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Abstract We investigate the termination problems of multi-path polynomial programs (MPPs) with

equational loop guards. To establish sufficient conditions for termination and nontermination simul-

taneously, we first propose the notion of strong/weak non-termination which under/over-approximates

non-termination. Based on polynomial ideal theory, we show that the set of all strong non-terminating

inputs (SNTI) and weak non-terminating inputs (WNTI) both correspond to the real varieties of cer-

tain polynomial ideals. Furthermore, we prove that the variety of SNTI is computable, and under some

sufficient conditions the variety of WNTI is also computable. Then by checking the computed SNTI

and WNTI varieties in parallel, termination properties of a considered MPP can be asserted. As a

consequence, we establish a new framework for termination analysis of MPPs.

Key words Termination analysis, polynomial programs, polynomial ideals.

1 Introduction

Termination analysis plays an important role in program verification and testing, and has
attracted an increasing attention recently [1, 2]. However, the decision problem of program
termination is equivalent to the famous halting problem [3], and hence is undecidable. Thus, a
complete method for termination analysis for programs, even for the general linear or polynomial
program, is impossible [4, 5, 6]. To achieve positive results, a practical way analogous to [7]
is to establish sufficient conditions for termination and nontermination simultaneously for a
considered class of programs, and then check these conditions in parallel. We adopt this strategy
of termination analysis in this work.
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In this paper, we use multi-path polynomial programs (MPPs) as program models for ter-
mination analysis. The MPP model proposed in [5] is an expressive class of loops with multiple
paths, polynomial loop guards and assignments, that enable practical code abstraction and
analysis. It was proved in [5] that the termination problem of MPPs is generally undecidable.
To get some computational results, we restrict to MPPs in the context whose loop guards are
polynomial equations.

The semantics of an MPP with ` paths can be explained as follows. Given an input x ∈ Rn,
if at the first iteration x satisfies the loop guard, then one of the multiple paths in the loop body
will be nondeterministically selected and the corresponding assignment will be used to update
the value of x, which results in ` possible values of x; at each following iteration, we repeat the
same kind of loop guard test and nondeterministic assignment for each of the possible values
of x obtained so far. Thus the execution of an MPP on input x ∈ Rn produces a tree structure
of execution paths, which is caused by the multi-paths in the considered program model.

An input x is called a non-terminating input if the execution tree on x has an infinite path.
Given an MPP, we aim to compute an explicit representation for the set of all non-terminating
inputs (NTI), or certain kinds of approximations of NTI. The theory of polynomial ideals serves
as a critical tool for developing our approach.

The basic idea can be explained using a very simple example:

while (G(x) = 0) {x := p(x); } .

The above MPP is composed of a single program variable x, the loop guard G(x) = 0 and
the polynomial assignments p(x). If the MPP is non-terminating upon an input x ∈ R, then
x, p(x), p(p(x)), . . . must persistently satisfy G(x) = 0, i.e. G(x) = G(p(x)) = G(p(p(x))) =
· · · = 0. Thus any non-terminating input is a common real root of the set of polynomials
G =̂ {G(x), G(p(x)), G(p(p(x))), . . .}, or equivalently, an element in the real variety of the ideal
I generated by G. By a well-known result in polynomial ideal theory, I is generated by a finite
number of elements in I. If this finite set of generators of I can be computed, their common
real roots comprise NTI.

For general MPPs with more than one paths, the NTI is not directly connected to the
real variety of a polynomial ideal. Instead, we propose the notions of strong and weak non-
termination, such that the set of all strong non-terminating inputs (SNTI) is a subset of NTI,
and the set of all weak non-terminating inputs (WNTI) is a superset of NTI. Therefore the non-
emptiness of SNTI is a sufficient condition for non-termination, and the emptiness of WNTI
is a sufficient condition for termination. Furthermore, both SNTI and WNTI are shown to be
real varieties of certain polynomial ideals, of which a finite set of generators can be computed
(at least under some sufficient conditions). Thus for any MPP, its SNTI and WNTI can be
investigated simultaneously for a better result of termination analysis. The proposed approach
will be illustrated by some examples.

1.1 Related work

In the past, most well-established work on termination analysis can only be applied to
linear programs, whose guards and assignments are linear. A classical method for establishing
termination of a program, either linear or polynomial, makes use of a well-founded domain
together with the so-called ranking function that maps the state space of the program to
the domain. For single-path linear programs, Colón and Sipma utilized polyhedral cones to
synthesize linear ranking functions [8]. Podelski and Rybalchenko, based on Farkas’ lemma,
presented a complete method to find linear ranking functions if they exist [9]. These methods
pay more attention to the search for ranking functions than to the inherent structure of loops,
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while Tiwari first noticed that the termination of a class of simple linear loops is closely related
to the eigenvalues of assignment matrix, and proved that the termination problem of linear
programs is decidable over R [4]. This theory was further developed by Braverman [6] and
Xia et al. [10, 11]. Xu et al. also developed Tiwari’s work by constructing non-terminating
witnesses [12, 13].

It was shown in [5] that the termination of MPPs is undecidable by reduction from Diophan-
tine equations. However, effective methods that are incomplete or relatively complete for ana-
lyzing termination still exist. Bradley et al. proposed an approach to proving termination over
R through finite difference trees [5]. Cook et al. [14] devised an algorithm to under-approximate
the weakest preconditions for termination using decidable theories. Typically, with the develop-
ment of computer algebra, more and more techniques from symbolic computation, for instance,
Gröbner basis [15, 16], quantifier elimination [17] and recurrence relation [18, 19], are borrowed
and successfully applied to the verification of programs. Certainly, these techniques can also
be applied to polynomial programs to discover termination or non-termination proofs. Chen
et al. proposed a relatively complete (w.r.t. a given template) method for generating polyno-
mial ranking functions over R by reduction to semi-algebraic system solving [20]. On the other
hand, Gupta et al. proposed a practical method to search for counter-examples of termination
[21], by first generating lasso-shaped [22] candidate paths and then checking the feasibility of
the “lassoes” using constraint solving. Velroyen and Rümmer applied invariants to show that
terminating states of a program are unreachable from certain initial states, and then identified
these “bad” initial states by constraint-solving techniques [23]. Brockschmidt et al. detected
non-termination and Null Pointer Exceptions for Java Bytecode by constructing and analyzing
termination graphs, and implemented a termination prover AProVE [24].

For more general programs, many other techniques, like predicate abstraction, parametric
abstraction, fair assumption, Lagrangian relaxation, semidefinite programming, sum of squares
and curve fitting [25, 26], and so on, have been successfully applied.

Organization. The remainder of this paper is organized as follows. In Section 2, some
concepts and results on polynomial ideals are reviewed. In Section 3, we first introduce MPPs
and then define the notions of non-termination, strong/weak non-termination. In Sections 4
and 5 we show how to compute the set of all strong and weak non-terminating inputs of MPPs
respectively. Finally we draw a conclusion in Section 6.

2 Preliminaries

In this section, we briefly recall some basic concepts and results on computational algebraic
geometry, which serve as the theoretical tool for dealing with non-terminating inputs. For a
detailed exposition to this subject, please refer to [27]. Throughout this paper, we use N,Q,R
to denote the set of natural, rational, and real numbers, respectively.

Definition 1 (Ideal) Let x = (x1, x2, . . . , xn) be a vector of variables. A subset I of the
polynomial ring Q[x] is an ideal if it satisfies:

(i) 0 ∈ I;

(ii) if p, q ∈ I, then p+ q ∈ I;

(iii) if p ∈ I and r ∈ Q[x], then rp ∈ I.

Definition 2 (Variety) Given a field K extending Q, the variety defined by P ⊆ Q[x] is
V(P ) = {x ∈ Kn | ∀ p ∈ P : p(x) = 0}. The real variety of P is the intersection of V(P ) and
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Rn, i.e., V(P ) ∩ Rn.
Let P be a nonempty subset of Q[x]. It is easy to verify that{

k∑
i=1

ripi | k ∈ N, ri ∈ Q[x], pi ∈ P

}

is an ideal, denoted by 〈P 〉, and P is called a set of generators, or a basis of 〈P 〉. In particular,
if P is a finite set {p1, p2, . . . , pk}, then 〈P 〉 is written as 〈p1, p2, . . . , pk〉. An ideal I is called
principal if it can be generated by a single element, i.e., I = 〈p〉 for some p ∈ Q[x]. It is easy
to verify that V(P ) = V(〈P 〉) for any P ⊆ Q[x].

Theorem 1 (Hilbert’s Basis Theorem) Every ideal I ⊆ Q[x] has a finite number of gener-
ators, i.e., I = 〈p1, p2, . . . , pk〉 for some p1, p2, . . . , pk ∈ I.

In particular, for any I = 〈p1, p2, . . . , pk〉, a unique (reduced) Gröbner basis of I can be
computed using Buchberger’s algorithm, under a fixed monomial ordering. Using Gröbner basis,
the problems of deciding membership of an element in an ideal, testing equality or inclusion of
ideals, and so on, can be effectively solved; a Gröbner basis is also helpful in checking whether
a given ideal is principal.

Given an ideal I = 〈p1, p2, . . . , pk〉, by applying so-called real-solution-isolation algorithms
[28, 29] to the system of polynomial equations pi(x) = 0 for 1 ≤ i ≤ k, the emptiness of the real
variety V(I) ∩ Rn can be checked; and if it is nonempty and is zero-dimensional, the finite set
of points in V(I) ∩ Rn can be isolated using arbitrarily small cubes (with rational endpoints).

All the above mentioned algorithms have been well-implemented in the computer algebra
system Maple.

The following result can be derived from Hilbert’s Basis Theorem.
Theorem 2 (The Ascending Chain Condition) Let I1 ⊆ I2 ⊆ I3 ⊆ · · · be an ascending

chain of ideals in Q[x]. Then there exists an integer N such that IN = IN+1 = IN+2 = · · ·.∗

3 Multi-path Polynomial Programs and Non-termination

3.1 Multi-path Polynomial Programs

Definition 3 (MPP with Equational Loop Guard) A multi-path polynomial program with
equational loop guard and ` paths is of the form

while (G(x) = 0)



x := A1(x);
|| x := A2(x);

...
|| x := A`−1(x);
|| x := A`(x);


, (1)

where

• x ∈ Rn denotes a vector of program variables;

• G(x) ∈ Q[x] is a polynomial and G(x) = 0 is the equational loop guard;

• “||” interprets an exclusive choice of the ` paths;

∗Here IN is called the fixed point of this chain.
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• Ai ∈ Qn[x] for 1 ≤ i ≤ ` corresponding to each path is a vector of polynomials describing
simultaneous assignments for all program variables.

Note that

1) MPP (1) allows arbitrary Boolean combinations of polynomial equations of the form∨M
i=1

∧Ni

j=1Gij(x) = 0 as loop guard, and assuming G(x) = 0 would not lose any general-
ity, since  M∨

i=1

Ni∧
j=1

Gij(x) = 0

⇐⇒
 M∏
i=1

Ni∑
j=1

[Gij(x)]2 = 0

 . (2)

2) Initial conditions on x are not specified, since we are aiming to compute the set of all
non-terminating inputs (as real varieties) for a given MPP; nevertheless, equational initial
conditions on x can be easily taken into account by manipulation of corresponding ideals.

Example 1 Consider the following MPP

while (x− z3 = 0 ∨ y − z2 = 0){
(x, y, z) := (x, y + 2z + 1, z + 1);

|| (x, y, z) := (x− 3y + 3z − 1, y + 2z − 1, z − 1);

}
.

According to (2), the loop guard y − z2 = 0 ∨ x − z3 = 0 can be transformed to (x − z3)2 ×
(y − z2)2 = 0, or equivalently (x − z3) × (y − z2) = 0. There are two exclusive simultaneous
assignments, i.e., (x, y, z) := (x, y+2z+1, z+1) and (x, y, z) := (x−3y+3z−1, y+2z−1, z−1),
which can be named by A1 and A2 in the manner of MPP (1).

3.2 The Execution of MPPs

We associate with each Ai in MPP (1) a different symbol ai indexed by i for 1 ≤ i ≤ `.
Then the execution of MPP (1) on input x ∈ Rn can be graphically represented as a labeled
execution tree illustrated by Figure 1. The nodes in the execution tree are elements in Rn.
A directed edge labeled by ai stands for the execution of assignment Ai, and points to the
updated value given by the execution of Ai. Formally,

Definition 4 (Execution Tree) The execution tree is defined inductively as:

• the root is x;

• for any node x′ in the tree, it is a leaf node if G(x′) 6= 0; otherwise x′ has ` children
A1(x′),A2(x′), . . . ,A`(x

′), and there is a directed edge connecting x′ and Ai(x
′), labeled

by ai, for any 1 ≤ i ≤ `.

To characterize the set of paths in Figure 1 starting from root x, we introduce below some
conventional notions on alphabet and strings for self-containedness.

Let Σ be a finite set of symbols, called an alphabet. A finite or infinite string over Σ can be
denoted respectively by τ = a1a2 · · · as or τ = a1a2 · · · asas+1 · · ·, where ai ∈ Σ for i = 1, 2, . . ..
A string without any symbol is called the empty string, denoted by ε. We identify strings with
one symbol as the symbol itself. By convention, the set of all finite (including ε) and infinite
strings are denoted by Σ∗ and Σω, respectively. Let |τ | denote the length of a string τ . Thus
|ε| = 0, |τ | = s if τ = a1a2 · · · as, and |τ | = ∞ if τ ∈ Σω. Given τ ∈ Σ∗ ∪ Σω, if there exist
τ1 ∈ Σ∗ and τ2 ∈ Σ∗∪Σω such that τ = τ1 ·τ2, where · is the concatenation operator on strings,
then τ1 is called a prefix of τ ; if in addition |τ1| = 1, then τ1 and τ2 are called the head and
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x

· · ·A1(x) A`(x)

· · ·A1(A1(x)) A`(A1(x))

a1 ai a`

a1 ai a`

Figure 1: The labeled execution tree of MPP (1)
on input x

(1,−1)

(2,−2) (1, 1)

(4, 4)(3,−3)

0 2

L R

L R

L R

Figure 2: The execution tree of MPP (3) on
input (1,−1)

tail of τ , denoted by head(τ) and tail(τ) respectively. The set of all prefixes of τ is denoted by
Pre(τ); if τ ′ ∈ Pre(τ) and τ ′ 6= τ , then τ ′ is called a proper prefix of τ .

Let Σ be the alphabet consists of all the labels in Figure 1, i.e., Σ = {a1, a2, . . . , a`}. Then
for any path in Figure 1 from root x to some node x′, the labels of the edges along this path
generate a finite string τ over Σ; furthermore, x′ results from x by the iterated application of
the assignments corresponding to the symbols appearing in τ .

Actually, if we define an induced function Aτ : Rn → Rn for any τ ∈ Σ∗ as:

• Aε = id, i.e., the identity mapping;

• Aai = Ai for any ai ∈ Σ, where Ai is the i-th assignment in MPP (1);

• Aτ = Atail(τ) ◦ Ahead(τ) for τ with |τ | ≥ 2, where ◦ denotes the composition of functions,
i.e., (f ◦ g)(x) = f(g(x)) for f, g : Rn → Rn,

then the set of paths starting from root x of the labeled tree in Figure 1 can be represented by
a set of strings over Σ, using the following definition.

Definition 5 (Execution Path) Let Σ be what specified above for MPP (1). Then τ ∈
Σ∗ ∪ Σω is an execution path of MPP (1) on input x ∈ Rn if

• τ = ε; or

• G(Aτ ′(x)) = 0 for all τ ′ ∈ Pre(τ), τ ′ 6= τ (i.e., τ ′ is a proper prefix of τ).

We denote the set of all execution paths of MPP (1) on input x by Path(x). Then there
is a one-to-one correspondence between Path(x) and the set of paths from root x in Figure 1:
for any execution path τ = a1a2 · · · as · · · (finite or infinite), there is a path in Figure 1 from
x to a node Aτ (x), labeled by the symbols a1, a2, . . . , as, . . .; conversely, for any path from x
to some node x′ in Figure 1, the juxtaposition of the labels along this path gives an execution
path in Path(x).

Example 2 Consider the following MPP

while (x+ y = 0)

{
(x, y) := (x+ 1, y − 1);

|| (x, y) := (x2, y2);

}
. (3)
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If we associate symbols L,R with the first and second assignments of MPP (3) respectively,
it is easy to verify that on input (1,−1), MPP (3) has an infinite execution path LLL · · · and
finite execution paths R,LR,LLR and so on (see Figure 2).

3.3 Non-termination Definitions

Definition 6 (Non-termination) An input x ∈ Rn of MPP (1) is a non-terminating input
if the MPP has an infinite execution path on x, i.e., Path(x) ∩ Σω 6= ∅; otherwise x is a
terminating input.

Example 3 Consider MPP (3). By Example 2, MPP (3) has an infinite execution path
LLL · · · on (1,−1). So (1,−1) is a non-terminating input of MPP (3).

The set of all non-terminating inputs of MPP (1) is denoted by NTI. Termination analysis
of MPPs concerns such problems as

1) whether a given MPP terminates on all inputs x; or alternatively,

2) detection of non-terminating inputs for a given MPP.

It was proved in [5] that for general MPPs with inequality-typed loop guards, the problem
of deciding whether NTI is an empty set is undecidable. To get some computational results
for termination analysis of MPP (1), we propose the following two notions for under/over-
approximating non-terminating input set.

Definition 7 (Strong Non-termination) An input x ∈ Rn of MPP (1) is a strong non-
terminating input if the MPP has all the infinite strings as its execution paths, i.e., Σω ⊆
Path(x).

Intuitively, on a strong nonterminating input, the loop guard of MPP (1) is persistently
satisfied no matter how many iterations have been executed, or which assignment is selected at
each iteration.

Example 4 Consider the following MPP

while (x2 + 1− y = 0)

{
(x, y) := (x, x2y);

|| (x, y) := (−x, y);

}
. (4)

We associate symbols L,R with the two assignments in MPP (4) respectively. Figure 3 illus-
trates the execution tree of MPP (4) on input (1, 2). Note that both (1, 2) and (−1, 2) satisfy
the loop guard. So it can be shown that (1, 2) is a strong non-terminating input of MPP (4).

Definition 8 (Weak Non-termination) An input x ∈ Rn of MPP (1) is a weak non-
terminating input if for any k ∈ N, there exists τk ∈ Σ∗ such that

|τk| = k and G(Aτk(x)) = 0 . (5)

Intuitively, on a weak nonterminating input x, we can find τk of any length k ∈ N, such that
when applying the induced function Aτk to x, the loop guard will be satisfied. However, as the
set of such τk is not prefix-closed, according to Definition 5, τk is not necessarily an execution
path for any k. Therefore we call such τk pseudo execution paths of MPP (1).

Example 5 Consider the following MPP

while ((x− 1)(x− 2) = 0)

{
x := 1− x2;

|| x := x+ 1;

}
. (6)

We associate symbols L,R with the first and second assignments, respectively. Note that the
loop guard is satisfied if and only if x = 1 or x = 2. Then it is easy to verify that x = 1
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(1, 2)

(1, 2) (−1, 2)

(−1, 2)(1, 2) (−1, 2) (1, 2)

(1, 2) (−1, 2) (−1, 2) (1, 2)

L R

L R RL

Figure 3: The execution tree of MPP (4) on
input (1, 2)

1

0 2

11 −3 3

0 2

0 2

L R

L R RL

L R

Figure 4: The (pseudo) execution paths of
MPP (6) on input x = 1

is a weak non-terminating input of MPP (6), by choosing τk as ε, R, LL,LLR,LLLL, . . . (see
Figure 4). Note that x = 1 is actually a terminating input of MPP (6) and the dotted nodes in
Figure 4 cannot be reached by real execution.

Denote the set of all strong non-terminating inputs and weak non-terminating inputs by
SNTI and WNTI, respectively. Then the relationship between the above notions of non-
termination can be stated as the following proposition.

Proposition 1 For MPP (1), the inclusions SNTI ⊆ NTI ⊆WNTI hold.
Proof The first inclusion follows from Σω ⊆ Path(x) =⇒ Σω ∩Path(x) 6= ∅. Second, for

any x ∈ NTI, there exists τ ∈ Σω satisfying the condition of Definition 5. Then by choosing τk
as the prefix of τ with length k, we can see from (5) that x ∈WNTI. Thus NTI is a subset
of WNTI.

Remark 1 Both inclusions in Proposition 1 may be proper: from Examples 2 and 3 we can
see that (1,−1) ∈ NTI, but (1,−1) /∈ SNTI for MPP (3); Example 5 shows that 1 ∈WNTI,
but 1 /∈ NTI for MPP (6). However, if MPP (1) has a single path, we can conclude that
SNTI = NTI = WNTI.

According to Proposition 1, strong/weak non-termination can be used in under/over approx-
imation analysis of non-termination: any element in SNTI is a witness to the non-termination
of MPP (1), and conversely the emptiness of WNTI implies that MPP (1) terminates on all
inputs.

4 The Computation of SNTI

In this section, based on polynomial ideal theory, we will reduce SNTI of any MPP (1) to
the real variety of a polynomial ideal I; furthermore, we can always compute a finite basis of
I, thus giving a complete characterization of SNTI. This enables us to check the emptiness of
SNTI for any MPP (1), or test whether x ∈ SNTI for a given x ∈ Rn.

4.1 Iteration Trees

During the execution of MPPs, the assignments Ai in the loop body are applied to program
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G(x)

· · ·G(A1(x)) G(A`(x))

· · ·G(A1(A1(x))) G(A`(A1(x)))

a1 ai a`

a1 ai a`

Figure 5: The iteration tree of MPP (1)

states x. On the other hand, if we focus on the loop guard test of each iteration, the assignments
can also be viewed as applications to the loop guard G(x) = 0, which produce a series of
polynomial equations, or equivalently, polynomials. Using these polynomials as nodes, we can
construct an iteration tree (see Figure 5) which is very useful in the computation of non-
terminating inputs.

Definition 9 (Iteration Tree) An iteration tree of MPP (1) is defined inductively as:

• the root is G(x), i.e., the polynomial in the loop guard of MPP (1);

• for any node G(p(x)) in the tree, where p(x) : Rn → Rn is a vector function, it has
` directly successive nodes G(A1(p(x))), G(A2(p(x))), . . . , G(A`(p(x))); and there is a
directed edge connecting G(p(x)) and G(Ai(p(x))), labeled by ai, for any 1 ≤ i ≤ `.

Remark 2 Iteration trees have the following features compared with execution trees:

• each node in an iteration tree is a polynomial in Q[x], rather than an element in Rn;

• iteration trees are infinite trees with no leaf node, and each node has exactly ` children;

• an iteration tree is constructed statically without dynamically executing an MPP to get
the trace of program state variables.

4.2 Computing SNTI as Real Varieties

Intuitively, a strong non-terminating input x ∈ Rn of an MPP will persistently satisfy the
loop guardG(x) = 0, and thus must be a common real root of all the polynomials in the iteration
tree of the MPP. To see this, it is convenient to consider the infinitely many polynomials in an
iteration tree level by level, rather than by paths.

Lemma 1

SNTI = V

⋃
k≥0

⋃
|τ |=k

{G(Aτ (x))}

 ∩ Rn .
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Proof By Definition 7, x ∈ SNTI if and only if for any τ ∈ Σω, and any τ ′ ∈ Pre(τ),
G(Aτ ′(x)) = 0, i.e.,

SNTI = V

 ⋃
τ∈Σω

⋃
τ ′∈Pre(τ)

{G(Aτ ′(x))}

 ∩ Rn .

Hence this lemma follows immediately from the fact⋃
τ∈Σω

⋃
τ ′∈Pre(τ)

{τ ′} =
⋃
k≥0

⋃
|τ |=k

{τ} .

To employ the correspondence between ideals and varieties and the nice properties of poly-
nomial ideals, let

Ik =̂

〈 ⋃
|τ |≤k

{G(Aτ (x))}

〉
(k = 0, 1, 2, . . .) . (7)

That is, Ik is the ideal generated by all the polynomials from the top k+1 levels of the iteration
tree. Then we have

Lemma 2

SNTI = V

⋃
k≥0

Ik

 ∩ Rn .

Proof By (7) it is easy to show that

⋃
k≥0

Ik =
⋃
k≥0

〈 ⋃
|τ |≤k

{G(Aτ (x))}

〉
=

〈⋃
k≥0

⋃
|τ |≤k

{G(Aτ (x))}

〉
=

〈⋃
k≥0

⋃
|τ |=k

{G(Aτ (x))}

〉
.

Hence this lemma follows from Lemma 1.
Lemma 2 can be further simplified to
Lemma 3 There exists an integer N ∈ N such that

SNTI = V(IN ) ∩ Rn .

Proof Note that I0 ⊆ I1 ⊆ I2 ⊆ · · · forms an ascending chain of ideals. Hence this lemma
follows from Theorem 2 and Lemma 2.

Now we have reduced SNTI of MPP (1) to the real variety of a polynomial ideal. The
following theorem shows that the integer N in Lemma 3 is actually computable.

Theorem 3 (Fixed Point Theorem) If Im = Im+1, then Im = Ik for any k ≥ m+ 1.
Proof We prove this by induction on k for k ≥ m+ 1.
Basis: Im = Im+1, which means G(Aτ (x)) ∈ Im for any τ with |τ | ≤ m+ 1.
Induction: Assume that Im = Ik for some k ≥ m+ 1, which means for any τ with |τ | = k,

there exist gσ(x) ∈ Q[x], for each σ ∈ Σ∗ with |σ| ≤ m, such that

G(Aτ (x)) =
∑
|σ|≤m

gσ(x)G(Aσ(x)) .
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We will show that Im = Ik+1. Note that for any τ with |τ | = k + 1, we have

G(Aτ (x)) = G(Atail(τ)(Ahead(τ)(x))) (|tail(τ)| = k)
=

∑
|σ|≤m

gσ(Ahead(τ)(x))G(Aσ(Ahead(τ)(x))) (by induction hypothesis)

=
∑
|σ|≤m

gσ(Ahead(τ)(x))G(Ahead(τ)·σ(x)) (|head(τ) · σ| ≤ m+ 1)

∈ Im (by induction basis) .

By Theorem 3, N can be computed as the first integer k satisfying Ik = Ik+1. Now the
main result on SNTI computation can be stated as:

Theorem 4 For MPP (1), an integer N ∈ N can be computed such that

SNTI = V(IN ) ∩ Rn .

Proof It follows immediately from Lemma 3 and Theorem 3.
An abstract algorithm for computing SNTI can be given as:

Algorithm 1: The Computation of SNTI for MPP (1)

1 k ← 0;
2 while Ik 6= Ik+1 do
3 k ← k + 1;
4 return V(Ik) ∩ Rn;

Example 6 We show the application of Algorithm 1 to three aforementioned MPPs.

1) For MPP (3), we get†

I0 = 〈x+ y〉 ( I1 = 〈y2, x+ y〉 ( I2 = 〈1〉 = I3 .

So SNTI = V(〈1〉) ∩ R2 = ∅.

2) For MPP (4), we get

I0 = 〈x2 + 1− y〉 ( I1 = 〈y2 − 2y, x2 + 1− y〉 = I2 .

So SNTI = V(〈y2 − 2y, x2 + 1− y〉) ∩ R2 = {(1, 2), (−1, 2)}.

3) For MPP (6), we get
I0 = 〈x2 − 3x+ 2〉 ( I1 = 〈1〉 = I2 .

So SNTI = V(〈1〉) ∩ R = ∅.

5 The Computation of WNTI

In this section, we will first reduce WNTI of MPP (1) to the real variety of a certain
polynomial ideal J . We then provide a sufficient criterion under which a finite basis of J can
be computed, and thus give a complete characterization of WNTI under such a criterion.

†For the computation of Gröbner bases, we are assuming the pure lexicographic order x � y.
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5.1 Identifying WNTI as Real Varieties

Intuitively, a weak nonterminating input is a real root of at least one of the polynomials at
every level of the iteration tree in Figure 5, or equivalently, a real root of the product of the
polynomials (called a product polynomial) at each level.

Lemma 4

WNTI = V

⋃
j≥0

∏
|τ |=j

G(Aτ (x))


 ∩ Rn .

Proof It is a direct translation of (5) in Definition 8.
To adopt the language of polynomial ideals, we consider the ideals generated by the product

polynomials from the top k + 1 levels of the iteration tree:

Jk =̂

〈⋃
j≤k

∏
|τ |=j

G(Aτ (x))


〉

(k = 0, 1, 2, . . .) . (8)

Then we have
Lemma 5

WNTI = V

⋃
k≥0

Jk

 ∩ Rn .

Proof By (8) it is easy to show that

⋃
k≥0

Jk =
⋃
k≥0

〈 ⋃
j≤k

{ ∏
|τ |=j

G(Aτ (x))

}〉
=

〈 ⋃
k≥0

⋃
j≤k

{ ∏
|τ |=j

G(Aτ (x))

}〉

=

〈 ⋃
j≥0

{ ∏
|τ |=j

G(Aτ (x))

}〉
.

Hence this lemma follows from Lemma 4.
Lemma 5 can be further simplified to
Lemma 6 There exists an integer N ∈ N such that

WNTI = V(JN ) ∩ Rn .

Proof Note that J0 ⊆ J1 ⊆ J2 ⊆ · · · forms an ascending chain of ideals. Hence this lemma
follows from Theorem 2 and Lemma 5.

Now we have proved that WNTI of MPP (1) is a real variety, a result analogous to what
we have established for SNTI (Lemma 3). However, we do not have a criterion like Theorem 3
for checking the fixed point of the chain of ideals Jk. Nevertheless, a sufficient criterion will
be given under some conditions in the coming subsection.

5.2 A Sufficient Criterion for Computability of WNTI

Let

Ĵm,k =̂

〈 ⋃
m≤j≤k

∏
|τ |=j

G(Aτ (x))


〉

(0 ≤ m ≤ k) . (9)
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Intuitively, Ĵm,k is the ideal generated by the product polynomials from levels m to k in the
iteration tree in Figure 5.

For the ideals Ĵm,k and Jk defined in (9) and (8) respectively, we have Ĵm,k ⊆ Jk for any

k ≥ m ≥ 0, in particular, Ĵ0,k = Jk for any k ≥ 0. Besides, noticing that for any m ∈ N,

the sequence of Ĵm,k for k = m,m + 1,m + 2, . . . forms an ascending chain of ideals, we can
actually prove

Lemma 7 For any M,N ∈ N with M ≤ N , if ĴM,N is the fixed point of the chain of ideals

formed by {ĴM,k}|k≥M , then JN is the fixed point of the chain of ideals formed by {Jk}|k≥0.

Proof It is sufficient to prove that for any k > N , ĴM,N = ĴM,k implies JN = Jk.

Note that ĴM,N = ĴM,k implies

∀j.N < j ≤ k :
∏
|τ |=j

G(Aτ (x)) ∈ ĴM,N ⊆ JN ,

which means the set of generators of Jk are all elements of JN . Thus JN = Jk.
As mentioned above, for any M ∈ N, how to compute the fixed point of the chain of ideals

JM,k for k ≥M is an open problem in general. However, a sufficient criterion can be given as
follows, which can be seen as a weak version of Theorem 3.

Theorem 5 (Weak Fixed Point Theorem) If there exist M,N ∈ N, M ≤ N , such that
ĴM,N is a principal ideal, i.e., ĴM,N = 〈H(x)〉 for some H(x) ∈ Q[x], and in addition, H(x)
satisfies ∏

|τ |=1

H(Aτ (x)) ∈ 〈H(x)〉 , (10)

then JN = Jk for all k ≥ N .
Proof By Lemma 7, it suffices to prove that ĴM,N = ĴM,k for all k ≥ N . The proof will

proceed by induction on k for k ≥ N .
Suppose ĴM,N = 〈H(x)〉 = ĴM,k for some k ≥ N . Then there exists g(x) ∈ Q[x] such that∏
|τ |=kG(Aτ (x)) = g(x)H(x).∏
|τ |=k+1

G(Aτ (x)) =
∏
|τ1|=1

∏
|τ2|=k

G(Aτ2(Aτ1(x)))

=
∏
|τ1|=1

g(Aτ1(x))H(Aτ1(x)) (by induction hypothesis)

=

[ ∏
|τ1|=1

g(Aτ1(x))

] [ ∏
|τ1|=1

H(Aτ1(x))

]
∈ 〈H(x)〉 (by the requirement (10)) .

Hence we get ĴM,N = ĴM,k+1, which completes the proof by induction.
Now the main result on WNTI computation can be stated as follows, which is analogous

to Theorem 4.
Theorem 6 For MPP (1), if the requirements in Theorem 5 are satisfied, an integer N

can be computed such that
WNTI = V(JN ) ∩ Rn .

Proof It follows immediately from Lemma 6 and Theorem 5.

5.3 Applying Theorem 6 to Compute WNTI
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Algorithm 2: The Computation of WNTI for MPP (1)

1 m← 0;
2 while m ≤M do
3 k ← m;

4 while Ĵm,k 6= Ĵm,k+1 do
5 k ← k + 1;

6 if Ĵm,k = 〈H(x)〉 and H(x) satisfies (10) then
7 return V(Jk) ∩ Rn;
8 else
9 m← m+ 1;

10 return unknown;

Based on Theorem 6, we present an abstract algorithm (Algorithm 2) for computing WNTI
of MPP (1).

The meaning of Algorithm 2 is: for each m ∈ N, we compute Ĵm,k for k = m,m+1,m+2, . . .

until Ĵm,k = Ĵm,k+1 (lines 3–5)‡; then we test whether Ĵm,k is a principal ideal and the single
generator satisfies (10) (line 6); if the test succeeds, by Theorem 6 we get the WNTI (line 7);
otherwise, we increase m by 1 (line 9) and continue the computation; the number M in line 2
is a prescribed bound on m to ensure termination of the whole algorithm, and when m exceeds
M , Algorithm 2 terminates with the answer unknown (line 10).

Example 7 We use Algorithm 2 to compute the WNTI of several MPPs.

1) For MPP (3), we get Ĵ0,0 = 〈x + y〉 = Ĵ0,1, in which x + y satisfies (10). So WNTI =
V(J0) ∩ R2 = V(〈x+ y〉) ∩ R2.

2) For MPP (4), we get Ĵ0,0 = 〈x2 + 1 − y〉 = Ĵ0,1, in which x2 + 1 − y satisfies (10). So
WNTI = V(J0) ∩ R2 = V(〈x2 + 1− y〉) ∩ R2.

3) For MPP (6), we get

Ĵ1,1 = 〈x4 + x6 − x3 − x5〉 ( Ĵ1,2 = 〈x4 − x3〉 = Ĵ1,3 ,

in which x4 − x3 satisfies (10). So WNTI = V(J2) ∩ R = V(〈x− 1〉) ∩ R = {1}.

4) Consider the following MPP

while (x− y2 = 0)

{
(x, y) := (x+ 3, y + 1);

|| (x, y) := (1, 0);

}
. (11)

We can get

Ĵ0,0 = 〈x− y2〉 ( Ĵ0,1 = 〈y − 1, x− 1〉 ( Ĵ0,2 = 〈1〉 = Ĵ0,3 .

So WNTI = V(J2) ∩ R2 = V(〈1〉) ∩ R2 = ∅, which further implies NTI = SNTI = ∅.

The results of Examples 6 and 7 can be summarized in Table 1.
We explain a bit about the row corresponding to NTI in Table 1. For MPP (4), it can be

inferred that NTI is a superset of {(1, 2), (−1, 2)} and must be nonempty. For MPP (11), the

‡By Theorem 2, this iteration must terminate.
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Table 1 A summary of the computation of non-terminating inputs

MPP (3) (4) (6) (11)
SNTI ∅ {(1, 2), (−1, 2)} ∅ ∅
NTI ? ⊇ {(1, 2), (−1, 2)} ? ∅

WNTI V(〈x+ y〉) ∩ R2 V(〈x2 + 1− y〉) ∩ R2 {1} ∅

emptiness of WNTI implies the emptiness of NTI. For MPPs (3) and (6), we cannot infer any
information from the SNTI/WNTI-approximations and therefore the NTI are marked with
“?”. Actually from the analysis of Examples 4 and 5 we have known that (1,−1) is in the NTI
of MPP (3), while the NTI of MPP (6) is empty.

6 Conclusions

In this paper, we studied the detection of non-terminating inputs over R for multi-path poly-
nomial programs with equational loop guards (MPP (1)). We first defined on MPP the notions
of non-terminating inputs (NTI) as well as its under/over-approximation, i.e., strong/weak
non-terminating inputs (SNTI/WNTI). Then based on the well-known theory of polynomial
ideals, we presented a complete approach for computing SNTI, and a sound but incomplete
approach for computing WNTI, both as the real variety of a certain polynomial ideal. Once
the SNTI/WNTI are computed, useful information on NTI can be inferred.

We have experimented with the proposed algorithms on several simple examples, by interac-
tively calling existing functions in the Maple environment. We did these experiments mainly
with the purpose of testing and demonstrating proposed algorithms. A fully automated tool
with applications to real programs is not provided, due to the high complexity of our approach:
the polynomial ideal membership problem is exponential space complete in the size of the prob-
lem instance [30], and the computation of Gröbner basis has even higher worst case complexity;
besides, for MPPs with more than one paths, the sizes of ideals Ik or Jk in our algorithm grow
exponentially with k, which could be very large when the fixed point is reached. An estimation
of how large k could eventually be is required for a more precise complexity analysis.

There are two theoretical problems left open in this paper:

1) Can we drop the restrictive assumption on WNTI computation and give a complete
algorithm for computing WNTI?

2) Is NTI reducible to the real variety of a polynomial ideal? If so, how can this variety be
computed (at least under some restrictions)?

A negative conjecture could be that a complete description of WNTI or NTI is not computable
for MPP (1) in general. We are interested in answering these questions in future.
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