Science of Computer Programming 74 (2009) 168-196

Contents lists available at ScienceDirect Ecience of Computer

rogramming

Science of Computer Programming |

journal homepage: www.elsevier.com/locate/scico

Refinement and verification in component-based model-driven design

Zhenbang Chen ad Zhiming Liu®*, Anders P. RavnP®, Volker Stolz?, Naijun Zhan®

2 UNU-IIST, P.O. Box 3058, Macao SAR, China

b Department of Computer Science, Aalborg University, Denmark

€ Lab. of Computer Science, Institute of Software, CAS, Beijing, China

4 National Laboratory for Parallel and Distributed Processing, Changsha, China

ARTICLE INFO ABSTRACT
Artidf—’ history: Modern software development is complex as it has to deal with many different and yet
Received 20 November 2007 related aspects of applications. In practical software engineering this is now handled

Received in revised form 10 May 2008
Accepted 6 August 2008
Available online 28 August 2008

by a UML-like modelling approach in which different aspects are modelled by different
notations. Component-based and object-oriented design techniques are found effective in
the support of separation of correctness concerns of different aspects. These techniques are
practised in a model-driven development process in which models are constructed in each

gﬂifﬁ&m ds phase of the development. To ensure the correctness of the software system developed, all
Multi-view modelling models constructed in each phase are verifiable. This requires that the modelling notations
rCOS are formally defined and related in order to have tool support developed for the integration
Software design process of sophisticated checkers, generators and transformations. This paper summarises our
Tool design research on the method of Refinement of Component and Object Systems (rCOS) and
UML illustrates it with experiences from the work on the Common Component Modelling

Example (CoCoME). This gives evidence that the formal techniques developed in rCOS
can be integrated into a model-driven development process and shows where it may
be integrated in computer-aided software engineering (CASE) tools for adding formally
supported checking, transformation and generation facilities.

© 2009 Published by Elsevier B.V.

1. Introduction

Software engineering is now facing two major challenges:

e the rapidly increasing complexity of systems to be developed, and
e higher demands for correct quality software.

Thus we observe that software development is becoming complex due to many different but inter-related aspects or views
of the system, including those of static structure, flow of control, interactions, and functionality, as well as issues about
concurrency, distribution, mobility, security, timing, and so on. In addition to these problems in the design phases, the
proper implementation of interactions among the GUI, the controllers of the hardware devices and the application software
components is a demanding task.

An effective means to handle such complexity is separation of concerns; and assurance of correctness is enhanced by
application of formal modelling and analysis.

* Corresponding author.
E-mail addresses: zliu@iist.unu.edu, lzm@iist.unu.edu (Z. Liu).
URL: http://www.iist.unu.edu/~1zm/ (Z. Liu).

0167-6423/$ - see front matter © 2009 Published by Elsevier B.V.
doi:10.1016/j.scico.2008.08.003

http://www.elsevier.com/locate/scico
http://www.elsevier.com/locate/scico
mailto:z.liu@iist.unu.edu
mailto:lzm@iist.unu.edu
http://www.iist.unu.edu/~lzm/
http://www.iist.unu.edu/~lzm/
http://www.iist.unu.edu/~lzm/
http://www.iist.unu.edu/~lzm/
http://www.iist.unu.edu/~lzm/
http://www.iist.unu.edu/~lzm/
http://dx.doi.org/10.1016/j.scico.2008.08.003

Z. Chen et al. / Science of Computer Programming 74 (2009) 168-196 169

Separation of concerns is to divide and conquer. At any stage of the development of a system, the system is divided
according to the concerns of the different views. These views can be modelled separately and their integration forms a model
of the whole system. Different concerns require different models and different techniques; the specification and design of the
functionality can be done as a state-based static specification, while event-based techniques are the simplest for designing
and analyzing interactions among different components. However, it is not easy to practice separation of concerns due to
the following problems:

(1) the lack of a design process which supports the identification of the crucial aspects of the system at different stages of
the development and the consistent design of the different aspects, and

(2) the lack of a semantic foundation to define the precise relations among the different views that effectively supports a
coherent and comprehensive understanding of the system, and because of this

(3) the lack of integrated techniques and tools for consistent analysis and verification of the system. Analysis is needed, for
example when one has to decompose a required “global” property into “local” properties of the different views.

The suggested approach in practical software engineering to dealing with software complexities is component-based
model-driven development (CB-MDD). With such an approach,

o the different aspects and views of the system are described in a UML-like multi-view and multi-notational language [43,
49],

e separate design of the different aspects is supported by design patterns, object-oriented and component-based designs
[32,20], and

e model construction is aided by UML-tools, design is supported by model transformation tools, and verification is
supported mainly by testing tools.

In this approach, the Rational Unified Process (RUP) [30] is often adopted. The practical engineering methods with CB-MDD in
a RUP help to some extent by providing visual notations for modelling components and their provided and required interfaces,
the different aspects and views of components and their relations. This has greatly eased the difficulties in identification and
building models of the different views of components and composition of components, with the support of powerful UML-
modelling environments, such as MagicDraw [41]. However, to develop correct transformations and effective verification,
there is need for a rigorous unified semantic theory and a coherent collection of high level theorems about the constructs,
such that they support tool suites for specification, refinement and verification of the models. These are the main concerns of
this paper, and the role that rCOS plays is to provide the formal definitions of the models in a UML-based RUP development
process.

Rigorous specification, refinement and verification require the application of formal methods. In the past half a century,
the formal method community has developed semantic theories, specification notations and tools of verification, including
static analysis, model checking, formal proof and theorem proving, and runtime checking. They can be classified into the
following frameworks:

e event-based models [39,25] are widely used for specification and verification of interactions, and they are supported by
model checking and simulation tools [48,16];

e pre-postconditions and Hoare logic are applied to specifications of functionality and static analysis; these are supported
by tools of theorem proving, runtime checking, static checkers and testing [34,18,38];

e automata, state transition systems, and temporal logics are popular for specification and verification of dynamic control
behaviors; they are supported by model checking tools [28,33].

However, each framework is researched mostly by a separate community, and most of the research in verification has largely
ignored the impact of design methods on feasibility of formal verification, automated verification in particular. Therefore,
the verification techniques and tools are not very scalable and they are not easy to integrate into practical design processes.

The notion of program refinement has obvious links to the practical design of programs with the consideration of
abstraction and correctness, and the well-studied refinement calculi [40,3] are shown to be effective for the correctness
of program level functionality; however there is a need for extension to object-oriented and component-based model
refinement as witnessed by the recent work on formal methods of component and object systems [1,5,6,10,23,58].

In this paper, we present our ongoing research on a component-based design method, called rCOS. The method
includes a modelling notation, directly defining concepts of classes, objects, components, interfaces, contracts, coordination
and composition. The method is founded on a well-studied semantic model with a refinement calculus [23,10,58], which
is the basis for formal verification and correct model transformation. We have also defined a UML profile for rCOS formal
specifications, and refinement can be done on UML models using model transformations [15]. We discuss how this method
can effectively support the integration of the techniques and tools of refinement and verification in a component-based
model-driven design process. In particular, we show in the CoCoME case study [12]:

(1) the system is specified by a collection of use cases, and each is modelled by an rCOS component;

(2) the models of different aspects of components at each stage of the development, including the requirements elicitation
and modelling, functionality design by refinement, logical component-based architecture design, detailed design and coding,
and design of GUI and hardware controllers;

170 Z. Chen et al. / Science of Computer Programming 74 (2009) 168-196

Buffer]
[]

put(T in ;) o—— Component —o get(; T out)

Fig. 1. A component with syntactic interface only.

(3) how these models are constructed using the UML profile and refined by application of design patterns that are proved
to be refinements in rCOS;
(4) how verification and validation tasks are identified for the models and what are effective tools for these tasks.

Outline

In outline, the paper proceeds as follows. In Section 2 we give an overview of rCOS, showing how the significant concepts
and artifacts of component-based software engineering are formalized in rCOS. This introduction tends to be informal and
gives references to the literature where technical results are documented. This leads to a discussion in Section 3 about a
software design process well integrated with rCOS. Section 4 is devoted to the rCOS development of the CoCoME case study,
showing how rCOS is used for model construction and analysis with regard to the different design phases. The conclusions
and related work are discussed in Section 5.

2. Introduction to rCOS

The research on rCOS develops a model-driven development method that combines object-oriented and component-based
design and analysis techniques. As a method, rCOS is founded on a formal semantic theory [23,10]; it includes a modelling
notation with a calculus of refinement for object-oriented models and component models [23,10,58]; also it considers
integration with a development process, from requirements elicitation through to coding. Within the process, the formal
techniques and tools of modelling, design and verification can be applied, such as MasterCraft [52] for modelling and
ModelMorf [36,13] for model transformation.

For these purposes, the rCOS semantic theory defines the important concepts and artifacts in the domain of object-
oriented and component-based software engineering, like classes, objects, components, interfaces, contracts, composition
(connectors), coordination and glue. It provides the behavioral semantics of these concepts with high level rules for refinement
and verification. This section introduces the formalization of these concepts in rCOS and they will be used in the later part
of the paper for the design of the case study. Because of the limited space, we do not present formal syntax and only focus
on the semantic formalization of the software artifacts and their treatment. The syntax of rCOS is illustrated in the models
of the case study.

2.1. Interfaces and contracts

An interface I provides the syntactic type information for an interaction point of a component. It consists of two parts: the
data declaration section, I.FDec, that introduces a set of variables with their types, and the method declaration section, . MDec,
that defines a set of method signatures. Each signature is of the form m(T; in; T, out), where T; and T, are type names, in
stands for an input parameter, and out stands for an output parameter. We allow multiple input parameters and usually call
the output parameter return.

Current practical component technologies provide syntactical aspects of interfaces only and leave the semantics to
informal conventions and comments. This is obviously not enough for rigorous verification and validation. For example,
the component with only syntactic interfaces shown in Fig. 1 has no information about its functionality or behavior. For
this, we define the notion of contracts of interfaces.

A contract is a specification of the semantics for the interface. However, different usages of the component in different
applications have different needs:

e An interface contract for a component in a sequential system is obviously different from one in a communicating
concurrent system. The former only needs to specify the functionality of the methods, e.g. in terms of their pre and
postconditions, whereas the latter should include a description of the communication protocol, e.g. in terms of interaction
traces, to specify the order in which the interactions happen.

e If the component is to be used in a real-time application, the contract of its interface must also specify real-time
constraints, such as the lower and upper bounds of the execution time of a method.

e Components in distributed, mobile or internet-based systems require the contracts of their interfaces to include
information about their locations.

e An interface (of a component) should be stateless when the component is required to be used dynamically and
independently from other components. This means that the execution history of a component does not affect the other
components.

Thus the rCOS framework takes great trouble to separate such concerns and viewpoints.

Z. Chen et al. / Science of Computer Programming 74 (2009) 168-196 171

It is the contract of the interface that defines the external behavior and features of the component and allows the
component to be used as a black box. Therefore in rCOS, we define an interface contract for a component as a description
of what is needed for the component to be used in building and maintaining software systems. However, this description can
be incremental in the sense that newly required viewpoints can be added when needed according to the application. Also,
the consistency of these viewpoints should be formalizable and checkable. For this, rCOS builds on Hoare and He’s Unifying
Theories of Programming (UTP) [27].

2.2. A short introduction to UTP

In UTP, a sequential program (but possibly nondeterministic) is represented by a design D = («, P), where

e « denotes the set of state variables (called observables). Each state variable comes in an unprimed and a primed version,
denoting respectively a pre- and a post-state value. The set includes program variables, e.g. x, X', and a designated Boolean
variable, ok, ok’, that denotes termination or stability of the program.

e P is of the form p(x) - R(x, '), called the functionality specification of the program. Its semantics is defined as
(okAp(x)) = (0kK'AR(x, x")), meaning that if the program is activated in a stable state, ok, where the precondition p(x)
holds, the execution will terminate, ok’, in a state where the postcondition R holds.

In UTP, the refinement partial order C among designs is defined such that D; C D, if they have the same alphabet,
say {x, X'}, and Vx, X' - (P, = P;) holds, where P; and P, are the functionality specification of D; and D,, respectively. It
is proven that with this order the set of designs forms a complete lattice, and true is the least (worst) element of the lattice.
Furthermore, this lattice is closed under the classical programming constructs:

sequential composition, D1; D,

conditional choice, D; < g(x) > Dy, where g is a predicate, and D; is selected when g evaluates to true, and Dy is selected
when g evaluates to false.

e nondeterministic choice, D; vV D,, and

least fixed point of iterations, ux.D.

All these constructs are monotonic operations on the lattice of designs. Refinement between designs is naturally defined as
logical implications. These fundamental mathematical properties ensure that the domain of designs is a proper semantic
domain for sequential programming languages. For a design, we define its weakest precondition for a given postcondition q:

wp(p - R, q) =p A —(R; —~q)

where the meaning of composing relations by *;” is the same as in UTP, q1; g, = v - (p1[vo/X'] A p2[vo/X]).

Semantics of concurrent and reactive programs, such as those specified by Back’s action systems [2] or Lamport’s Temporal
Logic of Actions (TLA) [31], are introduced by the notion of reactive designs with an additional Boolean observable wait that
denotes suspension of a program. A design P is a reactive design if it is a fixed point of #, i.e. #(P) = P, where

H(p - R) = (wait v p) - wait’ < wait > R.

We use a guarded design g& P, where P is a design, to specify the reactive behavior #(P) < g > (true F wait’), meaning that
if the guard g is false, the program stays suspended, and if it is true, the result is #¢(P). The semantics of a reactive design
is to ensure that a synchronization of a method invocation by the environment and the execution of the method can only
occur when the guard is true and wait is false.

The domain of reactive designs enjoys the same closure properties as that of sequential designs, and also refinement is
defined as logical implication [24].

2.3. Class structures and datatypes

Most, if not all, of the current component-based design and implementation techniques rely heavily on object-oriented
techniques. For this, we allow the types of variables to be classes, and extend UTP with the notions of objects, classes,
inheritance, polymorphism, and dynamic binding [23]. The design process starts with a requirements model that we write
as a class specification in the format of Fig. 2.

An attribute is assumed to be public unless it is tagged with reserved words private or protected. The initial value of an
attribute is optional; if no initial value of a class variable is declared, it will default to null.

The precondition of a method is a disjunction of simpler predicates that contain no primed variables, and the
postcondition is a conjunction of disjunctions of relation composition of simple predicates that may contain both unprimed
and primed variables. The reader can see the influence of TLA* [31], UNITY [9] and Java [21] on the above format.

Adesign p - R for amethod is written as Pre p and Post R. An R in the postcondition is of the form ¢ A (le’ = e), where c is
acondition, le an assignable expression and e an expression. An assignable expression e is either a variable x, an attribute name
a or an indirect attribute name le.a. An expression e may be a logically specified expression such as the greatest common

172 Z. Chen et al. / Science of Computer Programming 74 (2009) 168-196

class C [extends D] {
attr T's—= downs Tod =
method m(T in; V return) {
pre: pVv...Vp
post: A (R;..;R)V...V(R;...;R)
s R,

method m(T" in; V return) { }

invariant Inv }

Fig. 2. Specification of a class.

divisor of two given integers. We allow the use of indexed conjunction Vi € I : R(i) and indexed disjunction 3i € I : R(i) for a
finite set I.

Also, specifications of classes at a lower level design or even program code are allowed by using, together with designs,
the usual object-oriented programming primitive commands and constructs.

In rCOS, we distinguish data from objects and thus a datum, such as an integer or a Boolean value does not have a
reference. For this paper, we assume the elementary datatypes of

V ::= long | double | char | string | boolean.
The types T are then generated by:
T::=V|C|set(T) | bag(T)

where Cis a class name.

We use the operations add(T a), contains(T a), delete(T a) on a set or a bag with their usual meaning. For a variable s
of type set(T), the specification statement s.add(T a) equals s' = s U {a}, and s.contains(T a) equals a € s, and s.sumAll()
is the sum of all elements of s, which is assumed to be a set of numbers. We use curly brackets {e, ..., e,} and square
brackets [[eq, ..., e]] to define a set respectively a bag. For a set s such that each element has a unique key or identifier,
s.find(ID id) denotes the function that returns the element whose key equals id if there is one, or null otherwise. Notice that
Javaimplements these types via the Collection interface. Therefore, these operations in specification statements can be easily
coded in Java.

2.4. Contracts of interfaces
In the current version of rCOS, we consider components in concurrent and distributed systems, and a contract
Ctr = (I, Q, 8, #) of interface I specifies

o the allowable initial states by the initial condition Q, denoted by Ctr.Init,

e the specification function 4, denoted by Ctr.Spec, that assigns each method a guarded design g&D, and

e the interaction protocol &, denoted as Ctr.Prot, which is a set of sequences of call events, where a sequence is written:
?20p1(X1), ..., 20pk(xy). Notice that a protocol can be specified by a temporal logic or a trace logic formula.

We use Ctr.IF to denote the interface of contract Ctr.

Example 1. The component interface in Fig. 1 does not say that the buffer is a one-place buffer. A one-place buffer can be
specified by a contract B; for which

e The interface: B1.IF = (q : Seq(int), put(item : int;), get(; res : int))
e The initial condition: By.Init = q = ()
e The specification:

By.Spec(put) = q = ()&true - q' = (item)
B1.Spec(get) = q # ()&true - res’ = head(q) A q' = ()

e The protocol: B;.Prot is a set of traces that is a subset of
{e1, ..., ex | e is ?putifiisodd and ?get otherwise}.

The protocol corresponds to the semantics of a CSP process. However, instead of writing the CSP process, we use the rCOS
tool to draw a sequence diagram in the UML profile of rCOS, that is then automatically translated into the CSP process. H

Z. Chen et al. / Science of Computer Programming 74 (2009) 168-196 173
2.5. Contract refinement

A contract Ctr has a denotational semantics (cf. [24]) in terms of its failure set ¥ (Ctr) and divergence set D (Ctr), that is the
same as the failure-divergence semantics for CSP [10]. Informally speaking, £ (Ctr) contains the interaction traces of the form
?2mq(u; v), .. .7m,(uy; v,) that lead to divergence, i.e. ok’ = false. ¥ (Ctr) is the set of pairs (tr, F) where tr is an interaction
trace and F is a set of method invocations such that the execution of tr leads to the refusal of the method invocations in F,
i.e. their guards are falsified.

A contract Ctrq is refined by contract Ctr,, denoted by Ctri C Ctr,, if the latter offers the same provided methods,
Ctr.IF.MDec = Ctr,.IF.MDec, is not more likely to diverge than the former, D (Ctri) 2 D(Ctr,), and not more likely to
deadlock than the former, & Ctri) 2O ¥ (Ctr,). We have established in [24] a complete proof technique of refinement by
simulation.

Theorem 1 (Refinement by Simulation). Ctrq T Ctr, if there exists a total mapping relating the state u of the attributes of Ctrq
to the state v’ of the attributes of Ctr,, denoted p(u, v") : Ctri.IF.MDec — Ctr,.IF.MDec, such that

(1) Ctry.Init = (Ctrq.Init; p).
(2) p = (guard,(op) = guard,(op)) for all op € Ctr;.IF.MDec, where guard;(op) denotes the guard of operation op in Ctr;.
(3) foreach op € Ctry.IF.MDec, Ctrq.Spec(op); p T p; Ctr,.Spec(op). H

The need for the mapping to be total is to ensure that any state in the “abstract contract” is “implemented” in the refined
contract. Similarly, contract refinement can also be proved by a surjective upward simulation [10].

Theorem 2 (Completeness of Simulations). If Ctry = Ctr,, there exists a contract Ctr such that
Ctrq =up Ctr <gown Ctry.

<up and <go,n denote upwards and downwards simulation, respectively. #

2.6. Consistency

The formalization of contracts supports separation of views, but the different views have to be consistent. A contract Ctr
is consistent, denoted by Cons(Ctr), if it will never enter a deadlock state when its environment interacts with it according
to its protocol, i.e., if (?0p;(x1), ..., 20px(xx)) € Ctr.Prot then

Init; g1&D1[x1/in]; . . . ; gk&DylXk/inel, | _ trie
—wait A Jop € Ctr.IF.MDeceguard(op) | —)

Note that this formalization takes both synchronization conditions and functionality into account, as an execution of
a method with its precondition falsified will diverge and a divergent state can cause deadlock too. We have proven the
following theorem of separation of concerns [24]:

Theorem 3 (Separation of Concerns). Fori € {1, 2}

(1) If Cons(1, Q, 8, &), then Cons(I, Q, 8, 1 U P,)
(2) If Cons(1, Q, 8, $1) and P, C P, then Cons(I, Q, 8, P,)

P
(3) IfCons(1, Q, 8,) and 8 T &, then Cons(l, Q, 81, P).

C stands for the pointwise extension of the refinement relation over (guarded) designs to mapping functions. B

This allows us to refine the specification and the protocol separately.

2.7. Components

A component is an implementation of a contract. Formally speaking, a component is a tuple C = (I, Q, MCode, PriMDec,
PriMCode, InMDec), where

e [is an interface, called the provided interface and denoted by C.pIF,

e Q is an initialization command, denoted by C.Init, setting the initial values of the attributes,

e PriMDec, denoted by C.PriMDec, is a set of method signatures, called private methods of the component,

e MCode, denoted by C.MC, and PriMCode, denoted by C.PriC, map a public method and a private method m respectively to
a guarded command g, — cp,

e InMDec is the set of required methods used by the code of the component, called the required interface and denoted by
C.1lF.

174 Z. Chen et al. / Science of Computer Programming 74 (2009) 168-196

put getl get
o— Cl > C2

putl

Fig. 3. Plugging.

put i get
O— Cl 2 —O
L putl g
/ O putl

Fig. 4. Hiding.

put 1 — 1| get
(%~{ ¢l ——+ 2 H——o0

—

L putt ol
]

Fig. 5. Feedback.

The semantics [[C] is a function that calculates a general contract for the provided interface from any given contract InCtr of
the required interface

[CN(InCtr) = ({, Q, 8), PriMDec, PriMSpec).

It is a contract with the specification of the private methods, where the specifications $ defines for each method m in the
interface I a reactive design that is the semantics of the code MCode(m) with the given specification of the required methods
by InCtr. Similarly, PriMSpec defines for each private method a reactive design from its code [24].

A component C; is refined by another component C,, denoted by C; C G, if

(1) they provide the same methods, C;.pIF.MDec = C,.pIF.MDec

(2) they require the same methods C;.rIF = C,.rlF, and

(3) for any given contract of the required interface (called an input contract), the resulting provided contract of the latter
refines that of the former, C;(InCtr) C C,(InCtr), for all input contracts InCtr.

Note that the notion of component refinement is useful for both component correctness by design and component
substitutability in maintenance.

2.8. Simple connectors

To support the development activity, the semantic framework also needs to define operators for connecting components,
resulting in new components, constructs for defining glue processes, and constructs for defining processes. In summary,
the framework should be compositional and support both functional and behavioral specification. In rCOS, simple connectors
between components are defined as component compositions. These include plugging (or union) and service hiding and
feedback. These compositions are shown in Figs. 3-5. Service renaming is also provided so that names of methods in interfaces
can be changed before components are composed.

2.9. Coordination

Components provide a number of methods, but do not themselves activate the functionality specified in the contracts; we
need active entities that implement a desired functionality by coordinating sequences of method calls. These active entities
are specially designed for a given application and therefore do not in general share the defining features of components.

To cater for this, we introduce in [10] process components into rCOS. Like a component, a process has an interface declaring
its local state variables and methods, and its behavior is specified by a process contract. Unlike a component that is passively
waiting for a client to call its methods, a process is active and has its own control on when to call out to required methods
or to wait for a call to its provided methods. For simplicity, but without losing expressiveness [22], we assume a process
does not provide methods and only calls methods provided by components. It is modelled by an interface and its associated
contract (or code).

Let C be the component, that is formed by disjoint union of a number of disjoint components C;,i = 1. .. k. Acoordination
program for C is a process P that calls a set X of provided methods of C. The composition C||xP of C and P is defined similarly
to the alphabetized parallel composition in CSP [48] with interleaving of events. The coordination composition is defined by

Z. Chen et al. / Science of Computer Programming 74 (2009) 168-196 175

put get
o— ClI c2 —o0

J&{Djl -

Fig. 6. Gluing two one-place buffers with a process forms a three-place buffer.

hiding the synchronized methods (i.e. making them 7 events) between the component C and the process P, thatis (C|[xP)\X
and denoted as (C||(x)P). Inspired by the work of Woodcock and Morgan [55], we have proven in [10] that (C||x;P) is a
component. The coordination composition is illustrated in Fig. 6, where C1 and C2 are two one-place buffers and P is a
process that keeps getting the item from C1 and putting it to C2. Therefore, processes only directly communicate via shared
components. Of course, a component can also communicate indirectly with another component via processes, but without
knowing the component with which it is communicating. Obviously, communication between a process and a component
is by method invocation.

An application program is a set of parallel processes that make use of the services provided by components. Analysis and
verification of an application program can be performed in the classical formal frameworks, but at the level of contracts
of components instead of implementations of components. The analysis and verification can reuse any proved properties
about the components, such as divergence freedom and deadlock freedom without the need to reprove them.

3. Development process with rCOS

With the rCOS models of the concepts and artifacts in component-based model-driven software engineering, we can
accommodate a use case driven, incremental and iterative Rational Unified Development Process [30]. Each iteration goes
through the phases of requirements elicitation and modelling, functionality design, logical component-based architecture design,
detailed design and coding and design of GUI and hardware controllers. Analysis and verification are carried out on the models
produced in each of these phases.

3.1. Requirements elicitation and modelling

In the requirements elicitation and modelling, as what will be illustrated in Section 4.2, a number of use cases are captured,
modelled and analyzed. Each use case is modelled in rCOS as a contract of an interface that a component provides to the actors
of the use case. The attributes of the interface declare the domain objects involved in the realization of the use case. Further
analysis on a set of use cases leads to the decomposition of some use cases into composition of use cases (cf. Section 4.2.3),
and union of simple use cases into a composite use case (cf. Section 4.2.4), modelled by compositions of components through
their interfaces.

The classes of these domain objects are models as a conceptual class diagram® in the UML profile of rCOS that can be
translated to rCOS class declaration section, representing the structural view of the data and objects of the components.
An rCOS class declaration section, see Section 4 for examples, is similar to a list of Java class declarations, but specification
statements in the form of UTP designs are allowed [23].

The interaction protocol of the contract describes the interactions between the actors and the system for this use case.
They are graphically represented as a sequence diagram called a use case sequence diagram in the UML profile, and translated
to a CSP process in rCOS.

The flow of control and synchronization is modelled by a state diagram in the UML profile and the static functionality
of interface methods is given in terms of their pre and postconditions. The combination of the state diagram and the static
functionality specification is a guarded design for the contracts [11].

In summary, the initial formal model of the requirements consists of a set of interfaces contracts in rCOS, one for each
use case, each is to be designed into an rCOS components. The contracts should be analyzed to ensure their consistency and
desirable properties such as safety and liveness. The contracts of the use cases form the initial architecture of the system.

3.2. Functionality design

This phase focuses on the design of the functionality of the use case methods specified in the contracts using the 00
refinement calculus [23], component refinement, and substitution [10] in rCOS. This is mainly to refine the interactions
between the actors and the system specified in the contracts of the use cases into interactions among the objects of
the classes in the class diagram. There are three kinds of OO refinements involved: functionality decomposition, attribute
encapsulation, and class decomposition.

1 This term is borrowed from [32]. The diagram is said to be conceptual, because the classes do not have any methods defined.

176 Z. Chen et al. / Science of Computer Programming 74 (2009) 168-196

3.2.1. Functionality decomposition

Assume that Cand Cy are classes, C; ois an attribute of Cand T x is an attribute of C;. Let m(){c(0.X’, 0.x)} be a method of C
that directly accesses and/or modifies x of C;. Then, we can refine C and C; by changing in class C the method m(){c(0.x’, 0.x)}
tom(){o.n()} and in class C; adding a fresh method n(){c[x'/0.X", x/0.x]}. This is also called the expert pattern of responsibility
assignment. This rule and other refinement rules in rCOS can prove big-step refinements, such as the following expert
pattern, that will be repeatedly used in the design of the system.

Theorem 4 (Expert Pattern). Given a list of class declarations Classes and its navigation pathsle =ry. X {an. ... A1k, X1,
B T g, X}, and {byq. b1y Y1, ... b ... bst,.ys} starting from class C, let m() be a method of C specified as
C: mO{ c(ay..... A1k X1y - ooy Ag1een e g, Xe)

A e = e(b]] b1[1 Yy ovny b51 bsts.ys) }

Then Classes is refined by redefining m() in C and defining the following fresh methods in the corresponding classes:

C: check(){return’:c(an.get,,anx1 0,..., ag].getﬂamxZ)

m(){if check() then r; .do-m,,r1 (b11 .get7,b11y1 O,...,bs .getﬂbslys)
T(ay) :: getnaijxi (){return’:a,-j“.getna'_jﬂxi Oy@G:1.4,j:1.k;—1)
T(aj,) :: ety x Ofreturn’=x;} (i : 1..£)

T(T,‘) o do—mnlrl_ (d]], ey ds1){ri+1.d0—m,,ri+l (d]], ey d51)} (l : 1..f — 1)
T(r) do—mnlf (di1, ..., ds){X =e(dy1, ..., ds1)}

T(by) :: getﬂbl_jyi (){return/:b,-jH.getﬂbijﬂyi O}G:1.s,j:1..t;—1)
T(bi,) = getnbit_ y; Ofreturn’=y;} (i : 1..5)

where T(a) is the type name of attribute a and m,; denotes the remainder of the corresponding navigation path v starting at
positioni. W

This pattern represents that a computation is realized by obtaining the data that is distributed in different objects via
association links and then delegating the computation tasks to the target object whose state is required to change.

If the paths {ay;..... A1k, X1y ooy Ag1een . gk, -X¢} have a common prefix, say up to ay;, then class C can directly delegate
the responsibility of getting the x-attributes and checking the condition to T(a;) via the path a;;. ayj and then follow the
above rule from T(a;;). The same optimization can be applied to the b-navigation paths.

The expert pattern is the most often used refinement rule in OO design [32]. It refines a pre-/post-condition functionality
specification into object interactions, based on a given class structure. This is an essential difference between the classical
refinement in the imperative programming paradigm and in object-oriented programming. The formal definition and proof
of it as an OO refinement rule are given in [23,58] using the relational semantics for object-oriented programming.

One feature of this rule is that it does not introduce more couplings by associations between classes into the class
structure. It also ensures that functional responsibilities are allocated to the appropriate objects that know the data needed
for the responsibilities assigned to them. More significantly, we have automated this rule in the rCOS tool [15].

3.2.2. Encapsulation

The encapsulation rule says that if an attribute of a class C is only referred to directly in the specification (or code) of
methods in C, this attribute can be made a private attribute; and it can be made protected if it is only directly referred in
specifications of methods of C and its subclasses. We should note that data encapsulation may have to be applied after it
is known that new classes introduced in later iterations do not need direct access to or extend the classes of the current
iteration.

3.2.3. Class decomposition

During an 00 design, we often need to decompose a class into a number of classes. For example, consider classes C; :: D aq,
C, :: Day,and D :: Ty X, T, y. If methods of C; only call a method D :: m(){...} that only involves x, and methods of C, only call
a method D :: n(){...} that only involves y, we can decompose D into two classes D; :: T; x; m(){...} and D, :: To y; n(){...},
and change the type of a; in C; to D, and the type of a; in C, to D,. There are other rules for class decomposition in [24].

Animportant point here is that the expert pattern and the rule of encapsulation can be implemented by automated model
transformations. In general, transformations for structure refinement can be aided by transformations in which changes are
made with a graphical editing tool, and then automatic transformation can be derived for the change in the specification of
the functionality and object interactions. For details, please see our work in [58].

The final model to be produced at the end of the OO design of a use case is a contract in which the use case sequence
diagram is refined to an object sequence diagram with inter-object interactions, but with the events of interactions between
the actors and the system unchanged. The conceptual class diagram is refined to a design class diagram in which methods
and their specifications are assigned to classes. The correctness of this design model is guaranteed by the correct use of the
refinement rules.

Z. Chen et al. / Science of Computer Programming 74 (2009) 168-196 177

3.3. Logical component-based architecture design

In this phase, models of “small use cases” are organised into bigger components by using the union connector, and models
of “large use cases” are decomposed into smaller interacting components according to the nature of the objects, such as their
physical locations and roles that they play in the overall business organisation. As what will be shown in Section 4.4, the
interfaces among these components are identified from the object sequence diagrams of the use cases in the design model.
The resulting model is called the model of the logical component-based architecture and obtained after hiding internal objects
and object interactions. The design decisions on (de)composition cannot be completely formalized or automated, but once a
decision is made the construction of the logical component-based architecture from the design model can be automated by
model transformations. The model includes a set of components with explicitly specified provided and required interfaces.
They can be depicted by a UML component diagram, a component sequence (or interaction) diagram, and a state diagram for
each (non-trivial) component. For this model, the compatibility of the contracts for the provided and required interfaces of the
inter-dependent components should be checked to avoid deadlock and livelock. This is called the logical model because the
interfaces of the components are all object-oriented interfaces in which component interactions are direct method invocations
via object references.

3.4. Detailed design and coding

The detailed design activities, that will be demonstrated later in Section 4.5, include further refinement of the components
by class decomposition, data encapsulation and refactoring; and replacement of some of the object-oriented interfaces with
concrete and appropriate interaction mechanisms (or middlewares) such as RMI, CORBA, or shared event channels. This
transforms the platform independent model (PIM) of the logical component-based architecture to a platform specific model
(PSM) with regard to the interaction mechanisms. Code can be constructed for each component. For this, a code template of
each component can be generated from the detailed design of the components. The template includes the information of the
flow of method invocations and the assertions specifying the functionality of the methods of the components. The flow of
method invocations and assertions is derived and documented during the refinements of the design process. Verification and
validation can be applied to components before and after introducing the concrete middlewares, such as runtime checking,
testing (unit testing) [34] and even by a verifying compiler [26,4].

3.5. Design of GUI and synchronization with hardware controller

Most software systems nowadays have components of GUI and hardware controllers that interact with the application
software components. Some GUI objects and hardware controllers are only relevant to some use cases and the design of the
synchronization among these GUI objects, hardware controllers and the corresponding components can thus be given after
the design of these use cases. Others, such as a printer, interact with the components of many use cases and therefore their
synchronization with the GUI and components should be designed after the design of all the components. It is important to
note that design and analysis of the synchronization among GUI components, hardware controllers and logical components
can be done in a purely event-based model following the theory of embedded system design. The rCOS method supports the
construction and analysis of such a model, but in this paper we will not discuss this with the design of the CoCoME example.
A discussion can be found in the full version [14].

4. The Design of CoCOME

The case study of CoCoME is a trading system and extends the running example in Larman’s textbook [32], originally
called the Point of Sale (POS) system. In this section, we apply rCOS with the development process described in the previous
section to the design of this system, focusing on one iteration. Subsequent iterations would add more functionality to this
core.

4.1. System overview

The trading system is a computerized system typically used in a supermarket. It deals with the various aspects of sales
and other business processes, including processing sales at a cash desk and handling both cash and credit card payments,
as well as updating the sales at the inventory. Furthermore, the trading system deals with ordering goods from product
suppliers (or wholesalers), and generating various kinds of reports for management purposes.

At the cash desk, the customer can check out the products he wants to buy and make the payment. To do this the cashier
records each product by entering the bar code with the bar code scanner or the keyboard. Furthermore, we introduce an
express checkout for customers with only a few items in order to speed up handling customers. A cash desk, shown in Fig. 7,
consists of the following devices:

e a Cash Box with keys for starting and finishing a sale, entering received money and paying out changes,
e a Bar Code Scanner with which product code can be scanned,
e a Card Reader for handling credit card payment,

178 Z. Chen et al. / Science of Computer Programming 74 (2009) 168-196
Cash Box

Printer

</

«./

\ Light Display

— | Express

q) Mode

Cash Desk PC

Bar Code
Scanner

Fig. 7. Overview of the entities of a cash desk (taken from [47]).

Stor

a

Cash Desk Line

Fig. 8. Overview of a store.

Enterprise
Enterprise
Server
Enterprise Client
|
Store . i

Fig. 9. Overview of an enterprise.

e a Printer for printing the receipt at the end of the sale process,

e a Light Display which signals whether the cash desk is in express mode,

e a Cash Desk PC that integrates the hardware devices and runs the software handling the sale process and communication
with the back office and clearing credit card transactions with the Bank.

The system can be a large system in which the store has a number of cash desks, called the cash desk line for checking out
customers in parallel, or even a network of stores, each having a cash desk line, to support a whole enterprise. Each store
has its own Store Server and Store Client for the store management, such as ordering products and managing inventory. Each
cash desk of the store is connected to its Store Server (see Fig. 8). In the case of a network of stores, there is need for an
Enterprise Server and an Enterprise Client for enterprise management that we are not concerned with in this paper, and all
stores are connected to the Enterprise Server (see Fig. 9).

We consider the development of a system that is used in one store, but it has a number of checkout points. It thus includes
hardware components such as bar code scanners, card readers, printers, and software to run the system. To handle credit
card payments, orders and delivery of products, we assume a Bank and a Supplier that interact with the system.

4.2. CoCoME requirements modelling and analysis
The system overview and problem description provide the initial context and vocabulary for further requirements

elicitation through studying the business processes. The requirements analysis and system design are use case driven. A
use case specifies how the system interacts with actors and its environment in realizing a business process. An actor, such

Z. Chen et al. / Science of Computer Programming 74 (2009) 168-196 179

as a Cashier who checks out customers, interacts with the system by calling a system operation to request a service of the
system.

There can be many use cases, depending on what business processes the client wants the system to support. In the
following subsections, we work out the model of the use cases that we are concerned with in this paper.

4.2.1. Use case UC 1: Process Sale
The main use case is about processing sales, modelled in use case UC 1: Process Sale.

Informal description of UC 1. The normal courses of interactions between the actors and the system are informally described
as follows.

(1) When a customer comes to the cash desk with her items, the cashier initiates a new sale.

(2) The cashier enters each item, either by typing or scanning in the bar code; if there is more than one of the same item, the
cashier can enter the quantity. The system records each item and its quantity and calculates the subtotal.
When the cash desk is operating in express mode, only a predefined maximum number of items can be entered.

(3) When there are no more items, the cashier indicates to the system end of entry. The total of the sale is calculated. The
cashier tells the customer the total and asks her to pay.

(4) The customer can pay by cash or credit card. If by cash, the amount received is entered. The system records the cash
payment amount and calculates the change.

If by credit card, the card information is entered. The system sends the credit payment to the bank for authorization.

The payment only succeeds if a positive validation reply is received. In express mode, only cash payment is allowed.
After a successful payment the inventory of the store is updated and the completed sale is logged.

There are exceptional or alternative courses of interactions, e.g., the entered bar code is not known in the system, the
customer does not have enough money for a cash payment, or the authorization reply is negative. A system needs to provide
means of handling these exception cases, such as cancel the sale or change to another way of paying for the sale. At the
requirements level, we capture these exceptional conditions as preconditions.

Formal model of UC 1. Each use case is modelled by the contract of the provided interface of a component. Let CASHDESKIF
denote the provided interface of component ProcessSale. We use a schema in the specification of a component and its
interfaces in which

e a component can have a number of provided interfaces, whose union defines the overall provided interface of the
component,
e similarly a component can have a number (zero or more) of required interfaces whose union defines the overall required
interface,
e each interface only declares its methods, and its fields are declared as attributes of a class, called the interface class, that
implements the interface,
e when the contract of the interface is specified,
. the protocol is a sequence diagram of the interactions between the actors and the instances of the class that
implements that interface,
. the state diagram is the state diagram of instances of this class
. the functionality of the interface methods are given as the pre and postconditions of the “definitions” of the methods
in the class implementing the interface.

We require that during system execution there is only one instance of the interface class for each component. With this
schema and based on the introduction to the system and the use case description, the component and its interface are
declared as

component ProcessSale {
provided interface CashDesKkIF {
public enableExpress();
public disableExpress();
public startSale();
public enterltem(Barcode code, int qty);
public finishSale();
public cardPay(Card c);
public cashPay(double a ; double c);

The protocol of CASHDESKIF is modelled by the sequence diagram in Fig. 10 and the dynamic flow of control by the state
diagram in Fig. 11. The invariant and static functionality of the methods of the interface are specified as follows.

180 Z. Chen et al. / Science of Computer Programming 74 (2009) 168-196

class CashDesk implements CashDeskIF::
invariant store # null A store.catalog # null
A (exmode = true V exmode = false)
method enableExpress()
pre: true
post: exmode := true
method disableExpress()
pre: true
post: exmode := false
method startSale()
pre: true

post: /* a new sale is created, and its line items initialized,
and the date correctly recorded */
sale := Sale.New(false/complete, empty/lines, clock.getDate()/date)
method enterltem(Barcode code, int qty)
pre: [* there exists a product with the input barcode ¢ */
store.catalog.find(code) # null
post: /* a new line is created with barcode c and quantity qty */
Lineltem line := Lineltem.New(code/barcode,qty/quantity)
; line.subtotal := store.catalog.find(code).price x qty
; sale.lines.add(line)
method finishSale()
pre: true
post: sale.complete := true
A sale.total := sum|[[l.subtotal | | € sale.lines]]
method cashPay(double a; double c)
pre: a > sale.total
post: sale.pay := CashPayment.New(a/amount,a-sale.total/change)
AcC = a— sale.total
/* the completed sale is logged in store, and */
; store.sales.add(sale) [* the inventory is updated */
; VI € sale.lines, p € store.catalog - (if p.barcode = l.barcode then
p.amount := p.amount — Lquantity)
method cardPay(Card c)
pre: Bank.authorize(c,sale.total)
post: sale.pay := CardPayment.New(c/card)
; store.sales.add(sale)
; VI € sale.lines, p € store.catalog - (if p.barcode = L.barcode then
p.amount := p.amount — Lquantity)

Locally declared variables, such as line, are not part of the interface. Also notice that we have used le := e according to its
semantics in UTP to avoid the use of a frame in the corresponding predicate 8 : le' = e.

The datatypes and classes of the objects are declared as class declarations in rCOS and are represented by the UML class
diagram in Fig. 12. Then the state space of the component is formalized in rCOS [23], and each state can be represented as a
UML object diagram.

Notice that the exception conditions are specified in the preconditions of the methods, and an invocation with input
that falsifies the precondition will lead the execution to divergence. What to do when an exception occurs can be part of
the client’s requirements. For example, when the bank authorization for a card payment is refused the actor can decide to
cancelSale() or use cashPay(). If this is specified in the sequence diagram and state diagram, the functionality of cancelSale()
should also be specified, that is skip in this case, as the inventory update is done only by the payment methods.

Analysis and checking. Static consistency between methods in the diagrams and the functional specification, their types,
and navigation paths must be checked. This step is usually done by tools like a compiler.

Dynamic consistency ensures that the separately specified behavior in the sequence diagram and the state diagram are
consistent. Informally, the consistency must ensure that whenever the actors follow the interaction protocol defined by the
sequence diagram, the interactions will not be blocked by the system, i.e. no deadlock should occur. Formally speaking, this
requires that the traces of the sequence diagram are accepted by the state machine defined by the state diagram.

In the CoCoME exercise, we translated both the sequence diagram and the state diagram into CSP processes [25] and used
the CSP model checker FDR [48] to check that the CSP process for the state diagram is trace equivalent to the CSP process of
the sequence diagram. In the case when the CSP process of the sequence diagram defines a regular language, as is the case
for use case UC 1, we define the semantics of a use case sequence diagram by the set of traces of the diagram expressed by
the regular expression:

Z. Chen et al. / Science of Computer Programming 74 (2009) 168-196 181

complete
~ExMode

| 2: startSale()

Y

max] ;
3: enterltem(Barcode, int)
|

| 5: cashPay(double):double
=

|
S finishSale() ol
|
1

lelse] | ©: disableExpress

loop
oL

[iace

[1.7] 8: enterltem(Barcode, int)

7: startSale()

|
>

I
I o: finishSale()

| Cashier | | : Cashdesk |
T T
& &
loop | |
I
alt b T
I | |
| 1: enableExpress() Al
& &
loop

Fig. 10. Sequence Diagram.

(~Eande} [ExMode

slartSale()

cashPay(a: doub)

carg@Pay(¢ : Card)

~Exl

enterltel

(complete
Mode

e) : double

enterltem(cade : Barcode, aty : int)

m(code : Barcode, gty : int)

start$ale()

J

enableExpress(

entertterr code |

= Init

~complete)
~ExMode

D] "

startSale()

[complete
ExMode

startSale()

cashPay(a : double) : dguble

(~complete r) ~complete)
~ExMode ExMode

Barcode, gty :int)

enterltem(code : Barcode, gty :int)

ExMode

(~complete)

(complete)
ExMode

<max
finishSale| finishSalef{)
Fig. 11. State Diagram of UC1.
tr(SDucl) =
(enableExpress() (startSale() enterltem()™®) finishSale() cashPay())*

+ disableExpress() (startSale() enterltem()™ finishSale() (cashPay() + cardPay()))*) *

For this case, we can also check whether the state machine defined by the state diagram accepts this regular language.
Notice that we have a single sequence diagram for each use case, that represents the protocol in which the actor interacts
with the component. We do not define the composition of sequence diagrams at the level of the UML profile, but we have
compositions of the translated protocols defined in rCOS.

182 Z. Chen et al. / Science of Computer Programming 74 (2009) 168-196

1 Cashdesk Sale
- 1 -sale,
exmode : boolean 0 _“lcomplete : boolean
1 [|startSale() —-sales] tdae::ie'-:goaﬁle
enterltem(code : Barcode, qty : int) *
finishSale() s
cardPay(¢ : Card)
cashPay(a : double) : double -pay/,0..1
enableExpress() { Payment
disab#sExpress()
Jlinb
4 —— :lines CashPayment
barcode : Barcode | CardPayment -
o amount : double
SRy 1 change : double
subtotal : double g

| Item 1
-clagk

barcode : Barcode

8 2 5
+store.[giore -catalog,| Price : double M
1 | - lamount : int

L -bank[pank Card |ccard
11 5.1

Fig. 12. Class Diagram of UC1.

While the sequence diagram specifies the traces in a denotational manner, the state diagram describes the operational
flow of control and thus model checking and simulation can be applied. The state diagram allows verification of both safety
and liveness properties. For example, we can check with a model checking tool that the state diagram satisfies the properties
that

(1) in the express mode, i.e. when exmode = true, at most max items can be entered, and if an event of enterltem() occurs,
it will eventually be followed by a cashPay() event;

(2) after an enteritem() event, an event of cashPay() or cardPay() will occur;

(3) in a sale, a cashPay() or a cardPay() cannot occur before finishSale().

Notice that properties (1) and (2) are only an abstraction of the property that every item sold will be paid when the sale
completes. With the event-based model of the protocol and the state machine these properties do not ensure that every item
sold will be paid with the correct amount when the sale completes. To prove that each item will be paid with the correct amount,
we need to analyze the functional specifications of the methods.

Validation of the functionality specifications is a difficult issue, its completeness in particular. We apply a prototyping tool
[35] to validate the model of a use case. Formal deductive proof techniques aided by a theorem prover can be used to prove
some functional properties. For example, from the specification of enteritem(), finishSale() and cashPay() and cardPay(),
we can prove that every item entered is recorded in the current sale with the correct subtotal, the sale’s total is correctly
calculated, and the sale’s total is correctly paid for by the payment. This, together with properties (1) and (2) proved for
the dynamic behavior, proves the property that each item sold is paid with the correct amount when the sale completes.

4.2.2. Two more use cases

To expose the most significant design issues and techniques, we consider two more use cases of the CoCoME exercise.
These two use cases are simple and there is no need to give their sequence, state and class diagrams. Further, we will
directly write the functionality of the methods of the use cases together with their corresponding component and interface
declarations.

UC 2: Order product. This use case starts with startOrder and then a number of times orderitem followed by makeOrder. We
only specify the functionality of the use case operations, and omit the declaration of the related classes which are obvious. We
use the name OrderProduct for the component of this use case and let a supplier provide the service receiveOrder(Order order)
to the store:

component OrderProduct {
provided interface OrderDeskIF {
public startOrder();
public orderltem(Barcode c, int q);
public makeOrder(Order order);

class OrderDesk implements OrderDesKIF {
protected Store store;
protected Order order;
public startOrder() {
pre: true
post: /+ a new order is created %/
order := Order.New()

}

Z. Chen et al. / Science of Computer Programming 74 (2009) 168-196 183

public orderltem(Barcode c, int q) {
pre: /% the product code c exists in the catalog */
store.supplier.catalog.find(c) != null
post: /x create an order line and add it to the order x/
Orderline line := OrderLine.New(c/identifier, q/quantity)
; order := order.lines.add(line)

}
public makeOrder(Order order) {
pre: true
post: store.order.add(order)
A store.supplier.receiveOrder(order)
}

}
}

UC 3: Manage inventory. This use case carries out changes to the inventory items. Here we only specify the operations for
changing the price of an item and adding a new item. Also, the protocol of this use case allows any sequence of invocations
of these operations and is thus omitted.

component InventoryManagement {
provided interface InventoryDeskIF {
public changePrice(Barcode code, double newPrice);
public additem(Barcode c, int a, double p);
}
class InventoryDesk implements InventoryDeskIF {
protected Store store;
public changePrice(Barcode code, double newPrice) {
pre: store.catalog.find(code) != null
post: V p € catalog - (if p.barcode=code then p.price := newPrice)

public addItem(Barcode c, int a, double p) {
pre: valid(c) /* the product code c is valid */
post: store.catalog.add(Item.New(c/barcode, a/Jamount, p/price))

}

In the trading system, there are many other methods in the store management component, including changing the
amount of an item, changing the price of a product, and deleting a product, not to say producing many different reports.
However, the selection above is sufficient to illustrate the rCOS approach.

4.2.3. Refinement of use case

Further analysis of use case UC 1 allows us to introduce two sub-use cases, UC 1.1: Make Cash Payment and UC 1.2:
Make Card Payment. Use case UC 1.1. provides the master use case UC1 an interface CASHPAYMENTIF with a method
cashPay(Sale sale, double a; double c) which is specified in the same way as the method cashPay(double a; double ¢) in
the contract for CAsHDESKIF. In the same way, UC 1.2 provides the master use case UC 1 with interface CARDPAYMENTIF
containing a method cardPay(Sale sale, Card c), specified in the same way as the method cardPay(Card c) in the contract for
CasHDESKIF. We then obtain a refined model of use case UC 1:

component ProcessSale {
/* wrap class in component: x/
component CashDeskComp {
required interface CashPaymentIF;
required interface CardPaymentIF;
provided interface CashDesKIF {
public enableExpress();
public disableExpress();
public startSale();
public enterltem(Barcode code, int qty);
public finishSale();
public cardPay(Card c);
public cashPay(double a; double c);
}

This composite component can be designed in rCOS by the parallel union and hiding the shared interface operations as:

class CashDesk implements CashDeskIF {
protected boolean exmode;
protected Store store;
protected Sale sale;
} } /* CashDeskComp %/
component CashPayment {
provided interface CashPaymentIF {
public cashPay(Sale sale, double a; double c)
I
component CardPayment {
provided interface CardPaymentIF
{ public cardPay(Sale sale, Card c) }
} } /* ProcessSale x/

ProcessSale = (CashDeskComp || CashPayment || CardPayment)
\ (CARDPAYMENTIF U CASHPAYMENTIF)

The original use case sequence diagram in Fig. 10 is then refined to the use case sequence and component diagram in
Fig. 13. As the two sub-use cases are very simple, their state diagrams do not play an important role in further design.
Therefore, we do not need to change the state diagram of UC 1. A slight change to the class diagram is needed so that the
interface classes of the sub-use cases can be included. Of course a different refinement can be applied; this depends on the
designer’s decision.

184 Z. Chen et al. / Science of Computer Programming 74 (2009) 168-196

<<Component>>
: Cashdesk

<<Component>>
: CardPayment

<<Component>>
: CashPayment

T T

| T
looj l T T
[s ‘)
alt | | |
[l | 1: enableExpress() | I
] |
foo 2: startSale() I !
[> |
looy | |)
[1..max] . | | CashDeskIF
3: enterltem(Barcode, int) |
T »
T 2 finishSal + | <<component>> =
: fini :
1 inishSale() » | ProcessSale
L& cashPay(double):double | I q
> 6: cashPay(Sale, double):double | <<components> &7
— L ——T————— :_ - _ CashDeskComp
lelse] alt 7: disableExpress() : ;
I »
loo — T 1 _ / \
1 EsanSaeg » ! (@ (@)
|o$E | CashPaymentlF CardPiymemlF
[9: enterltem(Barcode, int) ! I "
r » | <<cump0nem>>:* | <<cump0nent‘>>”_
| | | CashPayment || CardPayment
| 10: finishSale() | |
>
o & &
ﬂ" 11: cardPay(Card) | |
8] : "|12: cardPay(Sale, Card) |
il e St e Fa Al 4 | susets L
else], I |
13: cashPay(double):double : |
I "' 14: cashPay(Sale, double):double
| [|
i t t
| |
f
| I I

Fig. 13. Refined sequence and component diagram of UC 1.

4.2.4. Integrating the models and global constraints

We have captured three use cases and each is modelled as a contract of the provided interface of a component. At this
level, they look like separate closed components. In fact, they are not independent but share data and objects. We need to
analyze their relation and identify the objects that they share. We can see, from the attributes of the classes implementing
the interfaces that all the three components use an object store with the type Store. Obviously, only when the store objects
of the three components are the same, they can be composed into a component that supports the application:

StoreComp = ProcessSale || OrderProduct || InventoryManagement

In a component with name C and some interface IF, let CIF.a denote a public or protected attribute T a of the (abstract)
class implementing the interface IF. We omit IF or C where there is only one such T a in all implementing classes. We can
then add a constraint on the relation among the subcomponents of the composite component StoreComp specified as an
invariant

component StoreComp { invariant
null £ ProcessSale.store=0rderProduct.store=InventoryManagement.store }

The constraints have to be established when the system is integrated and the components, i.e. the instances of the
interface classes, are created. They must be preserved by the execution of the methods of the interface objects.

These constraints have to be guaranteed by the functional behavior of the components and by the consistency of the class
models of the components. For example, the constraint on StoreComp requires that the Store class is defined to be the same
in all the three subcomponents. This leads to a problem of how the class diagram of the system evolves during incremental
requirements modelling and analysis. Our approach is to use one global set of classes for all the use cases. The set evolves
by adding new classes, new attributes and new associations, when a new use case is specified. In this way, we can easily
ensure that the consistency of the class definitions as all these kinds of evolution of the global set are refinements to the
class structure [23,58]. For example, the new classes, Order and Orderline and their associations with the Store and Product,
used in the specification of the methods of use cases UC 2 and UC 3 must be added to the global set containing the elements
in Fig. 12.

4.2.5. Discussion about requirements modelling and analysis

With an informal description, we are not able to describe the functionality of a use case completely and clearly. Yet,
it would be too complex to describe in a single notation the interactions, dynamic flow of control and synchronization,
functionality and the static class structure. rCOS gives a clear separation of these views. Obviously, changes in the interaction

Z. Chen et al. / Science of Computer Programming 74 (2009) 168-196 185

protocol and the dynamic flow of control are required to be consistent, but they do not lead to changes in the static
functionality of the methods and the class structure. Also, the change of functionality specification of the methods and
the class diagram should be made consistently, but these do not affect the change of the protocol and the dynamic flow of
control. The consistency between the interaction protocol and the state diagram is mainly semantic, whereas the consistency
between the functionality specification and the class diagram is mainly syntactic.

A thorough and precise domain investigation is crucial to establish the vocabulary of the application. This vocabulary is
used to define the interface methods, classes and objects of the use cases. A precise model of the interactions of a use case is
the first key step to identify and define the interface methods. The precise specification of the functionality of the interface
methods is important for the construction of the class diagram that defines the classes and their attributes and associations.
The specification of the functionality also determines later in the design how objects should interact with each other to
realize the specified use cases. Therefore, without a full specification of the use case interaction protocol, the functionality,
the classes and their attributes and associations, it would be difficult to enter the design phase.

4.3. Design of the functionality of CoOCoME by refinement

This section illustrates how refinement rules in rCOS, the rule for the expert pattern in particular, are effectively used
to work out a correct design for CoCoME. We focus on the design methods of use case UC 1. We use the convention
ClassC :: m(){c} of Java to denote that method m() of class C is defined by the command c (it can also be a specification
statement).

Operations enableExpress() and disableExpress(). The postconditions of these two methods of class CashDesk modify the
attribute display of object light. Through the expert pattern, we introduce two methods into class Light, and then refine the
specification of enableExpress() and disableExpress() accordingly:

Class CashDesk:: Light light [* attribute */
enableExpress() {exmode := true; light.turnGreen()}
disableExpress() {exmode := false; light.turnYellow()}
Class Light:: Color display [* attribute */
turnGreen(){display := green}
turnYellow(){display := yellow}

This refinement also leads to refinement of the sequence diagram in Fig. 10 extending it with an interaction between
:CashDesk and :Light representing an invocation of turnGreen() of :Light by the method enableExpress() of :CashDesk, and
an interaction representing an invocation of turnYellow() of :Light by the method disableExpress() of :CashDesk. We are
implementing an algorithm to automate the refinement by the expert pattern. We plan to develop a design by drawing
facility in the tool in order for these steps of refinement to be done by drawing on the sequence diagram.

For these refinement steps of the methods, the class diagram in Fig. 12 is also refined by adding the definitions of
turnGreen() and turnYellow(), as well as replacing the bodies of methods enableExpress() and disableExpress() with the refined
definitions in class CashDesk. This means that the refinement of the functionality of the methods and the change of the class
diagram have to be carried out hand in hand consistently. The UML profile and the rCOS tool ensure that the change in the
sequence diagram will be automatically applied to the class diagram, too. In the refinement of the other methods of use case
UC 1, we assume the same understanding of how the refinement derives consistent changes in the sequence diagram and
class diagram.

Operation startSale(). The specification says to get the date by clock.getDate() and create a new sale. The expert pattern
allows us to delegate responsibility for getting the date to the clock and responsibility for creating the new sale to the class
Sale:

Class CashDesk:: startSale() {sale := Sale.New(clock.getDate())}

Class Clock:: getDate(; Date return) {return := date}

The above definition of startSale() can be further refined to
Class CashDesk::startSale() {Date d := clock.getDate(); sale := Sale.New(d)}

This specification uses the constructor method of class Sale which also takes an input parameter Date d. In general, a
constructor method of a class defines the initial values of the attributes of the class. For class Sale, the attributes are complete,
lines, date, pay and total. Notice that the type of attribute lines is a set of Lineltem. In Java, sets are implemented by classes that
implement the interface SET. The constructor of the set class initializes the instance as an empty set. For a set class set(T),
we use the Java notation of s := set(T).New() and its semantics (definable in rCOS as true - s’ = @) for the creation of a set
object. An object is always created by the constructor of the class (this is a special case of the expert pattern). According to
the specification, the constructor Sale() is thus defined as:

Class Sale:: Sale(Date d) { lines := set(Lineltem).New();
total := 0; date := d; complete := false }

186 Z. Chen et al. / Science of Computer Programming 74 (2009) 168-196

We obtain the following design after the above refinement steps:

Class CashDesk:: Clock clock;
startSale() { Date d := clock.getDate(); sale := Sale.New(d)}

Class Sale:: Sale(Date d){lines := set(Lineltem).New();
total := 0; date := d; complete := false}
Class Clock:: date(; Date return){return := date}

Operation enterltem(). This is the first time we meet a non-trivial precondition in a specification: store.catalog.find(c) #
null. We introduce a refinement schema, denoted by PP.

(PP) : m(){pre : p; post : R} T m(){if p then R else throw exception(p)}

where throw exception(p) can be any specification of what to do when the precondition does not hold, and the worst
case is chaeos. After this refinement, we can apply the expert pattern separately to the refinement of the expression for the
precondition and for the postcondition respectively.

Applying the expert pattern to the precondition of enterltem(), we need to define the following methods:

Class CashDesk:: find(Barcode code ; Item return) {return := store.find(code)}
Class Store:: set(Item) catalog;

find(Barcode code ; Item return) {return := catalog.find(code)}
Class set(Item):: find(Barcode code ; Item return) {return := find(code)}

Here, we assume the method find(code) of set(Item) implements the specification that returns the item with the bar code
equal to code. The implementation requires the design of an algorithm for the specification and thus involves significant
algorithm design. The code of the find() method in CashDesk and Store can be automatically generated from the expert pattern,
but the code for find() of set(Item) has to be programmed and verified against its specification.

The method signature makeLine(Barcode c, int qty) denotes the method realizing the postcondition of enterltem() when
its precondition holds. We apply the expert pattern to refine each conjunct in the specification of the postcondition using
proper sequential composition:

Class CashDesk:: makeLine(Barcode c, int qty) {
line := Lineltem.New(c, qty);
line.subtotal(store.getPrice(c),qty); sale.addLine(line) }
Class Store:: set(Item) catalog;
getPrice(Barcode c ; double return)
{return := catalog.getPrice(c)}
Class set(Item):: getPrice(Barcode c ; double return)
{return := find(code).price}
Class Sale:: set(Lineltem) lines;
addLine(Lineltem [){lines.add (1)}
Class Lineltem:: Lineltem(Barcode c, int qty){barcode := c; quantity := qty};
subtotal(double price, int qty){subtotal := qty x price }

Here again lines.add(l) implements the specification lines’ = lines U {I}. We leave the design for exception handling
unspecified. Any decision is formally a refinement of the original specification. Further refactoring [19] can introduce more
methods to a class so that method calls do not occur in method parameters and this will be discussed in Section 4.5. Correct
refactoring is also formalized as refinement in rCOS [23].

With the definition of the methods for the pre and postcondition of enterltem(), we apply the refinement rule (PP) and
obtain the following design:

Class CashDesk:: enterltem(Barcode code, int qty){
if find(code) # null then makeLine(code, qty)
else throw exception (find(code) # null)}

Operation finishSale(). We now refine method finishSale() using the expert pattern and define a method setComplete() and
a method setTotal() in class Sale. These methods will be called by the use case handler class. We omit discussion of addAll(),
as we will discuss quantification over sets separately in the following.

Z. Chen et al. / Science of Computer Programming 74 (2009) 168-196 187

Class CashDesk:: finishSale() {sale.setComplete(); sale.setTotal()}
Class Sale:: setComplete() {complete := true}
setTotal() {total := lines.addAll()}

Class set(Lineltem):: addAll(; double return){/ x elided * /}

Operation cashPay(). According to the refinement rule (PP) and the expert pattern, for the precondition a > sale.total, we
introduce the method checkPre() into CashDesk and getTotal() into Sale:

Class CashDesk:: checkPre(double a ; boolean return)
{return := a > sale.getTotal()}
Class Sale:: getTotal(; double return){return := total}

The first conjunct of the postcondition can be designed easily in the same way as the methods designed earlier. Consider
the last part in the postcondition that updates the inventory. It involves quantifications over elements of sets:

VI € sale.lines, p € store.catalog - (if p.barcode = l.barcode
then p.amount := p.amount — l.quantity)

In general, for a specification of the form V T o € s - statement(o) for s being a set of type set(T), we introduce the following
refinement rule, called the universal quantification pattern (UQP):

(UQP) : VTo €s-statement(o) T
Iterator i := s.iterator();
while i.hasNext() {T o := i.next(); statement(0)}

This means that we should define the semantics of the “Java” statements on the right-hand side of the above refinement in
rCOSasV T o € s - statement(o), where statement(o) is an rCOS statement. Now following the expert pattern and (UQP), we
define the update methods in these two classes:

Class CashDesk:: updatelnventory() {
set(Lineltem) lines := sale.getLines();
Iterator i := lines.iterator();
while i.hasNext() {Lineltem | := i.next();
store.updatelnventory(l.code, l.quantity) }
}
Class Store:: updatelnventory(Barcode c, int qty) {
Iterator i := catalog.iterator();
while i.hasNext() {Product p := i.next();
if p.code = c then p.amount := p.amount — qty}

}

The use of (UQP) shows the advantage of the combination of rCOS refinement rules and advanced features and libraries
implemented in modern languages, such as Java. Obviously, the application of (UQP) with the expert pattern is not trivial,
one can easily come up with the design in the following example:

Example 2 (A Flawed Design).

Class CashDesk:: updatelnventory() {sale.updatelnventory() }
Class Sale:: set(Lineltem) lines;
updatelnventory() {Iterator i := lines.iterator();
while i.hasNext(){Lineltem | := i.next();
store.updatelnventory(l.code, L.quantity)
}
Class Store:: updatelnventory(Barcode c, int qty) {
Iterator i := catalog.iterator();
while i.hasNext() { Product p := i.next();
if p.code = c then p.amount := p.amount — qty }

}

188 Z. Chen et al. / Science of Computer Programming 74 (2009) 168-196

}cashier| ‘ :Cashdaskl [:clockj ‘ :Sale‘ | :store| ‘ :Linanam| | :cashPaymam| ‘ :CardPBymEnlJ | : Bank
T T T T T T

"1 stansale !

2: getDate():Date
T -

3: Sale.New(boolean, set(Lingjtem), Date)
[toop], enteritem(Batcods, int)
] 5 find(Barcode) fitem o
&: Lineltern.New(Barcode, int)
7: gatPrice(Barcods):double
8: subtotal(double, int)

9: addLine(Lineltern) |

10: finishSale() |
L >
11: setComplete()

12: satTotal()

alt |

13: cashPay(dguble):double
0 @

14:getTotal():double |
15: CashPayment.New(double, double)

16: setPay(Payment)

17: addSale(Sale)

18: getl :set(Linelt
getlines(:set(Lineltem)

& & &
loop |
L1 19: updatelnventory(Barcode. int)

[elsel zo: cardPay(gard)

21: getTotal():double
22: authorize(Card, double):boolean
23: CardPayment.New(Card)
24: setPay(Payment
25: addSale(Sale) -
|_26: getLines():set(Lineltem) _,

Tloop |

[27: updatelnventory(Barcode, int) |

Fig. 14. Design sequence diagram.

The problem with this design is that in the class diagram there is no association from class Sale to class Store, and thus the
sale object cannot call a method of the store object. Of course, we can add such an association to make this design work, but
this would make the coupling higher, and every time a sale would be created by the cashdesk object, the store object should
be passed as a parameter to the constructor of Sale. W

The example shows that the expert pattern must be applied in the context of the class diagram. It is important to note that
the “flawed design” can be syntactically detected when checking the consistency between the functionality specification
and the class diagram. However, we suggest that checking is done before and during the refinement. Such mistakes can also
be avoided in an integrated tool.

How to refine a specification of the form 3 To € s - statement(o)? In general, this can be directly specified as a non-
deterministic statement M, Statement(o) which can then be refined to reduce non-determinism. This in general requires the
design of the data structure and algorithm. For example, with an array one can select the first element such that statement(o)
holds. However, if p is a property on the elements of s such that there is only one o in s such that p(o) holds and the statement
is of the form if p(o) then statement(o), we can have the following design pattern

(EQP) : 3T o €s-if p(o) then statement(o) C
boolean b := true; Iterator i := s.iterator();
while i.hasNext() A b
{T o :=i.next(); if p(o) then {b := false; statement(0)}}

The pattern must be used with the verification of the invariant that one and only one element of s satisfies property p.

Summarising the design. The design of operation cardPay() and the other two use cases can be carried out in a similar way,
as we have used for the operations that we have just designed. The design of the use cases derives refined models of the use
case sequence diagrams, called design sequence diagrams. The refined sequence diagram of use case UC 1 is given in Fig. 14.
The definitions of the methods of the classes in the design process can also be collected into the class diagram in Fig. 12,
transforming the conceptual class diagram in the requirements model to a design class diagram shown in Fig. 15.

4.4. Logical component-based architecture of CoCOME

After the object-oriented design of the use case methods, we design the component-based architecture. The components
we have seen until now are directly derived from use cases: each (sub-)use case defines one component.

Z. Chen et al. / Science of Computer Programming 74 (2009) 168-196 189

1 Cashdesk

= 1 1 -sal Sal
1 exmode : boolean | 1 ._ﬂ...e
0 - bool

startSale() ———0___ complete : boolean

enterltem(code : Barcode, qty : int) —'Sa‘es,zlael : {[’)QB'::IE
finishSale() . |

cardPay(¢ : Card) +addLine(| : Lineltem)
cashPay(a : double) : double +getTotal() : double
enableExpress() +getLines()

disableExpress()
find(code : Barcode) : ltem

makeLine(¢ : Barcode, gty :int) 0.1 -pay
checkPre(a : double) : boolean =
updatelnventory() Payment

&

-linw

Lineltem _lines. CardPayment 4 CashPayment i
|barcode : Barcode B il i amount : double|
|quantity : int change : double|

|subtotal : double

| +subtotal(price : double, gty int)

+store, | Store | grcata\g TP
i .

| +find(code : Barcode) : Item == 1
+getPrice(¢ : Barcode) : double ::Zudgaui?erccde
1+upda|e!nvenlory(¢ : Barcode, qty :int) e

“bank | Bank % +getDate() : Date
1 0.1

|+authorize(¢ : Card, amount : double rboolean'

Fig. 15. Design class diagram of UC 1.

We now decompose some use case components into a number of components plugged together, and union a number of
simple components into a single, larger component.

In an analysis of the model of UC 1, we can identify objects clock, light and bank that are unique and permanent in the
component. Their uniqueness and permanency can be verified as an invariant property, and they can thus be treated as
components. Furthermore, they should be treated as components because they are either given as external components
(the bank) with known interfaces, or a physical component for which a controller exists has to be designed (the light) or
a component with well-known implementation (the clock). We therefore transform these objects into components with
their interfaces, denoted by CLocKIF, LIGHTIF and BANKIF. They consist of the methods being identified as those in the design
sequence diagram that are invoked by the other objects of the use case component. In fact the corresponding classes Clock,
Light, and Bank from the original model can be used as the classes implementing these interfaces.

There is another unique and permanent object, that is the store, which provides much functionality to the other objects.
Furthermore, there is also a global constraint on the three use cases that they all share a single store object. We therefore
make this object into a component called StoreSale, together with the objects catalog and sales that the store aggregates. Their
respective aggregated objects line items and products and payments are assigned to this component as well. The interface of
StoreSale, denoted by STORESALEIF, consists of those methods of use case UC 1 in the design sequence diagram Fig. 14 that
the component CashDesk invokes on the objects now bundled in StoreSale. Method invocations that are now component-
internal, like those from store to the products, are not visible.

After identifying the above four components, the temporary objects line, sale, and pay form an open component,
denoted as SalesHandler, which has the provided interface CASHDESKIF and required interfaces CLOCKIF, LIGHTIF, BANKIF and
STORESALEIF, and we have

ProcessSale = SalesHandler || StoreSale || Clock || Light
\ (SALESHANDLERIF U STORESALEIF U CLOCKIF U LIGHTIF)

This component is still open and has the required interface BANKIF since we assume the existence of the bank server.
Because of the nature and physical location of the use cases OrderProduct and InventoryManagement, we combine them
into a single component:

Inventory = OrderProduct || InventoryManagement

This component can then be specified as

component Inventory {
provided interface OrderDeskIF
provided interface InventoryDeskIF;
required interface StoreSalelF;
class OrderDesk implements OrderDesKkIF {
/* copied from component OrderProduct =/
protected Store store;
protected Order order;
public startOrder() {
pre: true
post: /x a new order is created */

190 Z. Chen et al. / Science of Computer Programming 74 (2009) 168-196

order := Order.New()

public orderitem(Barcode c, double q) {
pre: /x the product code c exists in the catalog =/
store.supplier.catalog.find(c) != null
post: /« create an order line and add it to the order x/
OrderLine line := OrderLine.New(c/identifier, q/quantity)
; order := order.lines.add(line)

}
public makeOrder(Order order) {
pre: true
post: store.order.add(order)
A store.supplier.receiveOrder(order)

}
} /* OrderDesk x/
class InventoryDesk implements InventoryDeskIF {
/* copied from component InventoryManagement %/
protected Store store;
public changePrice(Barcode code, double newPrice) {
pre: store.catalog.find(code) != null
post: V p € store.catalog - (if p.barcode=code then p.price:=newPrice)

}
public addItem(Barcode c, long a, double p) {
pre: valid (c) /* the product code c is valid x/
post: store.catalog.add(Item.New(c/barcode, aJamount, p/price))

}
} /% Inventory desk =/
invariant 3 Store s - s = OrderDesk.store = InventoryDesk.store;

}

If one wants to hide the individual interfaces by merging them into one, the union connector and proxy methods can be
specified in the following format that also indicates a Java implementation.
component Inventory {

required interface OrderDeskIF;

required interface InventoryDeskIF;

invariant 3 Store s - s = OrderDeskIF.store = InventoryDeskIF.store;
provided interface InventorylIF {

public changePrice(Barcode code, double newPrice);

public additem(Barcode c, long a, double p);

public startOrder();

public orderitem(Barcode c, double q);

public makeOrder(Order order);

public class InventoryHandler implements InventoryIF {
protected InventoryDesk inventoryDsk = InventoryDesk.New();
protected OrderDesk orderDsk = OrderDesk.New();
public changePrice(Barcode code, double newPrice)
{ inventoryDsk.changePrice(long code, double newPrice) }
public additem(Barcode c, long a, double p)
{ inventoryDsk.addItem(long c, long a, double p) }
public startOrder() { orderDsk.startOrder() }
public orderltem(Barcode c, double q) { orderDsk.orderltem(long c, double q) }
public makeOrder(Order order) { orderDsk.makeOrder(Order order) }

In the same consideration as to the decomposition of component ProcessSale into SalesHandler and StoreSale, we
decompose Inventory into InventoryHandler and Storelnventory. InventoryHandler provides the two interfaces ORDERDESKIF
and INVENTORYDESKIF of Inventory, and consists of the interface objects of these interfaces. It requires the interfaces denoted
by STOREORDERIF and STOREMANAGEIF provided by Storelnventory. These interfaces consist of the methods of class Store that
are called by the interface objects of OrderDesk and InventoryDesk, respectively.

The store object in component StoreSale and the one in Storelnventory are the same object all the time. We compose by
union these components to obtain the component StoreServer with provided interface STOREIF:

StoreServer = StoreSale || Storelnventory

This component provides interface STORESALEIF to component SalesHandler, and interfaces STOREORDERIF and
STOREMANAGEIF to InventoryHandler. The resulting component-based architecture is shown as a UML component diagram
in Fig. 16.

With this model of the component-based architecture, we can transform the design sequence diagram of a use case into
component interaction (or sequence) diagrams. For example, the inner loop during normal mode from the design sequence
diagram in Fig. 14 is transformed into the component sequence diagram in Fig. 17. We call this model of component-
based architecture the logical architecture model because all the interfaces are still object-oriented interfaces, meaning that
interactions are realized by method invocations via object references.

Discussion about the architecture design. From the way we construct the architecture model, we can see the importance
of the object-oriented design by refinement for the use case methods. A detailed enough design allows us to identify the
components and their interfaces.

Z. Chen et al. / Science of Computer Programming 74 (2009) 168-196 191

({ C%'\ fO
\\Cfﬂshb skiIF InventoryBeskIF OrdefDeskIF

C!oé/ltIF [<<component>: <<Component>>

~___ | SalesHandler InventoryHandler
BankiF -

/ ‘.{) G ‘/ fray

y) (@'
J J \ \
LightIF Stol SéIeIF Slore%derlF StoreM {agelF

<< > z
StoreServer
(@ (= =N
((@)
Storé%lelF StoreﬁferlF WagelF

<<component>:=] <<component>>=]
StoreSale Storelnventory

Fig. 16. Logical component model.

GUI

| SalesHandIer| | StoreSale
T

T
1: startSale() 2: getDate():Date »

T) »
3: Sale.New(boolean, set(Ljpeltem), Date)
-4 -

T 4
4: enterltem(Barcode, igt) I
15: find(Barcode):Itemn !
0 '5: find(Barcode):tterp!
6: Linellem,New(Barcong int)
T éetPrice(Barcode]:quble
8: subtotal(double, i

T q : A
B 9: addL\ns(Llne\teﬁ)

‘ :Clocki ‘ :Bankl

10: finishSale() ‘

| _11: setComplete() .,
L 17 seompietel)

! 12; setTotal() !

g L 4

h
I
4 : \
13; cashPay(double):doble,, o
1]
L 15: selPayjPagmggt)

,__16: addSale(Salg)
17! getLines():set(Lineltgm)

T
loop

,
0 18: updatelnventory| géarcode, int)

ak---

21: auT.hon'ze(C‘ard. double):boolean

1

| I
¥i20: getTotal():.doublg!

I

L

I

1 23: addSa\egSale)l !

24! getLines():set(Lineltem)

loop| | |

(1

| I
25: updatelnventol arcode, int)
I

|
1 I
| |
+ +
| [
| I
| |
1 |
| |
' [

Fig. 17. Component sequence diagram.

4.5. Detailed design of CoCOME

In the detailed design, we carry out the refinement activities described in the following paragraphs.

Refining and Refactoring the design of components. We refine the object-oriented design of components by refining the
bodies of the methods and data encapsulation as described in Section 3.2. This is generally called refactoring [19]. While data
encapsulation can be automated with tool support, refining a method body requires the inspection of the specification of
the designs of the methods. The main purpose of such a decomposition is to improve the understandability and efficiency of
the designs. We do not have a formal definition of the matrices of these features, but focus on the assurance of the functional
correctness of such a decomposition once a decision is made.

192 Z. Chen et al. / Science of Computer Programming 74 (2009) 168-196

<<component>>
O i Inventory
CashDeskIF e
\}__ﬂ <<component>>=T o o A #)
CashbesklF Application 4) TnventoryDeskF
InventoryDeskIF
" [

I

St\f{r{IF
<<Component>>
Data

L @]
O OrdeiDeskiF
OrderDeskIF

1
JT;C

<<component>>-
Database

Fig. 18. Inventory decomposition.

Refactoring is a special case of refinement that usually changes a piece of code to another one with an equivalent behavior
(determinism). Simple refactoring, such as removing method calls from expressions, is useful as well as complicated
refactoring. For example, we can change the design of CashDesk::updatelnventory() to the “wrong design” in Example 2,
but we add the missing associations to make it a correct design.

Platform specific architecture design. In this phase of design, we apply standard designs for individual components and
interfaces.

In the CoCoME application, we use the typical three-layer architecture (application layer, data representation layer
and database). The application layer is formed by the composition of components SalesHandler and InventoryHandler, and
StoreServer the data layer that is further decomposed into a component DataRepresentation and a Database component. The
three-layer architecture is shown in Fig. 18. All the data are stored in the Database and the component DataRepresentation
is the data representation, that provides the interface STOREIF to the application layer.

When there are many different kinds of data, componentData can be further decomposed into components for different
kinds of data, such as SaleData and OrderData.

So far the semantics of the interfaces between the components are still object-oriented interfaces. This works if there
is only one SalesHandler instance and all the components share a central memory. Now we assume that there is more than
one SalesHandler instance, each having its own clock and only one StoreServer instance. We must change some of the object-
oriented interfaces by introducing connectors or middlewares to realize the interfaces properly:

e We keep the interface STOREIF between the application layer and the data representation layer in StoreServer as an object-
oriented interface.

e DataRepresentation and the Database interact through JDBC.

e As all SalesHandler instances share the same inventory, we can introduce a connector by which the instances get product
information or request the inventory to update a product by passing a product code.

e The interaction between the SalesHandler instances and the bank or the product supplier can be made via RMI or CORBA.

Verification of the correctness of the use of the standard interaction protocols and middlewares require their
formalization in rCOS. This is not done yet. However, the translation of the object-oriented interfaces into their
implementations in these standards is easy as the standards are established with the purpose of realizing object-oriented
interactions on different platforms.

4.6. Verification and analysis of the design

Static checking and run time verification can be applied to the components after refactoring and significant algorithm
design. Since the specification of functionality design of each component is purely object-oriented and in the style of Eiffel
[38] and JML [34], we carry out static checking and testing in the similar way. We translate each rCOS class C into two JML
files. One is C.jml that contains the specification translated from the rCOS specification. The other is a Java source file C.java
containing the implementation of the specification. During the translation, the variables used in the rCOS specification are
taken as specification-only variables in C.jml, and are mapped to program variables in C.java.

The translated JML files can be compiled by the JML Runtime Assertion Checker Compiler (jmic). Then, test cases can be
executed to check the implementation against the specification. The automatic unit testing tool of JML (jmlunit) can generate
the unit testing code, and the testing process can be executed with JUnit.

For example, the design of enterltem() given in Section 4.3 is translated to the .jml file shown in Fig. 19. Notice that the
text in the dotted rectangle gives the specification for falsifying the precondition. If the unit testing for the specification
in Fig. 19 is applied to an implementation that does not throw an exception if the input bar code ¢ does not exist, there

Z. Chen et al. / Science of Computer Programming 74 (2009) 168-196 193

/*(@ public normal_behaviour
@ requires (\exists Object o; theStore.theCatalog.contains(o);
@ ((Item)o).theBarcode.equals(c));
(@ assignable theLine, theSale;
@ ensures theLine !=\old(theLine) &&

@ theLine.theBarcode.equals(c) &&

@ theLine.theQuantity == quantity &&

@ (\exists Object o; theStore.theCatalog.contains(o);

@ ((Item)o).theBarcode.equals(c) ==>

@ theLine.theSubtotal == ((Item)o).thePrice * qty) &&

@ theSale.theLines.size() = (\old(theSale.theLines.size()) + 1) &&

@ theSale.theLines.contains(theLine);
i @ also i
i (@ public exceptional_behaviour E
i @ requires !(\exists Object o; theStore. theCatalog.contains(o); E
i @ ((Item)o).theBarcode.equals(c)); E
i @ signals_only Exception; E
- "@";} """

public void enterltem(Barcode c, int gty) throws Exception;

Fig. 19. Refined specification of enterltem.

public void enterltem(Barcode c, int qty) public void enterltem(Barcode c, int qty)
throws Exception { throws Exception {
line = new Lineltem(c, qty); if (find(c) != null) then
Iterator it = store.catalog.iterator(); makeLine(c, qty);
boolean t = false; else
while (it.hasNext()){ throw new Exception();
Item p = (Item)it.next(); }
if (p.barcode.equals(c)){ public Item find(Barcode code){
line.subtotal = p.price * qty; return store.find(code);
t=true;
} public void makeLine(Barcode c, int gty){
line = new Lineltem(c, qty);
sale.lines.add(line); line.subtotal(store.getPrice(c), qty);
if (1t) throw new Exception(); sale.lines.add(line);
} }

@ (\forall Object o; theSale.theLines.contains(o);

@ (\exists Object p; theStore.theCatalog.contains(p);

@ ((Ttem)p).theBarcode.equals(((Lineltem)o).theBarcode))));
@

Fig. 20. Improved code of enterltem.

would be a NormalPostconditionError reported by JUnit. This indicates that the implementation does not handle the input
that falsifies the precondition. We now modify the implementation to the code given in the left side of Fig. 20. An exception
will be thrown if the variable t is false, which represents the nonexistence of the bar code in the catalog. However, with this
implementation, an InvariantError will be reported. The unsatisfied invariant is given in Fig. 20, asserting that each bar code
of a sale’s line item must have a product with that code in the catalog. Debugging is required to make sure that the bar code
must be checked before a line is created and added to the sale. The corrected code is shown on the right of Fig. 20.

Testing is of course not sufficient for correctness. Therefore, it is also desirable to carry out static analysis, for instance
with ESC/Java [8].

4.7. Tool support

In previous work, we investigated the possibility of using Software Engineering- or Model-Driven Development tools like
MasterCraft [52,11] or ModelMorf [56,57] to facilitate the rCOS process in existing tools. Clearly, extending an industrial-
strength tool is beyond the capabilities of a research project. Using the QVT (Query/View/Transformation)[42] model
transformation language implemented in ModelMorf to define refinement steps revealed that it is very inconvenient from
a purely syntactical perspective to handle input models corresponding to rCOS programs, especially the functionality
specifications.

Current efforts concentrate on harnessing existing tools to give the developer a broad range of analyses to run on a project:
multi-view consistency of the different diagrams (Sequence, State, and Class Diagrams) and the functionality specifications

194 Z. Chen et al. / Science of Computer Programming 74 (2009) 168-196

considers both the static aspect such as well-formedness and correct use of methods, but also dynamic aspects, like making
sure that the Sequence and the State Diagrams are trace equivalent. To do this, translation of the dynamic specification into
CSP is automated, although it requires additional annotations to the model.

Also, automatic translation from rCOS to Java code is ongoing, very much in the same way as presented in the paper.
Additionally, JML annotations will be emitted for the code.

The input for the above automation is an rCOS use case defined in the UML 2.0 metamodel [43] using Class-,
Collaboration-, and Component Diagrams together with a separate profile that uses stereotypes to associate the entities
to the different steps in the rCOS development process. That way, we are able to treat stereotyped UML models exported
in XMI-format [44] from applications like MagicDraw [41], or created from within our own Eclipse-plugin using the Eclipse
Graphical Modelling framework and TOPCASED [53].

5. Conclusions and related work

We have only presented a small part of the whole case study in CoCoME. Our experience in working with the case study
shows that multi-view modelling and separation of concerns are helpful in the modelling and design. And, for correctness
analysis and correct design a semantic model is needed to relate the models of the different views.

We have introduced the semantic theory of rCOS and with the study shown how it is used to formalize the concepts
of object- and component-based systems in a model-driven development. In particular, we showed that a model-driven
development process can be easily adapted to use rCOS concepts. In particular, we have identified the clear relation between
the development activities, concepts and artifacts and their formalization in rCOS, and possible tool support.

Properties are specified in rCOS by logical formulas, and in analysis of these, algebraic properties of modelling elements
are used. The algebraic properties form the foundation for model transformations. To ensure consistency and correctness,
both static and dynamic consistency of the specification must be checked, and both abstraction and refinement techniques
are needed for model transformation and analysis.

The work also shows that different models and tools are more effective for the design and analysis of some aspects than
others. Proved correct model transformations should be carried out side by side with verification and validation. rCOS is a
methodology that supports consistent use of different techniques and tools for modelling, design, verification and validation.

Related formalisms

Model-based formalisms like VDM [29], B [50] and Z [54] have been used extensively in software specification and
verification. They are designed for modular specification and compositions in the procedural programming paradigm and
are effective at modelling data structures as sets and relations between sets. Unlike rCOS, they do not define concepts like
components, interfaces and objects as first class elements. They do not have semantics dealing with pointers or references
and therefore they, and even their object-oriented extensions VDM++ [17] and Object-Z [51], do not support sophisticated
object-oriented mechanisms of object-oriented programming languages, such as dynamic binding and polymorphism.

Eiffel [38] first introduced the idea of design by contracts for object-oriented programming. The notion of designs for
methods in object-oriented rCOS is similar to the use of assertions in Eiffel, and thus also supports similar techniques
for static analysis and testing. JML [34] has recently become a popular language for modelling and analysis of object-
oriented designs. It shares similar ideas of using assertions and refinement as behavioral subtypes in Eiffel. The strong
point of JML is that it is well integrated with Java and comes with parsers and tools for runtime checking and testing.
Other similar languages and techniques include ESC/Java [8] and Spect [4]. The notion of contracts in both Eiffel and JML
specifies the change of the states of the objects by an execution step of a method. In this sense, they are object-oriented
counterparts of VDM and Z. The main difference of rCOS from these techniques is that the model of contracts is a multi-view
model, and it supports the specification of component-based architectures, that include interaction protocols and dynamic
behavior.

In Fractal [46], behavior protocols are used to specify interaction behavior of a component. rCOS also uses traces of
method invocations and returns to model the interaction protocol of a component with its environment. However, in rCOS
the protocol does not have to be a regular language. Also, for components, rCOS separates the protocol of the provided
interface methods from that of the required interface methods. This allows better pluggability among components. On
the other hand, the behavior protocols of components in Fractal are the same for the protocols of coordinators and glue
units that are modelled as processes in rCOS. In addition to interaction protocols, rCOS also supports state-based modelling
with guards and pre-postconditions. This allows us to carry out stepwise functionality refinement; but at the cost of
decidability and thus fully automated checking. We share many ideas with work done at York University by the group
of Woodcock on Circus [7], the work on TCOZ of Dong at SNU [37], and the work at Oldenburg by the group of Olderog
on linking CSP-OZ with UML [45]. In these approaches, multi-notational modelling languages are used to encompass
different views of a system. However, rCOS emphasises on semantic unification that has taken UTP as its single point of
departure and thus avoids some of the complexities of merging existing notations. Yet, the CSP-OZ framework has the
virtue of well-developed underlying frameworks and tools, that is inspiring to our current work in the development on
tool support. Perhaps, a clearer advantage of rCOS is its direct formulation of the engineering concepts and artifacts in
component-based model-driven design, and the smooth link between component-based and object-oriented modelling and
design.

Z. Chen et al. / Science of Computer Programming 74 (2009) 168-196 195

Acknowledgements

We would like to thank the anonymous referees for their very constructive and detailed comments that helped us a
lot to bring this paper into this form. This work is supported in part by the projects HighQSoftD and HTTS funded by the
Macau Science and Technology Fund, NFSC-907 18014, NSFC-60673114 and 863 of China 2006AA01Z165. The first author is
partially supported by the National Basic Research Program of China (973) under Grant No. 2005CB321802 and NSFC under
Grant No. 90612009. We would like to thank our colleagues who have made contributions in the development of rCOS and
CoCoME, He Jifeng, Xiaoshan Li, Charles Morisset, E-Y Kang, Jing Liu, Chen Xin, Zhao Liang, Lu Yang, and Joseph Okika.

References

[1] R.-J. Back, L. Petre, I.P. Paltor, Formalising UML use cases in the refinement calculus, Tech. Rep. TUCS-TR-279, Turku Centre for Computer Science and
Abo Akademi University, Finland, May 1999.

[2] R.-]. Back,]. von Wright, Trace refinement of action systems, in: 5th International Conference on Concurrency Theory, CONCUR '94, in: Lecture Notes
in Computer Science, vol. 836, Springer, 1994.

[3] R.-J. Back, J. von Wright, Refinement Calculus: A Systematic Introduction, in: Graduate Texts in Computer Science, Springer, 1998.

[4] M. Barnett, K.M. Leino, W. Schulte, The spec# programming system: An overview, in: Construction and Analysis of Safe, Secure and Interoperable
Smart Devices, CASSIS’04, in: Lecture Notes in Computer Science, vol. 3362, Springer, 2005.

[5] P.Borba, A. Sampaio, M. Cornélio, A refinement algebra for object-oriented programming, in: L. Cardelli (Ed.), Proc. of ECOOPO03, in: Lecture Notes in
Computer Science, vol. 2743, Springer, 2003, pp. 457-482.

[6] A.Cavalcanti, D. Naumann, A weakest precondition semantics for an object-oriented language of refinement, in: World Congress on Formal Methods,
in: Lecture Notes in Computer Science, vol. 1709, Springer, 1999, pp. 1439-1460.

[7] A. Cavalcanti, A. Sampaio, J. Woodcock, A refinement strategy for Circus, Formal Aspects of Computing 15 (2-3) (2003) 146-181.

[8] P. Chalin, J.R. Kiniry, G.T. Leavens, E. Poll, Beyond assertions: Advanced specification and verification with JML and ESC/Java2, in: Formal Methods for
Components and Objects (FMCO) 2005, Revised Lectures, in: Lecture Notes in Computer Science, vol. 4111, Springer, 2006.

[9] K. Chandy, J. Misra, Parallel Program Design: A Foundation, Addison-Wesley, 1988.

[10] X. Chen,]. He, Z. Liy, N. Zhan, A model of component-based programing, in: F. Arbab, M. Sirjani (Eds.), Intl. Symp. on Fundamentals of Software
Engineering, FSENQ7, in: Lecture Notes in Computer Science, vol. 4767, Springer, 2007.

[11] X.Chen, Z. Liu, V. Mencl, Separation of concerns and consistent integration in requirements modelling, in: Proc. Current Trends in Theory and Practice
of Computer Science, SOFSEMO07, in: Lecture Notes in Computer Science, vol. 4362, Springer, 2007.

[12] Z. Chen, A.H. Hannousse, D. Van Hung, 1. Knoll, X. Li, Z. Liuy, Y. Liu, Q. Nan, J.C. Okika, A.P. Ravn, V. Stolz, L. Yang, N. Zhan, Modelling with relational
calculus of object and component systems - rCOS, in: CoCoME, 2007, pp. 116-145. doi:10.1007/978-3-540-85289-6_6.

[13] Z.Chen, X.Li, Z. Liu, V. Stolz, L. Yang, Harnessing rCOS for tool support — the CoCoME experience, in: Z.L. Cliff Jones,]. Woodcock (Eds.), Formal Methods
and Hybrid Real-Time Systems, Essays in Honour of Dines Bjgrner and Zhou Chaochen on the Occasion of Their 70th Birthdays, in: Lecture Notes in
Computer Science, vol. 4700, Springer, 2007, pp. 83-114.

[14] Z. Chen, Z. Liu, A. Ravn, V. Stolz, N. Zhan, Refinement and verification in component-based model driven design, Tech. Rep. 388, UNU/IIST, P.O. Box
3058, Macao, 2007.

[15] Z.Chen, Z. Liu, V. Stolz, The rCOS tool, in: Modelling and Analysis in VDM: Proceedings of the Fourth VDM/Overture Workshop, Technical Report, No.
CS-TR-1099, Newcastle University, 2008.

[16] The Concurrency Workbench. URL: http://homepages.inf.ed.ac.uk/perdita/cwb/.

[17] E.Diirr, E. Dusink, The role of VDM ™+ in the development of a real-time tracking and tracing system, in: J. Woodcock, P. Larsen (Eds.), Proc. of FME’93,
in: Lecture Notes in Computer Science, vol. 670, Springer, 1993.

[18] C.Flanagan, et al., Extended static checking for Java, in: Proc. of the ACM SIGPLAN 2002 Conf. on Programming Language Design and Implementation,
PLDI'02, ACM, 2002.

[19] M. Fowler, K. Beck, J. Brant, W. Opdyke, D. Roberts, Refactoring: Improving the Design of Existing Code, Addison-Wesley, 1999.

[20] E. Gamma, et al., Design Patterns, Addison-Wesley, 1995.

[21]]. Gosling, B. Joy, G. Steele, The Java Language Specification, Addison Wesley, 1996.

[22]]. He, X.Li, Z. Liu, Component-based software engineering, in: D.V. Hung, M. Wirsing (Eds.), Proc. 2nd International Colloquium on Theoretical Aspects
of Computing, ICTAC 2005, in: Lecture Notes in Computer Science, vol. 3722, Springer, 2005.

[23]]. He, X. Li, Z. Liu, rCOS: A refinement calculus for object systems, Theoretical Computer Science 365 (1-2) (2006) 109-142.

[24]]. He, X. Li, Z. Liu, A theory of reactive components, in: Z. Liu, L. Barbosa (Eds.), Intl. Workshop on Formal Aspects of Component Software, FACS 2005,
in: ENTCS, vol. 160, Elsevier, 2006.

[25] C.Hoare, Communicating Sequential Processes, Prentice-Hall, 1985.

[26] C. Hoare, Verified software: Theories, tools, experiments, in: B. Meyer,]. Woodcock (Eds.), VSTTE Conference, Verified Software: Theories, Tools,
Experiments, in: Lecture Notes in Computer Science, vol. 4171, Springer, 2007, pp. 21-29.

[27] C.Hoare,]. He, Unifying Theories of Programming, Prentice-Hall, 1998.

[28] G.Holzmann, The SPIN Model Checker: Primer and Reference Manual, Addison-Wesley Professional, 2003.

[29] C.Jones, Systematic Software Development using VDM, 2nd ed., Prentice Hall, 1990.

[30] P.Kruchten, The Rational Unified Process—An Introduction, Addison-Wesley, 2000.

[31] L. Lamport, Specifying Systems: The TLA+ Language and Tools for Hardware and Software Engineers, Addison-Wesley, 2002.

[32] C. Larman, Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and the Unified Process, 2nd ed., Prentice-Hall
International, 2001.

[33] K. Larsen, P. Pettersson, W. Yi, UPPAAL in a nutshell, STTT 1 (1-2) (1997) 134-152.

[34] G. Leavens, JML’s rich, inherited specification for behavioural subtypes, in: Z. Liy,]. He (Eds.), Proc. 8th Intl. Conf. on Formal Engineering Methods,
ICFEM’'06, in: Lecture Notes in Computer Science, vol. 4260, Springer, 2006.

[35] X.Li, Z. Liu, Prototyping system requirements model, ENTCS 207 (2008) 17-32.

[36] Z. Liu, V. Mencl, A.P. Ravn, L. Yang, Harnessing theories for tool support, in: Proc. International Symposium on Leveraging Applications of
Formal Methods, Verification and Validation, ISOLAO6, IEEE Computer Society, 2006, pp. 371-382. Full version as UNU-IIST Technical Report 343,
http://www.iist.unu.edu.

[37] B. Mahony,]. Dong, Deep semantic links of TCSP and Object-Z: TCOZ approach, Formal Aspects of Computing 3 (2) (2002) 146-160.

[38] B. Meyer, Eiffel: The Language, Prentice Hall, 1992.

[39] R. Milner, A Calculus of Communicating Systems, Springer, 1980.

[40] C. Morgan, Programming from Specifications, 2nd ed., Prentice Hall, 1994.

[41] NoMagic, Inc., MagicDraw. URL: http://www.magicdraw.com/.

[42] Object Management Group, MOF QVT final adopted specification, ptc/05-11-01. http://www.omg.org/docs/ptc/05-11-01.pdf, 2005.

[43] Object Management Group, Unified Modeling Language: Superstructure, version 2.0, final adopted specification, 2005. URL: http://www.omg.org/cgi-
bin/doc?formal/05-07-04.

http://dx.doi.org/doi:10.1007/978-3-540-85289-6_6
http://homepages.inf.ed.ac.uk/perdita/cwb/
http://www.iist.unu.edu
http://www.magicdraw.com/
http://www.omg.org/docs/ptc/05-11-01.pdf
http://www.omg.org/cgi-bin/doc%3Fformal/05-07-04
http://www.omg.org/cgi-bin/doc%3Fformal/05-07-04
http://www.omg.org/cgi-bin/doc%3Fformal/05-07-04

196 Z. Chen et al. / Science of Computer Programming 74 (2009) 168-196

[44] Object Management Group, XML Metadata Interchange, 2005. URL: http://www.omg.org/cgi-bin/doc?formal/2005-09-01.

[45] E.-R. Olderog, H. Wehrheim, Specification and (property) inheritance in CSP-OZ, Science of Computer Programming 55 (2005) 227-257.

[46] F. Plasil, S. Visnosky, Behavior protocols for software components, IEEE Transactions on Software Engineering 28 (11) (2002) 1056-1070.

[47] A.Rausch, R. Reussner, R. Mirandola, F. Plasil (Eds.), The common component modeling example: Comparing software component models (result from
the Dagstuhl research seminar for CoCoME, August 1-3, 2007), in: CoCoME, in: Lecture Notes in Computer Science, vol. 5153, Springer, 2008, ISBN:
978-3-540-85288-9.

[48] A.Roscoe, The Theory and Practice of Concurrency, Prentice Hall, 1997.

[49]]. Rumbaugh, I. Jacobson, G. Booch, The Unified Modelling Language Reference Manual, Addison-Wesley, 1999.

[50] A.Schneider, The B-method, Masson, 2001.

[51] G.Smith, The Object-Z Specification Language, Kluwer Academic Publishers, 2000.

[52] Tata Consultancy Services, Mastercraft, http://www.tata-mastercraft.com.

[53] Topcased—Open Source Engineering Workshop, http://topcased.org.

[54] J. Woodcock,]. Davies, Using Z: Specification, Refinement, and Proof, Prentice Hall, 1996.

[55] J. Woodcock, C. Morgan, Refinement of state-based concurrent systems, in: Proc. of VDM Europe’90, in: Lecture Notes in Computer Science, vol. 428,
Springer, 1990.

[56] L.Yang, V. Mencl, V. Stolz, Z. Liu, Automating correctness preserving model-to-model transformation in MDA, in: Proc. of Asian Working Conference
on Verified Software, UNU-IIST Technical Report 348, 2006.

[57] L.Yang, V. Stolz, Integrating refinement into software development tools, ENTCS 207 (2008) 69-88.

[58] L.Zhao, X. Liu, Z. Liu, Z. Qiu, Graph transformations for object-oriented refinement, Formal Aspects of Computing, Springer, Published online: 8 January
2008.

http://www.omg.org/cgi-bin/doc%3Fformal/2005-09-01
http://www.tata-mastercraft.com
http://topcased.org

	Refinement and verification in component-based model-driven design
	Introduction
	Introduction to rCOS
	Interfaces and contracts
	A short introduction to UTP
	Class structures and datatypes
	Contracts of interfaces
	Contract refinement
	Consistency
	Components
	Simple connectors
	Coordination

	Development process with rCOS
	Requirements elicitation and modelling
	Functionality design
	Functionality decomposition
	Encapsulation
	Class decomposition

	Logical component-based architecture design
	Detailed design and coding
	Design of GUI and synchronization with hardware controller

	The Design of CoCoME
	System overview
	CoCoME requirements modelling and analysis
	Use case UC 1: Process Sale
	Two more use cases
	Refinement of use case
	Integrating the models and global constraints
	Discussion about requirements modelling and analysis

	Design of the functionality of CoCoME by refinement
	Logical component-based architecture of CoCoME
	Detailed design of CoCoME
	Verification and analysis of the design
	Tool support

	Conclusions and related work
	Acknowledgements
	References

