (θ(x) = 0)→ (∀t((t < 0) ∨ (¬π(θ, f ,x, t) ∨ π(H, f ,x, t))))

Thus, this completes the proof.

3.5 Invariant Synthesis

A template polynomial is a parameterized polynomial p(u,x) ∈ R[u1, . . . , um, x1, . . . , xn],

where u1, . . . , um are parameters. Our purpose is to find an invariant θ(x) such that for some

u0 ∈ Rm, p(u0,x) = θ(x), or report “no such invariant exists”.

Notice that Theorem 3.6 and related corollaries can be extended to parametric case without

any substantial change.

Lemma 3.12 There exists N ∈ N which is independent of x, t and u such that γf ,θ(x, t) <

∞ if and only if γf ,θ(x, t) ≤ N .

Now basic steps of invariant generation can be sketched as follows:

(i) Predefine a template p(u,x) ∈ R[u,x].

(ii) Compute the upper bound N w.r.t p and f .

(iii) Construct Π(p,H, f ,u,x, t) as in the proof of Theorem 3.11.

(iv) Apply quantifier elimination algorithms to

∀x.(Π(p,H, f ,u,x, t) ∧ ((I(x) ≥ 0)→ (p(u,x) ≥ 0))).

Clearly, the resulted quantifier-free formula Ξ (u) is a constraint on u.

(v) Apply some constraint solver, such as DISCOVERER [41], to find a solution u0 to Ξ (u).

If it returns false then report “There does not exist an invariant with the predefined

template”; otherwise, let θ(x) = p(u0,x). Obviously, θ(x) ≥ 0 is an invariant.
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4 Complexity Analysis and Experimental Results

4.1 Complexity Analysis

In order to conduct complexity analysis of our approach, an explicit upper bound on the

N is necessary. But how to compute an upper bound on N is mathematically hard, which

makes the complexity analysis of Liu et al.’s approach [11] unclear so far. In this section, by

exploiting the results reported in [42], we give an explicit upper bound on N , and based on

which the complexity analysis of our approach is achieved. Similarly, the complexity of Liu et

al.’s approach [11] can be obtained similarly.

In the following, we sketch the main results reported in [42], please refer to [42] for the

details.

Definition 4.1 For any increasing function f : N → N (that is, f(x) ≤ f(y) for all

x ≤ y), an ascending chain I1 ⊆ I2 ⊆ · · · ⊆ In of polynomial ideals of K[xxx] is called f -bounded,

if gdeg(Ii) ≤ f(i) for all i ≥ 1. Denote by L(d, f) the greatest length of all strictly ascending

chains of K[xxx] which are f -bounded.

Remark 4.2 (i) The condition of f -boundedness is necessary to define the greatest

length, as the length of chains with unbounded degrees could be arbitrarily large (for

instance, the length of 〈xn〉 ⊂ 〈xn−1〉 ⊂ · · · ⊂ 〈1〉 could be arbitrarily large if n is

unbounded).

(ii) For ease of discussion, we assume f is increasing without loss of generality. In fact, for a

general f , consider the increasing function F : N→ N, F (n) , max{f(1), f(2), · · · , f(n)}.
Then a f -bounded chain is always a F -bounded chain since f(n) ≤ F (n) for all n. So

L(d, f) ≤ L(d, F ), and we can use L(d, F ) as the upper bound of the chains.

Given a number d ∈ N, an increasing function f : N→ N, and a number t ∈ {0, 1, · · · , f(1)},
Ω(d, f, t) is recursively calculated as follows:

(i) Ω(0, f, t) = 1 and Ω(d, f, 0) = 1, for any d ≥ 1, f and t;

(ii) Write nt , Ω(d, f, t) for t = 0, 1, · · · , f(1), then they can be successively calculated by

n0 = 0 and for t ≥ 1,

nt = nt−1 + Ω(d− 1, f+nt−1
, f(nt−1 + 1)− f(1) + 1).

Here f+m is a function defined as f+m(n) = f(m+ n).

Theorem 4.3 L(d, f) = Ω(d, f, f(1)).

Proof Please refer to [42].

Exploiting the results reported in [36], we can prove that Ω(d, f, t) is primitive recursive and

lies in the level 2 of the Fast Growing Hierarchy, which includes all the elementary functions

if d is fixed, otherwise, it will have Ackermann’s function as its lower bound, i.e., it becomes a

general recursive function.
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Theorem 4.4 (Complexity) For a given hybrid system with d variables, suppose the degree

of vector field is n, and the degree of parametric polynomials in a predefined invariant is m,

then the complexity of our algorithm is O(22
d ∗ Ω(d, n− 1, n− 1)).

Proof It can be easily obtained by the complexity of Gröbner basis [43], Algorithm 1,

Algorithm 2, and Theorem 4.3.

4.2 Experimental Results

In this part, we report some experimental results in Table 4.2. In Table 4.2, the first column

is the considered vector field, the second column is the polynomial in the invariant to be verified

(here, we only consider the simple case), the third column is the set of variables occurring in

the test polynomial, the fourth column is the corresponding time using Algorithm 1, while the

fifth column is the corresponding time using Algorithm 2, the sixth column is the N computed

by Algorithm 1, the seventh column is the N computed by Algorithm 2, and the eighth column

is the upper bound on N .

vector fields test polynomial variables time consumed(naive) time consumed(improved) result(naive) result(improved) upper bound

{y − t, x + t, x + y} x + 2y + z x, y, z 0.00391 0.003256 2 2 4

{y − t, x + t, x + y} x2 + y + z x, y, z 0.043852 0.039875 3 3 9

{y2 − t, x2 + t, x + y} x2 + y + z x, y, z 2.69769 2.56613 3 3 262155

{y2 − t, x2 + t, x + y} (x + y + z)2 + y x, y, z 38.1724 36.194 3 3 262155

{y, x2 − t, x + y} (x + y + z)2 + y x, y, z 1.8461 1.94017 3 3 262155

{y, x2 − t, x + y} (x + y + z)3 + y x, y, z over 5 minutes over 5 minutes none none too large

{y + t, x− t, x + y} (x + y + z)3 + y x, y, z 0.124435 0.11002 3 3 14

{y + t, x− t, x + y} (x + y + z)4 + y x, y, z 0.745951 0.750883 3 3 19

{y + t, x− t, x + y} (x + y + z)5 + y x, y, z 6.33599 5.7566 3 3 24

{y + t, x− t, x + y} (x + y + z)6 + y x, y, z 37.2067 36.4658 3 3 29

{y + t, x− t, x + y} (x + y + z)7 + y x, y, z over 5 minutes over 5 minutes none none 34

{y + t, x− t, x + y, z + t} (x + y + z + u)2 + y x, y, z, u 0.30055 0.261325 4 4 13

{y + t, x− t, x + y, z + t, u + x} (x + y + z + u + v)2 + y x, y, z, u, v over 5 minutes over 5 minutes none none 17

Table 1: Experimental results

Note that the complexity of our approach is quite high, so it is hard to solve a problem in

which the vector field and the test polynomial both are non-linear. In particular, the degree of

the vector field influence the efficiency so much, as indicated in Table 4.2. That is one of our

future work to invent more efficient approach based on numeric computation or the combination

of numeric computation and symbolic computation.

5 General Case

In this part, we consider invariant verification and generation for general polynomial hybrid

systems. The domain and initial set will become to

H = S(

I∨
i=1

Ji∧
j=1

pij(x) B 0)

I = S(

N∨
i=1

Mi∧
j=1

qij(x) B 0)
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and the possible invariant takes the form

θ =

K∨
k=1

Lk∧
j=1

(pkl(x) B 0)

where B ∈ {>,≥}.
The basic idea is almost the same as that of the simple case given above. However, the

complex boundaries of invariant, domain and initial set require some extra discussion, but can

be coped with as in the autonomous case, please refer to [44] (the full version of [11]) for the

details.

6 Conclusion

In this paper we propose a sound and complete algorithm to verify invariants of polynomial

non-autonomous hybrid systems, based on which, we derive a sound and relatively complete al-

gorithm to automatically generate invariants for such systems.“Relatively” means our approach

can generate all invariants with the pre-defined template.

The ascending chain of ideals generated by Lie derivatives has finite length. A general

recursive upper bound on the length can be obtained by the results reported in [35, 36, 42].

This upper-bound is useful in constructive proof and time complexity analysis, but it is often

too large to be practical. So, we proposed two practical algorithms to compute how many steps

the ascending chain of ideals can reach a fixed point.

Comparing with homogenizing non-autonomous hybrid systems to autonomous ones, and

then applying the techniques for invariant generation of autonomous hybrid systems, the ad-

vantage of our approach include the following points:

• it is more scalable, which means that invariants for some non-autonomous hybrid system

can be synthesized with our approach, but cannot be obtained by homogenizing it first

and then applying invariant generation techniques for autonomous hybrid systems. This

is quite similar to the well-known result that the stability of a non-autonomous hybrid

system cannot be achieved by homogenizing it.

• It is more efficient, as we do not need to consider time.

• The generated invariants do not contain time, and therefore are more succinct.

In the future, we will focus on investigating some heuristic strategies on how to determine an

invariant template for a given property to be verified. Another interesting work is to improve the

efficiency of our approach by considering numeric computation or the combination of symbolic

computation with numeric computation.
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