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Abstract
Controller synthesis offers a correct-by-construction methodology to ensure the correctness
and reliability of safety-critical cyber-physical systems (CPS). Controllers are classified based
on the types of controls they employ, which include reset controllers, feedback controllers,
and switching logic controllers. Reset controllers steer the behavior of a CPS to achieve system
objectives by restricting its initial set and redefining its reset map associated with discrete jumps.
Although the synthesis of feedback controllers and switching logic controllers has received
considerable attention, research on reset controller synthesis is still in its early stages, despite
its theoretical and practical significance. This paper outlines our recent efforts to address this
gap. Our approach reduces the problem to computing differential invariants and reach-avoid
sets. For polynomial CPS, the resulting problems can be solved by further reduction to convex
optimizations. Moreover, considering the inevitable presence of time delays in CPS design,
we further consider synthesizing reset controllers for CPS that incorporate delays.

Introduction
As defined by Baheti and Gill in (Baheti and Gill 2011), cyber-physical systems (CPS) refers
to a new generation of systems integrating computational and physical capabilities, capable
of interacting with humans through various modalities. The ability to interact with, and
expand the capabilities of, the physical world through computation, communication, and
control serves as an enabler for future technology developments. CPS is pervasive in our
daily life, examples include spacecrafts, high speed train control systems, automated plants
and factories, and so on. Many of these systems are entrusted with safety-critical tasks,
necessitating the development of formally verifiable CPS that are both safe and reliable.
However, efficiently developing such CPS remains a longstanding challenge.

Controller synthesis provides a correct-by-construction mechanism to guarantee the
correctness and reliability of CPS. In essence, controller synthesis endeavors to create
an operational behavior model for a component, based on a model of assumed environ-
mental behaviors and a system goal. This process ensures the system reliably achieves the
specified objective when the environment aligns with the provided assumptions. Con-
troller synthesis has attracted increasing attention from computer science and control
theory in the past decades. In the case of CPS, an operation (i.e., control) could be
either an input to dynamics, a switch condition from one mode to another, an initial
condition for each mode, or a reset map when conducting discrete jumps. Depending
on the types of controls, controllers can be naturally classified into feedback controllers,
switching logic controllers, and reset controllers. In the literature, there is a huge bulk
of work on the synthesis of controllers of the first two types, please refer to (Tomlin,
Lygeros, and Sastry 2000; Asarin et al. 2000; Coogan and Arcak 2012; Jha et al. 2010;
Taly, Gulwani, and Tiwari 2011; Girard 2012; Gulwani and Tiwari 2008; Taly, Gulwani,
and Tiwari 2011; Zhao, Zhan, and Kapur 2013) and the references therein. However,
the synthesis of controllers of the third type is still in the infant stage, despite its the-
oretical and practical significance. Many important practical problems can be reduced
to reset controller synthesis, e.g., the substantial instantaneous change in velocity of a
spacecraft induced by impulsive controls in satellite rendezvous (Brentari et al. 2018),
re-configuring safety-critical devices such as spacecraft when an exception happens, etc.
Furthermore, as indicated by the following motivating example, in some cases, the system
goal cannot be achieved only with feedback controllers and/or switching logic controllers.
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Example 1 (A motivating example (Liu et al. 2023)). Consider
a CPS given in Fig. 1. Suppose the safe sets in mode q1 and q2

q1 :
ẋ = 1

Domq1 = [15, 30)
Initq1 = [15, 18]

Ge1 = [25, +∞)
Re1 (x) = x

e1 = (q1, q2)

Ge2 = (–∞, 1]
Re2 (x) = x

e2 = (q2, q1)

q2 :
ẋ = –1

Domq2 = (0, 15]
Initq2 = [11, 14]

Figure 1. Hybrid Automaton for Example 1

are S1 = [15, 31) , S2 = (0, 14], respectively. As the dynamics in
the two modes both are autonomous without inputs, it is impossible
to find feedback controllers for them to maintain safety. Moreover,
one may easily observe that once a discrete jump happens, the system
will not be safe anymore. This means only strengthening the domain
constraints and guards for discrete jumps to maintain safety is trivially
impossible. However, it is possible to synthesize a reset controller to
maintain safety.

Related Work Numerous studies have delved into verify-
ing hybrid systems, which can broadly be categorized into
model-checking and theorem proving. the former is essen-
tially based on reachable set computation, currently can only
handle bounded time. For example, tools such as SpaceEx
(Frehse et al. 2011), iSAT-ODE (Eggers, Fränzle, and Herde
2008), dReach (Kong et al. 2015), and Flow* (Chen, Ábrahám,
and Sankaranarayanan 2013) fall within this category. In con-
trast, the latter can provide unbounded verification of HSs
with scalability based on specification logics and invariant gen-
eration, e.g., differential dynamic Logic (dL) (Platzer 2012) and
hyrid Hoare logic (HHL) (Liu et al. 2010; Zhan et al. 2023). dL
demonstrates significant capability in deducing verification for
HSs, proving effective across various verification challenges, in-
cluding the verification of liveness properties (Tan and Platzer
2019) and switched systems (Tan and Platzer 2021) with the
help of the tool KeYmaera X (Platzer 2010). While, HHL can
handle more complicated behaviors of HSs such as commu-
nication, concurrency, and so on, with the help of the tool
HHLProver (Wang, Zhan, and Zou 2015). Event-B (Richard
2024; Richard et al. 2017; Richard et al. 2015; Butler, Abrial,
and Banach 2016; Dupont et al. 2021; Dupont et al. 2022) also
stands as a useful method for formal modeling and verifying
HSs.

Verification of HSs can also be pursued in a correct-by-
construction manner through refinement syntactically (Back
and Wright 2012) or controller synthesis semantically (Bozga
and Sifakis 2022). Refinement plays a key role in classical pro-
gramming theories, however, the counterparts for HSs are
really few in the literature, although model-based design has
become dominant in the design of HSs. (Loos and Platzer

2016) proposed differential refinement logic to cope with re-
finement relation among different levels of abstraction for a
given HS. (Yan et al. 2020) defined a set of refinement rules
for transforming HCSP to SystemC, and (S. Wang et al. 2024)
proposed a set of refinement rules for transforming HCSP
to ANSI-C, both with the correctness guarantee based on
approximate bisimulation.

Extensive work has been dedicated to controller synthe-
sis for HSs. One category of research focuses on feedback
controllers, with various methods addressing this type of syn-
thesis problem, including moment-based methods (Zhao, Mo-
han, and Vasudevan 2019), Hamilton-Jacobi-based methods
(Tomlin, Lygeros, and Sastry 2000), barrier certificates-based
methods (Ames et al. 2016), abstraction-based methods (Gi-
rard 2012), and counter-example-guided inductive synthesis
methods (Abate et al. 2017). Another category addresses the
synthesis problem of switching controllers, which can be clas-
sified into abstraction-based methods (Girard 2012; Tabuada
2009; Belta, Yordanov, and Gol 2017), and constraint-solving-
based methods (Taly, Gulwani, and Tiwari 2011; Zhao, Zhan,
and Kapur 2013; Taly and Tiwari 2010). However, since its
initial exploration in (Clegg 1958), there has been limited
research on reset controllers, which is the focus of our paper.

Synopsis of Reset Controller Synthesis
In this paper, we summarize our recent work on the reset
controller synthesis for CPS, details can be found in (Liu et
al. 2023; Su et al. 2023).

Reset Controller Synthesis Without Time-delay
Firstly, we investigate reset controller synthesis with ideal
mathematical models, i.e., hybrid automata (HA), which is a
popular model for CPS. Formally,

Definition 1. An HAH is a tuple (Q,X , f , Init, Dom, E ,G,R),
where

• Q = {q1, q2, . . . } is a finite set of modes;
• X = {x1, . . . , xn} is a set of continuous state variables,

also written as a vector of variables x, which is interpreted over
Rn. Normally, we use X ⊆ Rn to denote the continuous
state space, and a (hybrid) state of the system is represented
as (q,x) ∈ Q× X ;

• Init ⊆ Q×X is a set of initial states;
• Dom : Q → P(X ) assigns to each q ∈ Q a domain, written as
Domq ⊆ X . The system can reside in a mode only if the domain
constrain of the mode is satisfied;

• f : Q → (X → Rn) assigns to each q ∈ Q a locally Lipschitz
continuous vector field fq defined over Domq;

• E ⊆ Q×Q is a set of edges ( jumps);
• G : E → P(X ) assigns a guard condition Ge to each edge e,

s.t. the discrete jump can happen only if its guard is satisfied;
• R(·, ·) : E × X → P(X ) assigns a reset map Re to each

edge e ∈ E with Re : X → P(X ), that relates a state in the
pre-mode to a set of states in the post-mode1.

1. For an edge e = (q, p), we refer to q as the pre-mode of e, and p as the
post-mode of e
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The semantics of HA in terms of (hybrid) trajectories is de-
fined in a standard way, please refer to (Zhan, Shuling, and
Zhao 2017) for a comprehensive introduction to HA.

Now, we can formulate the problems of interest as follows.

Problem 1 (Reset Controller Synthesis). Given an HA H as
Definition 1, we consider

• Problem 1.1: for a given safe set S ⊆ Q × X , whether one
can redefine Init and R, and obtain a redesigned HA H′ =
(Q, X, f , Initr , Dom, E ,G,Rr), which is safe w.r.t. S .

• Problem 1.2: for a given safe set S ⊆ Q × X and a target
set TR ⊆ Q× X , whether one can redefine Init and R, and
obtain a redesigned HA H′ = (Q, X, f , Initr , Dom, E ,G,Rr),
s.t. for any (q,x) ∈ Initr , any trajectory starting from (q,x)
must reach T , and H′ is safe w.r.t. S before reaching into T .

To address the above two problems, the following notions
are needed.

Definition 2 (Transverse Set). Given a vector field f and a set
S ⊆ Rn, the transverse set of S w.r.t. f , denoted by transf↑S of
f over S, is defined by

transf↑S =̂
{
x ∈ ∂S | ∀ϵ > 0, ∃t ∈ [0, ϵ),ϕ(x, t) /∈ S

}
where ∂S is the boundary of S.

Intuitively, any trajectory starting from the transverse set
of S w.r.t. f will leave S immediately. For example, in Fig. 2,
x2 ∈ transf↑S, x3 ∈ transf↑S, x4 ∈ transf↑S, but x1 /∈
transf↑S . Clearly, if transf↑S is empty, then any trajectory
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Figure 2. An example of transverse set. The arrows indicate the vector field
of f . The area within the black square is a safe area S. The dotted line on
the lower border of the square indicates that this part of the boundary is not
within the safe area.

starting from S stays within S forever, which implies S is a
differential invariant (see Definition 3).

Definition 3 (Differential Invariant (DI)). A set C is a differ-
ential invariant of vector field f w.r.t. a set S if for all x ∈ C and
T ≥ 0 (

∀t ∈ [0, T].
ϕ(x, t) ∈ S

)
=⇒

(
∀t ∈ [0, T].
ϕ(x, t) ∈ C

)

In other words, transf↑S∩C = ∅. Clearly, if S ⊆ C, then
C is a DI of f w.r.t. S. Normally, we are only interested in
such DIs that are subsets of the domain constraint S.

Definition 4 (Reach-Avoid Set). Given a vector field f , an initial
set X0, a safe set S and a target set T , the (maximal) reach-avoid
set RA(X0

S––→
f

T ) is defined by

RA(X0
S––→
f

T )=̂x ∈ X0 ∩ S

∣∣∣∣∣∣∣
∃T ≥ 0,
∀t ∈ [0, T),ϕ(x, t) ∈ S ∧
∀ϵ > 0, ∃t ∈ [T, T + ϵ),ϕ(x, t) ∈ T


For example, in Fig.2, the blue shaded area (including the

border) is RA(S S––→
f

transf↑S).

Problem 1.1 can be solved by requiring that in each mode
q ∈ Q any continuous flow from the initial set Initq either

i) safely reaches the must-jump part of a jump eventually, that

is
⋃

p∈Post(q) RA(SDq
SDq
–––––→

f q

Domc
q ∩ Ge=(q,p))), where SDq =

Domq ∩ Sq, Post(q) stands for the set of modes to which
there is a jump from q, and Domc

q for the complement of
Domq; or

ii) stays inside the mode forever and subject to the safety

constraint, that is SDq \ RA(SDq
SDq
–––––→

f q

transf q↑SDq ).

Obviously, i) corresponds to a reach-avoid problem, which
considers how to compute the maximal set of initial states s.t.
flows starting from them reach the target eventually while
remaining inside the safe set before the reach. As showed
in (Liu et al. 2023), by introducing a template, whose 0-
sublevel set is an inner-approximation of the reach-avoid set,
the maximal reach-avoid set of polynomial hybrid automata
can be inner-approximated by solving a certain convex pro-
gramming problem, which can be done using off-the-shell
SDP solvers. After that, new reset maps corresponding to the
jump are also synthesized to guarantee safety in the post-mode.
While, ii) corresponds to a differential invariant generation
problem, which can be solved relatively well by exploiting
existing methods, e.g., (Liu, Zhan, and Zhao 2011; Ghorbal
and Platzer 2014; Xue et al. 2019; Q. Wang et al. 2022).

For example, consider a given HA and a safe set as in Fig. 3.
In the first step, we compute the must-jump parts respectively
in q1 and q2 by computing the corresponding reach-avoid sets,
and obtain

RA1 = RA(SDq1

SDq1––––––→
fq1

transfq1↑SDc
q1
∩Ge1

),

RA2 = RA(SDq2

SDq2––––––→
fq2

transfq2↑SDc
q2
∩Ge2

)
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In the second step, we can compute DIs respectively in q1 and
q2 by computing the corresponding transverse set, and obtain

DI1 = SDq1 \ RA(SDq1

SDq1––––––→
fq1

transfq1↑SDq1
),

DI2 = SDq2 \ RA(SDq2

SDq2––––––→
fq2

transfq2↑SDq2
)

Finally, we can redefine the initial set and reset map as follows:

Initr
q1 = Initq1 ∩ (DI1 ∪ RA1),

Initr
q2 = Initq2 ∩ (DI2 ∪ RA2),

Rr
e1 (x) ⊆ DI2 ∪ RA2 ∀x ∈ Ge1 ,

Rr
e2 (x) ⊆ DI1 ∪ RA1 ∀x ∈ Ge2

The redefined HA is also shown in Fig. 3.
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Ge1

SDq1

Initq1
Ge2

Initq2

SDq2

DI1

RA1

DI2

RA2

e1,Re1 (x) ⊆ DI2 ∪ RA2

e2,Re2 (x) ⊆ DI1 ∪ RA1

Figure 3. An example for solving Problem 1.1. The areas enclosed by black
squares represent the intersection of the domain and the safe set, denoted
as SDq. The regions enclosed by orange circles indicate the initial sets, while
those enclosed by blue circles represent the guard conditions. The red re-
gions denote the differential invariants of the respective modes, while the
green regions signify the reach-avoid sets.

Problem 1.2 In this case, step i) becomes more involved, as a
flow may also reach the target set of the current mode, but it
is still a reach-avoid problem and can thus be treated similarly.
Furthermore, a non-trivial liveness constraint rules out the
case of ii). However, an additional problem must be addressed,
i.e., how to avoid the unreachability caused by infinite loops
among the modes. This problem can be solved by searching
and blocking all simple loops among the modes.

For example, to synthesize a reset controller for the HA
given in Fig. 4 with the given safe and target set, we have to

• block all trajectories that can reach q3, as Tq3 = ∅, which
implies the liveness cannot be satisfied along these trajecto-
ries;

• block all trajectories with a simple loop containing q0, q1
and q2, as such trajectories could evolve infinitely along
the loop, and never reach the target.

We omit the technical details of how to implement the above
idea by redefining the initial set and reset map, and technical
details can be found in (Liu et al. 2023).

e0 = (q0, q1)

Ge0 = [28, +∞)

Re0 (x) = x

e1 = (q1, q2)

Ge1 = [25, 26]

Re1 (x) = x

e2 = (q2, q0)

Ge2 = [27, 29]

Re2 (x) = x – 4

e3 = (q1, q3)

Re3 (x) = x

Ge3 = [28, 30]

q0 :
ẋ = 1

Initq0 = [23, 25]
Domq0 = (–∞, 32)
Tq0 = [29, +∞]
Sq0 = [23, 32]

q1 :
ẋ = –1

Initq1 = [26, 30]
Domq1 = (22, +∞)
Tq1 = [22, 24]
Sq1 = [22, 32]

q2 :
ẋ = 0.1

Initq2 = [22, 26]
Domq2 = [22, 28)
Tq2 = [24, 25]
Sq2 = [22, 30]

q3 :
ẋ = 1

Initq3 = [22, 26]
Domq3 = [22, 28)

Tq3 = ∅
Sq3 = [22, 30]

Figure 4. An example of solving Problem 1.2

Reset controller synthesis with time-delay
Time-delay is inevitable in the design of CPS, because of

• conversions between analog and digital signal domains,
• complex digital signal-processing chains enhancing,
• filtering and fusing sensory signals before they enter con-

trol,
• sensor networks harvesting multiple sensor sources before

feeding them to control,
• network delays in networked control applications physi-

cally removing the controller(s) from the control path, and
just name a few.

The delay-free assumption makes the problem mathematically
simple, but physically impossible, even impractical, as it may
lead to deteriorated control performance and invalid verifi-
cation certificates obtained by abstracting away time-delay
in practice. So, realistically, we should consider this issue in
the context of time-delay like delay hybrid automata (Bai et
al. 2021) so that the time spent by the reset controller can be
modeled as time delay and thus it can be taken into account.
Thus, we investigate the reset controller synthesis problem
for delay hybrid systems (dHS), which contains delay in both
continuous evolution and discrete transitions, and propose a
novel reach-avoid analysis based method.

Reach-avoid for delay differential equations (DDE) Consider
a DDE of the form

˙x(t) = f (x(t),x(t – τ)), f ∈ R
[
x(t),x(t – τ)

]n (1)

a safe set S ∈ Rn and a target set T ∈ Rn, a (the maximal)
reach-avoid set RA(f ,S , T ) is defined as

RA(f ,S , T ) =̂ϕ ∈ C([–τ, 0],S)

∣∣∣∣∣∣∣∣
∃ t′ ∈ R,

xϕ(t′) ∈ T ∧

∀ t ∈ [–τ, t′), xϕ(t) ∈ S


where C([–τ, 0],S) stands for the set of all continuous functions
from [–τ, 0] to S , xϕ denote the trajectory of (1) with initial
function ϕ.
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Definition 5 (Reach-Avoid Barrier Functional (RABFal)).
Given a DDE of the form (1) with domain D ⊆ Rn, safe set
S and target set T represented by

S =̂ {x ∈ D | s(x) ≤ 0},
T =̂ {x ∈ D | g(x) ≤ 0} ,

we call H : C([–τ, 0], D) → R a reach-avoid barrier functional
if we can find a bounded function w : D → R such that the following
conditions are satisfied:

–
dH(xt)

dt
≥ 0, ∀xt ∈ C([–τ, 0],S) (2)

H(xt) ≥ 0, ∀xt ∈ C([–τ, 0],S), s.t. xt(0) ∈ ∂S (3)

H(xt) –
dw(xt(0))

dt
≥ g(xt(0)), ∀xt ∈ C([–τ, 0],S) (4)

Theorem 1 (Su et al. 2023). Given a DDE of the form (1), safe
set S and target set T , the set RAin defined by the 0-sublevel set of
H, i.e.,

RAin =̂ {ϕ ∈ C([–τ, 0],S) | H(ϕ) < 0} (5)

is an inner-approximation ofRA(f ,S , T ), i.e., RAin ⊆ RA(f , Safe, T ).

In (Su et al. 2023), it is proved that synthesizing such RAB-
Fal can be reduced to solving SDP.

Definition 6 (Delay Hybrid Automata (dHA) (Bai et al. 2021)).
A dHA H is a tuple (Q, X, Init, Dom, f , E ,G,R, ST), where

• Q = {q1, . . . , qm} is a finite set of modes;
• X = {x1, . . . , xn} is a set of continuous state; variables, written

as x = (x1, . . . , xn) ∈ Rn;
• Init ⊆ Q × C([–τ, 0],Rn) assigns a set of initial states to

each mode;
• Dom : Q → 2R

n defines a domain constraint for each mode
q ∈ Q, denoted by Domq ⊆ Rn

• f : Q → (C([–τ, 0],Rn) → Rn) defines the continuous dy-
namics with delay for each mode q, denoted by fq with the type
C([–τ, 0],Rn) → Rn;

• E ⊆ Q×Q is a set of discrete transitions;
• G : E → 2R

n assigns a switching guard Ge ⊆ Rn to each
discrete transition e ∈ E ;

• R : E → (Rn → C([–τ, 0],Rn)) assigns a reset function Re to
each discrete transition e ∈ E with Re : Rn → C([–τ, 0],Rn);

• ST ⊆ E ×R assigns a switching time to each discrete transition
e ∈ E .

Problem 2 (Reset Controller Synthesis for dHA). Given a
dHA H as Definition 6, for a given compact safe set S ⊆ Q × X
and a compact target set T ⊆ Q × X, whether we can find a new
Initr and Rr such that all executions of the redesigned dHA Hr =
(Q, X, Init, Dom, f , E ,G,Rr , Initr , ST) will reach T while stay
in S before that.

With the above notions and notations, Problem 2 can
be solved quite similarly to Problem 1.2, we will use the
following example to illustrate the procedure, the details can
be found in Su et al. 2023.

As an illustrative example, consider a dHA given by Fig. 5.
The synthesis procedure can be sketched by the following four
steps:

e1,Ge1

Re1 (x1,x2)
ST(e1)

e3,Ge3

Re3 (x1,x2)
ST(e3)

e2,Ge2

Re2 (x1,x2)
ST(e2)

q1
ẋ = fq1 (x,x(t – τ1))

Domq1
Initq1

q2
ẋ = fq2 (x,x(t – τ2))

Domq2

q3
ẋ = fq3 (x,x(t – τ3))

Domq3
Tq3

Figure 5. A Running Example of dHA

Step 1: First, compute the reach-avoid set for each mode w.r.t.
the target and the guards of the outgoing jumps from it,
and then partition a mode into several sub-modes so that
their reach-avoid sets are mutually disjoint. For instance,
for the running example, as shown in Fig 6, q1 is split into
three sub-modes q11, q12 and q13, their reach-avoid sets are
computed as below:

RAin(1, 1) =̂ RA(SDq1

SDq1––––––→
fq1

g11 ∩ Domc
q1 )

RAin(1, 2) =̂ RA(SDq1

SDq1––––––→
fq1

g12 ∩ Domc
q1 )

RAin(1, 3) =̂ RA(SDq1

SDq1––––––→
fq1

g13 ∩ Domc
q1 )

q1

Domq1

Ge1

Ge2

q11

Domq1

g11 := Ge1 \ Ge2

q12

Domq1

g12 := Ge2 \ Ge1

q13

Domq1

g13 := Ge2 ∩ Ge1

Figure 6. Mode partition of q1. On the left side, we have mode q1 with guard
conditionsG(e1) andG(e2) represented by blue slashes, and their intersection
is depicted by orange slashes. The reach-avoid set to G(e1) ∪ G(e2) can be
partitioned into three disjoint regions: g11, g12, and g13, as shown above.
Accordingly, mode q1 is partitioned into three sub-modes: q11, q12, and q13.

With the same manner, the partition of mode q3 is shown
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in Fig 7. Their reach-avoid set are computed as below:

RAin(3, 0) =̂ RA(SDq3

SDq3––––––→
fq3

g30)

RAin(3, 1) =̂ RA(SDq3

SDq3––––––→
fq3

g31 ∩ Domc
q3 )

q3

Domq3 Ge3

Tq3

q31

Domq3

g31 := Ge3

q30

Domq3

g30 := Tq3

Figure 7. Mode partition of q3. The left side is mode q3 with the guard con-
dition Ge3 (blue slashes) and the target set Tq3 (green slashes). Correspond-
ingly, q3 is partitioned into two sub-modes: q30 with g30 = Tq3 , and q31 with
g31 = Ge3 .

Second, introduce necessary jumps between these sub-
modes. Let’s consider q31 in the running example, edges
from q31 to the sub-modes of q1 are introduced, i.e., in-
cluding (q31, q11), (q31, q12) and (q31, q13).
Third, define a reset map for each introduced edge. Con-
tinue the above example, we have

Rm
(q31,q11)(x) ⊆ RAin(1, 1), ∀x ∈ g31

Rm
(q31,q12)(x) ⊆ RAin(1, 2), ∀x ∈ g31

Rm
(q31,q13)(x) ⊆ RAin(1, 3), ∀x ∈ g31

Rm
(q13,q30)(x) ⊆ RAin(3, 0), ∀x ∈ g13

Rm
(q13,q31)(x) ⊆ RAin(3, 1), ∀x ∈ g13

· · ·

Step 2: Abstract away continuous dynamics in each resulted
mode, and obtain a discrete directed graph (DDG). For
the running example, it results a DDG given in Fig 8.

q11

q12
q13

q30
q31

q2

Figure 8. The resulting discrete directed graph

Step 3: Prune unsatisfied paths in the DDG, which are either
unreachable like ⟨q14, q2⟩ and ⟨q31, q12, q2⟩ or simple loops
like ⟨q14, q31, q14⟩. The DDG after pruning is depicted in
Fig. 9, where only two edges (e11, e12) are left.

q11

q12
q13

q30
q31

q2

e11 e12

Figure 9. The discrete directed graph after edges prunning

Step 4: Synthesize a reset controller from the resulted DDG.
Continue the running example, we obtain

Rr
e2 (x) = Rm

e12 (x), ∀x ∈ Gm
e12 = Ge2 \ Ge1

Rr
e2 (x) = Rm

e11 (x), ∀x ∈ Gm
e11 = Ge2 ∩ Ge1

Initr
q1 = Initm

q12 ∪ Initm
q13 .

Conclusion
In summary, we sketched our recent work on reset controller
synthesis, including

• how to reduce the problem of synthesizing reset controllers
w.r.t. safety and liveness constraints to reach-avoid set com-
putation and differential invariant generation problems;

• how to inner-approximate reach-avoid sets by solving cer-
tain convex programming problems, which can be effi-
ciently conducted using off-the-shell SDP solvers;

• how to synthesize reset controller for dHSs by reducing it
into reach-avoid analysis for DDE and depth-first-search
with block for discrete-event dynamics.

Regarding future work, we emphasize the following topics
along this research line:

• To extend our approach to more general hybrid systems
with more complicated vector fields, e.g., probabilistic and
stochastic behavior, the combination of time-delay and
stochasticity, and so on.

• To investigate potential correct-by-construction frame-
works for HSs by taking feedback controller synthesis,
switching logic controller synthesis, and reset controller
synthesis into account uniformly.

• To integrate recent advances on differential invariant gen-
eration by reduction non-convex programming to SDP
e.g. in (Q. Wang et al. 2021, 2022) into our synthesis
framework.

• To conduct more complicated and practical case studies.
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