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Abstract Time delays occur in a variety of engineering problems because they may be inherent in the

nature of plants or networks-induced. We investigate the safety verification of time-delay systems modeled

by nonlinear delay differential equations subject to disturbances in their dynamics based on control barrier

functionals in this paper. To the end, we propose the notion of input-to-state safety and input-to-state safe

control barrier functional first, and then present an algorithm to synthesize input-to-state safe control barrier

functional to guarantee the safety of the considered time-delay systems with disturbances. Three examples

are provided to demonstrate the proposed approach.
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1 Introduction

Cyber-physical systems (CPSs) such as smart grids [1], intelligent traffic [2], and smart factories [3]
have emerged and offered wide applications in our daily lives. Many of these systems are safety-critical,
any fault in them may thus cause significant property damages, injuries, or even result in loss of life.
Therefore, it is crucial to ensure the safety of these systems before applying them to social production
and daily life.

Time delay is ubiquitous in the physical world. For instance, due to the limitation of reproductive age
and food regeneration, the growth rate of biological species depends on the number of current species
and the number of past species [4]. Similarly, the latent period of some infectious diseases inevitably
introduces a delay in the process of its transmission [5]. During the past several decades, increasing
attention has been paid to time-delay systems because of broad applications in engineering practice
such as chemical processes control [6], human balancing [7], communications [8], and neural network
systems [9]. Regarding the importance of these systems in applications, delay differential equations, as
a new model of past dependence in the differential equation framework, have been developed by, e.g.,
Mishkis [10] and Bellman and Cooke [11], to capture the dynamics of time-delay systems.

Based on delay differential equations, stability analysis of time-delay systems was extensively studied
in the past several decades. There are various investigations in existing literature, including, H∞ and
L2-stability theories [12], absolute stability theory [13], input-to-state stability theory [14], Lyapunov-
Krasovskii functionals [15], and many others. In contrast, safety analysis techniques ensuring the safety
of time-delay systems are still in infancy.

One popular method for safety verification of CPSs is based on barrier certificates (BCs) [16]. A BC
can separate all reachable sets of a considered system from the given unsafe set. To deal with CPSs with
control inputs, the notion of BCs was extended to the one of control barrier certificates (CBCs) [17, 18].
On the other hand, BC based approach was further generalized to time-delay dynamical and hybrid
systems [19–21], and the method of CBCs was also extended to time-delay systems with inputs for
stability analysis [22, 23] recently.
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In practice, it is witnessed that numerous applications include models of disturbances in engineered
systems ranging from wind forces [24] to pedestrian motion [25], models of financial instruments such as
options [26], and models of biological/ecological processes such as predator-prey models [27]. One reason
is that sampling and measuring data from environments in the design of CPSs are doomed to be subject
to many kinds of noises and disturbances. The existence of disturbances further complicates the design
and verification of CPSs. However, the existing BC based approaches cannot be applied to CPSs subject
to both time delay and disturbances. To fill this gap, we investigate the safety guarantee of continuous
time-delay systems subject to disturbances in this paper. Thus, we first propose the notion of input-to-
state safe control barrier functionals (ISSf-CBFs), which can guarantee the safety of time-delay systems
in the presence of disturbances, and then present an algorithm for synthesizing ISSf-CBFs. Finally, we
demonstrate the proposed algorithm on three examples.

The main contributions are:

• We lift the control barrier function method of ordinary differential equations (ODEs) to time-delay
systems modeled by delayed differential equations (DDEs) subject to disturbances for safety guarantee.

• Based on the concept of input-to-state safety (ISSf) in [18], input-to-state safe control barrier func-
tionals (ISSf-CBFs) are proposed to guarantee the safety of time-delay systems in the presence of input
perturbations.

• We give an algorithm for constructing input-to-state safe controllers and show the effectiveness of
our algorithm via three illustrative examples.

The remainder of this paper is organized as follows. Section 2 gives an introduction to related work.
Section 3 introduces the preliminaries. Section 4 develops the notion of CBFs for time-delay systems.
Section 5 presents the safety guarantee for time-delay systems with input disturbances. Section 6 proposes
a general algorithm framework for constructing ISSf controllers and three experiments. Finally, we make
a conclusion and discuss future research in Section 7.

2 Related Work

As surveyed in [28], a variety of approaches have been proposed to verify the safety properties of CPSs
over the past decades driven by the demand of safety-critical CPSs design. Among which, BC based
approaches [16] are very promising, which are more closely related to this work. Similar to the idea
of Lyapunov functions for stability analysis of dynamical systems, a BC can separate the state space
of a considered system into safe and unsafe parts according to the safety properties to be verified, and
guarantee all reachable states always keeping inside the safe side. Automatic generating BCs plays a
cornerstone of BC based approaches, which can be reduced to constraint solving problems in general, can
be solved by convex optimization based techniques efficiently subject to kinds of convexity conditions.
Consequently, since [16], increasing attentions have been paid to how to relax such convexity conditions
in order to synthesize more expressive BCs yet still efficiently with convex optimization techniques,
e.g., exponential condition [29], Darboux condition [30], general relaxed barrier certificate condition [31],
vector barrier certificate condition [32] and so on. But it still keeps open so far whether the necessary
and sufficient condition of a formula being an inductive invariant given in [33] can be used as the weakest
BC condition, according to which synthesizing BCs can still be done with convex optimization.

In order to deal with control inputs, [17, 18] extended BCs to control barrier certificates (CBCs) and
presented convex optimization based approaches to synthesizing CBCs. Meanwhile, BC based approaches
were also extended to time-delay systems [19–21]. However, they only considered natural time-delay
systems without considering control inputs and disturbances, therefore cannot be applied to time-delay
systems with disturbances.

In recent years, automatic verification of CPSs with delays draws increasing attention, a few other
approaches have also been proposed, we just name a few below. [22, 23] investigated how to construct
symbolic abstraction of time-delay systems possibly with inputs by exploiting input-to-state stability, so
that the verification of time-delay systems can be correspondingly reduced to the reachability problem
of finite state machines. In [34], the authors considered the verification of networked dynamical systems
with delays associated to discrete jumps between different modes by reduction to computing reachable
sets of ODEs with uncertain inputs, which is achieved by simulation together with sensitivity analysis in
a bounded time horizon. [35, 36] tried to exploit local homeomorphism properties of DDEs to compute
inner- and outer-approximations of their reachable sets in bounded time horizons, similar to the set
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boundary analysis for ODEs in [37]. In addition, a Taylor model based approach was proposed to over-
and under-approximate reachable sets of DDEs with uncertain parameters and initial states in [38]. In
order to conduct unbounded verification of DDEs, [39] proposed an approach based on interval Taylor
model and stability analysis for a class of DDEs independent of states, and [40] proposed a Lyapunov
function based approach. More recently, by utilizing linearization and spectral analysis, a method was
proposed for analyzing the safety of exponentially stable time-delay systems in [20].

Clearly, all the above approaches share a common limitation, i.e., they cannot be applied to time-
delay systems with control inputs and disturbances simultaneously. In contrast, ISSf-CBFs proposed in
this paper can be used to guarantee the safety properties of time-delay systems subject to disturbances.
Moreover, we propose a method to generate ISSf controllers based on safekeeping controllers, which
facilitates the generation of ISSf controllers.

3 Preliminaries

Let R denote the set of real numbers, and R>0 denote the set of non-negative real numbers. Given
a vector x ∈ R

n, |x| denotes its Euclidean norm. For d(·) : R>0 → R
m, its L

m
∞ norm is given by

‖d‖∞ := ess supt |d(t)|, where ess sup denotes the essential supremum (see Definition 1). Given a set
I ⊆ R

n, let ∂I, Int(I) and I denote the boundary, interior and closure of I, respectively. For given
constants a, b ∈ R with a 6 b, let B([a, b],Rn) denote the space of functions from the interval [a, b] to R

n.

Definition 1 (Essential supremum). Given a measurable function d(·) : T → R, where T is a measure
space with measure µ. The essential supremum “ess sup” of d is the smallest number c such that the set
{t ∈ T | d(t) > c} has measure zero.

Definition 2 (Dirac delta function [41]). Dirac delta function is linear functional from a space of test
function f , The action of δ on f , commonly denoted δ[f ] or < δ, f >, then gives the value at 0 of f for
any function f , and has the following property:

∫ +∞

−∞

f(x)δ(x− a)dx = f(a).

Definition 3 (Class K function). Given a constant a > 0 and a function α : [0, a) → [0,+∞), if α is
continuous, strictly increasing and holds α(0) = 0, then we say α is a class K function (α ∈ K).

The following notions are standard, will be used in the rest of this paper.
• Given a function α : (−b, c) → (−∞,+∞), if α is continuous, strictly increasing with α(0) = 0 for

some b > 0 and c > 0, then we say α is an extended class K function. Here b, c can be +∞.
• Given a function α : [0,+∞) → [0,+∞), if α is continuous, strictly increasing with α(0) = 0, and

α(r) → +∞ as r → +∞, then we say α is a class K∞ function.
• Given a continuous function γ : R>0 × R>0 → R>0, if given a fixed n, γ(m,n) belongs to class K

with respect to m, and given a fixed m, γ(m,n) is decreasing with respect to n and limn→∞ γ(m,n) = 0,
then we say γ is a class KL function.

3.1 Time-delay Systems

In this paper, we consider time-delay systems described by delay differential equations (DDEs) of the
following form:

ẋ(t) = f(x(t), x(t− τ)) + g(x(t), x(t− τ))(u(t) + d(t)), (1)

where x ∈ R
n is system state, d(·) : R>0 → R

m is input disturbance, u(·) : R>0 → U ⊂ R
m is control

input, f : Rn×R
n → R

n is continuous and satisfies the local Lipschitz condition, g : Rn×R
n → R

n×m is
continuous and satisfies the local Lipschitz condition, and τ is the discrete time delay term. We define a
function xt(ω) = x(t+ω), ω ∈ [−τ, 0] in Banach space Bτ = B([−τ, 0],Rn), which maps the time interval
[−τ, 0] to R

n. The initial condition of system (1) is a function x0(ω) = x(ω), ω ∈ [−τ, 0], rather than a
single state x(0) as in ODEs.

Note that system (1) is similar to the form of dynamic systems considered in article [18], both of them
consider the issues of control inputs and disturbances, but [18] does not consider the existence of time
delays.
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System (1) can be transformed into the following form of functional differential equation:

ẋ(t) = F(xt) + G(xt)(u(t) + d(t)), (2)

where the functionals F : Bτ → R
n and G : Bτ → R

n×m are defined as follows:

F(ψ) = f(R0(ψ),R−τ (ψ)) and G(ψ) = g(R0(ψ),R−τ (ψ)), (3)

where

Rσ(ψ) =

∫ 0

−τ

ψ(ω)δ(ω − σ)dω = ψ(σ),

and δ stands for the Dirac delta function.

Given an initial condition x0 := x0(ω) ∈ Bτ , ω ∈ [−τ, 0], due to the assumption of local Lipschitz
condition, (1) has a unique solution xt to system (2) for t < tmax, where tmax is the maximal execution
time of (1). In the case that (2) is forward complete, then tmax = +∞. If for all x0(0) ∈ S, xt(0) ∈ S for
all t 6 tmax, then we call that S ⊂ R

n is a forward invariant. In this paper, a set S is called a safe set if
S is a forward invariant.

4 Control Barrier Functionals

The notions of barrier certificates (BCs) and control barrier certificates (CBCs) are extensively and
successfully applied in the verification of dynamical and hybrid systems whose continuous dynamics are
described by ODEs [16, 17]. In recent years, a similar idea to BC based approaches was adapted to
verifying the safety of DDEs, i.e., barrier functional (BF) based approach [19, 21]. In [22, 23], the notion
of CBC was also extended to DDEs, called control barrier functionals (CBFs), for stability analysis. In
this section, we generalize CBFs for DDEs stability analysis to the verification of DDEs and propose the
input-to-state CBFs (ISSf-CBFs).

4.1 Barrier Functionals

In this subsection, we mainly recall the notion of BFs. Barrier functionals (BFs), which are used to
ensure the safety of nature time-delay systems, were first proposed in [16] and were further investigated
later in [21]. The idea of barrier functionals is similar to Lyapunov-Krasovskii functionals used in the
stability analysis of DDEs.

Considering the time-delay system (1) without the term g(x(t), x(t− τ))(u(t) + d(t))1), i.e.,

ẋ(t) = f(x(t), x(t− τ)).

As discussed in Section 3.1, it can be transformed into a functional differential equation of the following
form:

ẋ(t) = F(xt). (4)

For ease of exposition, let’s fix a set C and its boundary and interior, given by:

C = {ψ ∈ Bτ : H(ψ) > 0}, (5)

∂C = {ψ ∈ Bτ : H(ψ) = 0}, (6)

Int(C) = {ψ ∈ Bτ : H(ψ) > 0}. (7)

where H : Bτ → R is a continuously differentiable functional. Clearly, C = C. We assume that Int(C) is
non-empty in what follows.

If C is a forward invariant, then the system (4) is safe with respect to C. The following lemma in [21]
presents conditions making C be a forward invariant.

1) Note that we use a DDE with a single constant time delay as an instance for illustration. However, it can be easily generalized

to DDEs with multiple delays.
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Lemma 1 ( [21]). For a time-delay system (4) and a set C ⊂ Bτ defined as (5)-(7), if there exists
α ∈ K(−b,c) for some b, c ∈ R>0 satisfying

Ḣ(xt) > −α(H(xt)), (8)

where Ḣ(xt) is the derivative of functional H with respect to t, i.e., Ḣ(xt) = dH(xt)/dt, then we say the
set C is forward invariant.

Lemma 1 gives a condition, which implies that any trajectory originating from C cannot punch through
its boundary, to ensure the safety C for time-delay system (4). A functional H satisfying condition (8) is
called barrier functional, which can guarantee the safety of time-delay system (4) with respect to the set
C.

Additionally, as α ∈ K(−b,c), the choice of b and c should guarantee H(xt) ∈ (−b, c). So, in practice,
they can be set by

b := − inf
xt∈Bτ

H(xt), c := sup
xt∈Bτ

H(xt). (9)

4.2 Control Barrier Functionals

By taking control inputs into account, the time-delay control system of interest is given below:

ẋ(t) = f(x(t), x(t− τ)) + g(x(t), x(t− τ))u(t),

where f : Rn × R
n → R

n, g : Rn × R
n → R

n×m are locally Lipschitz, x ∈ R
n denotes system state,

u : R>0 → U ⊂ R
m denotes control input, and the constant τ ∈ R>0 denotes time delay. Similarly, the

system can be rewritten as a functional differential equation of the following form:

ẋ(t) = F(xt) + G(xt)u(t). (10)

where F : Bτ → R
n and G : Bτ → R

n×m are functionals defined in (3).
In order to verify a time-delay system with inputs of the form (10), we extend the notion of barrier

functionals to the one of control barrier functionals.

Definition 4 (Control barrier functionals, CBFs). Consider a time-delay system of (10), let C ⊂ Bτ be
a set defined as (5)-(7), if there exists an α ∈ K(−b,c) for some b, c ∈ R>0 such that ∀xt ∈ C,

sup
u(t)∈U

[Ḣ(xt)] > −α(H(xt)), (11)

then H is called control barrier functional.

Note that the above definition is similar to the notion of δ-ISS Lyapunov–Krasovskii functional defined
in [22, 23], which is used for stability analysis of DDEs. We will prove in the following theorem (i.e.,
Theorem 1) that the control values satisfying the constraint (11) can guarantee the safety of time-delay
systems with relative degree one (i.e., HG(xt) 6= 0). Before presenting Theorem 1 we need the following
auxiliary lemma.

Lemma 2 (Comparison theory [42]). For a scalar differential equation as follows:

ẏ = f(t, y), y(t0) = y0,

where for all t > 0 and all y ∈ J ⊂ R, f(t, y) is locally Lipschitz in y and continuous in t. Let [t0, tmax)
(tmax could be ∞) be the time interval over which the solution y(t) exists; moreover assume y(t) ∈ J .
Let n(t) be a continuous function and for all t ∈ [t0, tmax), the following inequality holds

D+n(t) > f(t, n(t)), n(t0) > y0

with n(t) ∈ J , where D+n(·) is the upper right-hand derivative of n(t). Then, n(t) > y(t) holds for all
t ∈ [t0, tmax).

Theorem 1. For the time-delay system (10), a set C ⊂ Bτ is defined as (5)-(7), if H is a control barrier
functional, then C is a forward invariant.
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Proof. Let
ż(t) = −α(z(t)), z(0) = H(x0). (12)

According to the existence and uniqueness theorem for ODEs, there is a unique solution to (12), say

z(t) = γ(z(0), t) = γ(H(x0), t),

for all t > 0. Since α is a class K function, we can get that γ is decreasing with respect to t for a
fixed H(x0) and γ is a class K function for a fixed t. Therefore, γ satisfies the properties of class KL
function [43]. Applying Lemma 2 for (11) and (12), we get

H(xt) > γ(H(x0), t),

for 0 6 t < tmax. According to the property of class KL function, we have for 0 6 t < tmax, H(xt) > 0.
Hence, C is a forward invariant by the definition of forward invariant. �

5 Safety Guarantee under Disturbances

In this section we study the ISSf for DDEs with disturbances. Suppose that we already have a safekeeping
controller k(x(t)) to system (10), which could be contaminated by some disturbances d(t), k(x(t)) + d(t)
therefore actually impacts on system (10). That means that we need to consider a system of the following
form:

ẋ(t) = F(xt) + G(xt)(k(x(t)) + d(t)), (13)

where xt(ω) = x(t+ ω), ω ∈ [−τ, 0] and d(·) : R>0 → R
m.

5.1 Input-to-State Safety

The concept of ISSf is utilized for analyzing the safety properties of systems. It was first proposed in [44],
and then in [45]. They aim to keep the underlying system away from the unsafe state set Su ⊂ R

n.
While [18] redefined the concept of ISSf, requiring the system to evolve in the safe set S. We try to
construct a controller to ensure the system ISSf, which is similar to the approach of constructing input-

to-state stabilizing controllers in [46]. To guarantee the safety property C, the goal is to ensure that the
system always evolves in the set C, or at least close to the set C. The closeness to set C is related to the
size of disturbances.

If a set C is forward invariant, then C is called safe. Similarly, if there exists a set Cd ⊇ C such that Cd
is forward invariant, then we call C is input-to-state safe. The set Cd is defined as

Cd = {ψ ∈ Bτ : H(ψ) + β(‖d‖∞) > 0}, (14)

∂Cd = {ψ ∈ Bτ : H(ψ) + β(‖d‖∞) = 0}, (15)

Int(Cd) = {ψ ∈ Bτ : H(ψ) + β(‖d‖∞) > 0}, (16)

where β ∈ K[0,a) with a satisfying limr→a β(r) = b and ‖d‖∞ 6 d̄ ∈ [0, a). Clearly, Cd = Cd. We also
assume Int(Cd) is non-empty. The relationship between the safe set C and the input-to-state safe set Cd
is shown in Figure 1.
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Figure 1 An example of the safe set C and the corresponding input-to-state safe set Cd. The green region is set C, Green + Grey

region is set Cd.

In [18], ISSf is defined with respect to the space R
n. In this paper, we extend it to Banach space Bτ

and the corresponding definition of ISSf is given as follows.
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Definition 5 (Input-to-state safety, ISSf). Let C ⊂ Bτ be a set characterized by (5)-(7) for a continuous
and differentiable functional H : Bτ → R, if there exist a β ∈ K[0,a) with limr→a β(r) = b and a constant
d̄ ∈ [0, a), such that Cd characterized by (14)-(16) is forward invariant for all d with ‖d‖∞ 6 d̄, then we
say C is an input-to-state safe set.

According to Definition 5, we can find that C is input-to-state safe if and only if Cd is forward invariant.
Therefore, let Cd be the safe set, we can get the corresponding set C according to the maximum disturbance
value, which makes the ISSf set C conservative. We use the following example to explain the importance
of ISSf.

Example 1. Consider the following time-delay system with nonlinear dynamics:

ẋ(t) = −
1

2
x3(t)−

1

4
x3(t− τ) + x(t)u(t), (17)

where x ∈ R and u(·) : R>0 → U ⊂ R.
First, our goal here is to find a barrier functional by the controller u(t) = k(x(t)) = 0 and show that

a safe set can be constructed when the time delay τ is small enough. According to [47], the system is
asymptotically delay-independently stable and has one equilibrium xt(ω) = x(t + ω) = x∗, ω ∈ [−τ, 0],
t > 0. Consequently, there exists an attraction region [42], a safe subset of the state space in which an
equilibrium point is rendered to be asymptotically stable by a given controller. Closely resemble to the
case without time delay, the equilibrium is x∗ = 0, then a safe set around x∗ = 0 can be constructed and
we set the safe set to be [−1, 1]. Thus, the control barrier functional can be defined as

H(ψ) = 1− ψ4(0).

Given the above barrier functional, we instantiate the parameter as τ = 1/2 and choose α(H) = βH
with β > 0 as the class K function in (11). Then the following equation can be obtained:

Ḣ(ψ) + βH(ψ) = 2ψ6(0) + ψ3(0)ψ3(−
1

2
) + β

(

1− ψ4(0)
)

> ψ4(0)(2ψ2(0)− β) + ψ3(0)ψ3(−
1

2
) + β

>

(

ψ3(0) +
1

2
ψ3(−

1

2
)

)2

+ ψ6(0)−
1

4
ψ6(−

1

2
) + β.

If we choose a small enough β, the following equation holds:

Ḣ(ψ) + βH(ψ) > 0.

That is, the condition (11) holds. According to Theorem 1, the system is safe. The state trajectories with
different initial conditions x(ω) ≡ 1, 0.5 ,0.3, 0, −0.3, −0.5, −1 for ω ∈ [−1/2, 0] are shown in Figure 2.

According to the above analysis, we know that the controller k(x(t)) = 0 can guarantee the safety of
the system (17). Now, under the same conditions, we consider the presence of disturbance d, i.e., the
system becomes

ẋ(t) = −
1

2
x3(t)−

1

4
x3(t− τ) + x(t)(u(t) + d). (18)

We choose k(x(t)) = 0 and α(H) = βH with β > 0 as the class K function in (11). Hence, we get

Ḣ(ψ) + βH(ψ) = 2ψ6(0) + ψ3(0)ψ3(−
1

2
)− 4ψ4(0)d+ β

(

1− ψ4(0)
)

> ψ4(0)(2ψ2(0)− β − 4d) + ψ3(0)ψ3(−
1

2
).

(19)

According to (19), it is easy to find that the condition (11) may not hold when d becomes larger. We
choose the initial condition x(ω) ≡ 0.5 for ω ∈ [−1/2, 0], and use different values on d(·) ≡ 1, 2, 5, 10,
the resulting trajectories are presented in the right figure of Figure 2. Obviously, some trajectories leave
the specified safe set [−1, 1], implying that the system is not safe. Also, it is observed that when the
disturbance reaches a certain limit, the resulting system trajectory even does not converge. That is, the
controller k(x(t)) = 0 cannot guarantee the safety of the system subject to disturbances.
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Figure 2 Left: state evolution of the system for different initial conditions x(ω). The dashed lines correspond to x = −1 and

x = 1, the boundaries of the safe set.

Right: state evolution of the system for different disturbances d. The dashed lines correspond to
x = −1 and x = 1, the boundaries of the safe set.

5.2 The Input-to-State Safe Control Barrier Functionals

Base on the definition of ISSf, we provide a way to guarantee the safety of DDEs with disturbances by
ISSf-BFs and ISSf-CBFs in this subsection. Before defining the ISSf-BFs, we first state a constant e,
which is useful for defining comparison function, as follows

e = − lim
r→−b

α(r).

Definition 6 (Input-to-state safe barrier functionals, ISSf-BFs). For the time-delay system (13), let
C be a set defined as (5)-(7) with a continuous and differentiable functional H : Bτ → R. If there
exist a function ε ∈ K[0,a) with limr→a ε(r) = e, a function α ∈ K(−b,c), and d̄ ∈ [0, a), such that
∀xt ∈ C, ∀d(·) : R>0 → R

m satisfying ‖d‖∞ 6 d̄,

Ḣ(xt) > −α(H(xt))− ε(‖d‖∞), (20)

then we say H is an input-to-state safe barrier functional.

The following theorem can guarantee the safety of time-delay systems in the presence of disturbances.

Theorem 2. For the time-delay system (13), let C ⊂ Bτ be a set defined by (5)-(7) with a continuous and
differentiable functionalsH : Bτ → R, Cd characterized by (14)-(16) for an β ∈ K[0,a) with limr→a β(a) = b
and d̄ ∈ [0, a). If H is an ISSf-BF, then C is input-to-state safe.

Proof. We just need to prove Cd is forward invariant. According to the definition of Cd, we get a new
functional:

ζ(xt, d) = H(xt) + β(‖d‖∞).

We can get the following equation from (20) for H, which is an ISSf-BF:

ζ̇(xt, d) = Ḣ(xt) > −α(H(xt))− ε(‖d‖∞)

= −α(ζ(xt, d)− β(‖d‖∞))− ε(‖d‖∞).
(21)

Consider the boundary ∂Cd. Since ζ(xt, d) = 0 for xt ∈ ∂Cd, (21) can be reduced as

ζ̇(xt, d) > −α(−β(‖d‖∞))− ε(‖d‖∞).

Setting r = β(‖d‖∞) and defining ρ(r) := −α(−r), we have that for all r1, r2 ∈ R>0 and r1 > r2
implies that −α(−r1) > −α(−r2), implying that ρ(r1) > ρ(r2). Thus, if r < b, ρ is a class K function.
Consequently, by choosing β = ρ−1 ◦ ε, it follows that for any d̄ ∈ [0, a),

ρ−1 ◦ ε(d̄) < b,

which further implies r < b, thus

ζ̇(xt, d) > ε(‖d‖∞)− ε(‖d‖∞) > 0. (22)

The result follows immediately as Cd is forward invariant by (22). �
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Theorem 2 shows that ISSf-BFs can guarantee the ISSf of time-delay systems under disturbances. In
order to deal with control input, we give the definition of ISSf-CBFs in the following and demonstrate
its role in safety guarantee.

Definition 7 (Input-to-state safe control barrier functionals, ISSf-CBFs). For the time-delay system
(13), let C be a set defined by (5)-(7) with a continuous and differentiable functional H : Bτ → R. If there
exist a ε ∈ K[0,a) with limr→a ε(r) = e, an α ∈ K(−b,c), and a constant d̄ ∈ [0, a) such that for xt ∈ C and
d(·) : R>0 → R

m satisfying ‖d‖∞ 6 d̄,

sup
u(t)∈U

[Ḣ(xt)] > −α(H(xt))− ε(‖d‖∞), (23)

then we say H is an input-to-state safe control barrier functional.

Inspired by the controller constructed in [46], we construct our ISSf controllers in a similar way. For
a safekeeping controller k(x(t)), we propose the ISSf controller as follows:

u(t) = k(x(t)) +HG(xt), (24)

where HG(xt) denotes the derivative of H with respect to G. We give a theorem below based on the ISSf
controller (24). A new ISSf-CBF, which can guarantee the set C ISSf, is defined in the theorem.

Theorem 3. Given the time-delay system (13), a set C ⊂ Bτ defined by (5)-(7) with a continuous and
differentiable functional H : Bτ → R, if H satisfies

sup
u(t)∈U

[HF (xt) +HG(xt)u(t)−HG(xt)HG(xt)
T ] > −α(H(xt)), (25)

for some α ∈ K(−b,c) and for xt ∈ C, then H is an input-to-state safe control barrier functional.

Proof. According to (25), we have

Ḣ(xt) > −α(H(xt)) +HG(xt)HG(xt)
T +HG(xt)d(t)

Since HG(xt)HG(xt)
T = |HG(xt)|

2, we have

Ḣ(xt) > −α(H(xt)) + |HG(xt)|
2 − |HG(xt)|‖d‖∞. (26)

implying that

Ḣ(xt) > −α(H(xt)) +

(

|HG(xt)| −
‖d‖∞
2

)2

−
‖d‖2∞
4

> −α(H(xt))−
‖d‖2∞
4

,

which has the same form as (23). Thus, H is a valid ISSf-CBF. �

Theorem 3 shows that an ISSf controller can guarantee the safety of time-delay systems in the presence
of disturbances. Similar to the CBF condition (11), when HG(xt) = 0, Theorem 3 can only verify whether
k(x(t)) = 0 is a safe controller. In the following, we use an example to enhance the understanding of ISSf
controllers.

Example 2. Consider the time-delay system in Example 1. As discussed in Example 1, the safekeeping
controller k(x(t)) = 0 can guarantee the safety of the system (17) in the absence of disturbances. However,
if the system (17) is subject to disturbances, i.e., the system (18), the controller cannot ensure the safety
of the system (18).

Now we apply the following ISSf controller to the system (18):

u(t) = k(x(x(t)) +HG(xt)
T = −4x4(t). (27)

The system driven by this controller (27) will evolve in the safe set under small disturbance. We display
some trajectories in Figure 3. These demonstrate that our ISSf controller can ensure the safety of the
time-delay system subject to disturbances.



Liu W, et al. Sci China Inf Sci 10

d(t)=1 d(t)=2 d(t)=3 d(t)=5

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Times (t)

S
ta
te
v
a
lu
e
x
(t
)

Figure 3 State evolution of the system for different disturbances when applying the ISSf controllers. The dashed lines correspond

to x = −1 and x = 1, the boundaries of the safe set.

6 Implementation and Experiments

In this section, we first present our algorithm for synthesizing input-to-state safe controllers in Algorithm
1. If there are no disturbances in the system (line 2), the controller given by Theorem 1 (line 1) is
safekeeping, so Algorithm 1 returns this controller directly. Otherwise, our algorithm gives an ISSf
controller based on Theorem 3 (line 5). Algorithm 1 shows that safekeeping controllers can be synthesized
by solving the constraint (11), and the ISSf controllers, which ensure the safety of the considered system
in the presence of disturbances, can be easily obtained based on the safekeeping controller. However, now
the generation of k(x(t)) is still a challenging problem, which is also our future research direction. The
present work is based on the condition that k(x(t)) can be automatically generated or already exists.

Now we use three examples to show the applicability of our algorithm.

Algorithm 1 Input-to-State Safe Controller

Require:

Time-delay system S;
Barrier functional H;
disturbance d;

Ensure:

Control input u(t);
1: Synthesize k(x(t)) from the control barrier functional condition: supk(x(t))∈U [Ḣ(xt)] > −α(H(xt));
2: if d = 0 then

3: u(t) = k(x(t));
4: else

5: u(t) = k(x(t)) +HG(xt)
T ;

6: end if

7: return u(t);

Example 3. Consider the following dynamic system, adapted from [47]:

ẋ(t) = −x(t)−
1

2
x(t− τ) + x(t)(u(t) + d(t)), (28)

where x ∈ R
n, u : R>0 → U , d is a constant disturbance and d ∈ [0, 2]. The safe set is [−1, 1]. In this

case, we choose the barrier functional as

H(ψ) = 1− ψ2(0). (29)

Given the barrier functional (29), we discuss two cases with and without disturbances in the following:
(a) Without disturbances: set d = 0 as the input of Algorithm 1, and choose α(H) = βH with β > 0 as
the class K function in (11). Then let τ = 1/2 and k(x(t)) = 0, we get

Ḣ(ψ) + βH(ψ) = 2ψ2(0) + ψ(0)ψ(−
1

2
) + β

(

1− ψ2(0)
)
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Figure 4 Left: state evolution of the system for different initial functions. The dashed lines correspond to x = −1 and x = 1,

representing the boundaries of the safe set. Middle: state evolution of the system for different disturbances. The dashed lines

correspond to x = −1 and x = 1, the boundaries of the safe set. Right: state evolution of the system for different disturbances

with the ISSf controller. The dashed lines correspond to x = −1 and x = 1, the boundaries of the safe region.

> (2− β)ψ2(0) + ψ(0)ψ(−
1

2
) + β,

when we choose a small β, then the following equation holds:

Ḣ(ψ) + βH(ψ) > 0.

Thus k(x(t)) = 0 satisfies the control barrier functional condition (line 1), the set [−1, 1] is safe. Algorithm
1 sets u = 0 (line 3) and returns it.
(b) With disturbances: Set different values on d : d = 0.5, 1, 1.5, 2, as the input of Algorithm 1,
respectively. Choosing α(H) = βH with β > 0 as the class K function in (11) and assuming k(x(t)) = 0,
we can get

Ḣ(ψ) + βH(ψ) = 2ψ2(0) + ψ(0)ψ(−
1

2
)− 2ψ2(0)d+ β

(

1− ψ2(0)
)

> (2− β − d)ψ2(0) + ψ(0)ψ(−
1

2
) + β.

We can find when the disturbance d reaches a certain limit, the condition (11) will not hold, so the system
becomes unsafe. As we show in the middle of Figure 4, the system is safe when the disturbance d is very
small, but when the disturbance d is large, the system even does not converge. Thus, the controller
k(x(t)) = 0 cannot ensure the safety of the system.

Now we use the following ISSf controller as we proposed in (24) (line 5), we can get

u(t) = k(x(t)) +HG(xt) = −2x2(t).

By applying the ISSf controller to system (28), the ISSf controller can ensure system (28) safe under
small disturbances and the result is demonstrated in the right of Figure 4. Thus, the ISSf controller can
ensure the system ISSf.

Example 4 (Population dynamics). Let us consider a population dynamics example adapted from [48],
given by:

q̇(t) = λ[1− q(t− τ)/M ]q(t), t > 0.

This equation is used to simulate the change of the number of individuals in a single population in
nature. Due to restrictions such as the minimum breeding age or limited resources, the average growth
rate q̇(t)/q(t) = λ[1 − q(t − τ)/M ] of the population relies on the size of the population in the past τ
time units, because individual growth and resource recovery require a certain amount of time. If we set
x(t) = q(t)/M and adjust the time scale at the same time, we can get the following time-delay system
proposed in [49]:

ẋ(t) = x(t)[1− x(t− τ)]− (u(t) + d(t)), t > 0,

where x ∈ R represents the individual number, u : R>0 → U denotes the capture behavior, d : R>0 → R

denotes the input disturbance. The goal is to keep the number of individuals within a reasonable range
and set the safe set to be x(t) ∈ [0.5, 1.6], so we can construct a barrier functional as

H(ψ) = 0.552 − (ψ(0)− 1.05)2.
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Figure 5 Left: state evolution of the system for different initial conditions. The dashed lines correspond to x = 0.5 and x = 1.6,

the boundaries of the safe set. Middle: state evolution of the system for different disturbances. The dashed lines correspond to

x = 0.5 and x = 1.6, the boundaries of the safe set. Right: state evolution of the system for different disturbances with the ISSf

controller. The dashed lines correspond to x = 0.5 and x = 1.6, the boundaries of the safe region.

Given this barrier functional, we discuss two cases of the absence and presence of disturbance in the
following:
(a) Without disturbances: we set d = 0 as the input of Algorithm 1 and choose α(H) = βH with β > 0
as the class K function in (11). Instantiating τ = 1.5, we get

Ḣ(ψ) + βH(ψ)

= −2(ψ(0)− 1.05)ψ(0)(1− ψ(−1.5)) + 2(ψ(0)− 1.05)u(t) + β(0.552 − (ψ(0)− 1.05)2) > 0.
(30)

If we choose u(t) = k(x(t)) = 0, there exists a small β such that condition (30) holds, so k(x(t)) = 0
satisfies the control barrier functional condition (line 1), the set [0.5, 1.6] is safe. Algorithm 1 sets u = 0
(line 3) and returns it. As we show in the left of Figure 5, the system always evolves within the safe set.
(b) With disturbances: we set different values on d : d =-0.5, -1, -1.5, as the input of Algorithm 1,
respectively. Choosing α(H) = βH with β > 0 as the class K function in (11) and assuming k(x(t)) = 0,
we have

Ḣ(ψ) + βH(ψ)

= −2(ψ(0)− 1.05)ψ(0)(1− ψ(−1.5)) + 2(ψ(0)− 1.05)d+ β(0.552 − (ψ(0)− 1.05)2) > 0.
(31)

If the disturbance d is large, the condition (31) cannot hold. As we show in the middle of Figure 5, the
system violates the safety constraints, and the system does not even converge under large disturbances.

Now by employing the following ISSf controller as proposed in (24) (line 5):

u(t) = k(x(t)) +HG(xt) = 2(x(t)− 1.05).

The right figure in Figure 5 reveals that the system is safe under small disturbances, that is, our ISSf
controller can ensure the ISSf of the system subject to small disturbances.

Example 5 (PD-controller). The following linear PD-controller is taken from [20,38], defined as
{

ẋ(t) = s(t),

ṡ(t) = −a1(x(t− τ)− x∗)− a2s(t− τ) + s(t)(u(t) + d(t)),
(32)

where x denotes the position and s is velocity of an autonomous vehicle, u represents the input to control
speed, d represents the unknown disturbance, and the constant τ is the time delay resulting from sensing,
transmission, computation, actuation, etc. The vehicle needs adjust its acceleration in the light of the
distance between the current location and the reference location x∗. The parameters are instantiated as
a1 = 2, a2 = 3, x∗ = 1, and τ = 0.35. The system modeled by (32) is then transformed into the following
form with x̂ = x− 1:

{

˙̂x(t) = s(t),

ṡ(t) = −2x̂(t− τ)− 3s(t− τ) + s(t)(u(t) + d(t)).
(33)

Let x1 = x̂, x2 = s and X =
[

x1

x2

]

, the system (33) can be rewritten as a dynamical system described by
two-dimensional matrix as follows:

Ẋ = A1X (t) +A2X (t− τ) +BX (t)(u(t) + d(t)), (34)
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Figure 6 Left: state evolution of the system for initial conditions x1 = 0.1, x2 = 0.1. The dashed lines corresponding to x = 0.2

and x = 0.4 represent the safety boundaries of state x1 and x2, respectively. Middle: state evolution of the system for disturbance

d(t) = 1 + 0.2sin(t). The dashed lines corresponding to x = 0.2 and x = 0.4 represent the safety boundaries of state x1 and x2,

respectively. Right: state evolution of the system for disturbance d(t) = 1 + 0.2sin(t) with the ISSf controller. The dashed lines

corresponding to x = 0.2 and x = 0.4 represent the safety boundaries of state x1 and x2, respectively.

where A1, A2, B are as follows:

A1 =

[

0 1

0 0

]

, A2 =

[

0 0

−2 −3

]

, B =

[

0

1

]

.

The safe state set is S = {(x̂; s) | x̂ < 0.2, s < 0.4} and the initial states set is X =
[

−0.1, 0.1
]

×
[

0, 0.1
]

.
We are concerned with studying the safety of system (34) under infinite-time horizon. According to the
safe set, we choose the control barrier functional as

H(ψ) =

[

0.2

0.4

]

− ψ(0).

Given the barrier functional, we discuss two cases, i.e., with and without disturbances, in the following:
(a) Without disturbances: consider the case of d = 0 and set u = 0. As discussed in [20], the system has
one equilibrium at (0; 0) with u = 0 and would be safe under the conditions given above. By choosing
α(H) = βH with β > 0 as the class K function in (11), we can also easily find that the following equation
holds:

Ḣ(ψ) + βH(ψ) > 0.

Therefore, k(X ) = 0 is a safekeeping controller. Some trajectories of the system are displayed in the left
of Figure 6.
(b) With disturbances: consider the situation with disturbance, we set the following time-varying distur-
bance as the input of Algorithm 1.

d(t) = 1 + 0.2sin(t).

Also, we demonstrate the trajectory of the system in the middle of Figure 6. Obviously, the system
violates the safety constraint. That is, k(X ) = 0 cannot guarantee the safety of the system.

By applying the following ISSf controller to the system:

u(t) = k(X (t)) +HG(φ) = −x2(t),

Figure 6 displays some trajectories of this system under the new ISSf controller, the ISSf controller can
ensure the safety of the system under small disturbances.

7 Conclusion

In this work, we investigated the synthesis of safe controllers for time-delay systems. We proposed control
barrier functionals and proved that it can guarantee the safety of time-delay systems. We redefined the
concept of input-to-state safety and proposed the concept of input-to-state safe control barrier functionals
to guarantee the safety of time-delay systems subject to disturbances. Finally, we gave an algorithm for
synthesizing ISSf controllers and demonstrated it on three examples.
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In the future, it deserves to investigate how to synthesize controllers for time-delay systems with control
inputs and extend our method to high order control barrier functionals to guarantee the safety of time-
delay systems with higher relative degree as well as time-delay systems with frequency domains and so
on.
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28 Fränzle M, Chen M, Kröger P. In memory of Oded Maler: automatic reachability analysis of hybrid-state automata. ACM

SIGLOG News, 2019, 6: 19-39

29 Kong H, He F, Song X, et al. Exponential-condition-based barrier certificate generation for safety verification of hybrid

systems. In: CAV 2013, Springer, 2013. 242–257

30 Zeng X, Lin W, Yang Z, et al. Darboux-type barrier certificates for safety verification of nonlinear hybrid systems. In:

EMSOFT 2016, ACM, 2016. 1–10

31 Dai L, Gan T, Xia B, et al. Barrier certificates revisited. Journal of Symbolic Computation, 2017, 80: 62–86

32 Sogokon A, Ghorbal K, Tan Y K, et al. Vector barrier certificates and comparison systems. In: FM 2018, Springer, 2018.

418–437

33 Liu J, Zhan N, Zhao H. Computing semi-algebraic invariants for polynomial dynamical systems. In: EMSOFT 2011, ACM,

2011. 97-106

34 Huang Z, Fan C, Mitra S. Bounded invariant verification for time-delayed nonlinear networked dynamical systems. Nonlinear

Analysis: Hybrid Systems, 2017 23: 211-229

35 Xue B, Mosaad P N, Martin Fränzle, et al. Safe over- and under-approximation of reachable sets for delay differential

equations. In: FORMATS 2017, Springer, 2017. 281-299

36 Xue B, Wang Q, Feng S, et al. Over- and under-approximating reach sets for perturbed delay differential equations. IEEE

Transactions on Automatic Control, 2020, 66(1): 283-290

37 Xue B, She Z, Easwaran A. Under-approximating backward reachable sets by polytopes. In: CAV 2016, Springer, Cham,

2016. 457–476

38 Goubault E, Putot S, Sahlmann L. Inner and outer approximating flowpipes for delay differential equations. In: CAV 2018,

Springer, Cham, 2018. 523-541

39 Zou L, Martin Fränzle, Zhan N, et al. Automatic stability and safety verification for delay differential equations. In: CAV

2015, Springer, 2015. 338-355

40 Zuo Z, Ho D W, Wang Y. Reachable set bounding for delayed systems with polytopic uncertainties: The maximal Lyapunov-

Krasovskii functional approach. Automatica, 2010, 46: 949-952



Liu W, et al. Sci China Inf Sci 15

41 Blake W K. Mechanics of Flow-Induced Sound and Vibration. Academic Press, 1986

42 Khalil H K. Nonlinear Systems. New Jersey: Prentice Hall, 2002

43 Teel A R, Praly L. A smooth Lyapunov function from a class-KL estimate involving two positive semidefinite functions.

ESAIM: Control, Optimisation and Calculus of Variations, 2000, 5: 313-367

44 Romdlony M Z, Jayawardhana B. Robustness analysis of systems’ safety through a new notion of input-to-state safety.

International Journal of Robust and Nonlinear Control, 2019, 29(07): 2125-2136

45 Romdlony M Z, Jayawardhana B. On the sufficient conditions for input-to-state safety. In: ICCA 2017, IEEE, 2017. 170-173

46 Sontag E D. Smooth stabilization implies coprime factorization. IEEE Transactions on Automaic Control, 2002, 34: 435-443

47 Hale J, Lunel S M V. Introduction to Functional Differential Equations. New York: Springer, 1993

48 Hutchinson G E. Circular causal systems in ecology. Annals of the New York Academy of Sciences, 1948, 50: 221–246

49 Liu C, Zhang Q, Huang J. The dynamics and control of a harvested differential-algebraic prey-predator model. In: CDC 2011,

IEEE, 2011. 586-591


	Introduction
	Related Work
	Preliminaries
	Time-delay Systems

	Control Barrier Functionals
	Barrier Functionals
	Control Barrier Functionals

	Safety Guarantee under Disturbances
	Input-to-State Safety
	The Input-to-State Safe Control Barrier Functionals

	Implementation and Experiments
	Conclusion

