
Math. Struct. in Comp. Science (2010), vol. 20, pp. 915–950. c© Cambridge University Press 2010

doi:10.1017/S0960129510000253

Connection between logical and algebraic approaches

to concurrent systems†

NAIJUN ZHAN

State Key Lab. of Comp. Sci., Institute of Software, Chinese Academy of Sciences,

100190, Beijing, P.R. China

Email: znj@ios.ac.cn

Received 4 January 2010; revised 7 May 2010

The logical and algebraic approaches are regarded as two of the dominant methodologies

for the development of reactive and concurrent systems. It is well known that the logic

approach is more abstract, but lacks compositionality; while the algebraic approach is

inherently compositional, but lacks abstractness. However, connecting the two approaches is

a major challenge in computer science, and many efforts have been directed to resolving the

problem. Linking the algebraic approach to the logical approach has been satisfactorily

resolved through the notion of characteristic formulae. But very limited success has been

achieved so far in the other direction, as most of the established results have been developed

only with respect to a simple semantics, which has usually been strong bisimulation.

However, in practice, an observational semantics like weak bisimulation, which is much

more complicated, is thought to be more useful. In this paper, we investigate how to connect

the logical and algebraic approaches with respect to the observational preorder, which is a

generalisation of weak bisimulation that takes divergence into account. We show the

following results. First, we prove that the non-deterministic operator of process algebra can

be defined in modal and temporal logics (such as the μ-calculus and the Fixpoint Logic with

Chop) with respect to the observational preorder (in fact, the kernel of its precongruence).

In this way, we can apply the logical approach to the design of a complex system in a

compositional way. Second, we present two algorithms for constructing the characteristic

formulae for a context-free process up to the preorder and its precongruence, respectively.

The effect of this is that all the reductions for processes that are usually done in an algebraic

setting can be handled in a logical setting.

1. Introduction

Two of the dominant methodologies for the development of reactive and concurrent

systems are the algebraic (Milner 1986; Hoare 1985; Bergstra and Klop 1985) and logical

(Pnueli 1977; Kozen 1983; Moszkowski 1986; Zhou et al. 1991; Stirling 2001) approaches,

but they are completely different. In general, the former is compositional, that is, a

complex system can be built by applying algebraic operators defined in the underlying

process algebra to some existing subsystems, which means it is easy to find a connection

† This work is supported in part by the projects NSFC-60721061, NSFC-90718041, NSFC-60736017, NSFC-

60970031 and RCS2008K001.

N. Zhan 916

between the structure of a system to be developed and that of its specification or model.

In an algebraic setting, the specifications or models are usually represented as a process

term. Therefore, the algebraic approach is suitable for describing simulation properties

like synchronisation, asynchronisation, exclusion and so on. But it is difficult to define

global properties such as fairness and liveness because it lacks abstractness. In contrast,

in a logical framework, a complex system is specified and designed from a global point

of view, so the logical approach is appropriate for specifying global properties because

of its abstractness. However, the logical approach is not suitable for defining simulation

properties as it is hard to find a connection between the structure of a system to be

developed and that of its specification.

As argued in Andersen et al. (1994), compositionality is very important in developing

reactive and concurrent systems for at least the following reasons:

— It allows modular design and verification of complex systems so that the complexity

is tractable.

— Following a redesign of a verified system, only the modified parts need to be verified

again, rather than starting again from scratch with the whole system.

— Compositionality enables the partial specification of a large system. So, when designing

a system or synthesising a process, it is possible to have undefined parts of a process

and still be able to reason about it. For example, this technique can be applied to

reveal inconsistencies in the specification or to prove that with the choices already

taken in the design, no component supplied for the missing parts will ever be able to

make the overall system satisfy the original specification.

— Finally, compositionality can allow the reuse of verified components so that their

previous verification can be used to show that they meet the requirements placed on

the components of a large system.

On the other hand, very few verification techniques (see, for example, Paige and

Tarjan (1987)) and tools (see, for example, Roscoe (1997)) for use with process algebras

have been established and successfully applied in practice. So we would like to find a way

to reduce verification problems that may not be handled well in process algebraic settings

to logical problems that can be handled using various verification techniques for modal

and temporal logics.

However, finding a way to combine the two approaches so that we can capitalise on the

advantages of the two approaches and avoid their disadvantages is a challenging problem.

In fact, many attempts have been made to achieve this goal. In particular, relating the

algebraic approach to the logical approach has been resolved by constructing characteristic

formulae of processes with respect to an underlying semantics. Graf and Sifakis (1986b)

first gave a method for defining the characteristic formula of a finite term of CCS up to

observational congruence. Steffen and Ingólfsdóttir (1994) refined this work by presenting

an approach to defining the characteristic formula for a finite-state process up to some

preorders. Müller-Olm (1999) also gave a method for defining the characteristic formula

of a context-free process up to a preorder based on its rewriting system.

However, very limited success has been achieved so far in the other direction, as, in

general, it is quite difficult to obtain compositionality for a logic. A potential solution

Connection between logical and algebraic approaches 917

to the problem could be either to introduce the underlying operators of process algebras

directly into a logic, or to prove the definability of these operators in the logic. The

former solution could make the resulting logic complicated and intractable, while the

latter is very difficult, in particular, depending on the semantics used. Previous attempts

have adopted the first approach. Barringer et al. (1984; 1985) discussed the sequential

compositionality of linear temporal logic (Pnueli 1977) by introducing the chop (that is, the

sequential composition of process algebra) into the logic. Rosner and Pnueli (1986) also

investigated some logic properties of the extension. Analogously, Graf and Sifakis (1986a)

and Larsen and Thomsen (1988), working independently, investigated non-deterministic

compositionality by introducing the non-deterministic operator ‘+’ of process algebra

directly into modal μ-calculus like logics (Kozen 1983). However, Zhan and Majster-

Cederbaum (2005) proved the definability of ‘+’ in the modal μ-calculus with respect

to strong bisimulation, and therefore concluded that the modal logics proposed in Graf

and Sifakis (1986a) and Larsen and Thomsen (1988) can be encoded into the modal

μ-calculus. Moreover, Zhan and Wu (2005) extended the result of Zhan and Majster-

Cederbaum (2005) to Fixpoint Logic with Chop (FLC) by showing the definability of ‘+’

in the logic with respect to strong bisimulation. As a by-product of the compositionality

of FLC provided in Zhan and Wu (2005), the paper also presented an algorithm for

constructing the characteristic formula of a context-free process up to strong bisimulation

directly from its syntax, in contrast to previous work, which derived the characteristic

formula of a process up to some equivalences or preorders from its semantics.

All previous attempts to link the logical approach to the algebraic approach have

used the strong bisimulation semantics. Strong and weak bisimulations are two important

semantics for process algebra (Milner 1986), but in practice, weak bisimulation is thought

to be more useful. In addition, and comparatively speaking, weak bisimulation is much

more complicated as it abstracts away internal actions, while observable and unobservable

actions are not distinguished in strong bisimulation. For example, it is well known that

weak bisimulation is not congruent as it is not preserved by the non-deterministic choice

‘+’, while strong bisimulation is congruent (Milner 1986). Moreover, divergence cannot be

handled in weak bisimulation, for example, rec x.τ; x+a; ε is weakly bisimilar to a; ε, even

though the first process could engage in infinitely many internal actions τ, and therefore

refuse to respond to any a-action. Motivated by this, an observational preorder was

introduced as a generalisation of weak bisimulation (Abramsky 1987; Abramsky 1991;

Hennessy and Plotkin 1980; Milner 1981). Like weak bisimulation, the observational

preorder is not preserved by ‘+’, but according to Milner’s view, a largest precongruence

of the preorder can be obtained automatically. In fact, Aceto and Hennessy (1992)

explicitly defined the precongruence of the preorder, another preorder, and established a

complete proof system for the congruent preorder.

For all these reasons, it is worth trying to establish a connection between the algebraic

and logical approaches with respect to the observational preorder. We will address this

issue in this paper. We will first consider the definability of ‘+’ with respect to the

congruent preorder in FLC, and then link FLC to BPAε,Ω
δ so that we can use FLC to

specify and design a complex system in a compositional manner. To this end, we first

need to re-interpret the logic with respect to the observational semantics. We will then

N. Zhan 918

show the definability of ‘+’ in FLC with respect to the observational semantics, as in

Zhan and Wu (2005), though the proof is more involved. Following this, and based on the

resulting compositionality of FLC, we will present two algorithms for constructing the

characteristic formulae of a context-free process up to the preorder and its precongruence

compositionally, respectively. The algorithms are much more complicated than those in

Zhan and Wu (2005), since the characteristic formulae up to the preorders cannot be

constructed from the syntax of the process.

The above investigations will be carried out within FLC and BPA.

FLC was invented by Müller-Olm (Müller-Olm 1999) and is an extension of the μ-

calculus to include the chop operator. It is strictly more expressive than the μ-calculus

since non-regular properties can be expressed in FLC. The μ-calculus (Kozen 1983) is

a popular modal logic because most modal and temporal logics can be defined in it.

However, the μ-calculus can only express regular properties (Emerson and Jutla 1991;

Janin and Walukiewicz 1996). FLC has attracted increasing attention in computer science

because of its expressiveness. For example, Lange and Stirling (2002) and Lange (2002)

investigated the issues of FLC model checking on finite-state processes.

Basic Process Algebra was first proposed in Bergstra and Klop (1985) and acts as the

core of most process algebras. Most concurrent and reactive programs can be modelled

using BPA. In this paper, we adopt a version from Aceto and Hennessy (1992), which

is extended by the addition of termination, deadlock and divergence, and is denoted by

BPAε,Ω
δ .

Some preliminary results of this paper were reported in Zhan (2006).

Structure of the paper

The rest of this paper is structured as follows. Section 2 gives some preliminaries, mainly

by introducing BPAε,Ω
δ and FLC. Section 3 is devoted to showing that the choice ‘+’ can

be defined in FLC with respect to the observational semantics. Section 4 establishes

a connection between the constructors of BPAε,Ω
δ and the connectives of FLC+. In

Section 5, we apply the techniques in an example to show the advantages arising from

the compositionality of FLC. In Section 6, we sketch how to construct the characteristic

formulae up to the observational preorders compositionally. Finally, we present some

brief conclusions in Section 7.

2. Preliminaries

In this section, we will cover some preliminary material, which is the basis for all the later

discussions. This consists mainly of an introduction to BPAε,Ω
δ , adapted from Aceto and

Hennessy (1992), and Fixpoint Logic with Chop.

2.1. Basic Process Algebra with termination, deadlock and divergence (BPAε,Ω
δ)

Let Act be a set of (atomic) observable actions, ranged over by a, b, c, · · · , and τ be an

unobservable action. We use Actτ to stand for Act ∪ {τ}, ranged over by α, β, · · · . Let

Connection between logical and algebraic approaches 919

Act → Rec
[] → ′

→ ′

Seq1 1 → ′
1

1; 2 → ′
1; 2

Seq2 2 → ′
2 and (1)

1; 2 → ′
2

Nd1 1 → ′
1

1 + 2 → ′
1

Nd2 2 → ′
2

1 + 2 → ′
2

Fig. 1. The operational semantics of Ps

X = {x, y, z, . . .} be a countable set of process variables. Sequential process terms are

generated by the following grammar:

E ::= δ | ε | Ω | x | α | E1;E2 | E1 + E2 | rec x.E.

We denote the above language by Ps. The set of all closed and guarded terms of Ps

corresponds, essentially, to the basic process algebra (BPA) with the terminated process ε,

the deadlocked process δ and the divergent process Ω, denoted BPAε,Ω
δ , and ranged over

by P ,Q, · · · .
An operational semantics of Ps can be given in the standard Plotkin style in the form

of a transition system (Ps,→) with →⊆ Ps × Actτ ×Ps that is the least relation derived

from the rules in Figure 1, where T ⊂ Ps is the least set which contains ε and is closed

under the following rules:

(i) If T(E1) and T(E2), then T(E1;E2) and T(E1 + E2).

(ii) If T(E), then T(rec x.E).

Informally, T(P) indicates that P terminates†.

Normally, a set of reference rules is not abstract enough to define an appropriate

operational semantics for the process algebra under consideration since it cannot identify

the sense in which two process terms are equivalent. Thus, various bisimulations or

preorders have been proposed to define criteria saying when two processes are equivalent:

two examples are strong and weak bisimulation (Milner 1986). The reference rules taken

together with different bisimulations or preorders determine different semantics for the

process algebra.

For our purposes we will just describe the observational preorder, which generalises

weak bisimulation by considering divergence. For an overview of the semantics of process

algebra, see van Glabbeek (2001).

In order to define the preorder, we need the following notions. Given an action α ∈ Actτ,
we use α̂ to denote α if α ∈ Act and ε otherwise, where ε stands for the empty action.

Moreover,
ε→ denotes the identity relation over Ps, that is, for any E ∈ Ps, E

ε→ E. We

† As in Aceto and Hennessy (1992), we adopt the semantics of strict termination in the sense that P + Q is

terminated if and only if P and Q are both terminated. This is because using termination to make choice

is impractical, and therefore is thought to be not well formed in much of the literature – see, for example,

Gorrieri and Rensink (2001).

N. Zhan 920

use
α⇒ to stand for the sequence of transitions (

τ→)∗· α→ ·(τ→)∗ and
ε⇒ for (

τ→)∗. We also

use E
t→ to mean E

α1→ E1
α2→ E2 · · ·

αn→ En for some E1, · · · , En, where t = α1 · · · αn ∈ Act∗τ .
We say that a process term E is weak terminated if ∀E ′.(E

ε⇒ E ′ ∧ E ′ τ→) ⇒ T(E ′), and

denote it by �(E).

We say that a term E is convergent, denoted by ↓ (E), if and only if E cannot perform

an infinite sequence of τ actions, formally, E τ
ω

→. Otherwise, E is said to be divergent,

written ↑ (E). We say ↓τ (E) if ↓ (E), and ↓a (E) if ↓ (E) and for each E ′, E
a⇒ E ′ implies

↓ (E ′), where a ∈ Act.

Definition 1. Let � be the largest binary relation over BPAε,Ω
δ that for each P ,Q ∈ BPAε,Ω

δ ,

satisfies P � Q if and only if:

— if ↓ (P), then �(P) if and only if �(Q);

— whenever P
α→ P ′, for some Q′, we have Q

α̂⇒ Q′ and (P ′ � Q′);

— if ↓α (P), then ↓α (Q), and whenever Q
α→ Q′, for some P ′, we have P

α̂⇒ P ′ and

P ′ � Q′;

where α ∈ Actτ.

Informally, P � Q means that P and Q are weakly bisimilar except that sometimes P

may diverge more frequently than Q. In the absence of divergence, P � Q means that P

and Q are weakly bisimilar.

It is obvious that � is a preorder. We use ≈ to denote � ∩ �−1.

It is well known in process algebra circles that the above preorder is not congruent, for

example, a � τ; a, but a + b � τ; a + b. Also, from the above example, we see that ≈ is

an equivalence relation, but not congruent. However, following Milner (1986), we have a

standard way of associating a precongruence with �. Aceto and Hennessy (1992) proved

that the implicit congruence associated with � coincides with the preorder defined below,

which is denoted by �∗.

Definition 2. For each P ,Q ∈ BPAε,Ω
δ , we have P �∗ Q if and only if:

— ∀a ∈ Act, whenever P
a→ P ′, for some Q′, we have Q

a⇒ Q′ and P ′ � Q′;

— if P
τ⇒ P ′, then

(a) ↓ (P ′) implies, for some Q′, that Q
τ⇒ Q′ and P ′ � Q′;

(b) ↑ (P ′) implies, for some Q′, that Q
ε⇒ Q′ and P ′ � Q′;

— if ↓α (P), then ↓α (Q), and whenever Q
α→ Q′, for some P ′, we have P

α⇒ P ′ and

P ′ � Q′;

— if ↓ (P), then �(P) if and only if �(Q);

where α ∈ Actτ.

Theorem 1 (Aceto and Hennessy 1992). For any P ,Q ∈ BPAε,Ω
δ , we have P � Q if and

only if P �∗ Q or P �∗ τ;Q or τ;P �∗ Q.

It is easy to see that τ � ε but τ �∗ ε. However, τ �∗ τ; ε.

Connection between logical and algebraic approaches 921

In the following, we will use ≈∗ to denote �∗ ∩�∗−1. It is easy to see that ≈∗ is

equivalent as well as congruent.

Aceto and Hennessy (1992) established the following† complete proof system for �∗

over BPAε,Ω
δ :

A0 E1 + E2 = E2 + E1 A1 (E1 + E2) + E3 = E1 + (E2 + E3)

A2 E + E = E A3 (E1 + E2);E3 = (E1;E3) + (E2;E3)

A4 (E1;E2);E3 = E1; (E2;E3) A5 rec x.E = E{rec x.E/x}
A6 E + δ = E A7 δ;E = δ

A8 E; ε = E A9 ε;E = E

A10 Ω � x A11 τ; (x+ Ω) � x+ Ω

A12 Ω; x � Ω A13 μ; τ = μ

A14 τ; x+ x = x A15 μ; (x+ τ; y) = μ; (x+ τ; y) + μ; y.

It is easy to extend the definitions of the above relations to Ps. For example, let

E1, E2 ∈ Ps, and

fn(E1) ∪ fn(E2) ⊆ {x1, · · · , xn}.
If

E1{P1/x1, · · · , Pn/xn} � E2{P1/x1, · · · , Pn/xn}
for any P1, · · · , Pn ∈ BPAε,Ω

δ , then E1 � E2.

2.2. Fixpoint Logic with Chop

Let X,Y , Z, · · · range over an infinite set Var of variables. Let tt and ff be propositional

constants as usual, and
√

be another special propositional constant, which is used to

indicate whether a process has terminated or not. The formulae of FLC are generated

according to the grammar

φ ::= tt | ff |
√

| τ | X | [α] | 〈α〉 | φ1 ∧ φ2 | φ1 ∨ φ2 | φ1;φ2 | μX.φ | νX.φ

where X ∈ Var and α ∈ Actτ.
Some notation will be defined in the same way as in the modal μ-calculus, for example,

free and bound occurrences of variables, and closed and open formulae. The two fixpoint

operators μX and νX are treated as quantifiers. We will use fn(φ) to stand for all variables

that have some free occurrence in φ, and bn(φ) for all variables that have some bound

occurrence in φ. We use cFLC to denote the set of all closed formulae of FLC.

FLC is interpreted in the second-order, that is, formulae are interpreted as a monotonic

predicate transformer, which is a monotonic function with the type 2BPA
ε,Ω
δ → 2BPA

ε,Ω
δ . Here

we say that a predicate transformer f is monotonic in the sense that for any given

A1 ⊆ A2 ⊆ BPAε,Ω
δ , we have f(A1) ⊆ f(A2)

‡. Thus, the chop ; is naturally interpreted as

† The proof system for BPA
ε,Ω
δ

presented in this paper is in fact a little different from the one in Aceto and

Hennessy (1992). However, Aceto and Hennessy (1992) pointed out that this variant is still complete.
‡ In fact, FLC can be interpreted more generally as in Müller-Olm (1999) over a labelled transition system in

which some states might not be context-free process terms.

N. Zhan 922

functional composition. We use MPT to represent all the monotonic predicate transformers

over BPAε,Ω
δ . The meaning of variables is given by a valuation ρ with the type Var → MPT.

We have that ρ[X � f] agrees with ρ except for associating X with f.

Definition 3. The meaning of a formula φ, under a valuation ρ, denoted by |[φ]|ρ, is

defined inductively as follows:

|[tt]|ρ(A) = BPAε,Ω
δ

|[ff]|ρ(A) = �

|[
√

]|ρ(A) = {P ∈ BPAε,Ω
δ | T(P)}

|[τ]|ρ(A) =A
|[X]|ρ(A) = ρ(X)(A)

|[[α]]|ρ(A) = {P ∈ BPAε,Ω
δ | ¬T(P)∧ ↓ (P) ∧ ∀P ′ ∈ BPAε,Ω

δ .P
α→ P ′ ⇒ P ′ ∈ A}

|[〈α〉]|ρ(A) = {P ∈ BPAε,Ω
δ | ∃P ′ ∈ BPAε,Ω

δ .P
α→ P ′ ∧ P ′ ∈ A}

|[φ1 ∧ φ2]|ρ(A) = |[φ1]|ρ(A) ∩ |[φ2]|ρ(A)

|[φ1 ∨ φ2]|ρ(A) = |[φ1]|ρ(A) ∪ |[φ2]|ρ(A)

|[φ1;φ2]|ρ = |[φ1]|ρ · |[φ2]|ρ
|[μX.φ]|ρ =�{f ∈ MPTT | |[φ]|ρ[X�f] ⊆ f}
|[νX.φ]|ρ =�{f ∈ MPTT | |[φ]|ρ[X�f] ⊇ f}

where A ⊆ BPAε,Ω
δ , and · stands for the composition operator over functions.

Note that because ε, Ω and δ have different behaviour in the presence of ;, they should

be distinguished in FLC. To this end, we interpret [α] differently from the way it is in

Müller-Olm (1999). According to our interpretation, P |= [α] only if ¬T(P)∧ ↓ (P), while

in Müller-Olm (1999), P |= [α] holds for any P ∈ Ps. Thus, it is easy to show that ε and

Ω do not meet
∧
α∈Actτ[α]; ff, while

∧
α∈Actτ[α]; ff is the characteristic formula of δ up to

∼, which is the largest strong bisimulation.

The set of processes satisfying a given closed formula φ is φ(BPAε,Ω
δ). A process P is said

to satisfy φ if and only if P ∈ |[φ]|ρ(BPAε,Ω
δ) under some valuation ρ, denoted by P |=ρ φ. If

ρ is clear from the context, we just write P |= φ. Also, φ⇒ ψ means |[φ]|ρ(A) ⊆ |[ψ]|ρ(A)

for any A ⊆ BPAε,Ω
δ and any ρ. And φ ⇔ ψ means (φ ⇒ ψ) ∧ (ψ ⇒ φ). The other

denotations are defined in the standard way.

In order to investigate the observable behaviour of systems, Stirling (2001) introduced

observable modalities 〈〈 〉〉 and [[]] into HML (Hennessy–Milner Logic). Formally, the

meaning of 〈〈 〉〉 is defined as

|[〈〈 〉〉]|ρ(A) = {P | ∃P ′.P
ε⇒ P ′ ∧ P ′ ∈ A}.

The meaning of [[]] can be given dually. Stirling pointed out that the two observable

modalities are not definable in HML, though they are definable in the modal μ-calculus

(Stirling 2001). The following lemma will show how to define the two observable modalities

in FLC.

Connection between logical and algebraic approaches 923

Lemma 1.

(1) 〈〈 〉〉 ⇔ μX. 〈τ〉;X ∨ τ.
(2) [[]] ⇔ νX. [τ];X ∧ τ.

Let 〈〈α〉〉 =̂ 〈〈 〉〉; 〈α〉; 〈〈 〉〉 and [[α]] =̂ [[]]; [α]; [[]] for any α ∈ Actτ. We call 〈〈α〉〉 and [[α]] the weak

diamond α and the weak box α, respectively.
√√

=̂[[]]; 〈〈 〉〉;
√

, means that any derivative of a

process P must terminate after finitely many τ steps, that is �(P).

Now, let wFLC be the set of formulae generated from the grammar of FLC except that

〈〈 〉〉 and [[]] are formulae and [α], 〈α〉 and
√

are replaced by [[α]], 〈〈α〉〉, and
√√

, respectively,

where α ∈ Act. We use wFLC to denote the set of closed formulae of wFLC. It is easy

to see that wFLC is a proper subset of cFLC.

In a similar way to Steffen and Ingólfsdóttir (1994), we can show that each ψ ∈ wFLC
is an invariant of �, that is we have the following theorem.

Theorem 2. Given P ,Q ∈ BPAε,Ω
δ , we have P � Q if and only if for any ψ ∈ wFLC, we

have P |= ψ if and only if Q |= ψ.

3. Defining the non-deterministic choice ‘+’ in FLC with respect to ≈∗

In order to describe the properties of non-deterministic programs using the logical ap-

proach in a compositional way, Graf and Sifakis (1986a) and Larsen and Thomsen (1988)

introduced the non-deterministic choice ‘+’ from process algebras into modal logics like

the μ-calculus, and established Synchronisation Tree Logic (STL) and Modal Process

Logic, respectively. Intuitively, P |= φ + ψ means that there exist P1 and P2 such that

P = P1 + P2, P1 |= φ and P2 |= ψ, where = stands for a preorder or bisimulation on

models. Obviously, the logic depends on the underlying relation on models. In Graf and

Sifakis (1986a) and Larsen and Thomsen (1988), ‘=’ is interpreted as strong bisimulation.

Zhan and Majster-Cederbaum (2005) showed that the non-deterministic choice ‘+’

can be defined by disjunction and conjunction in the modal μ-calculus with respect to

strong bisimulation. Zhan and Wu (2005) extended the results of Zhan and Majster-

Cederbaum (2005) to FLC by showing that ‘+’ is still definable in FLC with respect to

strong bisimulation.

In the following section, we will show that ‘+’ can also be derived by conjunction and

disjunction in FLC with respect to the observational equivalence ≈∗.

3.1. FLC+ with respect to ≈∗

We will first introduce ‘+’ directly into FLC and establish FLC+ with respect to ≈∗. The

formulae of FLC+ are defined by the following grammar:

φ ::= p | τ | X | 〈α〉 | [α] | φ1 ∧ φ2 | φ1 ∨ φ2 | φ1;φ2 | φ1 + φ2 | μX.φ | νX.φ

where p stands for tt , ff or
√

.

Given a valuation ρ, the meaning of φ+ ψ is defined by

|[φ1 + φ2]|ρ(A) = {P ∈ BPAε,Ω
δ | P ≈∗ P1 + P2 ∧ P1 ∈ |[φ1]|ρ(A) ∧ P2 ∈ |[φ2]|ρ(A)}. (1)

N. Zhan 924

The other constructs are interpreted as in FLC.

Now let wFLC+ be the set of formulae generated from the grammar of FLC+ except

that [α], 〈α〉 and
√

are replaced by [[α]], 〈〈α〉〉, and
√√

, respectively. In the following, we

use α© to stand for 〈〈α〉〉 or [[α]], and σ for ν or μ.

The following lemma follows directly from the definitions of the semantics of wFLC

and wFLC+.

Lemma 2.

N τ;φ⇔ φ; τ⇔ φ P1 p;φ⇔ p

P2 φ+ ff ⇔ ff P3 p+ p⇔ p

P4 〈〈α〉〉; ff ⇔ ff T1
√√

∧ α©;φ⇔ ff

T2
√√

+ α©;φ⇔ ff T3
√√

∧ τ⇔
√√

T4
√√

+ tt⇔
√√

T5
√√

+ τ⇔
√√

S1 φ+ ψ ⇔ ψ + φ S2 (φ+ ψ) + ϕ⇔ φ+ (ψ + ϕ)

SI φ+ (ψ ∧ ϕ) ⇒ (φ+ ψ) ∧ (φ+ ϕ) DC (φ ∨ ψ);ϕ⇔ (φ;ϕ) ∨ (ψ;ϕ)

SC (φ+ ψ);ϕ⇔ (φ;ϕ) + (ψ;ϕ) C (φ;ψ);ϕ⇔ φ; (ψ;ϕ)

IC (φ ∧ ψ);ϕ⇔ (φ;ϕ) ∧ (ψ;ϕ) DB 〈〈α〉〉;φ1 ∧ [[α]];φ2 ⇒ 〈〈α〉〉; (φ1 ∧ φ2)

DD 〈〈α〉〉;φ1 ∨ 〈〈α〉〉;φ2 ⇔ 〈〈α〉〉; (φ1 ∨ φ2)

A formula φ is called a propositional normal form (PNF for short) if it does not contain

any subformula of the form p;ψ or τ;ψ or ψ; τ.

Lemma 3. For any given formula φ, there is another formula φ′ that is a PNF such that

φ⇔ φ′.

Thus, from now on, we assume that all formulae are PNF unless otherwise stated. We

will now define what it means for a formula to be a guard.

Definition 4.

(1) α© and p are guards.

(2) If φ and ψ are guards, so are φ ∧ ψ, φ ∨ ψ and φ+ ψ.

(3) If φ is a guard, so are φ;ψ and σX.φ, where ψ is any formula of FLC+.

X is said to be guarded in φ if each occurrence of X is within a subformula ψ that is

a guard. If all variables in fn(φ)∪ bn(φ) are guarded, then φ is called guarded. A formula

φ is said to be strictly guarded if φ is guarded and for any X ∈ fn(φ) ∪ bn(φ), there does

not exist a subformula of the form X+ψ, (X�χ)+ψ, (X;ϕ)+χ or (X;ϕ�χ)+ψ, where

� ∈ {∨,∧}.

Example 1. The formulae 〈〈α〉〉;X;Y , νX.(〈〈α〉〉 ∨ 〈〈β〉〉);X; (Y + Z), ff ;X are guarded, but

X, 〈〈α〉〉 ∧ X, μX.(X + Y) ∨ [[α]], μX.(〈〈α〉〉;X ∨ 〈〈β〉〉); μY .(Y + 〈〈α〉〉) are not. 〈〈α〉〉;X;Y and ff;X

are strictly guarded, but νX.(〈〈α〉〉 ∨ 〈〈β〉〉);X; (Y + Z) is not.

We will use LFLC+ to denote all formulae of FLC+ that are closed and guarded, and

LFLC for the subset of cFLC in which all formulae are guarded.

The following lemma states the monotonicity of the semantics, which follows immedi-

ately from the definition.

Connection between logical and algebraic approaches 925

Lemma 4.

(1) If φ⇒ ψ, then φ;ϕ⇒ ψ;ϕ and ϕ;φ⇒ ϕ;ψ.

(2) If φ1 ⇒ φ2 and ψ1 ⇒ ψ2, then φ1 + ψ1 ⇒ φ2 + ψ2.

(3) For any valuation ρ, ρ′ and any φ ∈ LFLC+ , if ρ ⊆ ρ′, then |[φ]|ρ ⊆ |[φ]|ρ′ .
(4) For any φ ∈ LFLC+ , if ρ is a monotonic valuation and A1 ⊆ A2, then |[φ]|ρ(A1) ⊆

|[φ]|ρ(A2).

Definition 5. Given a set of processes A ⊆ BPAε,Ω
δ , A is said to be closed with respect to

≈∗ if ∀P ∈ A and ∀Q ∈ BPAε,Ω
δ , P ≈∗ Q implies that Q ∈ A.

In the following, we will use C≈∗ to denote the set {A ⊆ BPAε,Ω
δ | A is closed with

respect to ≈∗}.
We have the following results arising from the above definition.

Lemma 5. If A1,A2 ∈ C≈∗ , then:

(1) A1 ∩A2 and A1 ∪A2 are closed with respect to ≈∗.

(2) {P ∈ BPAε,Ω
δ | if P

a⇒ P ′ then P ′ ∈ A1} is closed with respect to ≈∗.

(3) {P ∈ BPAε,Ω
δ | ∃P ′ ∈ A1.P

a⇒ P ′} is closed with respect to ≈∗.

(4) A1 + A2 is closed with respect to ≈∗, where A1 + A2 denotes the set {P | ∃P1 ∈
A1.∃P2 ∈ A2.P ≈∗ P1 + P2}.

Proof. The proofs for parts 1, 2 and 3 can be found in Stirling (2001), and the proof

for part 4 is straightforward by Definition 5.

For any set of processes A ⊆ BPAε,Ω
δ , we can associate with it the following set:

Ad =̂ {P ∈ A | if P ≈∗ Q and Q ∈ BPAε,Ω
δ then Q ∈ A}.

The set Ad is the largest set that is closed with respect to ≈∗ contained in A.

Lemma 6. For any set A,Ai ⊆ BPAε,Ω
δ , where i = 1, 2, we have:

(1) Ad ∈ C≈∗ .

(2) Ad ⊆ A.

(3) Ad = A if A ∈ C≈∗ .

(4) Ad
1 ⊆ Ad

2 if A1 ⊆ A2.

(5) Ad
1 + Ad

2 ⊆ Ad if A1 + A2 ⊆ A.

Proof. The statements are immediate from the definition.

Definition 6. We say that f ∈ MPTT preserves C≈∗ if f(A) ∈ C≈∗ for any A ∈ C≈∗ . Also,

a valuation ρ is said to preserve C≈∗ if for any X ∈ Var, we have ρ(X) preserves C≈∗ .

We will use fd to denote the predicate transfer defined as fd(A) = (f(A))d, and ρd for

the valuation defined by ρd(X) = (ρ(X))d.

From Lemma 6, it is clear that f ⊆ f′ implies fd ⊆C≈ (f′)d for any f, f′ ∈ MPTT, where

f ⊆C≈∗ f
′ means that for any A ∈ C≈∗ , we have f(A) ⊆ f′(A). But the converse is not

true in general. Also, from the definition, fd and ρd both preserve C≈.

Lemma 7. For any f ∈ MPTT, any φ ∈ LFLC+ and any valuation ρ:

N. Zhan 926

(1) If ρ preserves C≈∗ , so does |[φ]|ρ.
(2) |[φ]|ρd ⊆C≈∗ f

d if |[φ]|ρ ⊆C≈∗ f.

(3) fd ⊆C≈∗ |[φ]|ρd if f ⊆C≈∗ |[φ]|ρ.

Proof. The proof proceeds by simultaneous induction on the structure of φ: we will

only consider the two interesting cases.

— φ = φ1;φ2

(1) From the induction hypothesis, it is easy to see that |[φ1]|ρ and |[φ2]|ρ preserve

C≈∗ . Therefore, |[φ1]|ρ · |[φ2]|ρ also preserves C≈∗ by Definition 6, namely |[φ1;φ2]|ρ
preserves C≈∗ according to Definition 3.

(2) From the induction hypothesis for (1), we get that |[φ1]|ρd and |[φ2]|ρd preserve C≈∗ .

Thus, |[φ1;φ2]|ρd also preserves C≈∗ by Definition 6 and Definition 3. So, for any

A ∈ C≈∗ , P ∈ |[φ1;φ2]|ρd(A), and any Q ∈ BPAε,Ω
δ such that P ≈∗ Q, it follows that

Q ∈ |[φ1;φ2]|ρd(A). On the other hand, we have that |[φ1;φ2]|ρd(A) ⊆ |[φ1;φ2]|ρ(A)

according to Lemma 4(3) because ρd ⊆ ρ from Definition 6, so |[φ1;φ2]|ρd(A) ⊆
f(A) since |[φ1;φ2]|ρ ⊆C≈∗ f. Hence, |[φ1;φ2]|ρd ⊆C≈∗ f

d.

(3) The proof of this part is similar to the proof of (2).

— φ = μX.φ1

Assume g = �{f′ ∈ MPTT | |[φ1]|ρ[X�f′] ⊆ f′}.
(1) Since |[φ1]|ρ[X�g] ⊆ g, by induction on (2), we have |[φ1]|(ρ[X�g])d ⊆C≈∗ g

d. On the

other hand, it is easy to see that (ρ[X � g])d =C≈∗ ρ[X � gd] by Definition 6, so

|[φ1]|ρ[X�gd] ⊆C≈∗ g
d by the induction hypothesis. Let g∗ be defined as

g∗(A) =

{
gd(A) if A ∈ C≈∗;

g(A) otherwise.

Applying the induction hypothesis again, it is not hard to show |[φ1]|ρ[X�g∗] ⊆ g∗.

So g = g∗ by the assumption and Lemma 6(3), hence |[φ]|ρ preserves C≈∗ .

(2) By the induction hypothesis for (2), we have |[φ1]|ρd[X�gd] ⊆C≈∗ g
d. On the other

hand, it is easy to show that gd ⊆C≈∗ fd using Lemma 6(4), as |[μX.φ1]|ρ =

|[φ1]|ρ[X�g] = g ⊆ f.

(3) The proof of this part is similar.

Applying Lemma 7, we can show that FLC+ with respect to ≈∗ has the tree model

property, that is, we have the following theorem.

Theorem 3. Given P ,Q ∈ BPAε,Ω
δ , if P ≈∗ Q, then for any closed formula φ of wFLC+,

we have P |= φ if and only if Q |= φ.

Proof. For any closed φ of wFLC+, by Lemma 7, we have that |[φ]| preserves C≈∗ ,

so |[φ]|(BPAε,Ω
δ) is closed with respect to ≈∗. Thus, P ∈ |[φ]|(BPAε,Ω

δ) if and only if

Q ∈ |[φ]|(BPAε,Ω
δ) since P ≈∗ Q. That is, P |= φ if and only if Q |= φ.

In order to facilitate proofs by induction on formulae, we need to define a well-founded

order on the formulae of FLC+, which we will denote by <. To this end, we first define a

Connection between logical and algebraic approaches 927

partial order, denoted by ≺, on FLC+ × FLC+ as follows: (φ1, φ2) ≺ (ψ1, ψ2) if and only

if φ1;φ2 ⇔ ψ1;ψ2 and φ1 is a proper subformula of ψ1. In other words, we assume that

the left association of ; has higher precedence. For example, (〈a〉, 〈b〉; 〈c〉) ≺ (〈a〉; 〈b〉, 〈c〉).
Then, we say φ < ψ if and only if either φ is a proper subformula of ψ, or φ ≺ ψ. It is

easy to see that < is well-founded.

3.2. Defining ‘+’ in FLC with respect to ≈∗

Proving the definability of ‘+’ in FLC with respect to ≈∗ is achieved through the following

three steps:

(1) We show that in some special cases ‘+’ can be defined essentially by conjunction and

disjunction.

(2) We prove that the elimination of ‘+’ in a strictly guarded formula φ of FLC+ with

respect to ≈∗ can be reduced to one of the above special cases.

(3) Finally, to complete the proof, we show that for any φ ∈ LFLC+ there exists a strictly

guarded formula φ′ ∈ LFLC+ such that φ⇔ φ′.

For the first step, we need the following fact.

Fact 1.

(1) For any P ,Q ∈ BPAε,Ω
δ and any valuation ρ, if P |=ρ 〈〈α〉〉;φ, then P + Q |=ρ 〈〈α〉〉;φ.

(2) If P |=ρ [[α]];φ1 and Q |=ρ [[α]];φ2, then P + Q |=ρ [[α]]; (φ1 ∨ φ2).

The following lemma claims that in some special cases, ‘+’ can be defined essentially

by conjunction and disjunction.

Lemma 8. Let {α1, · · · , αn} and {κ1, · · · , κk} be subsets of {β1, · · · , βm}, where βi = βj if

i = j and n, k � m. Assume 〈α1, · · · , αn〉 = 〈β1, · · · , βn〉 and 〈κ1, · · · , κk〉 = 〈βl1 , · · · , βlk 〉,
where lj ∈ {1, · · · , m} for j = 1 · · · k. Then⎛⎝ n∧

i=1

ni∧
j=1

〈〈αi〉〉;φi,j ∧
m∧
i=1

[[βi]];ψi ∧ q1

⎞⎠+

⎛⎝ k∧
i=1

ki∧
j=1

〈〈κi〉〉;ϕi,j ∧
m∧
i=1

[[βi]]; χi ∧ q2

⎞⎠
⇔

n∧
i=1

ni∧
j=1

〈〈αi〉〉; (φi,j ∧ ψi) ∧
k∧
i=1

ki∧
j=1

〈〈κi〉〉; (ϕi,j ∧ χli) ∧
m∧
i=1

[[βi]]; (ψi ∨ χi) ∧ q1 ∧ q2

where q1 ⇔ tt or q1 ⇔ τ, and q2 ⇔ tt or q2 ⇔ τ.

Proof.

(⇒) Suppose

P |=ρ

⎛⎝ n∧
i=1

ni∧
j=1

〈〈αi〉〉;φi,j ∧
m∧
i=1

[[βi]];ψi ∧ q1

⎞⎠+

⎛⎝ k∧
i=1

ki∧
j=1

〈〈κi〉〉;ϕi,j ∧
m∧
i=1

[[βi]]; χi ∧ q2

⎞⎠ ,

N. Zhan 928

where ρ is a valuation. By the semantics of FLC+ with respect to ≈∗, there exist P1

and P2 such that

P ≈∗ P1 + P2, (2)

P1 |=ρ

⎛⎝ n∧
i=1

ni∧
j=1

〈〈αi〉〉;φi,j ∧
m∧
i=1

[[βi]];ψi

⎞⎠, (3)

P2 |=ρ

⎛⎝ k∧
i=1

ki∧
j=1

〈〈κi〉〉;ϕi,j ∧
m∧
i=1

[[βi]]; χi

⎞⎠. (4)

This implies

P1 |=ρ

n∧
i=1

ni∧
j=1

〈〈αi〉〉; (φi,j ∧ ψi) (5)

by (3) and DB. Similarly, by (4) and DB, we have

P2 |=ρ

k∧
i=1

ki∧
j=1

〈〈κi〉〉; (ϕi,j ∧ χli). (6)

By (5), (6) and Fact 1(1), it follows that

P1 + P2 |=
n∧
i=1

ni∧
j=1

〈〈αi〉〉; (φi,j ∧ ψi) ∧
k∧
i=1

ki∧
j=1

〈〈κi〉〉; (ϕi,j ∧ χli). (7)

Moreover, it can be shown that

P1 + P2 |=
m∧
i=1

[[βi]]; (ψi ∨ χi) (8)

from (3), (4) and Fact 1(2). Thus, from (7), (8) and Theorem 3, we have

P |=ρ

n∧
i=1

ni∧
j=1

〈αi〉; (φi,j ∧ ψi) ∧
k∧
i=1

ki∧
j=1

〈κi〉; (ϕi,j ∧ χli) ∧
m∧
i=1

[βi](ψi ∨ χi) ∧ q1 ∧ q2.

(⇐) Assume

P |=ρ

n∧
i=1

ni∧
j=1

〈〈αi〉〉; (φi,j ∧ ψi) ∧

k∧
i=1

ki∧
j=1

〈〈κi〉〉; (ϕi,j ∧ χli) ∧ (9)

m∧
i=1

[[βi]]; (ψi ∨ χi) ∧ q1 ∧ q2,

where ρ is a valuation. It is easy to prove that P ≈∗ Σli=1Σ
iαi
j=1(τ)

nj,1 ; αi; (τ)nj,2 ;Pi,j , where:

nj,1, nj,2 ∈ �; τn stands for

n︷ ︸︸ ︷
τ; . . . ; τ with τn = ε if n = 0; l � m; and for any 1 � i, j � l,

Connection between logical and algebraic approaches 929

if i = j, then αi = αj . So we have

Σli=1Σ
iαi
j=1(τ)

nj,1 ; αi; (τ)nj,2 ;Pi,j |=ρ

n∧
i=1

ni∧
j=1

〈〈αi〉〉; (φi,j ∧ ψi) (10)

by Theorem 3. This implies that for each 1 � i � n and 1 � j � ni, there exist

1 � ri � l and 1 � hj � iαri such that αri = αi and Pri,hj |=ρ φi,j ∧ ψi. Let

P ′ =̂ Σni=1Σ
ni
j=1(τ)

nj,1 ; αri ; (τ)nj,2 ;Pri,hj .

It is obvious that

P ′ |=ρ

n∧
i=1

ni∧
j=1

〈〈αi〉〉φi,j ∧
m∧
i=1

[[βi]]ψi ∧ q1. (11)

Similarly, we get that for each 1 � i � k and 1 � j � ki, there exist 1 � ri � l and

1 � hj � iαri such that αri = κi and Pri,hj |= ϕi,j ∧ χi. Let

P ′′ =̂ Σki=1Σ
ni
j=1(τ)

nj,1 ; αri ; (τ)nj,2 ;Pri,hj .

It is easy to show that

P ′′ |=ρ

k∧
i=1

ki∧
j=1

〈〈κi〉〉;ϕi,j ∧
m∧
i=1

[[βi]]; χi ∧ q2. (12)

Then we partition Σl
i=1Σ

iαi
j=1(τ)

nj,1 ; αi; (τ)nj,2 ;Pi,j into two parts P ′ and P ′′ by the following

algorithm. For all 1 � i � l, we perform the following steps:

(1) If αi = βj for some j ∈ {1, · · · , m}, let

I1 =̂ {h | Pi,h |= ψj}

and

I2 =̂ {h | Pi,h |= χj}.
Since

P |= [[βj]]; (ψj ∨ χj),
it is clear that I1 ∪ I2 = {1, · · · , iαi}.
Otherwise, let I1=̂{1, · · · , iαi} and I2 = �.

(2) Let

P ′ := P ′ +
∑
h∈I1

(τ)nj,1 ; αi; (τ)nj,2 ;Pi,h

and

P ′′ := P ′′ +
∑
h∈I2

(τ)nj,1 ; αi; (τ)nj,2 ;Pi,h.

Because for all 1 � i, j � m, if i = j, we have βi = βj , it is easy to show that (11) and

(12) remain invariant during the partitioning.

N. Zhan 930

In addition, it is easy to see that P ′ + P ′′ ≈∗ P . Therefore, from Theorem 3,

P |=ρ

(∧n
i=1

∧ni
j=1 〈〈αi〉〉;φi,j ∧

∧m
i=1 [[βi]]; χi ∧ q1

)
+
(∧k

i=1

∧ki
j=1 〈〈κi〉〉;ϕi,j ∧

∧m
i=1 [[βi]]; χi ∧ q2

)
.

The following corollary follows immediately from Lemma 8.

Corollary 1.

(1) [[α]];φ1 + [[α]];φ2 ⇔ [[α]]; (φ1 ∨ φ2).

(2) [[α]];φ1 + [[β]];φ2 ⇔ tt.

(3) 〈〈α〉〉;φ1 + 〈〈β〉〉;φ2 ⇔ 〈〈α〉〉;φ1 ∧ 〈〈β〉〉;φ2.

(4) (〈〈α〉〉;φ1 ∧ [[α]];φ2) + tt⇔ 〈〈α〉〉; (φ1 ∧ φ2).

(5) 〈〈α〉〉;φ1 + [[α]];φ2 ⇔ 〈〈α〉〉;φ1.

(6) 〈〈α〉〉;φ1 + [[β]]φ2 ⇔ 〈〈α〉〉φ1.

We can now complete the second step by proving the following lemma.

Lemma 9. For any φ of FLC+, if φ is strictly guarded, there exists φ′ in which no +

occurs such that φ′ ⇔ φ and φ′ is also strictly guarded.

Proof. The proof proceeds by induction on the structure of φ – we will only give the

interesting case of φ = φ1 + φ2.

Let φ = φ1 + φ2. Since φ is strictly guarded, so are φ1 and φ2. By the induction

hypothesis, there exist φ′
i such that φ′

i is strictly guarded, φ′
i ⇔ φi and no + occurs in φ′

i

for i = 1, 2. Using the laws of boolean algebra and Lemma 2, we can transfer φ′
1 and φ′

2

equivalently as follows:

φ′
1 ⇔

m1∨
i=1

⎛⎝m1,i∧
j=1

m1,i,j∧
h=1

〈〈α1,i,j〉〉;φ1,i,j,h ∧
m′

1,i∧
j=1

[[β1,i,j]];ψ1,i,j ∧ q1,i

⎞⎠ (13)

φ′
2 ⇔

m2∨
i=1

⎛⎝m2,i∧
j=1

m2,i,j∧
h=1

〈〈α2,i,j〉〉;φ2,i,j,h ∧
m′

2,i∧
j=1

[[β2,i,j]];ψ2,i,j ∧ q2,i

⎞⎠, (14)

where qi,j ∈ {tt,
√√
, τ} for i = 1, 2 and j = 1, · · · , mi, and

∀1 � i � 2, ∀1 � j � mi.(∀1 � k1, k2 � mi,j .k1 = k2 ⇒ αi,j,k1
= αi,j,k2

∧
∀1 � k1, k2 � m

′
i,j .k1 = k2 ⇒ βi,j,k1

= βi,j,k2
∧

∀1 � k1 � mi,j .αi,j,k1
= βi,j,k1

).

By S1, S2, SD and SC, we have

φ′
1 + φ′

2 ⇔
m1∨
i1=1

m2∨
i2=1

⎡⎣⎛⎝m1,i1∧
j=1

m1,i1 ,j∧
h=1

〈〈α1,i1 ,j〉〉;φ1,i1 ,j,h ∧
m′

1,i1∧
j=1

[[β1,i1 ,j]];ψ1,i1 ,j ∧ q1,i1

⎞⎠
+

⎛⎝m2,i2∧
j=1

m2,i2 ,j∧
h=1

〈〈α2,i2 ,j〉〉;φ2,i2 ,j,h ∧
m′

2,i2∧
j=1

[[β2,i2 ,j]];ψ2,i2 ,j ∧ q2,i2

⎞⎠⎤⎦ (15)

Connection between logical and algebraic approaches 931

In the following, for any 1 � i1 � m1, 1 � i2 � m2, we consider the corresponding disjunct

from the following three cases:

(1) q1,i1 =
√√

and q2,i2 =
√√

.

Thus, applying Lemma 2 and Lemma 8, there is a formula ϕi1 ,i2 in which no + occurs

such that

ϕi1 ,i2 ⇔

⎛⎝m1,i1∧
j=1

m1,i1 ,j∧
h=1

〈〈α1,i1 ,j〉〉;φ1,i1 ,j,h ∧
m′

1,i1∧
j=1

[[β1,i1 ,j]];ψ1,i1 ,j ∧ q1,i1

⎞⎠
+

⎛⎝m2,i2∧
j=1

m2,i2 ,j∧
h=1

〈〈α2,i2 ,j〉〉;φ2,i2 ,j,h ∧
m′

2,i2∧
j=1

[[β2,i2 ,j]];ψ2,i2 ,j ∧ q2,i2

⎞⎠.
(2) q1,i1 =

√√
.

Let

Cond1 = (m1,i1 = 0 ∧ ∃j ∈ {1, · · · , m1,i1}.m1,i1 ,j = 0) ∨ m′
1,i1

= 0

Cond2 = (m2,i2 = 0 ∧ ∃j ∈ {1, · · · , m2,i2}.m2,i2 ,j = 0) ∨ m′
2,i2

= 0

Thus, we consider the following three subcases:

(2.1) Cond1 holds.

So let ϕi1 ,i2 =̂ff. By T1 and P2, it follows that ϕi1 ,i2 is equivalent to the disjunct;

(2.2) ¬Cond1 ∧ Cond2 holds.

So let ϕi1 ,i2 =̂ff. By T2 and P2, it is easy to see that ϕi1 ,i2 is equivalent to the

disjunct;

(2.3) ¬Cond1 ∧ ¬Cond2 holds.

For this subcase, we need to consider the following three subsubcases:

(2.3.1) q2,i2 =
√√

.

So let ϕi1 ,i2 =̂
√√

. Using P3, it is easy to see ϕi1 ,i2 is equivalent to the disjunct.

(2.3.2) q2,i2 = ff.

So let ϕi1 ,i2 =̂ff. Using P2, it follows that ϕi1 ,i2 is equivalent to the disjunct.

(2.3.3) q2,i2 = tt.

So let ϕi1 ,i2 =̂
√√

. Using T4, it follows that ϕi1 ,i2 is equivalent to the disjunct.

(3) q2,i2 =
√√

.

This is similar to the above case, and we can find a ϕi1 ,i2 in which no + occurs such

that ϕi1 ,i2 is equivalent to the disjunct.

So let φ′=̂
∨m1

i=1

∨m2

j=1 ϕi,j . By Definition 4, it is easy to see that φ′ is strictly guarded, no

+ occurs in φ′ and φ⇔ φ′.

In the following, we will apply some rewriting techniques to prove that for any closed

and guarded formula φ of FLC+, there exists φ′ that is strictly guarded such that φ⇔ φ′.

Lemma 10. For any φ ∈ LFLC+ , there is φ′ ∈ LFLC+ that is strictly guarded such that

φ⇔ φ′.

N. Zhan 932

Proof. In order to prove the lemma, we need to show the following equations:

μX.φ1[α©;φ2[(X � φ3) + φ4]] ⇔ μX.φ1[α©;φ2[μY .(φ1[α©;φ2[Y]] � φ3) + φ4]] (16)

νX.φ1[α©;φ2[(X � φ3) + φ4]] ⇔ νX.φ1[α©;φ2[νY .(φ1[α©;φ2[Y]] � φ3) + φ4]] (17)

μX.φ1[α©;φ2[(X;φ3 � φ4) + φ5]] ⇔ μX.φ1[α©;φ2[μY .(φ1[α©;φ2[Y]];φ3 � φ4) + φ5]]

(18)

νX.φ1[α©;φ2[(X;φ3 � φ4) + φ5]] ⇔ νX.φ1[α©;φ2[νY .(φ1[α©;φ2[Y]];φ3 � φ4) + φ5]]

(19)

where � ∈ {∧,∨}, φi[] stands for a formula with the hole [], and the formula on the

left-hand side of each equation is guarded.

We will only prove (18) as an example, the others can be proved similarly. Since

φ1[α©;φ2[(X;φ3 � φ4) + φ5]]

is guarded, by the Tarski–Knaster fixed point theorem (Tarski 1955), it is clear that

μX.φ1[α©;φ2[(X;φ3 � φ4) + φ5]]

is the unique least solution of the equation

X =φ1[α©;φ2[(X;φ3 � φ4) + φ5]]. (20)

Let Y be a fresh variable and Y = (X;φ3 � φ4) + φ5. It is easy to see the least solution

of (20) is equivalent to the X-component of the least solution of the following equation

system:

X =φ1[α©;φ2[(X;φ3 � φ4) + φ5]]

Y = (X;φ3 � φ4) + φ5.

Then, by exploiting some rewriting techniques, it is easy to transform the problem of

finding the least solution of the above equation system into the equivalent problem of

finding the least solution of

X =φ1[α©;φ2[(X;φ3 � φ4) + φ5]]

Y = (φ1[α©;φ2[Y]];φ3 � φ4) + φ5.

It is not hard to show the least solution of this equation system is

(μX.φ1[α©;φ2[μY .(φ1[α©;φ2[Y]];φ3 � φ4) + φ5]], μY .(φ1[α©;φ2[Y]];φ3 � φ4) + φ5).

Therefore, (18) follows.

By repeatedly applying (16)–(19), we can rewrite any given formula φ ∈ LFLC+ to φ′,

which is strictly guarded such that φ⇔ φ′.

Remark 1. In the proof of Lemma 10, we only considered the cases where a variable

is guarded by a modality α©, and ignored the cases where a variable is guarded by a

propositional letter p because, from Definition 3, it is easy to show that p;φ⇔ p.

From Lemmas 10 and 9, we can get the following theorem.

Connection between logical and algebraic approaches 933

Theorem 4. ∀φ ∈ LFLC+ , ∃φ′ ∈ LFLC.φ⇔ φ′.

We use the following example to demonstrate how to translate a closed and guarded

formula φ of FLC+ into a formula φ′ of FLC by applying the above procedure.

Example 2. Let φ = μX.νY .〈〈α〉〉; (X + Y);X;Y ; 〈〈β〉〉 ∨ 〈〈κ〉〉. Applying (16), we have

φ⇔ μX.νY .〈〈a〉〉; [μZ.(νV .〈〈α〉〉;Z;X;V ; 〈〈β〉〉 ∨ 〈〈κ〉〉) + Y];X;Y ; 〈〈β〉〉 ∨ 〈〈κ〉〉 =̂ φ′

where

φ1[] =̂ νY .[];X;Y ; 〈〈β〉〉 ∨ 〈〈κ〉〉
φ2[] =̂ []

φ3 =̂

{
tt if � = ∧
ff o.w.

φ4 =̂ Y .

Furthermore, applying (17), we can get

φ′ ⇔ μX.νY .〈〈α〉〉; [μZ.νW .(〈〈α〉〉;W ;X;Y ; 〈〈β〉〉 ∨ 〈〈κ〉〉)
+ (νV .〈〈α〉〉;Z;X;V ; 〈〈β〉〉 ∨ 〈〈κ〉〉)];X;Y ; 〈〈β〉〉 ∨ 〈〈κ〉〉

=̂ φ′′

where

φ1[] =̂ [];X;Y ; 〈〈β〉〉 ∨ 〈〈κ〉〉
φ2[] =̂ μZ.[]

φ3 =̂

{
tt if � = ∧
ff otherwise

φ4 =̂ νV .〈〈α〉〉;Z;X;V ; 〈〈β〉〉 ∨ 〈〈κ〉〉.

Thus, using Lemma 9, we can eliminate ‘+’ in φ′′ as follows:

φ′′ ⇔ μX.νY .〈〈α〉〉;

⎡⎢⎢⎢⎢⎣μZ.νW .

⎛⎜⎜⎜⎜⎝
(〈〈α〉〉;W ;X;Y ; 〈〈β〉〉 + 〈〈κ〉〉)∨
(〈〈α〉〉;W ;X;Y ; 〈〈β〉〉+
νV .〈〈α〉〉;Z;X;V ; 〈〈β〉〉)∨
(νV .〈〈α〉〉;Z;X;V ; 〈〈β〉〉 + 〈〈κ〉〉)∨
(〈〈κ〉〉 + 〈〈κ〉〉)

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦ ;X;Y ; 〈〈β〉〉 ∨ 〈〈κ〉〉

⇔ μX.νY .〈〈α〉〉; [μZ.νW .

⎛⎜⎜⎜⎜⎝
((〈〈α〉〉;W ;X;Y ; 〈〈β〉〉 ∧ 〈〈κ〉〉)∨
(〈〈α〉〉;W ;X;Y ; 〈〈β〉〉∧
νV .〈〈α〉〉;Z;X;V ; 〈〈β〉〉)∨
(νV .〈〈α〉〉;Z;X;V ; 〈〈β〉〉 ∧ 〈〈κ〉〉)∨
〈〈κ〉〉

⎞⎟⎟⎟⎟⎠ ;X;Y ; 〈〈β〉〉 ∨ 〈〈κ〉〉

=̂ φ∗.

It is easy to see that φ⇔ φ∗ and no + occurs in φ∗.

In the following, we will use en(φ) to denote the formula resulting from an application

of the above procedure to φ in which + is eliminated.

N. Zhan 934

4. Connection between BPAε,Ω
δ and FLC+ with respect to ≈∗

In this section, we discuss how to relate the primitives of BPAε,Ω
δ to the connectives of

FLC+.

4.1. Non-determinism

It is clear that the ‘+’ of BPAε,Ω
δ corresponds to the ‘+’ of FLC+. The connection can be

expressed as follows.

Proposition 1.

(i) For any P ,Q ∈ BPAε,Ω
δ , if P |= φ and Q |= ψ, then P + Q |= φ+ ψ.

(ii) For any R ∈ BPAε,Ω
δ , if R |= φ+ψ, then there exist P ,Q ∈ BPAε,Ω

δ such that R ≈∗ P+Q,

P |= φ and Q |= ψ.

4.2. Sequential composition

Normally, although P |= φ and Q |= ψ, we have P ;Q |= φ;ψ because φ may only describe

some partial executions of P . For example, let P = a; τ; b, Q = c; τ; d. It is obvious that

P |= 〈〈a〉〉 and Q |= 〈〈c〉〉, but P ;Q |= 〈〈a〉〉; 〈〈c〉〉. Therefore, we require that φ specify the full

executions of P . This is similar to the premise of the rule Seq-2 that in the process P ;Q,

only after the first segment P has finished its execution, can Q start to run.

Note that a full execution of a process P here means one of its runs, not a trace of the

process. For example,

aaaa · · ·︸ ︷︷ ︸
infinitely many

is a full execution of the process recx.a; x, but an for any n ∈ � is not. Hence, νX.〈〈a〉〉;X
specifies the full executions of recx.a; x, but μX.[[a]];X does not, because νX.〈〈a〉〉;X
expresses the fact there is at least one infinite a-run, while μX.[[a]];X says that all a-runs

are finite. Thus recx.a; x |= (νX.〈〈a〉〉;X);
√√

, but recx.a; x |= (μX.[[a]];X);
√√

.

Another issue is that by the definition of the semantics of P∗, we have nil;P ≈∗ P .

Therefore, the properties of intermediate terminations should be omitted in the resulting

formula, since otherwise the resulting property does not hold in the combined system.

For example, let P = a; τ; nil and Q = b; τ; δ, φ = 〈〈a〉〉;
√√

, and ψ = 〈〈b〉〉. It is obvious

that P |= φ;
√√

and Q |= ψ but P ;Q |= φ;ψ. This is because nil is a neutral element of

the sequential composition in process algebra, but
√

(
√√

) is not a neutral element of the

corresponding chop ‘;’ in the logic. To solve this problem, we will replace every occurrence

of
√√

and
√

in φ with τ in the resulting formulae, that is, φ{τ/
√√
, τ/

√
};ψ. Because τ is a

neutral element of the chop, this is in accordance with nil being a neutral element of the

sequential composition (Aceto and Hennessy 1992).

Additionally,
√

(
√√

) as a sub-formula of φ makes the sub-formula following it with ; be

discarded during the calculation of the meaning of φ according to P1, but the sub-formula

will be picked up when interpreting φ{τ/
√√
, τ/

√
};ψ. This will give rise to problems. For

Connection between logical and algebraic approaches 935

example, nil |=
√√

; [[a]]; 〈〈b〉〉 and a; τ; τ; c |= 〈〈a〉〉; 〈〈c〉〉, but

nil ; (a; τ; τ; c) |= (τ; [[a]]; 〈〈b〉〉); (〈〈a〉〉; 〈〈c〉〉).

So, we require φ to be a propositional normal form. In fact, Lemma 3 guarantees that this

requirement is reasonable.

Summarising, we have the following connection between the chop of FLC+ and the

sequential composition of process algebra.

Theorem 5. Assume φ,ψ ∈ LFLC+ are PNF. If P |= φ;
√√

and Q |= ψ, then P ;Q |=
φ{τ/

√√
, τ/

√
};ψ.

Proof. The proof is by induction on <:

Base cases:

— φ = τ

Since P |= τ;
√√

, it follows that P |=
√√

by N. Hence, �(P). Thus,

P ;Q |= φ{τ/
√√
, τ/

√
};ψ

by Seq-2, N and the assumption Q |= ψ.

— φ = tt or ff

This case is easy.

— φ =
√

or φ =
√√

From P |= φ;
√√

, we have P |=
√√

by P1. Thus, �(P). Hence,

P ;Q |= φ{τ/
√√
, τ/

√
};ψ

by Seq-2, N and the assumption Q |= ψ.

— φ = 〈〈α〉〉
Since P |= 〈〈α〉〉;

√√
, there exists P ′ such that P

α⇒ P ′ and �(P ′). Thus, P ;Q
α→ Q by

Seq-2. Furthermore, because Q |= ψ, we obtain that P ;Q |= φ{τ/
√√
, τ/

√
};ψ.

— φ = [[α]]

It is easy to show that ¬�(P) and ∀P ′.P
α⇒ P ′ implies �(P ′) because P |= [[α]];

√√
.

On the other hand, by Seq-2, it can be shown that ∀R.P ;Q
α⇒ R only if ∃P ′.P

α⇒
P ′ ∧ R ≈∗ Q. Hence, by Theorem 3, P ;Q |= [[α]];ψ.

Induction hypothesis (IH): For any closed PNF formulae ϕ and χ, and P1, P
′
1, P2 ∈ P∗,

if P1 |= ϕ and P2 |= χ, then for any PNF formula γ, if γ < ϕ and P ′
1 |= γ;

√√
, then

P ′
1;P2 |= γ{τ/

√√
, τ/

√
}; χ.

Induction steps:

— φ =
∧
i∈I φi

Since P |= (
∧
i∈I φi;);

√√
, it follows that P |= φi;

√√
for any i ∈ I by the generalised

IC. Besides, it is clear that φi is PNF since φ is PNF. Whence, we have that P ;Q |=
φi{τ/

√√
, τ/

√
};ψ by (IH) for each i ∈ I . Thus, we have P ;Q |= (

∧
φi{τ/

√√
, τ/

√
});ψ

from the generalised IC.

— φ =
∨
i∈I φi

This is similar to the above case.

N. Zhan 936

— φ = φ1;φ2 (without loss of generality, we assume φ2 ⇔ τ by N)

This case is carried out by induction on φ1 with respect to < as follows:

– φ1 = tt or ff

This case is easy to show by P1.

– φ1 =
√

or ψ1 =
√√

This violates the assumption that φ is PNF, so we do not need to consider it.

– φ1 = τ

For P |= (φ1;φ2);
√√

, we have P |= φ2;
√√

by N. Since φ2 is a proper sub-formula

of φ, we get P ;Q |= φ2{τ/
√√
, τ/

√
};ψ by (IH). Therefore,

P ;Q |= (φ1;φ2){τ/
√√
, τ/

√
};ψ

by N.

– ψ1 = 〈〈α〉〉
As P |= 〈〈α〉〉;φ2;

√√
, there exists P ′ such that P

α⇒ P ′ and P ′ |= φ2;
√√

. Because

φ2 < φ, we have P ′;Q |= φ2{τ/
√√
, τ/

√
};ψ by (IH). Thus, by Seq-1, P ;Q |=

(〈〈α〉〉;φ2){τ/
√√
, τ/

√
};ψ.

– ψ1 = [[α]]

It is easy to see that ¬�(P) and for all P ′, P
α⇒ P ′ implies P ′ |= φ2;

√√
, since

P |= [[α]];φ2;
√√

. Moreover, since φ2 < φ, we get P ′;Q |= φ2{τ/
√√
, τ/

√
};ψ by (IH).

On the other hand, by Seq-1, for any R, we have P ;Q
α⇒ R only if there exists

P ′ such that P
α⇒ P ′ and R ≈∗ P ′;Q. Hence, P ;Q |= ([[α]];ψ2){τ/

√√
, τ/

√
};ψ by

Theorem 3.

– φ1 =
∧
i∈I φ

′
i

Since P |= (
∧
i∈I φ

′
i);ψ2;

√√
, we have P |= (

∧
i∈I φ

′
i;ψ2);

√√
from the generalised IC,

therefore P |= (φ′
i;ψ2);

√√
for each i ∈ I . It is obvious that φ′

i;φ2 <
∧
i∈I φ

′
i;ψ2.

It then follows that P ;Q |= (φ′
i;φ2){τ/

√√
, τ/

√
};ψ for any i ∈ I from (IH). Thus,

P ;Q |= ((
∧
i∈I φ

′
i);φ2){τ/

√√
, τ/

√
};ψ by the generalised IC.

– φ1 =
∨
i∈I φ

′

This is similar to the above case.

– φ1 = φ′;φ′′

By C, (φ′;φ′′);φ2 ⇔ φ′; (φ′′;φ2). Thus, it follows that P |= φ′; (φ′′;φ2);
√√

because

P |= (φ′;φ′′);ψ2;
√√

. On the other hand, it is easy to see that φ′; (φ′′;φ2) <

(φ′;φ′′);φ2 by the definition of <. So, we have P ;Q |= (φ′; (φ′′;φ2)){τ/
√√
, τ/

√
};ψ

by (IH), and, therefore, P ;Q |= ((φ′;φ′′);φ2){τ/
√√
, τ/

√
};ψ by applying C.

– φ1 = ναX.φ′

We will use the following property under (IH) to justify this case.

Property 1. If P ′ |= (ναX.σβ1+1
1 X1. · · · .σβn+1

n Xn.ϕ);ψ2;
√√

and Q′ |= χ, then

P ′;Q′ |= [(ναX.σβ1+1
1 X1. · · · .σβn+1

n Xn.ϕ);ψ2]{τ/
√√
, τ/

√
}; χ,

where ϕ is a PNF with one of the forms Y , p, τ, α©, φ′
1 ∨ φ′

2, φ
′
1 ∧ φ′

2, φ
′
1;φ

′
2, σY .φ

′
1

or σλ
′
Y .φ′

1, where λ′ is a limit ordinal.

Connection between logical and algebraic approaches 937

Proof. We use induction on α+ (β1 + 1) + · · · + (βn + 1).

(1) α = 0

This case is trivial.

(2) α = λ, where λ is a limit ordinal

Thus,

P ′ |= (νλX.σβ1+1
1 X1. · · · .σβn+1

n Xn.ϕ);ψ2;
√√

if and only if

∀β < λ.P ′ |= (νβX.σβ1+1
1 X1. · · · .σβn+1

n Xn.ϕ);ψ2;
√√
.

By the local induction hypothesis, we have

∀β < λ.P ′;Q′ |= ((νβX.σβ1+1
1 X1. · · · .σβn+1

n Xn.ϕ);ψ2){τ/
√√
, τ/

√
}; χ.

Therefore, P ′;Q′ |= ((νλX.σβ1+1
1 X1. · · · .σβn+1

n Xn.ϕ);ψ2){τ/
√√
, τ/

√
}; χ.

(3) α = β + 1

By the Tarski–Knaster fixed point theorem (Tarski 1955),

νβ+1σ
β1+1
1 X1. · · · .σβn+1

n Xn.ϕ⇔ ϕ{ϕ′/X}{ϕ′
1/X1} · · · {ϕ′

n/Xn},

where

ϕ′ = νβX.σ
β1+1
1 X1. · · · .σβn+1

n Xn.ϕ,

ϕ′
1 = σ

β1

1 X1.σ
β2+1
2 X2. · · · .σβn+1

n Xn.ϕ{ϕ′/X},
...

ϕ′
i = σ

βi
i Xi.σ

βi+1+1
i+1 Xi+1. · · · .σβn+1

n .ϕ{ϕ′/X}{ϕ′
1/X1} · · · {ϕ′

i−1/Xi−1},
...

ϕ′
n = σβnn Xn.ϕ{ϕ′/X}{ϕ′

1/X1} · · · {ϕ′
n−1/Xn−1}.

For brevity, we use {
→
ϕ∗} to denote the vector {ϕ′/X}{ϕ′

1/X1} · · · {ϕ′
n/Xn}.

Now we show this subcase by a case analysis on the structure of ϕ:

(a) ϕ = p

This case is straightforward.

(b) ϕ = τ

It is easy to show this case using (IH).

(c) ϕ = X or Xi where i = 1, · · · , n
This is trivial by the local induction hypothesis.

(d) ϕ = α©
This is similar to the subcases where ψ1 = α©.

(e) ϕ = φ′
1 ∧ φ′

2

Thus, P ′ |= (φ′
i{

→
ϕ∗};φ2);

√√
for i = 1, 2 as P ′ |= (ϕ′;φ2);

√√
. Applying (IH),

we get

P ′;Q′ |= ((φ′
i{

→
ϕ∗});φ2)){τ/

√√
, τ/

√
}; χ

N. Zhan 938

for i = 1, 2. Hence,

P ′;Q′ |= ((νβ+1.σ
β1+1
1 X1. · · · .σβn+1

n Xn.ϕ);φ2){τ/
√√
, τ/

√
}; χ.

(f) ϕ = φ′
1 ∨ φ′

2

This is similar to the above subcase.

(g) ϕ = φ′
1;φ

′
2

It is obvious that φ′
1{

→
ϕ∗}; (φ′

2{
→
ϕ∗};φ2) < (φ′

1{
→
ϕ∗};φ′

2{
→
ϕ∗});φ2) from the

definition of <. Therefore,

P ′;Q′ |= (φ′
1{

→
ϕ∗}; (φ′

2{
→
ϕ∗};φ2)){τ/

√√
, τ/

√
}; χ

by applying (IH). By C, we have

P ′;Q′ |= (ναX.σβ1+1
1 X1. · · · .σβn+1

n Xn.ϕ;φ2){τ/
√√
, τ/

√
}; χ.

(h) φ′ = σY .φ′′ or σλ
′
Y .φ′ where λ′ is a limit ordinal

From the Tarski–Knaster fixed point theorem (Tarski 1955), these subcases can

be readily reduced to case (2) earlier in the proof of Property 1. This completes

the proof of Property 1.

– φ2 = μαX.φ′

This is similar to the above subcase.

– φ1 = σX.φ′

Applying the Tarski–Knaster fixed point theorem (Tarski 1955) again, this case

can be reduced to the previous two subcases.

— φ = σαX.φ1 or σX.φ1

This is similar to the subcase where we had ψ1 = ναX.φ′ in the proof for the case

φ = φ1;φ2.

Remark 2. In Theorem 5, if P cannot be evolved to a terminated process and P |= φ;
√√

,

where φ is PNF, we can prove that

φ{τ/
√√
, τ/

√
};ψ ⇔ φ{τ/

√√
, τ/

√
}.

This is in accordance with P ;Q ≈∗ P in the model level. For example,

P =̂ rec x.a; τ; x

Q =̂ c; τ; τ; d

φ =̂ νX.〈〈a〉〉;X
ψ =̂ 〈〈c〉〉; 〈〈d〉〉.

It is obvious that P |= φ;
√√

and Q |= ψ, thus

P ;Q |= φ{τ/
√√
, τ/

√
};ψ.

On the other hand, it is easy to see that P ;Q ≈∗ P and

φ{τ/
√√
, τ/

√
};ψ ⇔ φ{τ/

√√
, τ/

√
}.

Connection between logical and algebraic approaches 939

Remark 3. The above remark implies that the converse of Theorem 5 is not valid in

general, that is, it is possible that P ;Q |= φ{τ/
√√
, τ/

√
};ψ and P |= φ;

√√
, where φ is PNF,

but Q |= ψ. For example, in the previous example, let ψ′=̂〈〈d〉〉; 〈〈c〉〉. Since P ;Q ≈∗ P and

φ{τ/
√√
, τ/

√
};ψ′ ⇔ φ{τ/

√√
, τ/

√
},

it is easy to see that

P ;Q |= φ{τ/
√√
, τ/

√
};ψ′

from P |= φ;
√√

, but Q |= ψ′.

4.3. Recursion

Here, we show how to relate rec x to νX and μX. To this end, we first employ a

relation called weak syntactical confirmation between processes and formulae, with the

type Ps × wFLC+ → {tt, ff}, and denoted by |=wsc.

Definition 7. Given a formula φ, we associate a map from 2P
s

to 2P
s

with it, which is

denoted by φ̃ and constructed by the following rules:

√̃√
(E) =̂ {E ∈ Ps | �(E)}

t̃t(E) =̂Ps

f̃f (E) =̂ �

τ̃(E) =̂E
X̃(E) =̂ {x; τn;E | E ∈ E, 0 � n}
〈̃〈α〉〉(E) =̂ {E | ∃E ′ ∈ E.E α⇒ E ′}

[̃[α]](E) =̂ {E | ¬�(E) ∧ E is guarded ∧ ∀E ′.E
α⇒ E ′ ⇒ E ′ ∈ E}˜φ1 ∧ φ2(E) =̂ φ̃1(E) ∩ φ̃2(E)˜φ1 ∨ φ2(E) =̂ φ̃1(E) ∪ φ̃2(E)˜φ1 + φ2(E) =̂ {E | ∃E1, E2.E = E1 + E2 ∧ E1 ∈ φ̃1(E) ∧ E2 ∈ φ̃2(E)}˜φ1;φ2(E) =̂ φ̃1 · φ̃2(E)

σ̃X.φ(E) =̂ {(rec x.E1);E2 | E1 ∈ φ̃({ε}) ∧ E2 ∈ E}

where α ∈ Actτ,E ⊆ Ps.

|=wsc (E,φ) = tt if and only if E ∈ φ̃({ε}); otherwise, |=wsc (E,φ) = ff. In the following,

we use E |=wsc φ to denote |=wsc (E,φ) = tt and E |=wsc φ to denote |=wsc (E,φ) = ff.

Informally, P |=wsc φ means that P and φ have a similar syntax in the sense that

all occurrences of the τ action in P that are not at the head of P are abstracted

away. However, in comparison with the notion of syntactical confirmation in Zhan and

Wu (2005), the clauses for
√√

, x, 〈〈α〉〉 and [[α]] are very different.

N. Zhan 940

Example 3. Let

E0 =̂ rec x.τ; x+ τ

E1 =̂ (τ; τ; a; x; x) + d; τ

E2 =̂ x; (b; τ+ c); τ; y; τ

E3 =̂ E0; a; b; c

and

φ0 =̂
√

φ1 =̂ 〈〈α〉〉;X;X

φ2 =̂ X; 〈〈β〉〉;Y
φ3 =̂ [[α]]; 〈〈β〉〉; 〈〈κ〉〉.

Then, according to the above definition, we have

E0 |=wsc φ0

E1 |=wsc φ1

E2 |=wsc φ2

E3 |=wsc φ3.

The following Theorem shows that |=wsc itself is also compositional.

Theorem 6. Let φ1, φ2 and φ be PNF. Then,

(i) If E1 |=wsc φ1 and E2 |=wsc φ2, then E1 + E2 |=wsc φ1 + φ2.

(ii) If E1 |=wsc φ1 and E2 |=wsc φ2, then E1;E2 |=wsc φ1{τ/
√√
};φ2.

(iii) If E |=wsc φ, then rec x.E |=wsc σX.φ{τ/
√√
}.

Example 4. In Example 3, according to Theorem 6, we obtain

E1 + E2 |=wsc φ1 + φ2

E3; (E1 + E2) |=wsc φ3; (φ1 + φ2)

rec x. rec y.E3; (E1 + E3) |=wsc νX.νY .(φ3; (φ1 + φ2)).

In order to prove Theorem 6, we need the following lemma.

Lemma 11. If φ1, φ2 and φ3 are PNFs and there is no
√√

occurring in φ1, then

(φ̃1 · φ̃2(E)); φ̃3(E) ⊆ φ̃1(φ̃2(E); φ̃3(E)),

where A; B stands for

{E1 ; E2 | E1 ∈ A and E2 ∈ B}.

Proof. We use case analysis on the structure of φ1:

— φ1 = τ, X, tt or ff

These cases are trivial from Definition 7.

Connection between logical and algebraic approaches 941

— φ1 =
√√

This case violates the assumption so we do not need to consider it.

— φ1 = 〈〈α〉〉
LHS = {E | ∃E ′.E

α⇒ E ′ ∧ E ′ ∈ φ̃2(E)}; φ̃3(E)

⊆ {E | ∃E ′.E
α⇒ E ′ ∧ E ′ ∈ φ̃2(E); φ̃3(E)}

= 〈̃〈α〉〉({φ̃2(E); φ̃3(E)})
= RHS.

— φ1 = [[α]]

LHS = {E | ¬�(E) and E is guarded and ∀E ′.E
α⇒ E ′ ⇒ E ′ ∈ φ̃2(E)}; φ̃3(E)

⊆ {E | ¬�(E) and E is guarded and ∀E ′.E
α⇒ E ′ ⇒ E ′ ∈ φ̃2(E); φ̃3(E)}

= [̃[α]] · (φ̃2(E); φ̃3(E))

= RHS.

— φ1 = φ′ ∧ φ′′

LHS = ˜φ′ ∧ φ′′ · φ̃2(E); φ̃3(E)

= (φ̃′ · φ̃2(E) ∩ φ̃′′ · φ̃2(E)); φ̃3(E) (Definition 7)

= (φ̃′ · φ̃2(E); φ̃3(E)) ∩ (φ̃′′ · φ̃2(E); φ̃3(E))

⊆ φ̃′(φ̃2(E); φ̃3(E)) ∩ φ̃′′(φ̃2(E); φ̃3(E)) (induction hypothesis)

= ˜φ′ ∧ φ′′ · (φ̃2(E); φ̃3(E))

= RHS.

— φ1 = φ′ ∨ φ′′

This is similar to the above case.

— φ1 = φ′;φ′′

LHS = (φ̃′;φ′′ · φ̃2(E)); φ̃3(E)

= (φ̃′ · (φ̃′′ · φ̃2(E))); φ̃3(E)

⊆ φ̃′ · (φ̃′′ · φ̃2(E); φ̃3(E)) (induction hypothesis)

⊆ φ̃′ · φ̃′′ · (φ̃2(E); φ̃3(E)) (induction hypothesis)

= (φ̃′;φ′′) · (φ̃2(E); φ̃3(E))

= RHS.
— φ1 = φ1 + φ2

LHS = (˜φ′ + φ′′ · φ̃2(E)); φ̃3(E)

= {E | E ≈∗ E1 + E2∧
E1 ∈ φ̃′ · φ̃2(E)∧
E2 ∈ φ̃′′ · φ̃2(E)}; φ̃3(E) (Definition 7)

= {E;E ′ | E = E1 + E2 ∧ E1 ∈ φ̃′ · φ̃2(E)∧
E2 ∈ φ̃′′ · φ̃2(E) ∧ E ′ ∈ φ̃3(E)} (Definition of ;)

⊆ {E | E ≈∗ E1;E
′ + E2;E

′∧
E1;E

′ ∈ (φ̃′ · φ̃2(E)); φ̃3(E)∧
E2;E

′ ∈ (φ̃′′ · φ̃2(E)); φ̃3(E)} (distribution of ; over +)

⊆ {E | E = E1;E
′ + E2;E

′∧
E1;E

′ ∈ φ̃′ · (φ̃2(E); φ̃3(E))∧
E2;E

′ ∈ φ̃′′ · (φ̃2(E); φ̃3(E))} (induction hypothesis)

⊆ ˜φ′ + φ′′(φ̃2(E); φ̃3(E)) (Definition 7)

= RHS.

N. Zhan 942

— φ1 = νX.φ′

LHS = {(rec x.E1);E2 | E1 ∈ φ̃′({ε})∧
E2 ∈ φ̃2(E)}; φ̃3(E) (Definition 7)

= {((rec x.E1);E2);E3 | E1 ∈ φ̃′({ε})∧
E2 ∈ φ̃2(E) ∧ E3 ∈ φ̃3(E)} (Definition of ;)

= {(rec x.E1); (E2;E3) | E1 ∈ φ̃′({ε})∧
E2 ∈ φ̃2(E) ∧ E3 ∈ φ̃3(E)} (association of ;)

⊆ ˜νX.φ′ · (φ̃2(E); φ̃3(E)) (Definition 7)

= RHS.

— φ1 = μX.φ′

This is similar to the above case.

We can now give the proof for Theorem 6.

Proof. The proofs for parts (i) and (iii) are obvious by Definition 7. The proof for (ii)

can be done by induction on the structure of φ1. We will only consider the interesting

case φ1 = φ′;φ′′:

E1;E2 ∈ {E | E |=wsc φ
′;φ′′}; φ̃2({ε})

⊆ {E | E |=wsc (φ′{([[]]; 〈〈 〉〉)/
√√
};φ′′)}; φ̃2({ε}) (assumption)

⊆ φ̃′{([[]]; 〈〈 〉〉)/
√√
} · ({E | E |=sc φ

′′}; φ̃2({ε})) (Lemma 11)

⊆ φ̃′{([[]]; 〈〈 〉〉)/
√√
} · (˜φ′′{τ/

√
} · φ̃2({ε})) (induction hypothesis)

= ˜(φ′;φ′′{([[]]; 〈〈 〉〉)/
√√
} · φ̃2({ε}).

Hence, E1;E2 |=wsc (φ′;φ′′){([[]]; 〈〈 〉〉)/
√√
};φ2.

In order to establish a correlation between |=wsc and |=, we need the following results.

Lemma 12. Let

fn(E) ⊆ {x1, · · · , xn}
fn(ψ) ⊆ {X1, · · · , Xn}.

If E |=wsc ψ and Pi |= φi;
√√

, then

E{P1/x1, · · · , Pn/xn} |= ψ{φ1/X1, · · · , φn/Xn};
√√
,

provided
√√

does not occur in φi for i ∈ {1, · · · , n} or in ψ.

Proof. The proof is similar to the proof of Theorem 5, using induction on ψ with

respect to <.

The following theorem establishes a connection between |=wsc and |=, to relate rec x to

νX. For instance, in Example 4, we get

rec x. rec y.E3; (E1 + E3) |= νX.νY .(ϕ; (φ+ ψ)).

Connection between logical and algebraic approaches 943

Theorem 7. For any given P ∈ BPAε,Ω
δ and formula φ that is PNF, if P |=wsc φ, then

P |= φ;
√√

.

Proof. This proof is by induction on the structure of φ. The only interesting cases are

the ones when φ = σX.φ′. We will only give the proof for the case when φ = νX.φ′; the

proof for the case when φ = μX.φ′ is similar.

By the Tarski–Knaster fixed point theorem (Tarski 1955),

P |= (νX.φ′);
√√

if and only if P |=
(∧
α<κ

ναX.φ′

)
;
√√
,

where κ is some limit ordinal. Thus, we show this case by induction on α:

— α = 0

This case is trivial.

— α = λ, where λ is a limit ordinal

Since P |= (νλX.φ′);
√

if and only if ∀α < λ.P |= (ναX.φ′);
√√

, this case is true by the

induction hypothesis.

— α = β + 1

Since P |=wsc νX.φ
′, there exists E∗ such that P = rec x.E∗ and E∗ |=wsc φ

′. By the

induction hypothesis, we have P |= (νβX.φ′);
√√

. Therefore, by Lemma 12, we have

E∗{P/x} |= φ′{(νβX.φ′)/Y };
√√

. That is, P |= (νβ+1X.φ′)/Y };
√√

.

5. Case study: a production line

As a consequence of the compositionality of FLC derived in the previous section, we

can use FLC to give a compositional specification for a system. Typically, this may

allow much more concise descriptions of concurrent systems and for easier compos-

ition/decomposition of the verification of a large system from/to some similar and

simpler verifications of the subsystems. For example, using ‘+’ as an auxiliary operator

could be useful in practice because:

(i) It enables a precise and compact specification of certain non-deterministic systems.

(ii) It is very easy to modify the specification of a system when additional alternatives

for the behaviour of the system should be allowed.

(iii) It enhances the possibility of modularity in model checking, which is useful when

redesigning systems.

These advantages are illustrated by the following example. Consider a car factory that

wants to establish the assembly line shown in Figure 2, which we denote by the process

P , for one step in the production. If there is a car available for P , then P will either get

the car, adjust the motor, mount the windscreen, control the car, and then put the car

back on the conveyer belt or P will get the car, mount the windscreen, adjust the motor,

control the car, and then put it back. Afterwards, P may start again. Before or after each

action, some internal actions could be done.

N. Zhan 944

mount_windscreenadjust
get_car

get_car

control

mount_windscreen

adjust control

put_car

put_car

Fig. 2. The Process P

The first option can be specified by

Spec1 =̂ [[get car]]; 〈〈adjust〉〉; 〈〈mount windscreen〉〉; 〈〈control〉〉; 〈〈put car〉〉 ∧ 〈〈get car〉〉; tt,

while the second is described by

Spec2 =̂ [[get car]]; 〈〈mount windscreen〉〉; 〈〈adjust〉〉; 〈〈control〉〉; 〈〈put car〉〉 ∧ 〈〈get car〉〉; tt.

We are now looking for a specification that admits only such systems that offer both

alternatives and can be easily constructed from Spec1 and Spec2. Obviously, Spec1∧Spec2

is not suitable, and neither is Spec1 ∨ Spec2 since it allows for implementations that

exhibit only one of the behaviours. However, Spec1 + Spec2 does describe the behaviour

we have in mind, and a system that offers this behaviour repeatedly is described by

Spec =̂ νX.(Spec1 + Spec2);X.

It is easy to show that rec x.(P1 + P2); x |= Spec, where

P1 =̂ τ∗; get car; τ∗; adjust; τ∗; mount windscreen; τ∗; control; τ∗; put car

P2 =̂ τ∗; get car; τ∗; mount windscreen; τ∗; adjust; τ∗; control; τ∗; put car.

We now assume that the system specification needs modification to allow for a third

alternative behaviour Spec3. This specification may simply be ‘added’ to form

Spec′ =̂ νX.(Spec1 + Spec2 + Spec3);X.

If we establish P3 |= Spec3, we immediately have

rec x.(P1 + P2 + P3); x |= Spec′.

In addition, if we have to modify Spec1 to Spec′1 such that P ′
1 |= Spec′1, we can obtain

rec x.(P ′
1 + P2 + P3); x |= νX.(Spec′1 + Spec2 + Spec3);X.

6. Constructing characteristic formulae for context-free processes up to � and �∗

compositionally

In this section, we will first discuss how to define the characteristic formula of a process

in BPAε,Ω
δ up to �, then consider how to define its characteristic formula up to �∗.

Connection between logical and algebraic approaches 945

We will use the following notation:

[[↓]] = μX.[τ];X

〈〈↑〉〉 = νX.〈τ〉;X.

The first formula says that any process that satisfies the formula must be convergent, that

is, the process cannot perform an infinite sequence of unobservable actions; the second

says that any process with the property may potentially perform an infinite sequence of

unobservable actions, that is, be divergent. It is clear that a divergent process has the

property 〈〈↑〉〉, but cannot satisfy [[↓]].

For simplicity,
∧
α∈Actτ−A [[α]]; ff will be abbreviated to Φ−A from now on.

In the following, we discuss how to characterise the primitives of BPAε,Ω
δ up to the

preorder � so that the characteristic formula of a composite process may be built from

those of the primitives according to its syntactical structure:

— We will first consider the characteristic formulae of δ. It is obvious that for any process

Q, if δ �∗ Q, then Q should have the following properties:

– Q cannot do any action after a finite sequence of τ according to Definition 2;

– Q cannot terminate and must be convergent.

So the characteristic formula of δ up to � can be defined as Φ−{ } (Φ�
δ for short).

Notice that if we view δ as an abbreviation for rec x.x, then δ |=wsc Φ�
δ according to

Definition 7.

— Any process Q with ε �∗ Q, must terminate after executing a finite sequence of τ

actions. Moreover, it cannot execute any action other than τ. Therefore, ε can be

characterised by Φ−{τ} ∧
√√

, written as Φ�
ε . Note that Φ�

ε guarantees that the process

is weak terminated, and ε |=wsc Φ�
ε .

— Intuitively, the characteristic formula of Ω should be 〈〈↑〉〉 up to �. But according to the

observational preorder, all internal actions will be abstracted away, so 〈〈↑〉〉 will become

tt, that is, the characteristic formula of Ω is tt. This is in accordance with Ω � Q for

any Q ∈ BPAε,Ω
δ .

— For an action a ∈ Actτ \ {τ}, for any process Q for which a �∗ Q, the process Q should

have the following properties:

– Q performs a and then evolves to ε;

– Q may perform any finitely many unobservable actions before and after executing

a, but cannot diverge.

Let

Φ�
a = Φ−{a,τ} ∧ ([[ā]] ∧ 〈〈ā〉〉).

So we can define the characteristic formula of a up to � as Φ�
a ;

√√
. It also follows that

a |=wsc Φ�
a by Definition 7.

— The τ action will be abstracted away, so it can be characterised by the formula τ.

— Since the recursive operator may introduce divergence, we define the characteristic

formula according to whether it gives rise to divergence that can be determined by

checking whether the process satisfies 〈〈 ↑ 〉〉. Therefore, unlike in Zhan and Wu (2005)

the characteristic formula of a context-free process up to ∼ can be constructed

N. Zhan 946

syntactically. It is obvious that the characteristic formula for a divergent process Ω

up to �∗ is tt because Ω �∗ Q for any Q ∈ BPAε,Ω
δ . Moreover, it is well known that if

a process E is divergent, then so are E + F and F + E. Therefore, the characteristic

formulae of E + F and F + E up to � are tt also if either of them diverges.

Summarising, given a process term E ∈ Ps, we can use the following algorithm to

associate a formula of wFLC+ with E according to its syntax.

Definition 8. Given a process term E ∈ Ps, we associate with it a formula of wFLC+,

denoted by Ψ�
E , constructed by the following rules:

Ψ�
δ =̂ Φ�

δ

Ψ�
ε =̂ Φ�

ε

Ψ�
Ω =̂ tt

Ψ�
x =̂X

Ψ�
a =̂ Φ�

a for a ∈ Actτ \ {τ}
Ψ�
τ =̂ τ

Ψ�
E1;E2

=̂ Ψ�
E1
{τ/

√√
}; Ψ�

E2
,

Ψ�
E1+E2

=̂

{
tt if Ψ�

E1
⇔ tt or Ψ�

E2
⇔ tt

Ψ�
E1

+ Ψ�
E2

otherwise

Ψ�
rec x.E =̂

{
tt if rec x.E |= 〈〈 ↑ 〉〉
νX.ΨE{τ/

√√
} otherwise.

Definition 8 gives rise to the following lemma.

Lemma 13.

(1) For any E ∈ Ps, we have E |=wsc Ψ�
E and E |=wsc Ψ�

E ;
√√

.

(2) For any P ∈ BPAε,Ω
δ , we have Ψ�

P ;
√√

∈ wLFLC+ .

In the following, we will show that en(Ψ�
P);

√√
is the characteristic formula of P up to

� for each P ∈ BPAε,Ω
δ .

Theorem 8. For any P ∈ BPAε,Ω
δ , we have Q |= en(Ψ�

P);
√√

if and only if P � Q.

Proof.

Only if: By Lemma 13, we have P |=wsc Ψ�
P and therefore P |= Ψ�

P ;
√√

according to

Theorem 7. So it follows that Q |= Ψ�
P ;

√√
by Theorem 2. This completes the proof for

the only if part.

If: Let R = {(P1, P2) | P2 |= ΨP1
Ψ�
P ;

√√
}. Suppose (Q1, Q2) ∈ R. By induction on (Q1, Q2),

we have:

(i) It is obvious that if (Q1, Q2) ∈ R and ↓ (Q1), then �(Q1) if and only if �(Q2).

Connection between logical and algebraic approaches 947

(ii) Suppose Q1
α→ Q′

1. According to the definition of Ψ�
Q1

;
√√

, we have (Ψ�
Q1

;
√√

) ⇒
(〈〈ᾱ〉〉; Ψ�

Q′
1
;
√√

). Therefore, Q2 |= 〈〈ᾱ〉〉; Ψ�
Q′

1
;
√√

. Thus, there exists Q′
2 such that Q2

ᾱ⇒ Q′
2

and Q′
2 |= Ψ�

Q′
1
;
√√

. So, (Q′
1, Q

′
2) ∈ R by the definition.

(iii) Suppose ↓α (Q1).

On the one hand, it is easy to prove

Q1 ≈
iα∑
j=1

τ�0 ; ᾱ; τ�1 ;Q′
j +

∑
β∈Actτ

iβ∑
j=1

τ�j0 β̄; τ�j1 ;Qβ,j + (δ) + (Ω)=̂Q∗
1,

in which δ and Ω are optional. Thus, it follows that ↓ (Qj) for j = 1, . . . , iα.

On the other hand, from Q1 ≈ Q∗
1 and Theorems 2, 1 and 9 (the last of these

will be proved below), we have ΨQ1
;
√√

⇔ ΨQ∗
1
;
√√

. So Q2 |= ΨQ∗
1
. Thus, we have

Q2 |= [[ᾱ]];
∨iα
j=1 ΨQ′

j
;
√√

from Definition 8. So, for any Q′
2, if Q2

ᾱ⇒ Q′
2, we have

Q′
2 |=

∨iα
j=1 ΨQ′

j
;
√√

. That is, Q′
2 |= ΨQ′

j
;
√√

for some j ∈ {1, . . . , iα}. By the induction

hypothesis, we have (Q′
j , Q

′
2) ∈ R and ↓ (Q′

2). Thus, ↓α (Q2).

So we can conclude that Q1 � Q2 from Definition 1.

Remark 4. In Theorem 8, the condition that P is guarded is essential – the theorem fails

without this condition. For instance,

νX.(X + (〈〈α〉〉 ∧ [[α]][[↓]] ∧ Φ−{a}))

is equivalent to Ψrec x.(x+a), but

(νX.(X + (〈〈α〉〉 ∧ [[α]] ∧ Φ−{a})));
√√

is not the characteristic formula of rec x.(x+a) since rex x.(x+b+a) satisfies the formula,

but rec x.(x+ a) � rex x.(x+ b+ a).

In order to define the characteristic formula of P up to �∗, we need to allow [[τ]] and

〈〈τ〉〉 to be formulae of wFLC.

The characteristic formula of P up to �∗, denoted Ψ�∗

P , can be constructed similarly to

its characteristic formula up to �, except that

Ψ�∗

τ = Φ{τ} ∧ ([[τ]] ∧ 〈〈τ〉〉);
√√

and

Ψ�∗

E1;E2
=̂

{
Ψ�∗

E1
{τ/

√√
}; Ψ�∗

E2
if E2 = τ

Ψ�∗

E1
otherwise.

The following lemma says that the proof system for �∗ (See Section 2) will be valid in

FLC+ if P is substituted by Ψ�∗

P ;
√√

, and = by ⇔. That is, we have the following lemma.

N. Zhan 948

Lemma 14.

A0 Ψ�∗

E1+E2
;
√√

⇔ Ψ�∗

E2+E1
;
√√

A1 Ψ�∗

(E1+E2)+E3
;
√√

⇔ Ψ�∗

E1+(E2+E3)
;
√√

A2 Ψ�∗

E+E;
√√

⇔ Ψ�∗

E ;
√√

A3 Ψ�∗

(E1+E2);E3
;
√√

⇔ Ψ�∗

(E1;E3)+(E2;E3)
;
√√

A4 Ψ�∗

(E1;E2);E3
;
√√

⇔ Ψ�∗

E1;(E2;E3)
;
√√

A5 Ψ�∗

rec x.E;
√√

⇔ Ψ�∗

E{rec x.E/x};
√√

A6 Ψ�∗

E+δ;
√√

⇔ Ψ�∗

E ;
√√

A7 Ψ�∗

δ;E;
√√

⇔ Ψ�∗

δ ;
√√

A8 Ψ�∗

E;ε;
√√

⇔ Ψ�∗

E ;
√√

A9 Ψ�∗

ε;E;
√√

⇔ Ψ�∗

E ;
√√

A10 Ψ�∗

P ;
√√

⇒ Ψ�∗

Ω ;
√√

A11 Ψ�∗

P+Ω;
√√

⇒ Ψ�∗

τ;(P+Ω);
√√

A12 Ψ�∗

Ω ;
√√

⇒ Ψ�∗

Ω;P ;
√√

A13 Ψ�∗
μ;τ;

√√
⇔ Ψ�∗

μ ;
√√

A14 Ψ�∗

τ;E+E;
√√

⇔ Ψ�∗

E ;
√√

A15 Ψ�∗

μ;(P+τ;Q);
√√

⇔ Ψ�∗

μ;(P+τ;Q)+μ;Q

√√
.

The following theorem is immediate from Lemma 14 and the result shown in Aceto

and Hennessy (1992) that the proof system for �∗ is complete with respect to BPAε,Ω
δ .

Theorem 9 (Completeness). If E1 ≈ E2, then Ψ�∗

E1
;
√√

⇔ Ψ�∗

E2
;
√√

.

For any process P ∈ BPAε,Ω
δ , we can prove the following result in a similar way to the

proof of Theorem 8.

Theorem 10. For any P ∈ BPAε,Ω
δ , Q |= en(Ψ�∗

P);
√√

if and only if P �∗ Q.

7. Concluding remarks

In this paper, we first proved the definability of the non-deterministic choice ‘+’ in FLC

with respect to the observational semantics, and then established a connection between

FLC and BPAε,Ω
δ . We also gave algorithms for constructing characteristic formulae of a

context-free process up to � and �∗ compositionally.

The significance of this work for the development of highly reliable software is obvious.

The work of the current paper and that of Zhan and Wu (2005) has established some

connections between the algebraic and logical approaches – in particular, connections

with respect to the strong bisimulation semantics and the observational semantics, which

are the most important semantics used in process algebra community.

By relating the constructs of BPAε,Ω
δ to the connectives of FLC, we can obtain

the compositionality of modal logics. So a complex system may be developed using

modal logics but in a process algebra-like compositional manner. The advantages of

compositionality can be seen from the example in Section 5. On the other hand, by

constructing the characteristic formulae up to different semantics, we can reduce many

verification problems arising in an algebraic setting to the corresponding logical setting.

As future work, we believe it will be worth investigating the parallel operator and

establishing a proof system for FLC.

References

Abramsky, S. (1987) Observation equivalence as a testing equivalence. Theoretical Computer Science

53 225–241.

Connection between logical and algebraic approaches 949

Abramsky, S. (1991) A domain equation for bisimulation. Information and Computation 92 161–218.

Aceto, L. and Hennessy, M. (1992) Termination, deadlock, and divergence. Journal of ACM 39 (1)

147–187.

Andersen, H.R., Stirling, C. and Winskel, G. (1994) A compositional proof system for the modal

μ-calculus. Proceedings of the 9th Annual IEEE Symposium on Logic in Computer Science, IEEE

Computer Society Press 144–153.

Barringer, H., Kuiper, R. and Pnueli, R. (1984) Now you may compose temporal logic specifications.

STOC ’84: Proceedings of the sixteenth annual ACM symposium on theory of computing, ACM

51–63.

Barringer, H., Kuiper, R. and Pnueli, R. (1985) A compositional temporal approach to a CSP-like

language. In: Neuhold, E. J. and Chroust, G. (eds.) Formal Models of Programming (Proceedings

of IFIP conference, The Role of Abstract Models in Information Processing), North Holland

207–227.

Bergstra, J. A. and Klop, J.W. (1985) Algebra of communication processes with abstraction.

Theoretical Computer Science 37 77–121.

Dutertre, B. (1995) Complete Proof Systems for First Order Interval Temporal Logic. In: Proceedings

10th Annual IEEE Symposium on Logic in Computer Science (LICS’95), IEEE Computer Society

36–43.

Emerson, E.A. and Jutla, C. S. (1991) Tree automata, μ-calculus, and determinacy. In: Proceedings

32nd Annual Symposium on Foundations of Computer Science (FOCS), IEEE Computer Society

368–377.

Gorrieri, R. and Rensink, A. (2001) Action refinement. Handbook of Process Algebra, Elsevier

Science 1047–1147.

Graf, S. and Sifakis, J. (1986a) A modal characterization of observational congruence on finite

terms of CCS. Information and Control 68 125–145.

Graf, S. and Sifakis, J. (1986b) A logic for the description of non-deterministic programs and their

properties. Information and Control 68 254–270.

Hennessy, M. and Plotkin, G. (1980) Full abstraction for a simple parallel programming language.

In: Proceedings of MFCS’80. Springer-Verlag Lecture Notes in Computer Science 74.

Hoare, C.A.R. (1985) Communicating Sequential Processes, Prentice Hall.

Janin, D. and Walukiewicz, I. (1996) On the expressive completeness of the propositional μ-calculus

with respect to monadic second order logic. In: Proceedings of CONCUR’96. Springer-Verlag

Lecture Notes in Computer Science 1119 263–277.

Kozen, D. (1983) Results on the propositional mu-calculus. Theoretical Computer Science 27 333–

354.

Lange, M. (2002) Local model checking games for fixed point logic with chop. In: Proceedings of

CONCUR’02. Springer-Verlag Lecture Notes in Computer Science 2421 240–254.

Lange, M. and Stirling, C. (2002) Model checking fixed point logic with chop. In: Proceedings of

FOSSACS’02. Springer-Verlag Lecture Notes in Computer Science 2303 250–263.

Larsen, K.G. and Liu, X.X. (1990) Equation solving using modal transition systems. In: Proceedings

of the Fifth Annual IEEE Symposium on Logic in Computer Science (LICS 1990), IEEE Computer

Society 108–107.

Larsen, K.G. and Thomsen, B. (1988) A modal process logic. In: Proceedings of the Third Annual

Symposium on Logic in Computer Science, LICS ’88, IEEE Computer Society 203–210.

Majster-Cederbaum, M. and Salger, F. (2004) Towards the hierarchical verification of reactive

systems. Theoretical Computer Science 318 (3) 243–296.

Milner, R. (1981) A modal characterization of observable machine-behavior. In: Proceedings of

CAAD’81. Springer-Verlag Lecture Notes in Computer Science 112 23–34.

N. Zhan 950

Milner, R. (1989) Communication and Concurrency, Prentice Hall.

Moszkowski, B. (1986) Executing Temporal Logic Programms, Cambridge University Press.

Müller-Olm, M. (1999) A modal fixpoint logic with chop. In: Proceedings of STACS’99. Springer-

Verlag Lecture Notes in Computer Science 1563 510–520.

Paige, R. and Tarjan, R. (1987) Three partition refinement algorithms. SIAM Journal on Computing

16 (6) 973–989.

Pnueli, A. (1977) The temporal logic of programs. In: Proceedings 18th Annual Symposium on

Foundations of Computer Science (FOCS 1977), IEEE Computer Science Society 46–57.

Roscoe, A.W. (1997) The Theory and Practice of Concurrency, Prentice Hall.

Rosner, R. and Pnueli, A. (1986) A choppy logic. In: Proceedings of LICS’86, IEEE Computer

Science Society 306–313.

Steffen, B. and Ingólfsdóttir, A. (1994) Characteristic formulae for processes with divergence.

Information and Computation 110 149–163.

Stirling, C. (2001) Modal and Temporal Logics for Processes, Springer-Verlag.

Tarski, A. (1955) A lattice-theoretical fixpoint theorem and its application. Pacific J. Math. 5

285–309.

van Glabbeek, R. (2001) The linear time vs branching time spectrum I: The semantics of concrete,

sequential processes. In: Bergstra, J. A., Ponse, A. and Smolka, S. A. (eds.) Handbook of Process

Algebra, Elsevier 3–99.

Zhan, N. (2006) Connecting algebraic and logical descriptions of concurrent systems. In: Margaria,

T., Phillipou, A. and Steffen, B (eds.) Proceedings of the Second International Symposium on

Leveraging Applications of Formal Methods, Verification and Validation (ISOLA ’06), IEEE

Computer Society Press 383–391.

Zhan, N. and Majster-Cederbaum, M. (2005) Deriving nondeterminism from conjunction and

disjunction. In: proceedings of FORTE’05. Springer-Verlag Lecture Notes in Computer Science

3731 351–365.

Zhan, N. and Wu, J. (2005) Compositionality of fixpoint logic with chop. In: proceedings of

ICTAC’05. Springer-Verlag Lecture Notes in Computer Science 3722 136–150.

Zhou, C., Hoare, C.A.R. and Ravn, A. (1991) A calculus of durations. Information Processing

Letters 40 (5) 269–276.

