https://doi.org/10.1007/500165-021-00542-7
BCS © 2021 Formal Aspects

Formal Aspects of Computing Of Computing

®

Check for
updates

Inferring Switched Nonlinear Dynamical
Systems

Xiangyu Jin"2, Jie An**, Bohua Zhan'2,® Naijun Zhan'? and Miaomiao Zhang?

IState Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China
2University of Chinese Academy of Sciences, Beijing, China

3School of Software Engineering, Tongji University, Shanghai, China

4Max Planck Institute for Software Systems, Kaiserslautern, Germany

Abstract. Identification of dynamical and hybrid systems using trajectory data is an important way to construct
models for complex systems where derivation from first principles is too difficult. In this paper, we study the
identification problem for switched dynamical systems with polynomial ODEs. This is a difficult problem as
it combines estimating coefficients for nonlinear dynamics and determining boundaries between modes. We
propose two different algorithms for this problem, depending on whether to perform prior segmentation of
trajectories. For methods with prior segmentation, we present a heuristic segmentation algorithm and a way to
classify the modes using clustering. For methods without prior segmentation, we extend identification techniques
for piecewise affine models to our problem. To estimate derivatives along the given trajectories, we use Linear
Multistep Methods. Finally, we propose a way to evaluate an identified model by computing a relative difference
between the predicted and actual derivatives. Based on this evaluation method, we perform experiments on
five switched dynamical systems with different parameters, for a total of twenty cases. We also compare with
three baseline methods: clustering with DBSCAN, standard optimization methods in SciPy and identification of
ARX models in Matlab, as well as with state-of-the-art identification method for piecewise affine models. The
experiments show that our two methods perform better across a wide range of situations.

Keywords: System identification; Black-box inference; Grey-box inference; Switched dynamical systems; Linear
multistep methods

1. Introduction

Recent decades witnessed a huge investment in Cyber-Physical Systems (CPS) which have become ubiquitous
in our daily life, for example in autonomous vehicles, drones, industrial robots, etc. Along with this increasing
adoption comes greater concern for the safety of such systems. Formal design and analysis of embedded control
software rely on mathematical models. Thus, constructing formal models for dynamical and hybrid systems is an
important yet challenging research problem in computer science and control theory.

Correspondence to: Bohua Zhan, e-mail: bzhan@ios.ac.cn

Published online: 11 April 2021

http://crossmark.crossref.org/dialog/?doi=10.1007/s00165-021-00542-7&domain=pdf
http://orcid.org/0000-0001-5377-9351

X. Jin et al.

c>98.5

¢=—0.026-(c—q)

g=1

49 [g;J‘ (b) The corresponding SNDS modelled as a hybrid
y "‘O automaton

(a) The Isolette system

120

100 1

80

(¢) A simulated trajectory

Fig. 1. Part (a) shows a real-life Isolette system. Part (b) shows an automaton description of the SNDS. Part (c) shows a simulated trajectory
of the system, where ¢ is shown as a blue line and c is shown as a red line

For many real-life complex systems, determining a model by derivation from first principles is very difficult. It
is common in CPS applications to use many different kinds of sensors and monitors to gather data from systems.
There are a lot of work in the machine learning community focusing on inferring features from time-series data.
However, many of these methods suffer from a lack of interpretability. In particular, models from deep neural
networks are well-known to be difficult to interpret. An alternative way is system identification [Ljul5, Lju99]
or model learning [Vaal7], i.e. learning a formal model from observable behaviours of the system regarded as
a black-box or a grey-box. In black-box learning, the learner has no knowledge about the system. There are
two basic types of black-box learning: active learning and passive learning. In the active learning setting, the
learner can run the system and gather observable data, but not look inside the system. This is distinguished from
passive learning, which involves generating a model from a given data set. For grey-box learning, the learner has
some knowledge about the system. For example, we often have systems where we know its signal data matches a
combination of basic patterns such as lines, polynomial curves, exponential curves, and sinusoids. However, we do
not know how the basic patterns connect to each other and what are the values of parameters in the patterns. Then
grey-box learning tries to infer such unknown information from system data. One goal of system identification
and model learning is similar to that of machine learning: inferring information from data. However, a major
difference is that system identification usually leads to an interpretable formal model.

In this paper, we focus on identifying Switched Nonlinear Dynamical Systems (SNDS) from given trajectories.
A switched nonlinear dynamical system consists of a finite number of modes, with continuous behaviour of each
mode described by an ordinary differential equation (ODE) with polynomial derivatives. The modes form a
partition of the state space of the system, and are separated by predicates described by polynomial inequalities.
Hence, a trajectory of an SNDS consists of a sequence of segments, where the behavior in each segment is given
by the ODE of a mode.

As an example, consider the Isolette system' shown in Fig. 1. The Isolette system is used to maintain the
temperature of the Isolette box, a physical environment, within a desired range that is beneficial to the infant.
The continuous evolution of temperature ¢ depends on the current status of the actuator. If the heater is on, the
temperature will increase, otherwise it will decrease. Thus there exist two modes and the condition for switching

ICopyright belongs to Driger Ltd. https://www.draeger.com/en_uk/Products/isolette-8000-plus.

https://www.draeger.com/en_uk/Products/isolette-8000-plus

Inferring switched nonlinear dynamical systems

between two modes depends on the current temperature in the box. The equation describing the above system is
given by:

¢ =-0.026-(c—q),

. [—1 ifec>985
=91 ifc<985

where c is the temperature of the Isolette box, and ¢ is the temperature of the heater. Here, the boundary separating
the two modes is specified by the inequality ¢ > 98.5, and both modes are described by ODEs where the derivative
is a linear function of ¢ and gq.

There are many other real-life systems that can be viewed as switched dynamical systems. For example,
electrocardiogram records of electrical signals in a person’s heart, as analyzed in [GAG*00, NQF*19, BDG"20],
and robot motion patterns in [MKY11, BDG"20].

In general, the problem of inferring a switched nonlinear dynamical system is to determine, from a given set of
trajectories, the coefficients of the ODE describing each mode of the system, as well as the inequalities separating
the modes.

In this paper, we propose two different methods for solving this problem. We begin by describing some
common ingredients. First, we use Linear Multistep Method (LMM) [BGO8] to estimate the derivative at each
point of a discrete trajectory. Next, we optionally employ a segmentation algorithm to divide the trajectory into
segments that are likely to lie in a single mode. Under the assumption that each segment lies in a single mode,
with behavior described by an ODE with polynomial derivatives of a fixed degree, we estimate the coefficients of
the polynomial using linear regression. This will also be an ingredient in our method for dealing with trajectories
containing multiple modes. Once all points in the trajectories are classified into different modes, we use support
vector machine (SVM) with polynomial kernels to determine the boundary between modes, under the assumption
that the boundary can be described by polynomial inequalities.

Our first method, named INFERBYMERGE, begins by segmenting the trajectory, then using linear regression to
find the coefficients of the ODE for each segment, and finally using a clustering technique where the basic idea is
to combine two segments whenever the linear fit is still good for the merged data. A pruning method is used to
reduce search space. For the second method INFERBYPWA, we do not perform prior segmentation, but extend
identification methods for piecewise affine models to estimate coefficients and classify modes at the same time.

Both methods are implemented, and extensive experiments are performed to determine and compare their
performance. We first describe a metric for evaluating an inferred model in comparison to the original model,
based on comparing the actual and predicted derivatives along trajectories of the system. We then design five
switched dynamical systems, and consider different choices of parameters, and evaluate the two methods on a
total of twenty cases. The results show that both methods perform well across a wide range of situations. We also
compare our methods with the original identification methods [AS14] for piecewise affine models. It demonstrates
that by considering nonlinearity with polynomial equations directly, our method gives a significant improvement
over learning of purely piecewise linear models.

In summary, our contributions in this paper are as follows.

e A heuristic method to segment trajectories of a switched nonlinear dynamical system, so that each segment
is likely to lie in a single mode.

e A model inference procedure based on segmenting the trajectories followed by a special clustering method
with a pruning search.

e A model inference procedure by extending identification methods for piecewise affine models.

e A method for evaluating an inferred model of a switched nonlinear dynamical system in comparison to the
original model.

Related work Learning models of a system from observable data has a long history. In 1956, Moore showed
some Gedanken experiments on sequential machines and defined automaton learning [Vaal7] as black-box
model inference of systems [Moo058]. In her seminal work [Ang87], Angluin presented an online, active and
exact learning framework named L* which is a query-answering process between a learner and a teacher with
two kinds of queries: membership query and equivalence query. After that, there are many works on improving
the L* framework, including applications to learning different formal models such as Mealy machines [SG09],
nondeterministic finite automata [BHKL09], Biichi automata [FCC*08, LCZL17], symbolic automata [MM 14,

X. Jin et al.

DD17], Markov decision processes [TAB*19], and timed automata [ACZ*20, AWZ*ss]. For passive learning
from a given sample set, RPNI[OG92] is a popular method and there are some works [VAWW11, VdAWW12] on
inferring timed automata following this method. In control theory, the problem was initially studied as system
identification [Ljul5]. The research on identification of linear dynamical systems started in the late 1950s, and a
series of books established the field [Eyk74, Lju99]. There exist a lot of work focusing on discrete-time switched
systems and piecewise affine models [FMLMO03, GPV12, BGPV05, HV05]. In [BGPV05], Bemporad et al. aimed
to fit the data to a piecewise affine autoregressive exogenous (ARX) model with error at most €, while using as few
submodels as possible. Ferrari-Trecate et al. gave a clustering algorithm (based on K-means over the estimated
coefficients of the modes) to identify piecewise affine systems [FMLMO3]. In [AS14], Alur et al. proposed a
precise identification method for piecewise affine models from input-output data, which outperformed the method
in [FMLMO03]. One of our methods can be thought of as an extension of this work to nonlinear systems. Another
way to perform clustering over estimated coefficients of the modes is a split-and-merge method with validation
by the silhouette index [BIB11]. For identification of a nonlinear ODE from trajectories, in [KD19], Keller et al.
used Linear Multistep Method to estimate the derivative at each data point. In [BPK16], Brunton et al. showed
sparse regression methods can be used to estimate the coefficients of a nonlinear ODE.

ARX model and its variants are often used in data-driven system identification. In [LBO0S], Lauer et al.
considered both switched and piecewise ARX models and their nonlinear versions. They applied a combination
of linear programming and support vector regression to compute both the discrete state and the submodels in a
single step. In the succeeding work [LBV10], they extended their methods to nonparametric identification using
the kernel method in support vector machines. In [POTNO03], RBF-ARX model based on Gaussian radial basis
function networks and ARX structure is built to characterize the system. In [XPTP20], deep belief networks
(DBN) based SD-ARX model is used for nonlinear system modeling. Since the implementations of the methods
in [POTNO03, XPTP20] are unavailable for us, we conducted experiments using inference methods of ARX models
provided in Matlab. The results show that ARX models do not perform well on the trajectories generated from
SNDS in our case studies.

As a popular kind of models of hybrid systems, Hybrid Automata [Hen96] have powerful expressiveness.
Designing such modelsis a time-intensive process and inferring a hybrid automaton from data is thus an interesting
problem [PJFV07, LBG18, NSV*12]. In [MRBF15], Medhat et al. described an abstract framework, based on
heuristics, to learn linear hybrid automata from input/output traces. They followed Angluin’s framework to learn
a finite automaton as discrete structure of the hybrid automaton and then extracted linear ODEs from data.
Recently, Henzinger et al. presented a membership-based identification method [SHSZ19] for a kind of linear
hybrid automata where the differential equations are in a special constant form. Our model can be viewed as
a special kind of hybrid automata in which each mode contains a polynomial ODE, and the transitions have
polynomial inequalities as guards, and no variable resets and assignments. Hence, the models described in this
paper are more expressive than the models in [AS14, SHSZ19]. Our experiments also show that our methods
performs better than the method in [AS14].

Dividing a trajectory into segments likely to lie in one mode is one of the main challenges, where the correctness
of the results strongly affect the quality of the inferred models. For piecewise affine systems, Borges et al. proposed a
switch detection method based on the detection of rank variations for projected subspaces that are computed from
successive batches of data [BVVBO0S5]. For ARX models, Ohlsson et al proposed a method based on optimization,
using a sum-of-norms regularization to control the number of changepoints in the result [OLB10]. Ozay proposed
a polynomial time segmentation algorithm based on dynamic programming [Ozal6]. There are also several
existing algorithms [ALS89] for this problem that are accurate for specific types of signals. The basic idea is
to guess every point as a changepoint in turn, then design a value function to decide which points are the best
changepoints. In general, a correct segmentation method may be impossible since two trajectories generated from
two modes can connect with each other smoothly. Compared with existing methods, our heuristic segmentation
method is faster and scales better in our case studies.

Organization of the paper Section 2 introduces the concept of Switched Nonlinear Dynamical Systems that we
consider in this paper. Section 3 shows how to use Linear Multistep Methods to estimate derivatives along a
trajectory. In Section 4, we present the heuristic segmentation method and the inference methods. We describe
experiments comparing the methods in Section 5. Finally, Section 6 concludes this paper.

Inferring switched nonlinear dynamical systems

2. Switched Nonlinear Dynamical Systems

Let R be the set of real numbers and N be the set of natural numbers. Let £ = (z, 22, . . ., z,,) represent a point in
R™. In this paper, the position of a switched nonlinear dynamical system lies in R™. Here, we give the definition
of Switched Nonlinear Dynamical Systems (SNDS) we consider in this paper.

Definition 1 (Switched Nonlinear Dynamical System). An SNDS has a finite number of modes. In its different
N modes, position evolves according to the following differential equation

fi(z(t)) if Gi(z) = 0

h(z(1)) else if Go(z) > 0
8(8) = : ,

fvoi(z(t)) elseif Gy_i(z) >0

In(z(1)) otherwise

whereVi e {1,2,---, N — 1}. G;(z) > 0 is a polynomial inequality, and each mode function f € {fi, f, --- , fn}
is in the form

(di,do, dn) dy . do a\ ¥
E di,dp, . dn A1 Ty Ty,

(di,dy, - dp) _di > dy
E didoser dy B Ty Ty

f(z) = . . (1)
4 d
where a;dl,dz,---,dr,L) e Rforeachl <j <mnandd,d,---,d, € N. Usually we will impose a constraint on the

maximum order d of the polynomials, e.g. dj + dy +---+ d,, < d.

The definition thus means that the regions for the modes of a SNDS form a partition of R” and the boundary
between regions are assumed to be described by polynomial inequalities.

For example, the Isolette system given in the introduction is an SNDS in R? with two modes, with ODEs
described by polynomials of degree one, and boundary described by a polynomial inequality of degree one. The
Lorenz attractor [Lor63] is a dynamical system, and can be thought of as an SNDS in R? with one mode, and
with ODE described by polynomials of degree two. As one of the test cases, we will consider a variant of the
Lorenz attractor with the same dimension and polynomial degree, but with two modes (see Section 5.2).

A continuous trajectory of an SNDS in R" is a continuous function : [0, T] — R™, where there exist times
0=Ty< T <--- < T, = Tsuchthat oneachinterval (T;, T;+) for 0 < i < n, the path z(¢) for t € (T;, T;+1)
lies entirely in mode Gy, for some £ < N, and satisfies the corresponding ODE %(¢) = fi(z(¢)). In reality, we can
only collect data at discrete time points. Hence, we define a (discrete) trajectory of an SNDS to be the values of
a continuous trajectory at a finite set of time points 0 < #) < --- < ¢, < T. For simplicity, we will focus on the
case where the sample points are taken periodically, i.e. t; = 4 - ty.,, Where iy, is a fixed timestep size, i.e., the
period. Note that it is by no means guaranteed that we will obtain samples at the switching times 7. Indeed we
do not have explicit information about the switching times in the continuous or discrete trajectory. The inference
problem for SNDS can now be described as follows.

Problem: Given a set of discrete trajectories of an SNDS in R", with known upper bounds on degrees of poly-
nomial describing the ODEs and the boundary, estimate the coefficients of the ODE in each mode as well as of
the polynomial inequalities separating the modes.

In applications, we would like the inferred model to be useful not only along the known trajectories, but
also along other potential trajectories of the system. Therefore, in evaluating an inferred model, we focus on
its predictive power along both known trajectories and other potential trajectories. This will be evident in the
experiments in Section 5.

X. Jin et al.

3. Linear Multistep Methods

For all our methods, the first step is to estimate the derivative at each point of a discrete trajectory. For this,
we apply Linear Multistep Methods (LMM). In this section, we briefly review the original motivation of these
methods and show how they are applied to our problem.

Linear multistep methods are originally designed for solving ordinary differential equations numerically, i.e.
solving the initial value problems given the dynamics:

z(t) = f(z(t), a=<t=<b, =z(l)=un 2

An M -step multistep method uses states at the previous M time steps to approximate the next state. Here M
is called the step number of the method. The common form is

M M
Dt tnm) X 1Y B (@ (tnm))- 3)

Here the coefficients «,,, and j,,, are chosen depending on the different choice of LMM, with oy # 0, and h is the
step size. This expresses an equality between a linear combination of (¢, _), . . ., (¢,) and a linear combination
of f(x(tn_p1)), --., f(z(ty)). If By = 0 this gives an equation where z(#,) appears only once, and hence can be
solved immediately, corresponding to the explicit form of LMM. If By # 0, then z(%,) occurs multiple times,
corresponding to the implicit form of LMM. In this case z(t,) can be solved by an iterative approach.

The truncation error of LMM is defined as:

M M
To=> anstn-m)—h > Buf(@(tnm))

m=0 m=0

Assume z and f are smooth functions, after performing Taylor expansion at z(t,), we have

Tp =Y Cnh™Vy'z(t,) (5)
m=0
where
M
Co=> am. (6)
m=1
| M 1 M
Con = (=)™ | =D kTap+ ——= > k"B @)
m! — (m—1)! =
Hence, if the coefficients «,,, and f,, are chosen so that C,, = 0 for all m < p, then
T, = Cpet hPT'VE (1) + O(hP*?) ®)

and we say the linear multistep method has error of order p.

In this paper, our goal is a bit different: we know all positions z(¢;) but not the ODE, and hence need to
estimate the derivatives (t;) = f(z(t;)), then use them to estimate the coefficients in f. First, we state the problem
more precisely.

Problem: Given a discrete trajectory (as defined in Section 2) as a list of pairs (#;, z;), taken from a continuous
trajectory obeying a single ODE & = f(z). Assume the time points are taken periodically, i.e., t; = 4 - {.,, Where
tsrep 18 the period. Estimate the derivative £(¢;) = f(x;) at every point from the pairs (¢;, z;).

For this problem, we use a specific form of LMM called the Backwards Differentiation Formula (BDF). The
corresponding coefficients «,,, and g, for BDF can be obtained as follows. First, obtain the Lagrange interpo-
lating polynomial of the points z(¢,_y/), ..., (t,), this polynomial gives an approximation to the continuous

Inferring switched nonlinear dynamical systems

solution z(t):

(t) ~ Z a(tnm) [[—7" ©)

m=0 Z;ﬁmnz_tnm

Then, take the derivative of both sides of Equation (9) with respect to ¢, we get:

M
t— tnfm
f@t)~ Y altam) - o H T — (10)
=0 n 7 n—m |,
The right side is a linear combination of z(¢,_y), ..., z(¢,) with constant coefficients. Choose M = 5, we get:
137 300 200 75 12
P~ 1 (i) — 1)+ Dl 2) a3+ Sl)~ ol)

Define f(z(t,)) to be the right side of this equation. ‘We will use this as the estimated derivative in our paper.
The above method works under the assumption that the trajectory obeys a single ODE with smooth derivatives.
In our case, the trajectory data may cross multiple modes. If there is a mode change between the points z(¢,_s)
to z(t,), then the estimate using BDF will not be accurate. Hence, as an alternative and for comparison in the
algorithm, we will also use a forward version of BDF, computing the estimates using the points z(%,) to (t,+5).

The formula is:
1
tn X - tn + 2fn - A 2fn + — tn -
F@(t) =~ 5 (=g ®(t) + ra(tn) = 5 B(ta) + g (tu)
then we have Cy = Cj--- = U5 =0 and (6 = —¢.
Later in the algorithms, we will use LMAM, to denote the backward BDF, and LMM; to denote the forward
version.

137 300 300 200 5 12
n x(tn+4) +—

60 60 Z(t"”))

4. Inferring SNDS from Trajectories

In this section, we describe the two proposed algorithms in detail. The algorithms involve many existing ideas
in system identification, including the use of linear regression to infer coefficients, segmentation, clustering, and
identification techniques for piecewise affine models. However, we also introduce new methods, in particular for
the segmentation and clustering steps.

4.1. Inferring ODE for a single mode

We first describe the technique for estimating the coefficients of the ODE, based on a (discrete) trajectory which
is assumed to lie in one mode. We assume the derivatives in the ODE are polynomials of order at most d.

First, we define a function ® from R" to R(n;d), mapping each point £ = (zy, ..., x,) to a vector whose
coordinates are values of all monomials in z; of order at most d, arranged in a pre-defined order.
With the function ®, the equation &(t) = f(z(t)) can be rewritten as:

Zi(t) = P(z(1) - F; (11)

where z;(¢) is the ith component of z(¢), and each F; for 1 < i < n is a vector consisting of the coefficients of f
in the ODE. The overall coefficient matrix F' has F; as columns. In our case, we know the values of ®(z(t)) and
estimates of z;(¢) from the LMM, and wish to estimate the coefficients F;.

We will make the simplifying approximation that the error introduced by LMM is randomly and indepen-
dently distributed around 0. Under this approximation, and given enough sample points z(¢) and 2;(t), the
coefficients in F; can be estimated by linear regression. In [KD19], it is proved that as the timestep size ap-
proaches zero, the error introduced by BDF converges to zero for every choice of step number M. Hence,

X. Jin et al.

we expect that the estimate of coefficients given by linear regression becomes better as the timestep size de-
creases. The method of inferring the coefficients of a nonlinear ODE using regression is studied in depth in
BPK16].

[Mor]e precisely, the algorithm for linear regression is as follows. Given sample points z(%)), ..., (t,,) along a
trajectory y and estimated derivatives f(z(1)), ..., f(z(t;)), let A, = [---, @(z(4;)7T, ---17 be the matrix whose
rows are the vectors ®(z(t;)),and B, =[-- -,]_‘(z(tj NT,---17 be the matrix whose rows are the estimates]_‘(.'t(tj)
obtained using BDF. Then, the linear regression problem is to find matrix F' giving the best approximation to
the equation A - F = B. The solution using Moore-Penrose pseudoinverse [Pen55] is F' = (AT A)"' AT B. We
call this procedure LinearRegression(A, B). And we record A, - F' = - - - ,f(z(tj))T, ---]17. We assume that on
this closed trajectory | Véz(#;) | has a upper bound of D, then we have

1s

6h -D

| fa(t) = J(z(t)) < + O(h°) (12)

Along a trajectory, the sum of squared error between f(z) and f(z) is:

) — F) (2 Z i 10, > 11 _19. s o
m%:eylf(x(tj)) f(x(t) I°< P <36h | D> +0(h)> —36h | D |> +O(h') (13)

Since the true values f(z) of the derivative lie on a plane, there exists a linear fit with sum of squared error
bounded above. Since linear regression minimizes the sum of squared error, the result of linear regression should
also have error bounded above. This gives the sum of squared error between f(z) and f(z) as follows:

S @)~ Fah) P= 501 D P +0(") (14)
m(t])Ey

and the overall sum of squared error between estimate from linear regression and true derivative is:

S @) ~ fab) P< (b1 D P +0G™) (15)
z(tj)ey

Hence, we obtain a bound on the sum of squared error between the original derivatives and the derivatives we
estimate.

Next, we consider how to estimate the upper bound D of | VEz(%;) | in terms of an estimate of the maximum

coefficient in the SNDS. Let A,,4, be the maximum of coefficients aj(-d"dz"“) in Equation (1), and X,,,, be a

bound on | z; | along the trajectory. For simplicity of calculation, we assume X,,,, > 1. This can be ensured by
scaling the coordinates if necessary. Let d and n be the degree and dimension of the SNDS as before. Note that
while X, ., can be computed from the provided trajectory, A,,4, can only be estimated from a priori knowledge
about the system.

Let Dy, be a bound on | VE(z(t;)) |, then we have the recurrence relation:

Dy < Ay (d) (de X D) e (16)
n

The leading term corresponds to the terms of f(z) with degree d, and the remaining terms correspond to terms
in f(z) with degree less than d. The base value is Dy < X,,,4,. Solving the recurrence relation, we get the estimate

k
Dy < AicnaZ ’ (d) . dk ' X7]7€’L(adz71)+1 - (17)
n

In particular, suppose we scale the coordinates so that X,,,, =~ 1, then the bound on D is in the order of

(Amaz - (%) - d)°. This bound is a conservative one: if only few of the () terms of degree d in f(z) are nonzero,
D,, would be much less than this estimate.

Inferring switched nonlinear dynamical systems

Algorithm 1: Segmenting

// Heuristic segmentation procedure

Input: a single trajectory y = (z(%), ..., £(t,)), and relative error tolerance €.
Output: a list of trajectory segments.

1 CP < ¢;

2 foreach z(t;) € y do

3 if i < M ori> n— M then

4 L continue;

5 by < LMM y(z(t;—p1), - - ., 2(t;));

6 by < LMMf(iII(tZ‘), ey il:(lfHM));

7 if d(by, bp) > € then

8 | add ¢; to CP;

9 segs < consecutive intervals of y\C P;

[

0 return segs;

In addition to giving an idea about the error in the estimated derivative, this bound on D also provides
guidance on setting the parameter § on the allowable absolute error in the following methods (if one is able to
obtain an estimate on the size of coefficients of the SNDS). In particular, we conclude that in the noise-free case,
LMM is expected to provide good estimates of the derivative if & - A0, < 1.

4.2. Segmenting the trajectory

The above method works under the assumption that the given trajectory lies in a single mode of the SNDS.
However, we do not have explicit information about where the mode changes in the trajectory. The first method
that we propose begins by segmenting the given trajectory. Unlike most of the existing methods, it has linear
complexity in the length of the given trajectory, and hence is applicable to large data sets.

Our method is based on the intuitive idea of detecting sudden changes in the derivative along a trajectory.
First, we define a way to measure the relative difference between two vectors, that will be used throughout the

paper.
Definition 2 (Relative difference). Given two vectors v and w, their relative difference is defined as:

 o—w)
) = T wl (1)

where ||v|| is the norm of v.

This measure has the advantage that it is rotationally invariant, and does not change on the simultaneous
scaling of the input vectors.

Let M be the step number of BDF as mentioned in Section 3. For each point on the trajectory, except the M —1
points at the beginning and at the end, we estimate the derivative twice: the one using the M preceding points
and the other using the M subsequent points. Denote the two estimated derivatives by b; and by, respectively. If a
point is within M steps of a change point, then the computation of at least one of b; and b, will involve points in
a different mode. This means b; and b, are likely to have a bigger relative difference between them compared to
at other points. Hence, we compute the relative difference between b; and b, using Equation (18), and consider
the point as near a boundary if the difference is larger than some threshold € (for our experiments, we set € to
0.01). This naturally divides the trajectory into disjoint segments, formed by those points where the computed
b; and b, are close enough with the threshold €. Note that a boundary usually contains several points in a row.
A larger threshold € may miss some changepoints and a smaller threshold may cause redundant changepoints.
Thus different classes of systems may require different choices of the threshold, and we may need to tune it to
adapt to the specific case at hand. The full procedure is given in Algorithm 1.

X. Jin et al.

Algorithm 2: InferByMerge

// INFERBYMERGE: Clustering by merging

Input: collection of sets of points S = {5}, ..., Sk}, 8 is the absolute error tolerance for each point, nmode
is the number of modes.
Output: list of classes and coefficient matrices.
1 Pruned < 0,

2 errormaxr = (| S1 | + | Sy [+ 4] Sk |) -85 // The maximal sum of square error tolerated in every
cluster.
3 foreach S; = {21, ..., T}, S; = {1, T} withl <i<j <kdo
T
4 | A< [T, .. P(@im)T, D)7, ()T
- - - - T
T T T T .
s | B [fe)”, .. f@m)" F@)T L f)]
6 F <« LinearRegression(A, B);
7 ETT0T 505 <— ||A - F— BH%gvmb 5 // |- llFrop: the Frobenius Norm of matrix.
8 if errors,s > error,,.. then
9 | Pruned < Pruned U {S; U S;};

10 Sset < PruningSearch(S, nmode, Pruned, error ,q.);
11 foreach S € Sset do

12 errorg < 0;
13 foreach S; = {z;1,...,z;,} € Sdo
T
14 Aj < [T, ... (z0)T]
- - T
15 B < [f(z;0)7, ..., f(z;n)T] s
16 F; < LinearRegression(A;, Bj);
17 errors < errors + |A- F — B4,
18 choose S = {S1, - -+ , Spmode} € Sset with least errors;
19 return {Sl, Tt Snmode}’ {Fls Tt anode};

4.3. Clustering by merging

After segmenting the trajectory, we can assume that each segment lies in one mode, so we can estimate the
coefficients in that mode using linear regression as in Section 4.1. The next problem is to determine which
segments lie in the same mode. This can be considered as a clustering problem. One possible approach is to use
one of the existing clustering algorithms such as DBSCAN and k-means, where each segment is represented by
the vector consisting of the estimated coefficients. For example, k-means is used in [BDG*20] as the clustering
method on the coefficients of the learned basic shape patterns. Their experimental results show that the basic
clustering method does not always perform well but they do not analyze the reasons.

In our work, we observed that a significant weakness of traditional clustering methods is that ODEs with
very different coefficients may describe similar behavior within a localized region. Hence, linear regression based
on points within a small region (such as within a segment of the trajectory) may yield very different coefficients,
even if they actually lie in the same mode. The difference between coefficients of segments in the same mode may
therefore be bigger than the difference between coefficients in different modes, and may lead traditional clustering
methods to produce incorrect clusters. Hence, directly clustering the vectors of coefficients is not suitable. In our
experimental results, we also show that DBSCAN performs poorly in some situations. In the following, we propose
a different clustering method that is better suited for our problem.

We now describe a clustering method where segments are merged if their combined data fits well in a single
linear regression of ® and f (rather than if they have similar coefficients). The basic idea is to find a way to cluster
all segments into N modes such that the total sum of squared error of all linear regressions are minimized. A
naive search over all combinations of clusters will yield an exponential number of cases. In order to reduce the
number of cases and accelerate the approach, we propose a pruning method during the search process. The full
method named INFERBYMERGE is given in Algorithm 2 and the pruning method is presented in Algorithm 3.

Inferring switched nonlinear dynamical systems

Algorithm 3: PruningSearch

// The pruning search approach used in INFERBYMERGE.

Input: collection of sets of points S = {5}, ..., Sk}, Pruned is the set to be pruned, nmode is the number of
cluster to classify, error,,q, is the maximal sum of square error tolerated in every cluster.
Output: list of classes
1 if | S |= nmode then
2 L return S;

3 if nmode = 1 then
if 3pr € Pruned. pr C (g .5 Si then
L return (;

6 | assume Jg s Si = {Z1,..., Tnl;
7 A« [@(z)T, ..., d(z,)7] ¥
- - T
B < [f@)T,....f@)T]
F <« LinearRegression(A, B);
0 | errory, s, < A F = B3

11 if error, ¢ 5; < erToTmay then

12 L return L{{Uszes Sil);

13 Sset < 0

14 foreach S € PruningSearch({Sy, --- , Sk_1}, Pr, nmode, error .) do
15 foreach S; € S do
16 S < S;
17 assume S; U S, = {Z1, ..., Ty}
18 A< [®@)T,..., d(z,)"]";
- - T
19 B <« [fzn)7,....f(z)T] "
20 F <« LinearRegression(A, B);
21 errors,us, < A~ F — B||%,mb;
22 if V pr € Pruned. pr SZ 8j U S and errors,us, < errorq, then
23 | Sset <= Sset U{(S'\ S;) U(S; U Sk}} s
24 f(;‘each S € PruningSearch({Si, -+, Sx_1}, Pruned, nmode — 1, error,,,) do

25 L Sset < Sset U {S U {S,)};
26 return Sset;

We consider each segment as a set of points (to make it also useful for the method INFERBYPWA in Section
4.4). Hence, the input to the algorithm is a collection S of sets of points. First, we consider all pairs of sets in the

collection. For each pair of sets S; = {z;1, ..., Z;n} and S; = {z;1, ..., T}, we perform linear regression using
their combined data. Precisely, form matrix 4 = [&(z;1)7, ..., ®(zin) ", ®(z;1)7, ..., &(z),) 7] r containing
the values of monomials of position, and B = [f(z:)7, ..., f(zim) T, f(z;07, ..., f(zjn)T] " containing the

estimated derivatives. Then linear regression is performed to find a new matrix of coefficients F', and compute the
sum of squared error errorg,s between the predicted values A - F' and original values B. If error,s is greater than
errormas = (1 Sy |+ 19 | +---+ | Sk |) -8 which is the maximal sum of squared error tolerated in every cluster,
we can conclude that the two segments should not occur in the same cluster. Here § represents the absolute error
tolerance for each point (i.e., Mean Squared Error tolerance).

Next, we enumerate the clustering combinations that remain after the above pruning, by calling the procedure
PruningSearch on line 10, to be described later. After PruningSearch, we obtain a set of clustering combinations
Sset. For each combination S, we compute the total sum of squared error errors over all linear regressions.
Finally, the algorithm returns the combination with the least errorg and the corresponding coefficient matrices.

X. Jin et al.

Now we describe the detail of PruningSearch. The main idea is to enumerate all combinations, avoiding each
pair in the set of pruned pairs Pruned, and also pruning the search when a cluster has error above error ;.
The algorithm proceeds by iteratively adding each of the £ segments in one of the nmode classes. If there is only
one mode remaining, then the remaining segments must form a class. Otherwise, suppose the previous £ — 1
segments has been classified into nmode models, we can add the £’th segment into each class, or make the £’th
segment form a new class. In the former case, we check that by extending a class with the £’th segment, we do
not encounter any pruned pairs, nor do the sum of squared error exceed error,,.,. If that is the case, this branch
of the search is pruned.

Theorem 1 If there exists a clustering combination such that the total sum of squared error is bounded by
errormaz, then the clustering combination returned by Algorithm 2 is the one with the smallest total sum of
squared error.

Proof'1 From the setting of error,,q., if any partial cluster has total sum of squared error greater than error .,
then any cluster combination containing it must also have total sum of squared error greater than error .. By
assumption, this cannot be a combination with least total sum of squared error, and hence can be safely pruned
from the search. O

Corollary 1.1 If the trajectory has been correctly segmented then for all points in the input of Algorithm 2, the
sum of squared error between the original and predict derivatives is bounded as follows:

N 1 nmode
> @) = f@) P b’ (D0 T D)+ 0(h'Y) (19)
z(t))eUs, es Si =1

where 7} represents the time stayed in mode [and D; represents the maximum of | V8z(t) | with ¢ € Tj.
Proof2 Follows from Theorem 1 and Equation (15). O

The previous two algorithms depend on the performance of the segmentation process. If some changepoints
escape detection, the subsequent clustering or merging algorithm will not produce good results. Hence, we next
describe a method that does not rely on a prior segmentation.

4.4. Extending identification of piecewise affine models

After projecting the positions from R"™ to R("2) using the mapping &, the relationship between position and
derivative in each mode can be described by an affine function (see Equation (11)). Hence, the overall relation
between position and derivative in all modes can be described by a piecewise affine function. This means we can
apply any technique for identification of piecewise affine models to our problem. More specifically, we will apply
a variant of the technique described in [AS14]. This gives a method for identification of SNDSs without prior
segmentation, instead classifying the points and estimating the coefficients at the same time.

In [AS14], an absolute error tolerance for each point needs to be given before the identification process, but
there is no description on how to determine such an error tolerance. Hence, we first modify the original algorithm
to use a relative error tolerance. The second modification is that we extend a point to a small piece along the given
trajectory (in other words, along time), while the original method extends a point to nearby points according
to their positions. The benefit is that the points in a small continuous time interval have a bigger chance to be
in the same mode than the points nearby. Third, the points on the boundary between modes are likely to have
poorly estimated derivatives. If these points are taken into account, they may have a large effect on the resulting
model. Hence, we selectively discard the points that do not fit well, and consider them only afterwards. Finally,
we use Algorithm 2 to reduce the number of classes and simplify the resulting model. Details of our variant of
the procedure we call INFERBYPWA is shown in Algorithm 4, and explained below.

Let S be the union of points in the trajectories of Y. We maintain a collection Sy, containing the currently
found classes of points.

Inferring switched nonlinear dynamical systems

Algorithm 4: InferByPWA

// INFERBYPWA: Extension of identification of piecewise affine models

Input: the set of trajectories Y, € is the error tolerance, k is the number of classes.
Output: list of classes and coefficient matrices.
S < ¥,

1
2 Drop < 0;

3 S <« set of points in Y

4 while | y,cy, Y; # S do

5 choose a point y € S\ v,ev,, Yi;

6 Y, < trajectory containing y;

7 seq < Extending(Y,, y, €);

8 if | seq |< M then

9 add y to Drop;

10 L continue;

11 L <« seq;

12 while T do

13 F < LinearRegression(Ar, Br);
14 L <~ ¢

15 forye Y\U y,ey, Yi do

16 if d(®(7)- F, f(Y)) < € then
17 | addyto L;

18 if | L |<| L' | then

19 | L<L;

20 else

21 | break;

22 add L to Sp;

23 {S], ey, Sk}, {Fl, ey Fk} < InferByMerge(SL, €, k); // Algorithm 2 to reduce number of classes.

24 return {Sy, -+, Si}, {F1, -+, Fi};

We begin by choosing a point y from S. First, we attempt to extend y into a sequence seq. Starting from the
sequence only containing y, we try to extend it to the left and to the right, along the trajectory containing y. This
is described separately as procedure Eztending (Algorithm 5). First, we try to extend the sequence to the left, at
each step recompute the linear regression using points of the new sequence and test whether the error is within
tolerance €. Extension stops when the error grows larger than €, or the length reaches a given limit /im. Next, the
sequence is extended to the right in the same way. If at the end of the extension process, the number of points in
the sequence is less than the step number M, we put the point y into a separate set and restart since this indicates
that the point is likely to be near a switch between modes.

Next, we attempt to extend the sequence seq into a larger set by alternatingly search for unclassified points
that lie close to the linear regression F' over ®(z) and f(z), and recomputing the linear regression using the
extended set of points, until the size of the set can no longer be enlarged. Finally, we add the extended set of
points into Sz, and begin the next iteration as long as there exist uncovered points.

After all points have been handled, we obtain a collection of classes Sy.. This collection of classes may still
break a mode into several classes. Hence, we again perform the Algorithm 2 to reduce the number of classes and
simplify the resulting model.

4.5. Boundary determination using SVM

After preliminarily classifying the points on the trajectory into different classes, and estimating the coefficients of
ODE:s for each class, we determine the boundary between classes using SVM with polynomial kernel functions.
This assumes that the boundaries are given by polynomial inequalities of known maximum degree.

X. Jin et al.

Algorithm 5: Extending

// Extending a segment

Input: a trajectory y = (z(¢), ..., (t,)), point z(¢;) with 1 < 7 < n, error tolerance €, and maximum
number of iterations lim.
Output: a segment containing z(%;)

1l <« i, h <1

2 while h — [< lim do

3 F <« LinearRegression(Ap—1:n], B-1:n));
4 if Vr. d(A[lflzh][r] . F, B[l,lzh][r]) < € then
5 | 1< 1-1

6 else

7 | break;

8 while » — [< lim do

F <« LinearRegression(Ap:n+1), B:n+1));
10 if Vr. d(A[l:hH][r] - F, B[l:thl][r]) < € then
11 | h<h+1;

12 else
13 | break;

-
£

return (z(t), ..., z(ty));

Note that during the classification reported in the above sections, we dropped some points which are likely
to be near the change points. There is a great possibility that these points are significant support vectors as they
lie near the boundary between two modes. Hence, we would prefer to find out which modes these points belong
to. We again compute the approximate derivatives using BDF in both forward and backward directions (using
LMM; and LMMy,), then test if either estimated derivative lies close to one of the modes according to its estimated
coefficients.

Applying SVM with more than two classes is a well-studied problem, and we choose the following known
approach: first learn the boundary between one class and the other classes, obtaining the first region G, and then
among the remaining classes, select one again learning the next region G N G, repeating this process until all
classes are separated. We refer to [BGPVO05] for more discussion of the approaches. The main difference is that
we use SVM with polynomial kernel function. From Theorem 1, we have the following corollary.

Corollary 1.2 In INFERBYMERGE, the result of Equation (19) continues to hold after the SVM step, if the labelled
points from different modes are classified by SVM with 100 percent accuracy.

4.6. Complexity of the methods

Most parts of our methods have polynomial complexity in terms of the number of input points n. In particular,
segmentation has complexity O(n). Each iteration of INFERBYMERGE has polynomial complexity in n, as linear
regression takes polynomial time (it is reduced to computing matrix multiplication and inverse). However, the
whole merging process potentially needs to search over all subsets of classes, which is exponential in the number
of classes after segmentation. In order to accelerate the search process, we use a pruning method, which is effective
in most of the practical situations. INFERBYPWA calls Algorithm 2 when reducing the number of modes, while
other parts, e.g. linear regression and the extending process, all have polynomial complexity in the number of
input points. In Section 5, we will see that both methods can handle inputs of up to thousands of points within
a reasonable time.

Inferring switched nonlinear dynamical systems

5. Experiments

In this section, we describe five SNDS models and the evaluation of the above proposed methods on them. We
designed our own examples since we are currently not aware of any standard benchmarks consisting of switched
nonlinear dynamical systems.

Before reporting the results of the experiments, we describe the evaluation method which we apply to measure
the “closeness” between the inferred system and the original system. We compute the actual and predicted deriva-
tive along multiple trajectories, including both the input trajectory and additional trajectories from other initial
points. The relative difference between actual and predicted derivatives are computed according to Equation (18).
Then the results are averaged yielding an overall score dg,,, between 0 and 1, where 0 and 1 represent perfect and
worst predictions respectively.

Now we introduce the arrangement of our experiments. We first present our five examples, distinguished by
their dimension, degree of the polynomials in the ODE and the boundary, and the number of modes, intended to
cover the different aspects of the problem. We utilized our two methods to infer models of the examples based on a
group of fixed parameters, i.e., timestep size ts;.p, number of initial points N;,;+, and the simulation time length /.

Then, for evaluating robustness, we modify the parameters for each example and compare the performance
of different methods on the variants. The intuition is that fewer initial points are intended to be more difficult,
as it means less data provided to the algorithm. Likewise, a larger time step is intended to be more difficult, as
it means both less data and the derivative estimates from LMM are likely to be less accurate. The absolute error
tolerance § is a tunable parameter in the method INFERBYMERGE.

We also compared our methods with the baseline clustering method DBSCAN, identification of ARX models
using the system identification toolbox in Matlab, and standard optimization functions in SciPy, as well as with
state-of-the-art method in [AS14] for piecewise affine models. Some of the results are shown below.

We implemented” both proposed methods using Python 3.7 with libraries SciPy, scikit-learn and LIBSVM.
All of the evaluations have been carried out on an 1.8GHz Intel Core-17 8550U processor with §GB RAM running
64-bit Windows.

Each concrete case of experiments is run as follows:

1. Training data generation: For each initial point, solve the ODE numerically. Here we use SciPy’s solve_ivp
function. In particular, we use the event mechanism of the function to allow simulation of a switched system.
This yields a number of discrete trajectories given by lists of time-position pairs.

2. Inferring SNDS: Feed the data to each of the three algorithms described in Section 4, and obtain the inferred
SNDS.

3. Evaluation: Compare the inferred SNDS with the real SNDS by evaluating the predicted derivative along
each of the original trajectories. Then compare the predicted and actual derivative using Equation (18), and
average the obtained measure along the trajectories. This gives us a single number between 0 and 1 that
indicates the quality of the inferred model. Also, for each of the additional points, use the original model to
find trajectories starting at those points, and compute the measure also along these trajectories. This tests
whether the inferred model also provides good predictions along other possible trajectories of the system.

In the following, all figures are rounded to 5 digits after the decimal point.

5.1. The Isolette example

This example shows the case in Fig. 1. It can be represented as an SNDS as follows.

If 21 < a3 then else
i = ay - (21 — x2) {351=a2'(931—$2)

2The implementation is available at https:/github.com/Leslieaj/InferDynamic.

https://github.com/Leslieaj/InferDynamic

X. Jin et al.

—— Original
115 § —--- Inferred
—— Original “~
° Inferred

110 4

105 4

100 4

x2

951 ¢§
90
85

80 -

v v T v v T T
95 96 97 98 99 100 101
x1

Fig. 2. The simulation result for the Isolette example. The trajectory
of the inferred model closely follows that of the original model,
showing that our method performs well on this example

Fig. 3. The simulation result for switched Lorenz attractor. The di-
vergence of blue and red lines are expected as the system is chaotic,
but it can be seen that the red lines lie on roughly the same attractor

as the blue lines

The system given in Section 1 corresponds to a3 = 98.5 and a; = a; = —0.026. We choose two initial
points N;p;: = {(99.5, 80), (97.5, 100)}, the timestep size ¢z, = 0.1, the simulation time length I = 50, the error
tolerance € = 0.01, and apply INFERBYPWA (Algorithm 4).

The original coefficient matrices thus are as follows.

[—0.026 0 —0.026 0
Fr=10026 0|, F,=1]0020 0 1
0 1 0 -1

The inferred coefficient matrices are

[—2.60000 x 10-2 —8.00269 x 10~14 —2.60006 x 1072 —4.15116 x 107>

Fy = | 2.60000 x 1072 —2.49814 x 10~4|, [, = | 2.60007 x 10~2 5.45885 x 10~°
| —3.54935 x 1071 1.00000 4.86236 x 107> —9.96412 x 107!
The boundary is

21 — 0.000342, — 98.46672 = 0.

The average relative distance dq,; = 6.55855 x 10~%. Here, we also present the simulation of original and inferred
models on the given initial points in Fig. 2.

5.2. A switched version of Lorenz attractor

The second case is a switched version of Lorenz attractor which has three dimensions, with ODE given by
polynomials of degree two, and two modes. It represents a case where the system is chaotic. The corresponding
SNDS is as follows.

If 2; + 20 > 0 then else
i = o(m — 1) 7 = 021 — 11)
B =x1(p1 — 13) — B B =mn(p2 — 13) — I
3= 112 — PB113 B =117 — B3
One standard choice of coefficients is o7 = 10, 8; = 8/3, p1 = 28,07, = 28, 2 = 4, p» = 46.92. We choose
two initial points N, = {(5, 5, 5), (2, 2, 2)}, timestep size ts., = 0.004, simulation time length I = 5, absolute
error tolerance § = 0.2, and apply INFERBYMERGE (Algorithm 2).

Inferring switched nonlinear dynamical systems

Since the number of coefficients are too large (3 x (3;2) = 30), we omit the four coefficient matrices and only
report the average relative distance dg,; = 8.86362 x 107>, The boundary is

21 + 0.988041, + 0.0008623 — 0.01007 = 0

and the simulation result for this case is shown in Fig. 3.

In this case, there are 2502 points in total, with 1761 points belonging to the first mode and the rest belonging
to the second one. With respect to Equation (19), D; = 0.30153 x 10?!, D, = 0.33927 x 10**, and the sum of
squared error is 0.34628, it is easy to calculate that

1
0.34628 < IThe 0.004° x (1761 x 0.004 x D; + 741 x 0.004 x D;) = 14.67599
corresponding to the result of Equation (19).

5.3. An example with degree three

In this example, back in two dimensions, the ODE is given by polynomials of degree three, and the boundary
separating the two modes has degree two. The SDNS is given as follows.

If 2, > da?, then else
. .2 3
T = alxlz + b1$23 {fEl = wmz{ + b
5 = om B = an

One standard choice of coefficients is a1 = 0.1, ap = 0.04, a3 = —0.9, b; = —0.1, b, = 0.06, b3 = —0.7 and
d = —0.2. The settings of parameters and experimental results are given in Table 1.

5.4. An example with four dimensions

This example tests the performance of the algorithm over larger dimensions. The SNDS has dimension four,
degree two and two modes as follows.

If 23 > 0 then else
T = —Sn T = —8T
B =2 — T T =1 — 1
T3 = 14 T3 =1y
iy = —p(w3 + 1) iy = —p(z1 — :3)°

One choice of coefficients is s = 1,7 = 5, = 5 and p = 0.1. We also wrapped settings and results in
Table 1.

5.5. An example with more than two modes
The last example tests the case with more than two modes. This example is in three dimensions, with ODE given
by polynomials of degree two, and three modes.

If —2, > 0 then else if —z; > 0 then else
{-Z.'lzcl {¢1:a1x12+a2w2 {l"l:bl
T = 1 B = ;) + a T =ba + b3
One choice of coefficientsis a; = 0.5, a4 = 0.5, a3 = -9, a4 =3, b1 =5, b, = —0.1, 03 = —10,¢; = -7, ¢ =
—1. Given three initial points N;,;; = {(—1, 1), (1, 4), (2, —3)}, timestep size ts;, = 0.01, simulation time length

I = 5, error tolerance € = 0.01, and applying INFERBYPWA, the average relative distance is dg,y = 3.71359x1075.
The simulation result for this case is shown in Fig. 4. The inferred boundaries are

0.004572; + 25 — 0.02923 =0 and x + 0.003462, — 0.03707 = 0.

X. Jin et al.

—— Original
——- Inferred

154

104

Fig. 4. The simulation result for Example 5.5

Table 1. Experimental results on variants

VID EID [Nuir | tstep 1 8 INFERBYMERGE INFERBYPWA DBSCAN MOSAIC

dtlwg t?}nfer dg’ug tz'znfer dg)g ti?leT‘ d(ﬁ)g tvélfer NA
1 A 2 0.100 50 0.010 0.00047 0.6 0.00047 0.4 0.00096 0.2 0.08582 9.4 11
2 A 3 0.100 50 0.010 0.00001 1.5 0.00001 0.8 0.00080 0.3 0.07176 8.8 15
3 A 2 0.200 50 0.010 0.00001 0.3 0.00096 0.3 0.00100 0.1 0.14168 4.1 12
4 A 3 0.200 50 0.010 0.00001 0.7 0.00002 0.4 0.00001 0.2 0.11809 5.4 13
5 B 2 0.010 5 0.200 0.00139 1.4 0.00147 1.0 0.13315 2.6 0.14948 2959 207
6 B 1 0.002 15 0.200 0.00005 12.8 0.00005 4.8 0.00005 1.8 0.09949 1717.8 740
7 B 2 0.002 10 0.400 0.00010 25.0 0.00006 6.2 0.00010 2.2 0.03255 2757.1 1112
8 B 5 0.004 5 0.400 0.00006 17.9 0.00011 3.5 0.00005 1.3 0.07927 478.1 320
9 c 5 0.010 10 0.001 0.00017 24.4 0.00008 2.6 0.00047 1.2 0.04365 46.8 60
10 c 3 0.010 10 0.001 0.00129 4.3 0.00119 1.6 0.00129 0.6 0.22206 18.2 31
11 C 3 0.050 10 0.010 0.00036 4.1 0.00149 0.5 0.00036 0.2 0.19723 153 31
12 C 2 0.010 15 0.010 0.00444 6.4 0.00537 1.6 0.00442 0.5 0.29037 16.6 17
13 D 4 0.010 5 0.010 0.00020 3.7 0.00055 1.8 0.00016 0.5 0.03707 21.9 40
14 D 2 0.010 5 0.010 0.00150 1.0 0.00025 1.1 0.00150 0.3 0.33632 5.7 14
15 D 4 0.002 5 0.010 0.00031 19.6 0.00031 7.6 0.00031 2.4 0.09396 37.5 35
16 D 3 0.010 10 0.005 0.00111 5.6 0.00098 3.9 0.00096 0.7 0.01599 51.7 59
17 E 3 0.010 5 0.010 0.00033 2.9 0.00033 6.5 0.27233 0.4 0.04612 54.7 58
18 E 2 0.010 10 0.010 0.00020 5.1 0.00060 8.0 0.32967 0.7 0.08562 70.5 72
19 E 5 0.020 5 0.010 0.00097 4.3 0.00095 3.5 0.00101 0.8 0.04348 79.5 79

E 5

0.010 5 0.010 0.00090 9.8 0.00089 10.9 0.00089 2.1 0.01340 92.4 79

VID: the variant ID.

EID: the example ID indicates which example the variant belongs to.

| Nini¢ |: the number of initial points (two additional points are used for testing in each case).

Lsrep: time step size.

I interval of simulation.

§: the absolute error tolerance for each point (only in INFERBYMERGE).

dl, g d2, g dp g d{;‘vg: average relative distances using INFERBYMERGE, INFERBYPW A ,the DBSCAN clustering method and Mosaic [AS14],
respectively.

tilnfer’ tiznfer’ ti?Lfer’ t
MOSAIC, respectively.
N4: the number of learned piecewise linear modes in MOSAIC.

;‘L fer wall-clock inference time in seconds using INFERBYMERGE, INFERBYPWA, the DBSCAN clustering method, and

5.6. Comparison and Discussion

In order to evaluate the robustness and compare the performance of the methods, we modify the parameters, i.e,
initial points N;y;;, timestep size s, and the simulation time length [for the five examples and form a collection
of variants. For all variants, the relative error tolerance ¢ = 0.01 and the choices of the absolute error tolerance §
used in INFERBYMERGE have also been given. The new SNDS models and the results of the experiments are shown
in Table 1. In this table, d! . d? . dP —and d? represent the average relative distances using INFERBYMERGE

avg> Yavg> “avg> avg

Inferring switched nonlinear dynamical systems

(Algor1thm 2), INFERBYPWA (Algorithm 4), the DBSCAN clustering method, and MOSAIC [AS14], respectively.
tmfer, tfers Linfers and tm ser Tepresent the wall-clock inference time in seconds using INFERBYMERGE, INFER-
BYPWA, the DBSCAN clustering method, and MOSAIC, respectively. From the table, it can be seen that DBSCAN
performs well on some cases, but is not sufficiently robust, for example performing poorly on the cases with three
modes and two of the cases for the Lorenz attractor. This is to be expected from the discussion of its weaknesses
at the end of Section 4.2. INFERBYMERGE and INFERBYPWA are robust across all of our cases, and each performs
better on a different set of cases. INFERBYPWA extends identification methods of piecewise affine models, and
uses the idea of merging modes in INFERBYMERGE at the end, hence it performs well on almost all of the cases.
In experiment A, the dynamics of both modes are linear and we can see that even if the sampling stepsize is
large, the model learned is close to the original. While in the other experiments, we need a smaller stepsize to
get a more accurate approximation of derivatives. After checking the relative differences between derivatives at
different points, it can be seen that most of the differences are due to those near the switch points.

Below, we compare with three other representative methods. Both MosAIC and standard optimization methods
only deal with the problem of fitting the relationship between positions and derivatives, so we perform the LMM
stage first and then apply these two methods.

5.6.1. Comparison with MOSAIC

First, we compare with the tool MOSAIC from the paper [AS14]. Our INFERBYPWA is a modification from the
method reported in that paper. However, only learning of piecewise linear models are considered there, and
nonlinear models are approximated by a large number of piecewise linear modes. The results from MOSAIC are
given in Table 1. Here column dm}g is the average relative error, tmfer is time spent in each case, and N4 is the
number of (piecewise linecar) modes. It can be seen that across all cases, the relative error is much larger than
that obtained using our INFERBYMERGE and INFERBYPWA, the running time is longer, and the number of modes
(an indicator of the complexity of the model) is larger. This demonstrates that by considering nonlinearity with
polynomial equations directly, our method gives a significant improvement over learning of purely pieccewise
linear models.

5.6.2. Comparison with ARX models

For comparison with inference methods of ARX models, we performed experiments using the System Identifi-
cation Toolbox in Matlab. We applied Matlab’s arx and nlarx functions (for linear and nonlinear ARX models)
and chose different parameters to find a (linear or nonlinear) ARX model fitting the trajectories. The results
show a big difference between the predicted and the original trajectories. Also, the predicted trajectories are no
longer continuous and difficult to interpret.

For example, the result of inferring linear ARX models on the Isolette example is shown in Fig. 5. In this
figure, part (a) shows the given trajectories. In part (b), it is superimposed with the predicted trajectory from
the inferred linecar ARX model. As can be seen, the predicted trajectory follows the given trajectory initially,
but diverges around the first mode switch. This indicates that ARX models as provided in Matlab are unable to
handle mode switches. The result of using the nonlinear ARX model is even worse, hence we omit it here.

The reason may be that the multiple modes in SNDS are difficult to explain using a single ARX model. This
shows the necessity of using segmentation and clustering (as in this work) to learn an interpretable system.

5.6.3. Comparison with standard optimization methods
The problem in this paper (after the LMM stage) can be stated as an optimization problem, minimizing the sum

(or average) of the relative difference between predicted derivative and the derivative computed by the LMM
method.

X. Jin et al.

Input-Output Data Input-Output Data
1 2 1
101 r — r r 115 r —V: r r 102 r — r r 115
100 1 110 1017 110
o 105 100 ¢ 105
99 1
100 100
§ 98 § 98t
%_ 95 %_ 95 [
£ E o7F
< 9 <

90 90
96

% | s] 85|
o5 /

9% 1 &0 o4l 80

94

93

e 7Bl e 75—

10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60
Time (seconds) Time (seconds)

(a) The trajectories provided to ARX model method (b) The predicted trajectory by using the inferred ARX model

Fig. 5. Experimental results on the Isolette example using ARX models

Table 2. Experimental results using standard optimization method “Nelder-Mead” in SciPy

VID #1 #2 #3 #H4 #5

d(g)g ti?Lfe’r‘ da%g tigfer daOUg t’gfer d(gg ti?Lfe'r‘ d(g)g ti%fer
1 0.59704 98.5 0.46404 2854 042152 110.2 042111 2458 0.45285 112.6
2 0.55577 1384 0.42927 4355 0.45377 210.0 0.38807 525.4 0.55437 130.0
3 0.41466 67.8 0.45715 56.2 0.57919 529 0.43419 78.8 0.57795 54.8
4 0.56721 82.9 0.58181 100.1 0.56825 118.6 0.47693 82.7 0.44028 72.0
5-10 TO TO TO TO TO
11 TO 0.74582 981.6 0.71463 961.8 TO 0.45468 991.9
12-20 TO TO TO TO TO

#1 - #5: Indexes represent 5 trials from different initial points respectively.
TO: Timeout (> 20 mins)

The objective function is as follows.

> Jmin d(@(@(t) - [F]" - F L EL F(2(t)) (20)
I(t.y)EUsiesSz T

where S is the set of trajectories, d is the relative difference defined in Section 4, N is the number of modes, F™
represents the coefficients of the i-th component of the polynomial specifying the dynamics in mode m, and
f(z(t;)) is our estimate of the derivative at point z(¢;) according to the trajectories. The independent variables of
this objective function is all of the coefficients F".

We applied standard optimization methods in scipy.optimize. However, since the objective function is not
convex, and moreover not differentiable everywhere, the methods do not perform well in our case studies. Here we
report the results using method “Nelder-Mead” and randomly choosing 5 initial points for the optimization. The
experimental results on the same 20 examples are shown in Table 2. In this table, #1 - #5 represent 5 trials from
different random initial points. We also set 1200 seconds as the timeout. ¢, and 4, represent the running
time and the average relative difference in the derivative, respectively. The experimental results indicate that the

optimization method easily falls into a local minimum and does not performs well in all our examples.

6. Conclusion

In this paper, we presented two methods for the identification of switched nonlinear dynamical systems from
trajectory data, and proposed a way to evaluate an inferred model by comparison to the original model. Using
this evaluation, we tested the two methods for robustness and compared them on five classes of examples. The
experimental results show that these two methods are robust across a wide range of situations, and each performs
better on different cases.

Inferring switched nonlinear dynamical systems

The techniques introduced in this paper can form a basis on which to extend to identification of more general
classes of systems, including nonlinear hybrid systems with internal state and non-determinstic behavior, systems
switching modes depending on time and systems with higher-order ODEs. Another direction is to extend the
method to handle perturbations in the input data, for example coming from noise in the measurement process.
Finally, as the stability and convergence of Linear Multistep Methods for single ODEs are analyzed in [KD19],
we would like to analyze stability and convergence properties for our methods in the switched case.

Funding This work has been partially funded by NSFC under grant No. 61625206, 61972284, 61732001 and
61872341, and by the CAS Pioneer Hundred Talents Program under grant No. YORC585036.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

References

[ACZ*20] AnJ, Chen M, Zhan B, Zhan N, Zhang M (2020) Learning one-clock timed automata. In Proceedings of 26th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems, pp. 444-462. Springer

[AL89] Auger I, Lawrence C (1989) Algorithms for the optimal identification of segment neighborhoods. Bulletin of Mathematical
Biology, 51(1):39-54

[Ang87] Angluin D (1987) Learning regular sets from queries and counterexamples. Information and computation, 75(2):87-106

[AS14] Alur R, Singhania N (2014) Precise piecewise affine models from input-output data. In Proceedings of the 14th International
Conference on Embedded Software, pp. 3(1)-3(10)

[AWZ*ss] AnJ, Wang L, Zhan B, Zhan N, Zhang M (2021) Learning real-time automata. SCIENCE CHINA Information Sciences, In
press

[BDG*20] Bartocci E, Deshmukh J, Gigler F, Mateis C, Nickovi¢ D, Qin X (2020) Mining shape expressions from positive examples. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 39(11):3809-3820

[BGOS] Butcher JC, Goodwin N (2008) Numerical methods for ordinary differential equations, volume 2. Wiley Online Library

[BGPV05] Bemporad A, Garulli A, Paoletti S, Vicino A (2005) A bounded-error approach to piecewise affine system identification. IEEE
Transactions on Automatic Control, 50(10):1567-1580

[BHKLO09] Bollig B, Habermehl P, Kern C, Leucker M (2009) Angluin-style learning of NFA. In Proceedings of the 21st International Joint
Conference on Artificial Intelligence, pp. 1004-1009

[BIB11] Baptista R, Ishihara JY, Borges GA (2011) Split and merge algorithm for identification of piecewise affine systems. In Proceedings
of the 2011 American Control Conference, pp. 2018-2023

[BPK16] Brunton S, Proctor J, Kutz JN (2016) Discovering governing equations from data by sparse identification of nonlinear dynamical
systems. Proceedings of the National Academy of Sciences, 113(15):3932-3937

[BVVBO0S] Borges J, Verdult V, Verhaegen M, Botto MA (2005) A switching detection method based on projected subspace classification.
In Proceedings of the 44th IEEE Conference on Decision and Control, pp. 344-349

[DD17] Drews S, DAntoni L (2017) Learning symbolic automata. In Proceedings of the 23rd International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, pp. 173-189. Springer

[Eyk74] Eykhoff P (1974) System Identification and State Estimation. Wiley

[FCC*08] Farzan A, Chen Y-F, Clarke EM, Tsay Y-K, Wang B-Y (2008) Extending automated compositional verification to the full class
of omega-regular languages. In Proceedings of the 14th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, pp. 2-17. Springer

[FMLMO3] Ferrari-Trecate G, Muselli M, Liberati D, Morari M (2003) A clustering technique for the identification of piecewise affine
systems. Automatica, 39(2):205-217

[GAG*00] Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PCh, Mark RG, Mietus JE, Moody GB, Peng C-K, Eugene
Stanley H (2020) Physiobank, physiotoolkit, and physionet: Components of a new research resource for complex physiologic
signals. Circulation, 101(23):e215-¢220

[GPV12] Garulli A, Paoletti S, Vicino A (2012) A survey on switched and piecewise affine system identification. IFAC Proceedings
Volumes, 45(16):344 — 355

[Hen96] Henzinger TA (1996) The theory of hybrid automata. In Proceedings of the 11th Annual IEEE Symposium on Logic in
Computer Science, pp. 278-292. IEEE Computer Society

[HVO05] Hashambhoy Y, Vidal R (2005) Recursive identification of switched ARX models with unknown number of models and unknown
orders. In Proceedings of the 44th IEEE Conference on Decision and Control, pp. 6115-6121. IEEE

[KD19] Keller R, Du Q (2019) Discovery of dynamics using linear multistep methods

[LBOS8] Lauer F, Bloch G (2008) Switched and piecewise nonlinear hybrid system identification. In Proceedings of the 11th International
Workshop on Hybrid Systems: Computation and Control, pp. 330-343. Springer

[LBG18] Lamrani I, Banerjee A, Gupta SKS (2018) Hymn: mining linear hybrid automata from input output traces of cyber-physical
systems. In Proceedings of the 2018 IEEE Industrial Cyber-Physical Systems, pp. 264-269. IEEE

[LBV10] Lauer F, Bloch G, Vidal R (2010) Nonlinear hybrid system identification with kernel models. In Proceedings of the 49th IEEE
Conference on Decision and Control, pp. 696-701. IEEE

[LCZL17] LiY, Chen Y-F, Zhang L, Liu D (2017) A novel learning algorithm for biichi automata based on family of dfas and classification
trees. In Proceedings of the 23rd International Conference on Tools and Algorithms for the Construction and Analysis of
Systems, pp. 208-226, Berlin, Heidelberg, Springer Berlin Heidelberg

[Lju99] Ljung L (1999) System Identification: Theory for the User. Prentice Hall, Upper Saddle River, New Jersey

[Ljul5]
[Lor63]
[MKY11]
[MM14]

[Mo058]
[MRBF15]

[NQF*19]
[NSV*12]
[0G92]
[OLB10]
[0zal6]
[Pens5)
[PIFV07]
[POTN03]
[SG09]
[SHSZ19]
[TAB*19]

[Vaal7]
[VAWW11]

[VAWW12]

[XPTP20]

X. Jin et al.

Ljung L (2015) System identification: An overview. In Encyclopedia of Systems and Control. Springer

Lorenz EN (1963) Deterministic nonperiodic flow. Journal of Atmospheric Sciences, 20(2):130-148

Mueen A, Keogh E, Young N (2011) Logical-shapelets: an expressive primitive for time series classification. In Proceedings of
the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 1154-1162

Maler O, Mens I-E (2014) Learning regular languages over large alphabets. In Proceedings of the 20th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems, pp. 485-499. Springer

Moore EF (1958) Gedanken-experiments on sequential machines. Annals of Mathematics, 34:129-153

Medhat R, Ramesh S, Bonakdarpour B, Fischmeister S (2015) A framework for mining hybrid automata from input/output
traces. In Proceedings of the 2015 International Conference on Embedded Software, pp. 177-186. IEEE

Nickovi¢ D, Qin X, Ferrere T, Mateis C, Deshmukh J (2019) Shape expressions for specifying and extracting signal features. In
Proceedings of the 19th International Conference on Runtime Verification, pp. 292-309. Springer

Niggemann O, Stein , Vodencarevic A, Maier A, Biining HK (2012) Learning behavior models for hybrid timed systems. In
Proceedings of the 26th AAAI Conference on Artificial Intelligence. AAAI Press

Oncina J, Garcia P (1992) Identifying regular languages in polynomial time. In Advances in Structural and Syntactic Pattern
Recognition, Volumn 5 of Series in Machine Perception and Artificial Intelligence, pp. 99-108. World Scientific

Ohlsson H, Ljung L, Boyd S (2010) Segmentation of arx-models using sum-of-norms regularization. Automatica, 46(6):1107—
1111

Ozay N (2016) An exact and efficient algorithm for segmentation of ARX models. In Proceedings of the 2016 American Control
Conference, pp. 38-41. IEEE

Penrose R (1955) A generalized inverse for matrices. Mathematical Proceedings of the Cambridge Philosophical Society,
51(3):406-413

Paoletti S, Juloski ALj (2007) Giancarlo Ferrari-Trecate, and René Vidal. Identification of hybrid systems a tutorial. European
journal of control, 13(2-3):242-260

Peng H, Ozaki T, Toyoda Y, Nakano K (2003) Nonlinear system modelling using the rbf neural network-based regressive model.
IFAC Proceedings Volumes, 36(16):333-338, Proceedings of the 13th IFAC Symposium on System Identification

Shahbaz M, Groz R (2009) Inferring mealy machines. In Proceedings of the 16th International Symposium on Formal Methods,
pp. 207-222. Springer

Soto MG, Henzinger TA, Schilling C, Zeleznik L (2019) Membership-based synthesis of linear hybrid automata. In Proceedings
of the 31st International Conference on Computer Aided Verification, pp. 297-314. Springer

Tappler M, Aichernig BK, Bacci G, Eichlseder M, Larsen KG (2019) L*-based learning of Markov decision processes. In
Proceedings of the 23rd International Symposium on Formal Methods, pp. 651-669

Vaandrager F (2017) Model learning. Communications of the ACM, 60(2):86-95

Verwer S, de Weerdt M, Witteveen C (2011) The efficiency of identifying timed automata and the power of clocks. Information
and Computation, 209(3):606-625

Verwer S, de Weerdt M, Witteveen C (2012) Efficiently identifying deterministic real-time automata from labeled data. Machine
Learning, 86(3):295-333

Xu W, Peng H, Tian X, Peng X (2020) DBN based SD-ARX model for nonlinear time series prediction and analysis. Applied
Intelligence, 50(12):4586-4601

Received 20 September 2020
Accepted in revised form 19 February 2021 by Zhiming Liu, Xiaoping Chen, Ji Wang and Jim Woodcock

	Inferring Switched Nonlinear Dynamical Systems
	Abstract
	1 Introduction
	2 Switched Nonlinear Dynamical Systems
	3 Linear Multistep Methods
	4 Inferring SNDS from Trajectories
	4.1 Inferring ODE for a single mode
	4.2 Segmenting the trajectory
	4.3 Clustering by merging
	4.4 Extending identification of piecewise affine models
	4.5 Boundary determination using SVM
	4.6 Complexity of the methods

	5 Experiments
	5.1 The Isolette example
	5.2 A switched version of Lorenz attractor
	5.3 An example with degree three
	5.4 An example with four dimensions
	5.5 An example with more than two modes
	5.6 Comparison and Discussion
	5.6.1 Comparison with Mosaic
	5.6.2 Comparison with ARX models
	5.6.3 Comparison with standard optimization methods

	6 Conclusion
	References

