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ABSTRACT
Models of software components at different levels of abstraction,
component interfaces, contracts, implementations and publications
are important for component-based design. Refinement relations
among models at the same level and between different levels are
essential for model-driven development of components. Classical
refinement theories mainly focus on verification and put little at-
tention on design. Therefore, most of them are not suitable for
component-based model-driven development (CB-MDD). To ad-
dress this issue, in this paper, we propose two refinement relations
for CB-MDD, that is a trace-based refinement and a state-based re-
finement. Both are discussed in the framework of rCOS, which
is a formal model of component and object systems. These refine-
ment relations provide different granularity of abstraction and can
capture the intuition that a refined component provides “more” and
“better” services to the environment. We also show how to ex-
tend these refinement relations to allow us to compare contracts,
components and publications with different interfaces by exploit-
ing the primitive operator internalizing over contracts, components
and publications.
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1. INTRODUCTION
Component-based model-driven development (CB-MDD) [16]

is regarded as an effective way to develop complex systems and
has been successfully applied in industry. Its basic idea is to com-
pose/decompose a complicated system from/into some simpler ones
with well-defined interfaces used for communication across the
components. Models of software components at different levels
of abstraction, component interfaces, contracts, implementations
and publications are important for component-based design. Re-
finement relations among models at the same level and between
different levels are essential for CB-MDD.

There have been lots of work on refinement of programs, the so-
called reactive systems in particular [1, 4, 3, 14]. To show that a
program Ph (at a higher level of abstraction) is refined by another
program Pl (at a lower level of abstraction), denoted by Ph v Pl, it
is in general to find a “refinement mapping” from the state space of
Ph to that of Pl, or the other way around so that the execution of Ph

“simulates” that of Pl. The correctness of a refinement is justified
by showing that every behavior of the lower-level system is also a
behavior of the higher-level system. This means that the classical
refinement theories mainly focus on the verification of safety prop-
erty. Some attempts e.g. [1, 4] to deal with liveness property under
certain fairness conditions have been done.

In CB-MDD, components are the first class entities. A compo-
nent consists of a set of services (methods). Each invocation to
a method of a component is controlled by the component through
the implementation of a guard. Comparing two components, we
should emphasize their reactivity, i.e. their ability of reaction to
invocations from the environment. Intuitively, a refined component
should provide not only better services (in the sense of functional-
ity), but also more services (in the sense more easily to be invoked).
It seems that classical refinement theories are not suitable for such
a purpose as most of them can be reduced to trace containment.

E 1. Consider the following two components1 adapted
from [6]: Comp has three methods msg, ack and nack, where msg
is used to send messages, ack to indicate a successful transmission,
and nack to indicate a failure. Whenever msg is called by a user,
the component returns ok or fail by calling back ok or fail pro-
vided by the user. To perform msg, the component invokes send
provided by other component for sending messages. The two possi-
ble return values are ack and nack designated by which method is
called back. When the method msg is invoked, the component tries
to send the message, and resends it if the first transmission fails.

1The interface automata of the two components can be found in [6]



If both transmissions fail, the component reports failure by calling
back with fail; otherwise, it reports success by calling back with
ok. The above procedure can repeat infinitely. So, the behavior of
Comp can be specified as the following CSP process:

rec X.msg?; send!; (ack?; ok! + nack?; send!; (ack?; ok! + nack?; fail!)); X

While the behavior of QickComp is similar to Comp’s except
that it provides an additional choice, that is a try-once-only once
designed for messages that are useless when stale. Thus, the be-
havior of QickComp is

rec X.(msg?; send!; (ack?; ok! + nack?; send!; (ack?; ok! + nack?; fail!)) +

once?; send!; (ack?; ok! + nack?; fail!)); X

Clearly, we would like to have refinement so that QickComp is
a refinement of Comp, because QickComp implements all services
provided by Comp, and is consistent with Comp in their implemen-
tation. But according to classical refinement theories, we should
have the trace set of QickComp is contained in Comp’s, obviously,
it is impossible in this example.

Developing appropriate refinement relations on components is a
challenge in CB-MDD, and some first attempts have been done.
For example, de Alfaro and Henzinger proposed the notion of al-
ternating simulation [6] to compare components at the level of in-
terfaces represented by interface automata. An interface automa-
ton only describes the execution order of the provided methods and
the required methods of a component. A component refines an-
other one if it has weaker input assumptions and stronger output
guarantees. Such an idea exactly reflects the intuition that a re-
fined component more easily reacts to invocations to its provided
methods. However, in real CB-MDD, comparison between compo-
nents should include not only the ability of reaction to invocations
from the environment, but also the functions of their corresponding
methods. He et al gave another try towards this issue by directly
introducing the failure/divergence partial order of CSP as a refine-
ment relation [9, 11, 10].

In this paper, we will re-investigate this problem and propose two
refinement relations for components, i.e. a trace-based refinement
and a state-based refinement in the framework of rCOS. rCOS is a
formal model of object and component systems, based on Unifying
Theories of Programming (UTP) [13]. In rCOS, a component can
be represented by different models at different levels of abstraction,
interface, contract, component and publication. An interface pro-
vides the type information for an interaction point of component.
A contract of an interface specifies the semantics of the interface,
which associates each declared method with a guarded design. A
component implements a contract via specific programming lan-
guage. The implementation could need to call other services pro-
vided by other components, which are declared in a required inter-
face. A publication of a component can be seen as its formal man-
ual about what services are provided and what services are required
by the component and the interaction between the component and
its environment. Detailed comprehensive understanding rCOS can
be referred to [11, 10, 5, 19].

In summary, the contributions of this paper include:

• Firstly, a trace-based refinement is defined. We first propose
trace refinement on contracts and components by combining
the trace containment refinement of CSP [15] and data re-
finement of designs in UTP [13]. Intuitively, a contract C1

is trace refined by C2 if each execution sequence of C1 must
be one of C2’s and each method of C1 is data refined by its
counterpart in C2. Since a component (publication) could be

open, that is in which there may be invocations to other com-
ponents, similar to the definition of alternating simulation,
we then define alternating trace refinement on publications
based on the trace refinement.

• Secondly, we propose a state-based refinement relation, which
is finer than the trace-based refinement relation. By revisiting
the notion of data refinement in classical data refinement the-
ories for action systems [3] and guarded designs [11], we de-
fine data refinement on contracts and components. Accord-
ing to our definition, a refined method has a weaker guard
in contrast to the condition that the guard of a method to
be refined and that of its refinement should be equivalent in
classical data refinement theories [2, 17, 11]2. Similarly,
based on the data refinement, we can define alternating data
refinement on publications.

• Finally, we show how these refinement relations together with
the internalization of provided methods allow us to compare
contracts, components and publications with different inter-
faces by exploiting the primitive operator internalizing over
contracts, components and publications defined in [19].

The rest of this paper is organized as: We in Section 2 review
some basic notions; Section 3 presents trace refinement and data
refinement on contracts. Section 4 considers the notions of trace
refinement and data refinement on components. In Section 5, alter-
nating trace refinement and alternating data refinement on publica-
tions are proposed. Section 6 is devoted to extending these refine-
ment relations to compare contracts, components and publications
with different interfaces. Section 7 concludes this paper.

Because of the limit of space, we will omit the detailed proofs
which can be found in the full version of the paper [18].

2. BASIC NOTIONS
In this section, we review the basic notions of UTP which will be

used later, including design, guarded design, data refinement and so
on. Comprehensive understanding of UTP can be referred to [13].

2.1 Design
UTP takes an approach to model the execution of a program in

terms of a relation between the states of the program. For a se-
quential program, each state variable in the alphabet of the program
comes in a unprimed and a primed versions, denoting respectively
the pre- and the post- state value of the execution of the program.
In addition to the program variables and their primed versions such
as x and x′, the alphabet also includes a boolean variable ok to de-
note whether a program is started properly and its primed version
ok′ to represent whether the execution has terminated. Notice the
observables ok and ok′ only help defining the semantics of the pro-
gram and do not appear in the program texts.

A program can be defined as a predicate over a given alphabet α,
called a design, denoted by D, which characterizes the functionality
of the program, and of the form

p(x) ` R(x, x′) def
= (ok ∧ p(x))⇒ (ok′ ∧ R(x, x′))

It means that if the program is activated in a stable state (ok = true),
where the precondition p(x) holds, the execution will terminate
(ok′ = true), in a state where the postcondition R(x, x′) holds.

In what follows, if p(x) is true, then p(x) ` R(x, x′) will be abbre-
viated as ` R(x, x′).
2In Back’s Refinement Calculus [3], a variant of the condition is
presented.



The classical programming operators on designs can be defined
in a standard way, e.g. D1 C b B D2 stands for conditional choice,
where b is a boolean condition on program variables, and means
if b holds then D1 else D2; while D1; D2 stands for the sequential
composition of D1 and D2, defined by

D1; D2
def
= ∃v0, . . . , vn.D1[v0, . . . , vn/x′1, . . . , x′n] ∧

D2[v0, . . . , vn/x1, . . . , xn]

where α(D1) = α(D2) = {x1, . . . , xn} ∪ {x′1, . . . , x′n}, and φ[x/y] stands
for replacing any occurrence of y in φ by x.

2.2 Refinement of design
The refinement relation between designs with the same alpha-

bet is defined as logical implication. That is, let D1
def
= p1 ` R1 and

D2
def
= p2 ` R2 be two designs over the alphabet α, D2 is a refinement

of D1, denoted by D1 v D2 if ∀x, x′, . . . , ok, ok′.(D2 ⇒ D1), where α =
{x, x′, . . . , ok, ok′}. From the definition, we can conclude

(D1 v D2) ≡ ∀x, x′, . . . , ok, ok′.(((p1 ∧ R2)⇒ R1) ∧ (p1 ⇒ p2))

I.e., a refined design should have a weaker precondition and a
stronger postcondition.

If two designs do not have the same alphabet, we can use data
refinement [12, 8, 3], which uses a relation(mapping) to relate their
state spaces, as well as their behavior. Data refinement can be clas-
sified into forward and backward. In this paper, we consider only
forward data refinement, which describes how the state space of ab-
stract level are related to the one of concrete level. Similar results
can be established for backward data refinement.

D 1 ( ). Let D1 be a design over al-
phabet α1, D2 be a design over alphabet α2. D1 is data refined
by D2, denoted by D1 vd D2, if there is a relation ρ(y, x) ⊆ α2 × α1,
satisfying

((` ρ(y, x′)); D1) v (D2; (` ρ(y, x′))) (1)

D1 and D2 are called data equivalent, denoted by D1 =d D2, iff
D1 vd D2 ∧D2 vd D1.

In the above definition, if the relation ρ is fixed, we will denote
D1 vd D2 by D1 vρ D2 for clarity.

It is proven in [13] the domain of designs with this order forms
a complete lattice which is closed under the classical programming
operators. These operators are monotonic on the lattice. The prop-
erty ensures that the domain of designs is a proper semantic domain
for sequential programming languages.

The linking between designs p ` R and Dijkstra’s weakest pre-
condition transformer wp, is

wp(p ` R, r) def
= p ∧ ¬(R;¬r)

2.3 Reactive design and guarded design
A reactive program interacts with its environment, usually en-

gages in alternative periods of computation and periods of stability.
In UTP, in order to model such reactive programs, a boolean ob-
servable wait and its primed version wait′ are introduced into the
alphabet. wait′ = true means the system enters the blocking (dead-
lock) state. The introduction of intermediate observations has im-
plication for sequential composition: a reactive program should not
start until its predecessor has properly terminated. This rule can be
formulated as a healthiness condition, and a design satisfying this
healthiness condition is called to be reactive. Formally,

D 2 ( ). A design D over alphabet α is
reactive if D is a fixed point of the mappingH , whereH(D) def

= (` wait′

∧v = v′) C wait B D.

A reactive design satisfying the above condition keeps idle for ever,
i.e. enters a blocking state. Clearly, for any design D, H(D) is a
reactive design.

By associating a guard with a design, an invocation to the service
specified by the design then can be controlled by the guard. Only
if the guard is true, the service is available. A design together with
a guard forms a guarded design, i.e.

D 3 ( ). Let g be a guard and D be a
design over α, the notation g&D denotes the guarded design D C g B
(` wait′ ∧ v = v′).

For convenience, we denote its guard by guard.D, its design by
func.D for a given guarded design D = g&D′. If g does not hold,
the guarded design will enter blocking state and keep idle for ever,
otherwise execute its design part.

Refinement between guarded designs is defined similar to Defi-
nition 1, details can be found in [3, 17, 8, 7].

3. TRACE REFINEMENT AND DATA RE-
FINEMENT OF CONTRACTS

An (provided) interface I only provides the syntactic type infor-
mation for an interaction point of a component. Formally, I is a
pair 〈FDec,MDec〉, where FDec declares a set of variables (fields),
denoted by FDec.I, and MDec declares a set of operation (method)
signatures, denoted by MDec.I.

A contract of an interface specifies the semantics of the services
declared in the interface. In particular, it specifies each method by
a guarded design, where the design characterizes the functionality
of the method and the guard controls the availability of the method
to the environment. In addition, a contract provides a protocol to
specify the permitted order of method calls and indicate the inter-
action behaviors with the environment.

D 4. A contract is a tuple C = (I, Init,Spec, Prot), where
• I, written as IF.C, is an interface, its fields declaration is de-

noted by FDec.C, its methods declaration is denoted by MDec.C;
• Init, denoted by Init.C, is a design that initializes the values

of FDec.I, and is of the form ` R(v′) ∧ ¬wait′, where R is the initial
condition;
• Spec, written as Spec.C, maps each method m(in, out) in MDec.I

to a guarded design Spec(m) = g&D with the alphabet α = FDec.I
∪FDec.I′ ∪ {in, out} ∪ {ok, ok′,wait,wait′};
• Prot, called the protocol, written as Prot.C, is the set of se-

quences of call events. Each sequence is of the form 〈?m1(x1),
. . . , ?mk(xk)〉, standing for the interaction protocol between the con-
tract and its environment, where ?mi(xi) represents an invocation of
method m with an input value xi.

We call a sequence of call events as a trace. A legal trace is one
whose execution from an initial state can not enter a blocking nor a
diverging state. We can formally define it using weakest precondi-
tion transformer as

D 5. A legal trace is a trace 〈?m1(x1), . . . , ?mk(xk)〉 sat-
isfying

wp(Init; g1&D1[x1/in1]; . . . ; gk&Dk[xk/ink],
¬wait ∧ ∃m ∈ MDec.C • guard.Spec(m)) = true

A contract is consistent, if it will never enter a blocking nor di-
verging state when its environment interacts with it complying with
its protocol. From the definition of legal trace, we can easily draw a
conclusion that a contract is consistent iff each trace in its protocol
is legal.



Therefore, for a tuple C = (I,Init,Spec), there could be more than
one protocol together with it to form a consistent contract, among
which the largest one is called the weakest consistent protocol, i.e.
the set of all legal traces. It is obvious that a contract is consistent
iff its protocol is a subset of its weakest consistent protocol. A
contract whose protocol equals to the weakest consistent protocol
is called complete contract. A complete contract is simply written
as C = (I,Init,Spec).

By the result given in [19], for any consistent contract, we can al-
ways find another complete contract whose protocol is same as the
former’s such that they are equivalent. So, hereafter all contracts
are referred to complete contracts if not otherwise stated.

E 2. Consider a one-place buffer of integers. The buffer
provides two services put and get. The user can put an integer in via
put and get an integer via get from the buffer. In the following, the
field buff is an integer list, but the guards of two provided methods
make this buffer has one-place capacity. The contract is specified
as follows:

C1 = (I def
= 〈{buff :int∗}, {put(in x:int), get(out y:int)}〉

Init def
= ` buff ′ = 〈 〉

Spec(put(in x:int)) def
= buff = 〈 〉&(` buff ′=〈x〉ˆbuff )

Spec(get(out y:int)) def
= buff , 〈 〉&(` buff ′ = tail(buff )
∧y′ = head(buff ))

Prot def
= 〈(put; get)∗ + (put; (get; put)∗)〉

where head and tail are standard operators of lists. Clearly, C1 is
also complete.

Failure/divergence refinement.
In previous work of rCOS [11, 10], the failure/divergence model

of CSP [15] is used for describing dynamic behaviour of contracts,
i.e. the semantics of contract C is described by its divergence set
D(C) and failure set F (C). D(C) contains all interaction traces that
lead to divergence, while F (C) is the set of all pairs (s, X) where s
is an interaction trace and X is a set of methods such that after the
execution of the trace s, all methods in X are refused (disabled).

In [11, 10], the CSP failure/divergence partial order [15] was in-
troduced as a refinement relation between contracts as: Given two
contracts C1 and C2 with MDec.C1 = MDec.C2, it is said C1 is fail-
ure/divergence refined by C2, denoted by C1 v C2, if F (C2) ⊆ F (C1)
and D(C2) ⊆ D(C1).

Failure/divergence refinement facilitates checking deadlock and
livelock by using CSP tools such as FDR. However, the disadvan-
tages of the refinement is also obvious. First, it is impossible to
apply the refinement to compare two contracts with different inter-
faces; Second, what’s more, C1 can be compared with C2 only if
their guards are equivalent, and this restriction makes this method
not able to reflect the intuition that a refined contract could more
easily react to the environment and provide more services. This is
shown by the following example.

E 3. Let m1 and m2 be two simple stateless methods,
without divergence. Let C1 = {false&m1, false&m2}, C2 = {true&m1, false
&m2}, C3 = {true&m1, true&m2} be three complete contracts, there-
fore with the protocols Prot.C1 = ∅, Prot.C2 = {m1}∗, and Prot.C3 =

{m1,m2}∗, respectively. Their divergence sets and failure sets are
respectively D(C1) = D(C2) = D(C3) = ∅, and F (C1) = {(〈〉, {m1,m2})},
F (C2) = {(s, {m2}) | s ∈ {m1}∗}, and F (C3) = {(s, ∅) | s ∈ {m1,m2}∗}3.
3Note that here we just list the maximal failure of each contract. In
fact, the failure set should be closed w.r.t. the inclusion of refusal
sets, i.e. if (s, X) is a failure, so is (s,Y) for any Y ⊆ X.

Obviously, we would like to have C1 v C2, as well as C1 v C3 and
C2 v C3, because C3 accepts more method invocations than C1 and
C2, and C2 accepts more method invocations than C1. But none of
them holds as their failure sets are not comparable.

3.1 Trace refinement
The following two principles towards refinement of components

in CB-MDD should be followed, that is:
I. A refined contract should more easily react to the environment;
II. A refined contract should also provide “better" services in the
sense of functionality.
The principle I has been implemented in the notion of alternating
simulation [6], according to which a component refines another one
if it has weaker input assumptions and stronger output guarantees.
In fact, contracts can be seen as a special kind of interface automata
without output guarantees, i.e. without invocations to methods pro-
vided by other components. However, in interface automata, the
functionality of methods is abstracted away, and therefore the prin-
ciple II was not taken into account in alternating simulation.

He et al gave another try towards this problem by directly intro-
ducing the failure/divergence partial order of CSP as a refinement
relation [9, 11, 10]. As we explained above, such an approach is not
a good solution to the problem too, as it does not meet the principle
I.

In the following, by combining trace refinement of CSP [15] and
data refinement of designs in UTP [13], we define a new refinement
relation between contracts, still called trace refinement. According
to our definition, a refined contract is more easily invoked by and
also provides better services (in the sense of functionality) to its
environment. Formally,

D 6. Given two contracts C1 and C2 with same inter-
face, C1 is trace refined by C2, denoted by C1 vtr C2, if

i. C1 and C2 both are consistent;
ii. Init.C1 vd Init.C2;
iii. func.(Spec.C1(m)) vd func.(Spec.C2(m)), for each m ∈ MDec.C1;
iv. Prot.C1 ⊆ Prot.C2.

The distinctness between trace refinement defined above and trace
refinement in CSP lies in: firstly, the former focuses on legal traces,
whereas the latter focuses on general traces; secondly, trace con-
tainment in the former is forward direction in contrast to backward
trace containment in the latter. Compared with alternating simu-
lation, trace refinement reflects not only a refined component pro-
vides more services, but also a refined component provides better
services.

The following theorem indicates that trace refinement defined
above and failure/divergence refinement are not comparable, i.e.

T 1. • There exist contracts C1 and C2 such that C1 vtr

C2, but C1 @ C2;
• There exist contracts C1 and C2 such that C1 v C2, but C1 @tr

C2.

3.2 Data refinement
Trace refinement is thought as the coarsest refinement relation in

process algebra. It is desirable to look for a finer one. In particular,
according to Definition 6, combination of trace refinement in CSP
and data refinement in UTP makes it very complicated to check
whether two contracts are in a trace refinement relation. Fortu-
nately, we can define a finer refinement relation between contracts,
called data refinement by revisiting data refinement of guarded de-
signs.



3.2.1 Data refinement of guarded designs revisited
In classical data refinement theories, it is required to guaran-

tee the consistency between data refinement and trace refinement
or failure/divergence refinement. For example, the consistency be-
tween data refinement and trace refinement was investigated in [2,
1]; while the consistency between data refinement and failure/ di-
vergence refinement was studied in [17, 7]. So, if system A1 is
refined by system A2, we require:
• On one hand, every trace of A2 is contained in the trace set of

A1. This implies that the guard of every refined action should be
stronger;
• On the other hand, every refusal of A2 is also a refusal of

A1. This implies that the guard of every refined action should be
weaker.
So in the definition of data refinement between actions in [17] and
between guarded designs in [11], it is required that the guard of an
action (a guarded design) to be refined and that of its refinement are
equivalent. A variant of the condition is presented in the definition
of data refinement in Back’s Refinement Calculus [2].

For our purpose, we revise the notion of data refinement between
guarded designs by allowing the guard of the refined guarded de-
sign is weaker than that of the refining guarded design, so that the
refined guarded design is much easier to be invoked.

D 7 (    ). Let g1&D1

be a guarded design over α1, g2&D2 be a guarded design over α2.
g1&D1 is data refined by g2&D2, denoted by g1&D1 vd g2&D2, if
there is a relation ρ(y, x) ⊆ α2 × α1 such that ρ(y, x)⇒ (g1 ⇒ g2) and
((` ρ(y, x′)); D1) v (D2; (` ρ(y, x′))).

Also, if the relation ρ is fixed, we will denote g1&D1 vd g2&D2

by g1&D1 vρ g2&D2 for clarity.

3.2.2 Data refinement of contracts
By exploiting the above revised data refinement over guarded

designs, we can define a data refinement relation over contracts as
follows:

D 8 (D R). Given two contracts C1 and
C2 with same provided methods, C1 is data refined by C2, denoted
C1 vd C2, if there is a relation ρ on FDec.C2 × FDec.C1 such that
• Init.C1 vρ Init.C2; and
• ∀m ∈ MDec.C1 • Spec.C1(m) vρ Spec.C2(m).

The second condition requires each method in C1 is data refined
by the corresponding one in C2. According to Definition 7, this
means each C2’s method has a weaker guard and a stronger func-
tionality. In fact, the possibility of reaction to its environment is
directly related to the protocol set of the contract. Obviously, a
contract with a larger protocol set will provide more services and
more easily react to the environment.

E 4. Consider the following buffer

C2 = (I def
= 〈{buff :int∗}, {put(in x:int),

get(out y:int)}〉
Init def

= ` buff ′ = 〈 〉
Spec(put(inx:int)) def

= |buff | ≤ 1&(` buff ′=〈x〉ˆbuff )

Spec(get(outy:int)) def
= |buff | ≥ 1&(` buff ′ = tail(buff )

∧y′ = head(buff ))

Prot def
= 〈((put; get)∗; (ε + put; (put; get)∗ +

put; (put; get)∗; get))∗〉.
where |buff | stands the size of buff , ε for empty sequence.

C2 shares the same interface of C1 defined in Example 2 and each
provided method of C2 has the same functionality as that of its coun-
terpart in C1, but with a weaker guard. Thus, it follows C1 vd C2 ac-
cording to Definition 8. In fact, we can see C2 provides two-places
capacity. In addition, Prot.C1 ⊆ Prot.C2, so C1 vtr C2.

The following theorem indicates that data refinement is finer than
trace refinement.

T 2. For any two complete contracts C1 and C2 with the
same interface, C1 vd C2 implies C1 vtr C2.

4. TRACE REFINEMENT AND DATA RE-
FINEMENT OF COMPONENTS

A component is an implementation of a contract. Besides the
methods declared in the interface, a component maybe contains
some methods which are not available to the public, but used by
the component itself. So a component needs to declare a set of pri-
vate methods and give their implementations. Furthermore, the im-
plementations of the provided and private methods may call meth-
ods provided by other components. Therefore, a component should
have a required interface to declare the services which are provided
by other components.

D 9. A component is a tuple K = (I,PriMDec, Init, Code,
InMDec), where
• I, denoted pIF.K, is a provided interface. Its method declara-

tion is denoted by pMDec.K;
• PriMDec, denoted PriMDec.K, is a set of method signatures

which are private to the component;
• Init, denoted Init.K, is the initialization statement that initializes

the variables of the component;
• Code, denoted Code.K, maps each method in MDec.I ∪ PriMDec

to a piece of program of a underlying programming language, pos-
sibly containing invocations to methods of other components;
• InMDec, denoted rIF.K, declares a set of methods which are

implemented in other components, but invoked in Code, called the
required interface. Its method declaration is denoted by rMDec.K.

The code of each method can be defined as a guarded reactive
design. Given a component K, we denote by [[K]] the abstraction
of K by abstracting each of its provided and private methods to a
guarded reactive design. For a given contract Cr of the required in-
terface rIF.K, a contract Cp of the provided interface pIF.K can be
calculated from [[K]] and Cr. This determines a function λCr · [[K]]
such that for a complete contract Cr of rIF.K, [[K]](Cr) is a com-
plete contract of pIF.K. Obviously, [[K]](Cr) is the strongest contract
of the provided interface w.r.t. Cr in the sense that w.r.t. Cr, K
can provide any services refined by [[K]](Cr). We take the function
λCr · [[K]] as the semantics of component K [11, 5]. The semantic
function is monotonic w.r.t. any of the three refinement relations.
For instance, given two contracts C1 and C2 of rIF.K, if C1 v C2 then
[[K]](C1) v [[K]](C2).

In [11], a refinement relation between components, still called
failure/divergence refinement, is defined in terms of the failure/ di-
vergence refinement between contracts.

Accordingly, in terms of trace refinement and data refinement
between contracts, respectively, we can define trace refinement and
data refinement between components as follows:

D 10. Given two components K1 and K2 with pMDec.K1

= pMDec.K2 and rMDec.K1 ⊇ rMDec.K2, K1 is said to be trace re-
fined by K2, denoted by K1 vtr K2, if [[K1]](Cr) vtr [[K2]](Cr) for any
required contract Cr of rIF.K1.



D 11. Given two components K1 and K2 with pMDec.K1

= pMDec.K2 and rMDec.K1 ⊇ rMDec.K2, K1 is said to be data refined
by K2, denoted by K1 vd K2, if [[K1]](Cr) vd [[K2]](Cr) for any required
contract Cr of rIF.K1.

E 5. Consider the following two components K1 and K2
that respectively implement the contract C1 in Example 2 and C2 in
Example 4.

pIF.K1 = IF.C1,
PriMeth.K1 = ∅,

Init.K1 = buff := 〈 〉,
Code.K1(put) = length(buff ) = 0→ (buff :=〈x〉ˆbuff ),
Code.K1(get) = length(buff ) , 0→ (y:=head(buff );

buff :=tail(buff ))
rIF.K1 = 〈{length(in x : int∗, out y : int), head(in x : int∗,

out y : int), tail(in x : int∗, out y : int∗)}〉
pIF.K2 = IF.C2,

PriMeth.K2 = ∅,
Init.K2 = buff := 〈 〉,

Code.K2(put) = length(buff ) < 2→ (buff :=〈x〉ˆbuff ),
Code.K2(get) = length(buff ) , 0→ (y:=head(buff );

buff :=tail(buff ))
rIF.K2 = 〈{length(in x : int∗, out y : int), head(in x : int∗,

out y : int), tail(in x : int∗, out y : int∗)}〉
It is easy to check that K1 vtr K2 and K1 vd K2.

According the above definitions, by Theorem 2, we can easily
show that data refinement on components implies trace refinement
on components.

T 3. For arbitrary two components K1 and K2, K1 vd K2

implies K1 vtr K2.

5. ALTERNATING TRACE (DATA) REFINE-
MENT OF PUBLICATIONS

At the product level of component, a component should be re-
garded as a black box specification and the source code is impossi-
ble to be provided to the user. In order to more flexibly and easily
use a matured component, the notion of publication was proposed
in [9, 19]. A publication of component declares a subset of the
provided services and requires a superset of the required services
of the component. Thus, the vender of a component can flexibly
provide different services (different subsets of the provided meth-
ods) to different users according to their demands and payments.
Moreover, each of the methods provided and required by the com-
ponent is documented as a design rather than a guarded design in
order to ease the use and the compatibility checking. In addition,
a publication also provides a protocol that represents the invoca-
tion dependency between provided methods and required methods
in the code of the component so that the assembler can compose a
new composite component (in fact, a publication of the new com-
ponent) according to the publications of the existing components.
Thus, a publication can be seen as a pair of publication contracts
defined below together with an invocation protocol.

We first introduce the notion of publication contract, which can
be seen as a special contract in which all guards of the declared
methods are true.

D 12. A Publication contract is a tuple (I, Init,Func,Prot),
where
• I is an interface;
• Init is an initialization design;
• Func is a function mapping each method m in MDec.I to a design

(no guard or with a guard true);
• Prot is the protocol, a set of traces over MDec.I, which tells the

environment how to use the methods declared in MDec.I.

In [19], we defined two functions to link the domain of publica-
tion contracts and that of complete contracts: one functionMmap-
ping each complete contract to a publication contract by removing
the guard in each method specification and taking the set of cal-
culated legal traces as its protocol; the other function L mapping
each publication contract to a complete contract where the guards
are calculated from the protocol of the given publication contract,
meanwhile the static functionality and protocol keep unchanged. In
[19] it was proved that L and M form a Galois connection, which
means interaction between a component and its environment can
be controlled either by the guards of each of its provided methods
or by a protocol.

Using the mapping L, all refinement relations between contracts
can be easily extended to between publication contracts. For in-
stance, we say a publication contract C1 is data refined by C2 if
L(C1) vd L(C2); Similarly, failure/divergence refinement and trace
refinement between publication contracts can be defined.

Then, publication is formally defined as:

D 13. A publication of component K is U = (G,A,C)
where
• G is a publication contract of I1 such that MDec.I1 ⊆ pMDec.K,

denoting the provided publication contract of a provided interface.
• A is a publication contract of interface I2 such that MDec.I2 ⊇

rMDec.K, denoting the required publication contract of a required
interface.
• C is a invocation protocol over (MDec.I1 + MDec.I2), such that

C � MDec.I1 = Prot.G ∧C � MDec.I2 = Prot.A.

In the above definition, we can see that the user of the component
via holding the publication can only use the services declared in I1,
i.e. part of the services provided by the component; while the user
has to provide no less than the services required by the component
in order to use the provided services.

A publication can be seen as an interface automaton [6] naturally,
if we abstract away the functionality of methods. A assumes the
order in which the component calls the required methods, while
G guarantees the order in which the provided methods are called.
Note that we here interchange the meaning of assume/guarantee
given in [6].

In [9], the comparison between publications is given by fail-
ure/divergence too, defined as: let U1 = (G1,A1,C1) and U2 = (G2,A2,

C2) be two publications, then U2 is a failure/divergnece refinement
of U1, denoted by U1 v U2, if G1 v G2 and A1 w A2.

Obviously, alternating failure/divergence refinement between pub-
lications has the inherent drawbacks of failure/divergence refine-
ment between contracts because of the same reasons. Respectively
based on trace refinement and data refinement between contracts,
we can define alternating trace refinement and alternating data re-
finement between publications accordingly.

To the end, we need some notations first. Given two sequences
of methods s1 and s2, we say s1 approximates s2 up to M, or s2 is ap-
proximated by s1 up to M, denoted by s1 �M s2, if s1 can be obtained
by removing some occurrences of some methods in M from s2,
where M is a set of methods. For example, 〈a, a, b, c〉 �{e, f } 〈a, e, a, f , b,
e, e, c, e〉.

D 14 (  ). Let U1 = (G1,A1,

C1) and U2 = (G2,A2,C2) be two publications. U1 is alternating
trace refined by U2, denoted by U1 vtr U2, if

i. G1 vtr G2;
ii. A2 vtr A1;
iii. ∀s ∈ C2 • s � MDec.G2 ∈ Prot.G1 ⇒ ∃s′ ∈ C1.s �MDec.A1 s′.

Conditions i and ii express that a refined publication provides more
service to and requires less services from the environment. While



Condition iii says that for a sequence of provided services, if it is
available in two publications U1 and U2 with the assumption that
U2 refines U1, then U1 more easily provides the service sequence to
the environment. This is because U1 is refined by U2 and therefore
requires more required services.

Similarly, alternating data refinement is defined as:

D 15 (  ). Let U1 = (G1,A1,

C1) and U2 = (G2,A2,C2) be two publications. U1 is alternating
data refined by U2, denoted by U1 vd U2, if

i. G1 vd G2;
ii. A1 wd A2;
iii. ∀s ∈ C2 • s � MDec.G2 ∈ Prot.G1 ⇒ ∃s′ ∈ C1.s �MDec.A1 s′.

According to the definitions above, using Theorem 2, we can
easily prove that the alternating data refinement is finer than the
alternating trace refinement , i.e.

T 4. For any two publications (U1 = (G1,A1,C1) and U2 =

(G2,A2,C2), U1 vd U2 implies U1 vtr U2.

6. DIFFERENT INTERFACES
In this section, we first briefly review the primitive operators over

components and publications defined in [19]. Then we prove these
operators except for internalizing preserve these refinement rela-
tions, and finally we show how to exploit the internalizing operator
to extend the refinement relations defined in the previous sections
to compare contracts, components and publications with different
interfaces.

6.1 Primitive operators
In this subsection, we briefly review the set of primitive opera-

tors on components and publications, including renaming, hiding,
plugging, feedback and internalizing defined in [19], their formal
definitions can be found in [19].

Renaming.
Given a contract C, renaming a method n ∈ IF.C to a fresh method

m with the same type forms a new contract C[m/n] by replacing
each occurrence of n in C with m. Similarly, renaming a provided
or required method n to a fresh method m with the same type in a
component (publication) forms a new component (resp. publica-
tion) by replacing each occurrence of n with m in the component
(resp. publication).

Hiding.
Hiding a set of methods M in a contract C is essentially equal

to removing these methods in M from C, denoted by C\M, where
M ⊆ IF.C; While hiding a set of provided methods in a component
K is implemented by changing these provided methods to private
methods in K, denoted by K\M; Hiding a set of provided meth-
ods M in a publication U = (G,A,C) can be realized by hiding these
methods in G and projecting C onto (MDec.G − M) ∪MDec.A, de-
noted by U\M.

Plugging.
The most often used composition in component construction is

to plug the provided interface of a component K1 into the required
interface of another K2, and vice versa, denoted by K1 ./ K2. A
component can plug into another component only if they have no
name conflicts. Accordingly, a publication U1 can plug into another
publication U2, denoted by U1 ./ U2, only if on one hand, U1 and
U2 have no name conflicts; on the other hand, if a method m is

respectively specified in U1’s provided contract and U2’s required
contract, then the former must be a refinement of the latter, and vice
versa.

Feedback can be seen as a special case of plugging.

Internalizing.
Similar to hiding, internalizing a set of provided methods M in

a component K is to remove them from the provided interface of
K and add them into the private method set, denoted by K ↙ M.
However, unlike hiding, internalizing just changes all explicit invo-
cations to the internalized methods to implicit invocations to the
methods. This is semantically equivalent to reprogramming all
provided methods in pMDec.K − M by adding possible sequences
of invocations to M before and after the execution of n, for each
n ∈ pMDec.K − M.

Internalizing a set of methods in a publication is via internalizing
these methods in its provided publication contract and hiding them
in its invocation protocol. Internalizing methods in a publication
contract is quite similar to internalizing methods in a component
by changing all explicit invocations to these internalized methods
to implicity invocations. Thus, from outside, these methods are
invisible, but their impacts are still there.

Given a publication contract C = (I,Init,Func,Prot), let M ⊆ MDec.C
be internalized in C and n ∈ MDec.C − M. Then, all possible se-
quences of invocations to these internalized methods in M before
and after each execution of n can be calculated according to Prot as
follows:

maxT(Prot, n,M) def
= {`ˆnˆr | ` ∈ M∗ ∧ r ∈ M∗ ∧

∃tr1, tr2 ∈ MDec.C∗.tr1ˆ(`ˆnˆr)ˆtr2 ∈ Prot.C}
D 16. Let G be a publication contract and M ⊆ MDec.G.

Internalizing M in G, denoted G ↙ M, is the publication contract
such that IF.G ↙ M = (IF.G)\M; Init.G ↙ M = Init.G; Spec.G ↙ M(n)
= us∈maxT(Prot.G,n,M)Spec.G(s) for each method n in MDec.G − M; and
Prot.G ↙ M = Prot.G � (MDec.G − M).

Thus, internalizing on publication can be defined as

D 17. For a publication U = (G,A ,C), U ↙ M = (G ↙ M,
A,C � (MDec.G − M+ MDec.A)).

6.2 Preserving these refinement relations
In what follows, for brevity, let vr∈ {v,vd ,vtr}.
The following theorem indicates that renaming, hiding, plugging

and feedback preserve the three refinement relations.

T 5. • For contracts C1 and C2, let n ∈ IF.C1 and M ⊆ IF.C1.
If C1 vr C2, then C1[m/n] vr C2[m/n] and C1\M vr C2\M;
• For components K1 and K2, let n ∈ pMDec.K1 ∪ rMDec.K1 and

M ⊆ pMDec.K1. If K1 vr K2, then K1[m/n] vr K2[m/n], K1\M vr K2\M,
and K1 ./ K vr K2 ./ K for any component K;
• For publications U1 and U2, let n ∈ MDec.G.U1 ∪MDec.A.U1

and M ⊆ MDecA.U1. If U1 vr U2, then U1[m/n] vr U2[m/n], U1\M vr

U2\M, and U1 ./ U vr U2 ./ U for any publication U.

In general, internalizing does not preserve the three refinement
relations neither on components nor on publications.

6.3 Extending the refinement relations
The notions of (alternating) trace refinement and (alternating)

data refinement proposed in this paper, as well as failure/divergence
refinement defined in [9] all are subject to the condition that compo-
nents, contracts and publications to be compared should be with the
same interface. However, by exploiting the internalizing operator,
these refinement relations could be extended by allowing compari-
son between contracts, components and publications with different



interfaces. The idea is to internalize the underpinning contracts
(resp. components and publications) with the uncommon parts, re-
spectively, and then use the given refinement relation to compare
the resulting contracts (resp. components and publications) with
same interface. Formally,

D 18. Given two contracts C1 and C2 possibly with dif-
ferent interfaces, we say C1 is refined by C2 up to a refinement rela-
tion vr∈ {v,vd ,vtr}, denoted by C1 vu

r C2, if C1 ↙ (MDec.C1 − MDec.C2)
vr C2 ↙ (MDec.C2 − MDec.C1).

Similarly, we can extend the three refinement relations to com-
pare components and publications with different interfaces, respec-
tively.

E 6. Consider the following two contracts:

C3 = (I def
= 〈{tr : put∗1}, {put1(in x:int)}〉, Init def

= tr = 〈 〉,
Spec(put1(x)) def

= trˆ〈put1〉 ∈ put∗1&(` tr′ = trˆ〈put1〉),
Prot def

= put∗1)

C4 = (I def
= {buff :int∗}, {put1(in x:int), get(out y:int)}〉,

Init def
= ` buff ′ = 〈 〉

Spec(put1(in x:int)) def
= buff = 〈 〉&(` buff ′=〈x〉ˆbuff )

Spec(get(out y:int)) def
= buff , 〈 〉&(` buff ′ = tail(buff )
∧y′ = head(buff ))

Prot def
= (〈put1〉ˆ〈get〉)∗ˆ(〈〉 + 〈put1〉)).

C3 declares a buffer which can only provide the user the service
put1 to put an item of datum into the buffer. Note that the method
can be invoked infinite many times; While C4 declares a buffer with
the capability of C3 that provides the user two services put1 and get,
which means to put a datum into and get a datum from the buffer,
respectively. The two services can only be invoked interchangeably
starting with put1. Obviously, C3 @ C4, C3 @d C4 and C3 @tr C4 as C4

has an additional method get; but C3 v C4 ↙ {get}, C3 vd C4 ↙ {get}
and C3 vtr C4 ↙ {get}. That is, C3 vu C4, C3 vu

d C4 and C3 vu
tr C4.

7. CONCLUSION AND FUTURE WORK
Inspired by the work in [6], we proposed two refinement rela-

tions on components, i.e. a trace-based refinement and a state-
based refinement. These refinement relations provide different gran-
ularity of abstraction and can capture the intuition that a refined
component provides “more” and “better” services to the environ-
ment. We also proved the state-based refinement is finer than the
trace-based one. In addition, we proposed an approach by exploit-
ing the internalizing operator to extend the refinement relations to
compare contracts, components and publications with different in-
terfaces.

The ongoing and future work include:

• How to guarantee the proposed refinement relations preserve
safety property as classical refinement theories do is very im-
portant.

• Connectors are another kind of first-class entities in CB-MDD.
It does deserve to investigate refinement of connectors. As
one of our future work, we will first focus on how to define
connectors with the primitive operators defined in [19] and
then consider refinement relations on connectors.

• Another interesting problem is to investigate under which
conditions the internalizing operator preserves these estab-
lished refinement relations.
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