
Improving the Reaction Latency Analysis of
Message Synchronization in ROS

Chenhao Wu∗, Ruoxiang Li†, Naijun Zhan‡∗, and Nan Guan†
∗SKLCS, Institution of Software, Chinese Academy of Sciences, Beijing, China

†City University of Hong Kong, Hong Kong SAR
‡School of Computer Science, Peking University, Beijing, China

{wuch, znj}@ios.ac.cn, nanguan@cityu.edu.hk, ruoxiang.li@my.cityu.edu.hk

Abstract—Multi-sensor data fusion plays a crucial role in
modern autonomous systems, enabling them to perceive the
surroundings from multiple dimensions. However, the accuracy of
fusion output can be compromised by the temporal inconsistency
of input messages from different sources. ROS provides algo-
rithms of message synchronization to mitigate this misalignment
before the data fusion process. Nevertheless, this introduces
additional latency in processing each message, which influences
the real-time performance of ROS systems. Previous research
[1] is the first to analyze and bound the reaction latency of
the ApproximateTime synchronization policy in ROS, which is
essential for analyzing the system-level end-to-end reaction time.
However, their bound is overly pessimistic. In this paper, we
propose a safe and tight reaction latency upper bound for the
ApproximateTime policy. We conduct experiments to validate its
accuracy and assess its improvements compared to [1].

I. INTRODUCTION

Modern autonomous systems rely on real-time data from
multi-sensors to obtain multi-dimensional perception of their
surroundings. Data fusion is pivotal in integrating information
and reducing noise. However, messages from different sources
often exhibit significant disparities in sampling time. This
discrepancy poses challenges for the practical application of
data fusion. Without synchronized message input, the accuracy
and reliability of fusion outcomes are greatly diminished.
Therefore, synchronizing the sampling times of data from
different sensors before the fusion process is crucial.

In the widely-used Robot Operating System (ROS), message
filters are provided as software components to synchronize
messages. Extensive research has been conducted on the
ApproximateTime synchronization policy, a standard synchro-
nization algorithm in ROS that is widely employed in various
autonomous systems. Studies [2], [3] have demonstrated its
excellent performance in minimizing the sampling time dis-
parity of messages.

While the synchronization policy in ROS effectively mit-
igates the disparity of sampling time, it also introduce ad-
ditional latency in processing each message. To ensure the
real-time performance of ROS, it is important to quantify
and upper bound the end-to-end latency it contributes. Recent
research [1] is the first work analyzing the latency caused by
the ApproximateTime synchronization policy. An upper bound
is given on the reaction latency, which measures the maximal
time delay caused by synchronization as a part of the system-
level end-to-end reaction time.

However, their reaction latency upper bound is overly pes-
simistic, making it difficult to be used in end-to-end real time
analysis or real-world development. In this paper, we propose
a more accurate reaction latency upper bound that is both safe
and tight. We conduct experiments under different settings to
verify that our bound performs better in all cases.

II. BACKGROUND AND RELATED WORKS

A. Background

ROS [4] is a set of open-source software libraries and tools
for developing robot applications and autonomous systems.
In the latest version Iron Irwini [5] of ROS 2, four standard
message synchronization policies are provided.

• The ExactTime Policy [6]: It selects the output messages
with exactly the same timestamp. Its output sets are
perfectly aligned ideal for data fusion. However, it is too
restrictive for real-world systems and is seldom used.

• The ApproximateEpsilonTime Policy [7]: It selects mes-
sage sets whose messages’ maximal timestamp difference
is no larger than a user-predefined threshold ϵ, as opposed
to 0 in the ExactTime Policy. However, the optimal value
of ϵ is difficult to be determined or even does not exist.

• The LatestTime Policy [8]: It uses statistics to publish at
the highest frequency among sensors. As it prioritizes the
output frequency, the temporal consistency of its outputs
may be relatively high.

• The ApproximateTime Policy [9]: It predicts the incoming
messages and selects the output set from all the available
messages with the minimum timestamp difference. This
enables the policy to adapt to different input patterns and
output the best-aligned messages possible. Nonetheless,
[10] points out that it focuses on the short-term optimiza-
tion and may yield worse long-term results.

B. Related Works

Data fusion algorithms often assume that messages are
perfectly aligned in terms of sampling time, which is not
the case in the real world. Techniques [11], [12] have been
developed to tackle this issue. But they only work below an
upper bound of the temporal inconsistency.

ROS 2 provides real-time performance enhancements based
on ROS. Researches have been conducted on the response
time analysis of ROS 2. [13] models the execution of ROS



2 applications as processing chains and performs an end-
to-end reaction time analysis. [14] proposes an end-to-end
timing analysis for cause-effect chains in ROS2, considering
the maximum end-to-end reaction time and maximum data
age. However, all these works ignore the latency caused by
the message synchronizer.

Recent work [2] models the ApproximateTime Policy and
analyzes its time disparity upper bound. [3] investigates other
real-time properties of this policy. [10] proposes a novel policy
and illustrates its optimality regarding time disparity. The only
work analyzes the latency caused by message synchronizer is
[1], which provides upper bounds on the passing latency and
reaction latency. In this paper, we aim to propose a better
reaction latency upper bound compared to [1].

III. PROBLEM DEFINITION

A. System Model

The system contains N sensors, each sporadically sampling
messages. We use mj

i to denote the j-th message generated by
the i-th sensor. We may omit the superscript j when it is clear
or irrelevant in the context. The timestamp of mj

i , indicating
when it is sampled by the sensor, is denoted as τ(mj

i ). The
timestamp difference between consecutive messages of the i-
th sensor is bounded within [TL

i , TU
i ], where 0 < TL

i ≤ TU
i .

Note that the case of periodicity TL
i = TU

i is considered.
After sampled by sensors, messages are transmitted via

corresponding queue to the Synchronizer. We denote the queue
of sensor i as Qi. We assume the transmission is reliable
and queues are sufficiently long, ensuring no message loss or
overflow. The delay caused by the transmission or other pre-
processing is bounded within [DL

i , D
U
i ] for messages sampled

by sensor i. It holds that 0 ≤ DL
i ≤ DU

i , which encompasses
the scenario of ignoring the delay DU

i = 0. We denote the
time when message mj

i arrives at the Synchronizer as α(mj
i ).

We assume that the delay will not disrupt the sampling order
of messages, i.e., τ(mj

i ) < τ(ml
k) =⇒ α(mj

i ) < α(ml
k).

The Synchronizer selects output messages based on synchro-
nization policy. In this paper we focus on the timing behaviors
of the ApproximateTime synchronization policy in ROS, which
will be elaborated in section V.

B. Problem Definition

In this paper, we focus on the reaction latency, whose
definition is given below:

Definition 1. (Reaction latency) [1]. Let mk
i be a published

message, tf denote the time when mk
i is published, and mj

i

be the latest published message in {ml
i | l < k}. The reaction

latency experienced by mk
i , denoted as R(mk

i ), is defined as
the difference between the arrival time of mj

i and the published
time of mk

i , i.e., R(mk
i ) = tf − α(mj

i ).

Fig. 1 shows an example of reaction latency of m2
1, which is

the time interval between the arrival of m1
1 and m2

1’s published
time. Intuitively, the reaction latency of a specific sensor
represents the maximum delay introduced by Synchronizer as
a part of the end-to-end reaction time, which measures the

Fig. 1. Example of reaction latency

time the whole system needs to react to an external event.
In a worst-case scenario, an external event happens just after
m1

1 is sampled (yellow lightning). So the first sensor does not
detect it until m2

1 is sampled, and the system can know about
it until its publishing.

We assume the following system information:

• N : the total number of the sensors;
• TL

i and TU
i : the lower and upper bound of timestamp

difference between consecutive messages from sensor i;
• DL

i and DU
i : the lower and upper bound of delay respect-

ing messages from sensor i.

Based on these parameters, we aim to derive a safe and
tight upper bound for reaction latency corresponding to any
published message of the ApproximateTime Policy.

Fig. 2. Illustration of bound properties

Clearly, for any valuation to the set of parameters (e.g. the
black point at x-axis in Fig. 2), there may be infinitely many
real systems sharing the same values to their parameters, but
with different reaction latency, i.e., the black point corresponds
to the orange segment in yellow area. The top point of the
segment (red dot), referred to as optimal valuation bound,
represents the largest reaction latency achievable for a given
parameter valuation. Any value no less than optimal bound
is called a valuation bound. Now, we define a parameter
bound which associates a valuation bound to each valuation
of the parameters. We say a parameter bound is safe if any
associated valuation bound is no less than the corresponding
optimal valuation bound. Also, we say a parameter bound is
tight if there exists some associated valuation bound exactly
same as the corresponding optimal valuation bound. Fig. 2
illustrates the concepts safe, tight and optimal.

In what follows, we will abuse parameter bound as bound.



IV. THE ApproximateTime POLICY

In this section, we introduce the model of the Approximate-
Time Policy presented in [2]. This model abstracts away details
irrelevant to the reaction latency and serves as a basis for our
further analysis. We first introduce some basic concepts.

A. Concepts

The time disparity of a message set is defined as the
maximal difference of the timestamps of any two messages
in the set.

Definition 2 (Time disparity [2]). Let S = {m1, · · · ,mN} be
a set of messages. The time disparity of S, denoted by ∆(S),
is defined as the difference between the largest and smallest
timestamps of messages in S, i.e., ∆(S) = maxmi∈S τ(mi)−
minmj∈S τ(mj).

We define the pivot as the message with the largest times-
tamp among the first messages of each queue. It represents the
message that must be chosen into the next output set and serves
as a reference point for the policy to choose other messages.

Definition 3 (Pivot [2]). Let S = {m1, · · · ,mN}, where each
mi is the first message in Qi. The pivot mP is the message
with the largest timestamp in S. When multiple messages in S
with the largest timestamp, the pivot will be the message with
the maximum queue index.

We call a message set S regular if it contains N elements
from N different queues.

Definition 4 (Selected Set [2]). Let mP be a pivot and Γ be
the set of all regular sets that include mP. The selected set is
the set with the smallest time disparity in Γ. When multiple
sets in Γ with the smallest time disparity, the selected set S =
{m1, ...,mN} satisfies the condition: for any regular set S′ =
{m′

1, ...,m
′
N} ∈ Γ, if ∆(S′) = ∆(S) then ∀i, τ(mi) ≤ τ(m′

i).

Each queue Qi stores all the arrived messages along with a
special message as the tail, called the predicted message. The
predicted message represents the optimistic prediction of the
incoming message, and its timestamp is set to the last arrived
message’s timestamp plus TL

i .

B. Model

The ApproximateTime Policy aims to publish the message
sets with the smallest time disparity. This is achieved by
identifying the pivot and choosing the selected set. However,
if not all queues have sufficient arrived messages, predicted
messages may be included in the selected set. In such case, the
system opts to wait for the corresponding message to arrive.

Algorithm 1 outlines the ApproximateTime Policy. When a
new message arrives, the system replaces the old predicted
message in Qi and generates a new one (Line 1-3). The pivot
and selected set is calculated based on their definitions (Line 5
- 7). If the selected set does not contain any predicted message,
it will be published (Line 9). All messages in the selected set
and all messages preceding them will be discarded (Line 10-
11). If the selected set contains predicted messages, the system
will wait for these messages to arrive (Line 13).

Algorithm 1: The ApproximateTime Policy [2]
Input: the newly arrived message mi

1 discard the old predicted message in Qi;
2 put mi to the end of Qi;
3 generate a new predicted message with timestamp

τ(mi) + TL
i and put it to the end of Qi;

4 while each queue has at least one arrived message do
5 mP ← the current pivot (Definition 3);
6 if all predicted messages’ timestamps > τ(mP)

then
7 S ← the selected set (Definition 4);
8 if all messages in S are arrived messages then
9 publish S;

10 for each mj ∈ S do
11 discard mj and all messages before mj

in the corresponding Qj ;

12 else
13 return;

14 else
15 return;

16 return;

C. An Illustrative Example

Fig. 3. An example of the ApproximateTime Policy

Fig. 3 illustrates an example of the ApproximateTime Policy,
showcasing in the sequence (a) - (e). The x-axis represents
the timestamp. In this example, there are 3 sensors inputting
messages through Q1 to Q3. The timestamp difference bounds
of each sensor is TL

1 = TU
1 = 3, TL

2 = 4, TU
2 = 7, and TL

3 =
TU
3 = 6. Since the ApproximateTime Policy selects outputs

based solely on messages’ timestamp, the delay after sampling
will not affect the composition of the published messages. For
simplicity we ignore the delay in this example, so the black
arrow represents both the timestamp and the arrival time of
each message.



Fig. 1-(a) depicts the initial state of the system. The first
messages of queue 1 and 2 arrive at time 0, while m1

3 arrives
at time 1. Consequently, by time 1, each queue has at least
one message and the latest first message, m1

3 (highlighted in
red), becomes the pivot. In this scenario, the predicted message
of each queue is distant from the pivot, and the selected set
comprises only the arrived messages (circled with a red box).
According to Algorithm 1, the system will publish the selected
set and discard the messages.

Fig. 3-(b) and (c) depict a scenario of waiting for predicted
message. After the publishing and discarding process shown
in (a), messages of each queue arrive after their respective TL.
At time 8 in (b), m2

3 arrives and becomes the new pivot. Since
m4

1, which is the predicted message of the first queue, is closer
to the pivot than the arrived message m3

1, it is included in the
selected set. According to Algorithm 1, the system chooses to
wait for this predicted message. When m4

1 actually arrives at
time 9 in (c), The system selects the same selected set, which
now contains only arrived messages. So the system publishes.

Fig. 3-(d) and (e) illustrate the scenario where message is
later than predicted. After (c), all messages continue to arrive
at the minimal timestamp interval. At time 15 in (d), m3

3

arrives and becomes the pivot. The system chooses a selected
set including a predicted message m5

2 and opts to wait for it.
In (e), m5

2 finally arrives after the maximal timestamp interval
TU
2 = 7 at time 20, which is later than predicted. Now m5

2 is
a worse choice compared to m4

2. Consequently, the system
chooses and publishes a new selected set {m5

1,m
4
2,m

3
3},

which is different from predicted.

V. REACTION LATENCY UPPER BOUND

In [1], a safe reaction latency upper bound of the Ap-
proximateTime Policy is derived. However, this bound is
pessimistic. In the following, we will derive a new reaction
latency upper bound which is safe and tight. A worst-case
system is given as the proof of tightness.

A. New Upper Bound

Consider the reaction latency of mk
i . Use mj

i to denote
the preceding published message in the same queue, tkf to
denote the publishing time of mk

i . Denote the published
sets containing mj

i (resp. mk
i ) by S1

PUB (by S2
PUB). Recall

R(mk
i ) = tkf − α(mj

i ). In [1], the reaction latency is divided
into two parts: R(mk

i ) = (tkf − α(mk
i )) + (α(mk

i )− α(mi
i)).

Upper bounds of the two parts are calculated separately, and
the reaction latency upper bound is given by summing them
up. However, for the first part, the worst case requires mk

i

to be the earliest in S2
PUB. For the second part, the worst case

requires mk
i to be the latest in S2

PUB. This inconsistency results
in the pessimism of their reaction latency upper bound.

By contrast, we propose to divide the reaction latency into
three parts to avoid inconsistency. Assume the pivot of S2

PUB
is m2

P in queue p, i.e., m2
P = m2

p. Use m1
p to denote the

preceding message of m2
p. The timestamps of m1

p and m2
p are

our dividing points. We first prove that m1
p is in S1

PUB.

Lemma 1. Let S1
PUB and S2

PUB be two consecutive published
sets, where S2

PUB is later than S1
PUB. Let m2

p represent the pivot
of S2

PUB and m1
p denoting its preceding message. m1

p must be
included in S1

PUB.

Proof. According to the definition of the pivot (Definition 3),
there is no message in Qp before m2

p when the system is going
to choose and publish S2

PUB. This implies that m1
p is discarded.

According to Algorithm 1, the system only discards all the
published messages and those preceding them (Line 11). Since
m1

p is the message preceding m2
p and m2

p is not yet published
at this time, m1

p must be discarded as a published message.
Given that S1

PUB is the previous published set, so m1
p is

included in S1
PUB.

Now we know the two separation points m1
p and m2

p are
included in the two published sets respectively. The reaction
latency of mk

i is thus divided into three parts:
• the latency from α(mj

i ) to τ(m1
p),

• the latency from τ(m1
p) to τ(m2

p),
• the latency from τ(m2

p) to tkf , the publishing time of mk
i .

The first part can be bounded by the time disparity upper
bound of a published set. In [2], a time disparity upper bound
of any published set is derived. We use ∆ to denote this upper
bound, i.e.,

∆ = max
2≤n≤N

 1

n

∑
n−1 largest

TU
j

 (1)

The second part can be trivially bounded by the maximal
timestamp interval of sensor p.

Upper bound on the third part can be obtained by the
following lemma.

Lemma 2. For any selected set S, ∆ is an upper bound on
its time disparity.

Proof. [2] shows that ∆ is a time disparity bound of a
reference set based on its Lemma 3, Lemma 5 and Theorem 1,
where the reference set is one of the regular set. By Definition
4 we know the selected set S has the smallest time disparity
among all corresponding regular sets. Therefore, ∆ must be a
bound of a selected set.

Lemma 3. For the published set SPUB, let mP be the pivot,
and tf be the publishing time. According to the algorithm,
tf must be the arrival time of a message. Let ml denote this
message and l denote the queue. Then τ(ml) is bounded by

τ(ml)− τ(mP) ≤ TU
l −max(TL

l −∆, 0)

Proof. At time tf , for each non-pivot queue i, let mX
i be

the last message with τ(mX
i ) ≤ τ(mP), and mY

i be the first
message with τ(mY

i ) > τ(mP). If ml is one of mX
i or it is

mP, then τ(ml)− τ(mP) ≤ 0 and the lemma holds.
Otherwise ml is one of mY

i and it is not a predicted
message. Assume ml is mY

l . If TL
l ≤ ∆, we need to prove

that τ(ml)−τ(mP) ≤ TU
l . Since the preceding message of ml



is mX
l , which is earlier than mP, we have τ(ml)− τ(mP) ≤

τ(ml)− τ(mX
l ) ≤ TU

l and the lemma holds.
The only remaining case is TL

l > ∆, we need to prove that

τ(ml)− τ(mP) ≤ ∆+ TU
l − TL

l (2)

Let’s consider the situation when the last message before
ml (regardless of which one) arrived. We use t′ to denote that
time and use primed names to distinguish the corresponding
entities at t′. Let S be the selected set at time tf and S′ be
the selected set at t′. Note that mP

′, all mX
i

′ and mY
i
′, are

the same as their respective unprimed type, except for mY
l

′,
which is not ml but the predicted message corresponding to
ml. We know, at t′, the algorithm failed to publish S′. The
only possible reason is that S′ contains at least one predicted
message (line 13). Next we prove by contradiction that, at this
time, mY

l

′ must be in S′.
Suppose mY

l

′ is not in S′. By the definition of predicted
message, the time interval between mY

l

′ and mX
l

′ is TL
l , which

can not be greater than interval between mY
l and mX

l . Since
mX

l

′
= mX

l and mP
′ = mP, mY

l

′ is closer to mP
′ than mY

l

to mP. Apart from mY
l , all messages are the same as in the

primed case. Therefore, the synchronizer is facing the same
situation at t′ except that mY

l

′ is closer to the pivot than mY
l .

If mY
l

′ is not chosen into S′, mY
l will not be chosen into

S either, which causes contradiction to the fact that mY
l is

actually published. Therefore, mY
l

′ must be in S′.
Since S′ is a selected set, based on lemma 2, we have

τ(mY
l

′
)− τ(mP) = τ(mY

l

′
)− τ(m′

P) ≤ ∆ (3)

Since mY
l

′ is a predicted message and mY
l is the correspond-

ing real message, we have:

τ(mY
l )− τ(mY

l

′
) ≤ TU

l − TL
l (4)

By combining (3) and (4), (2) can be proved. This completes
the proof of the lemma.

Now we can sum the three parts to derive our reaction
latency upper bound.

Theorem 1. For any published message mi, its reaction
latency is upper bounded by

R = ∆+ max
1≤j≤N

TU
j + max

1≤k≤N
(TU

k −max(TL
k −∆, 0)+DU

k )−DL
i

Proof. We use m2
i to denote mi. Let S2

PUB be its published set,
m2

p be the pivot, tf be its publishing time, ml be the message
arrives at tf . Denote the last published message in the same
queue as m1

i , whose published set is S1
PUB. Let m1

p ∈ S1
PUB

be the message in the same queue as m2
p. By the definition of

pivot, there is no message before m2
p when it arrives, which

means that it is adjacent to m1
p. Then we have

R(m2
i )

= α(ml)− α(m1
i )

≤ τ(ml)− τ(m1
i ) +DU

l −DL
i

≤ τ(ml)− τ(m2
p) + τ(m2

p)− τ(m1
p) + τ(m1

p)− τ(m1
i ) +DU

l −DL
i

≤ TU
l −max(TL

l −∆, 0) + TU
p +∆+DU

l −DL
i

≤ ∆+ max
1≤j≤N

TU
j + max

1≤k≤N
(TU

k −max(TL
k −∆, 0) +DU

k )−DL
i

B. Tightness

In the following, we construct a worst-case system to
demonstrate the tightness of our reaction latency upper bound.

The system contains N queues. For i ̸= N − 1, TU
i = T .

Let δ > 0 be a small value, TL
N−1 = T − δ and TU

N−1 = T +
δ. The first message of each queue are sampled sequentially
with an interval of T

N , i.e., τ(m1
1) = 0, τ(m1

i ) − τ(m1
i−1) =

T
N for 2 ≤ i ≤ N . After that, messages in each queue are
sampled at their corresponding TU

i , except for queue N − 1,
whose second message is sampled after interval T and third
message is sampled after TU

N−1 = T + δ. In this system, the
reaction latency of the second message in Q1 approaches R
as δ approaches 0. Next we show the calculation detail of this
result based on a specific example.

Fig. 4. An example of worst-case reaction latency

The case for N = 4 is illustrated in Fig. 4. We use notation
∆

′
= (N−1)T

N to simplify expression.
We first ignore the influence of delay (∀i,DU

i = 0). Upon
the arrival of m1

4(m
1
P), the arrived messages form a regular

set with a time disparity of ∆
′
. However, the system does

not select this set because the interval between the predicted
message of Q3 and m1

P is ∆
′−δ. A regular set comprising the

predicted message of each queue has a smaller time disparity.
The system will have to wait for m2

3. Upon the arrival of m2
3,

the system have multiple regular sets with the smallest time
disparity ∆

′
. According to Algorithm 1 it selects the earliest

set composed of the first messages, specifically including m1
1.

The system encounters a similar scenario upon the arrival of
m2

4(m
2
P). Again, it opts to wait for m3

3, which may arrive after
a smaller time interval (as m3

3
′). However, upon the arrival of

this message, it turns out that the interval between m3
3 and

m2
P is even larger (∆

′
+ δ). Consequently, the system selects

and publishes the set comprising all second messages m2
i ,

specifically including m2
1. The reaction latency of message

m2
1 is given by:

R(m2
1) = tf − α(m1

1) = τ(m3
3)− τ(m1

1) = 2∆
′
+ T + δ

Based on (1) we have ∆ = (N−1)T+δ
N . Let δ ≤ T

N+1 such
that TL

N−1 ≥ ∆. The reaction latency upper bound according
to Theorem 1 is

R = ∆+ max
1≤j≤N

TU
j + max

1≤k≤N
(TU

k −max(TL
k −∆, 0)

= 2∆ + T + 3δ



Since the ApproximateTime policy utilizes only the times-
tamps of messages, the delay has no impact on its selecting
published sets. Therefore we can arbitrarily assign delay
to each message without affecting the above analysis. To
achieve the worst case, we set DL

1 = DU
1 = Dmin and

DL
N−1 = DU

N−1 = Dmax, where Dmin and Dmax represent
the minimal and maximal latency among all queues. Other
queues have arbitrary delays between them. This modification
will add the same term (Dmax − Dmin) to R(m2

1) and R.
Thus we have

R

R(m2
1)

=
2∆ + T + 3δ +Dmax −Dmin

2∆
′
+ T + δ +Dmax −Dmin

δ→0−−−→ 1

This demonstrates the tightness of our bound.

VI. EXPERIMENTS

All our experiments are based on the open-source ROS
2 system of version Iron Irwini. We conduct experiments
on a desktop computer equipped with an Intel(R) Core(TM)
i5-11400H CPU running at 2.70GHz. We also use a real
autonomous vehicle model to validate the timing defect and
exhibit its impact.

There are 4 different experiment settings:
• Random Delay: delay time ranges from 0 to 40 ms.
• Number of Sensors: sensor number ranges from 3 to 9.
• Index of Sensor: different index of sensor evaluated.
• Period Ratio: ratio of TU/TL ranges from 1.0 to 1.8.

Each TL
i is randomly selected in [50, 100] ms.

Fig. 5. Evaluation result of worst-case reaction latency

We evaluate the tightness of our reaction latency upper
bound using the worst-case scenario described in section V-B.

Fig. 5 shows the results. The height of bar denotes the ratio
of the bound to the maximal observed value in all repeated
experiments. The upper bound presented in [1] (tagged as
Previous work) exhibits significant overestimation. In contrast,
the maximum overestimation observed for our result (tagged as
This paper) is 0.3%, demonstrating its tightness. This small
overestimation may stem from the value of δ = T/100. In
addition, among all experiments, our bound is higher than
observed, which verifies its safety.

We conduct further experiments under randomly configured
systems to evaluate the accuracy and robustness of our bound.
The results are shown in Fig. 6. Our bound exhibits low
pessimism across all settings, with an average overestimation
of 20%. The upper bound in [1] has an relatively high average
overestimation of 100%. The remaining overestimation of our
bound can be attributed to the fact that randomly configured
system can hardly yield worst-case scenarios.

Fig. 6. Evaluation result of general-case reaction latency

VII. CONCLUSION

In this paper we present a safe and tight reaction latency
upper bound of the ApproximateTime synchronization policy
in ROS. A specific worst-case system is constructed to prove
its tightness. Experiments on real ROS system are conducted
to evaluate our bound. The results verifies the safety, tightness
and robustness of the proposed reaction latency upper bound.

ACKNOWLEDGMENT

The first and third authors are partly funded by the
National Key R&D Program of China under grants No.
2022YFA1005101 and the NSFC under grant No. 62192732.
The second and fourth authors are partially supported by Hong
Kong GRF under grant no. 15206221 and 11208522.

REFERENCES

[1] R. Li, X. Jiang, Z. Dong, J.-M. Wu, C. J. Xue, and N. Guan, “Worst-case
latency analysis of message synchronization in ROS,” RTSS, 2023.

[2] R. Li, N. Guan, X. Jiang, Z. Guo, Z. Dong, and M. Lv, “Worst-case
time disparity analysis of message synchronization in ROS,” in RTSS,
2022.

[3] R. Li, Z. Dong, J.-M. Wu, C. J. Xue, and N. Guan, “Modeling and
property analysis of the message synchronization policy in ROS,” in
MOST, 2023.

[4] “ROS.” [Online]. Available: https://www.ros.org/
[5] “ROS2 Iron.” [Online]. Available: https://docs.ros.org/en/rolling/Releas

es/Release-Iron-Irwini.html#
[6] “The ExactTime Policy.” [Online]. Available: http://wiki.ros.org/messa

ge filters#ExactTime Policy
[7] “The ApproximateEpsilonTime Policy.” [Online]. Avail-

able: https://github.com/ros2/message filters/blob/rolling/include/mess
age filters/sync policies/approximate epsilon time.h

[8] “The LatestTime Policy.” [Online]. Available:
https://github.com/ros2/message filters/blob/rolling/include/messag
e filters/sync policies/latest time.h

[9] “The ApproximateTime Policy.” [Online]. Available: http://wiki.ros.org
/message filters#ApproximateTime Policy

[10] J. Sun, T. Wang, Y. Li, N. Guan, Z. Guo, and G. Tan, “Seam: An optimal
message synchronizer in ROS with well-bounded time disparity,” in
RTSS, 2023.

[11] J. Peršić, L. Petrović, I. Marković, and I. Petrović, “Online multi-sensor
calibration based on moving object tracking,” in Adv. Robotics, 2021.

[12] M. R. Nowicki, “Spatio-temporal calibration of camera and 3d laser
scanner,” in IEEE Robot. Autom. Lett., 2020.

[13] X. Jiang, D. Ji, N. Guan, R. Li, Y. Tang, and Y. Wang, “Real-time
scheduling and analysis of processing chains on multi-threaded executor
in ROS 2,” in RTSS, 2022.

[14] H. Teper, M. Günzel, N. Ueter, G. von der Brüggen, and J.-J. Chen,
“End-To-End Timing Analysis in ROS2,” in RTSS, 2022.

https://www.ros.org/
https://docs.ros.org/en/rolling/Releases/Release-Iron-Irwini.html#
https://docs.ros.org/en/rolling/Releases/Release-Iron-Irwini.html#
http://wiki.ros.org/message_filters#ExactTime_Policy
http://wiki.ros.org/message_filters#ExactTime_Policy
https://github.com/ros2/message_filters/blob/rolling/include/message_filters/sync_policies/approximate_epsilon_time.h
https://github.com/ros2/message_filters/blob/rolling/include/message_filters/sync_policies/approximate_epsilon_time.h
https://github.com/ros2/message_filters/blob/rolling/include/message_filters/sync_policies/latest_time.h
https://github.com/ros2/message_filters/blob/rolling/include/message_filters/sync_policies/latest_time.h
http://wiki.ros.org/message_filters#ApproximateTime_Policy
http://wiki.ros.org/message_filters#ApproximateTime_Policy

	Introduction
	Background and Related Works
	Background
	Related Works

	Problem Definition
	System Model
	Problem Definition

	The ApproximateTime Policy
	Concepts
	Model
	An Illustrative Example

	Reaction Latency Upper Bound
	New Upper Bound
	Tightness

	Experiments
	Conclusion
	References

