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Abstract. Numerical software is widely used in safety-critical systems
such as aircrafts, satellites, car engines and many other fields, facilitating
dynamics control of such systems in real time. It is therefore absolutely
necessary to verify their correctness. Most of these verifications are con-
ducted under ideal mathematical models, but their real executions may
not follow the models exactly. Factors that are abstracted away in mod-
els such as rounding errors can change behaviors of systems essentially.
As a result, guarantees of verified properties despite the present of dis-
turbances are needed. In this paper, we attempt to address this issue of
nontermination analysis of numerical software. Nontermination is often
an unexpected behaviour of computer programs and may be problem-
atic for applications such as real-time systems with hard deadlines. We
propose a method for robust conditional nontermination analysis that
can be used to under-approximate the maximal robust nontermination
input set for a given program. Here robust nontermination input set is
a set from which the program never terminates regardless of the afore-
mentioned disturbances. Finally, several examples are given to illustrate
our approach.
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1 Introduction

Software is ubiquitous in mission-critical and safety-critical industrial infrastruc-
tures as it is, in principle, the most effective way to manipulate complex systems
in real time. However, many computer scientists and engineers have experienced
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costly bugs in embedded software. Examples include the failure of the Ariane
5.01 maiden flight (due to an overflow caused by an unprotected data conversion
from a too large 64-bit floating point to a 16-bit signed integer value), the fail-
ure of the Patriot missile during the Gulf war (due to an accumulated rounding
error), the loss of Mars orbiter (due to a unit error). Those examples indicate
that mission-critical and safety-critical software may be far from being safe [11].
It is therefore absolutely necessary to prove the correctness of software by using
formal, mathematical techniques that enable the development of correct and
reliable software systems.

The dominant approach to the verification of programs is called Floyd-Hoare-
Naur inductive assertion approach [13,18,34]. It uses pre- and post-condition to
specify the condition of initial states and the property that should be satisfied
by terminated states, and use Hoare logic to reason about properties of pro-
grams. The hardest parts of this approach are invariant generation and termi-
nation analysis. It is well-know that the termination or nontermination problem
is undecidable, and even not semi-decidable in general. Thus, more practical
approaches include present some sufficient conditions for termination, or some
sufficient conditions for nontermination, or put these two types of conditions in
parallel, or prove the decidability for some specific families of programs, e.g.,
[3,7,14,16,23,25,39,53].

On the other hand, most of these verifications are conducted under ideal
mathematical models, but their real executions may not follow the models
exactly. Factors that are abstracted away in models such as rounding errors
can change behaviors of systems essentially. As a result, guarantees of verified
properties despite the present of disturbances are needed. We notice that this
problem affects most existing termination/nontermination as well.

In [54], the authors presented the following example:

Example 1. Consider a simple loop

Q1: while (Bx > 0) {x := Ax},

where A =
(

2 −3
−1 2

)
, B =

(
1 b

−1 b

)
with b = − 1127637245

651041667 = −√
3 + ε ∼

−1.732050807.
So we have ε =

√
3 − (− 1127637245

651041667 ) > 0 a small positive number. Here we
take 10 decimal digits of precision.

According to the termination decidability result on simple loops proved in [48],
Q1 terminates based on exact computation. But unfortunately, it does not termi-
nate in practice as the core decision procedure given in [48] invokes a procedure to
compute Jordan normal form based on numeric computation for a given matrix,
and thus the floating error has to be taken into account. In order to address
this issue, a symbolic decision procedure was proposed in [54]. However, a more
interesting and challenging issue is to find a systematic way to take all possible
disturbances into account during conducting termination and non-termination
analysis in practical numerical implementations.
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In this paper we attempt to address this challenge, and propose a frame-
work for robust nontermination analysis for numerical software based on control
theory as in [40], which proposes a control-theoretic framework based on Lya-
punov invariants to conduct verification of numerical software. Non-termination
analysis proves that programs, or parts of a program, do not terminate. Non-
termination is often an unexpected behaviour of computer programs and implies
the presence of a bug. If a nonterminating computation occurs, it may be prob-
lematic for applications such as real-time systems with hard deadlines or situa-
tions when minimizing workload is important. In this paper, computer programs
of interest are restricted to a class of computer programs composed of a single
loop with a complicated switch-case type loop body. These programs can also
be viewed as a constrained piecewise discrete-time dynamical system with time-
varying uncertainties. We reformulate the problem of determining robust condi-
tional nontermination as finding the maximal robust nontermination input set
of the corresponding dynamical system, and characterize that set using a value
function, which turns out to be a solution to a suitable mathematical equa-
tion. In addition, when the dynamics of the piecewise discrete-time system in
each mode is polynomial and the state and uncertain input constraints are semi-
algebraic, the optimal control problem is relaxed as a semi-definite programming
problem, to which its polynomial solution forms an inner-approximation of the
maximal robust nontermination input set when exists. Such relaxation is sound
but incomplete. Finally, several examples are given to illustrate our approach.

It should be noticed that the concept of robust nontermination input sets is
essentially equivalent to the maximal robustly positive invariants in control the-
ory. Interested readers can refer to, e.g., [2,40,45,47]. Computing the maximal
robustly positive invariant of a given dynamical system is still a long-standing
and challenging problem not only in the community of control theory. Most exist-
ing works on this subject focus on linear systems, e.g. [21,38,45,47,51]. Although
some methods have been proposed to synthesize positively invariants for non-
linear systems, e.g., the barrier certificate generation method as in [36,37] and
the region of attraction generation method as in [15,19,30,49]. These methods,
however, resort to bilinear sum-of-squares programs, which are notoriously hard
to solve. In order to solve the bilinear sum-of-squares programs, a commonly
used method is to employ some form of alteration (e.g., [19,30,50]) with a fea-
sible initial solution to the bilinear sum-of-squares program. Recently, [43,44]
proposed linear programming based methods to synthesize maximal (robustly)
positive polyhedral invariants. Contrasting with aforementioned methods, in this
paper we propose a semi-definite programming based method to compute semi-
algebraic invariant. Our method does not require an initial feasible solution.

Organization of the Paper. The structure of this paper is as follows. In Sect. 2,
basic notions used throughout this paper and the problem of interest are
introduced. Then we elucidate our approach for performing conditional non-
termination analysis in Sect. 3. After demonstrating our approach on several
illustrating examples in Sect. 4, we discuss related work in Sect. 5 and finally
conclude this paper in Sect. 6.
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2 Preliminaries

In this section we describe the programs which are considered in this paper
and we explain how to analyze them through their representation as piecewise
discrete-time dynamical systems.

The following basic notations will be used throughout the rest of this paper:
N stands for the set of nonnegative integers and R for the set of real numbers;
R[·] denotes the ring of polynomials in variables given by the argument, Rd[·]
denotes the vector space of real multivariate polynomials of degree d, d ∈ N.
Vectors are denoted by boldface letters.

2.1 Computer Programs of Interest

In this paper the computer program of interest, as described in Program1, is
composed of a single loop with a possibly complicated switch-case type loop
body, in which variables x = (x1, . . . , xn) are assigned using parallel assign-
ments (x1, . . . , xn) := f(x1, . . . , xn, d1, . . . , dm), where d = (d1, . . . , dm) is the
vector of uncertain inputs, of which values are sampled nondeterministically
from a compact set, i.e. (d1, . . . , dm) ∈ D, such as round-off errors in performing
computations. The form of programs under consideration is given in Program1.
In Program 1, D = {d | ∧nk+1

i=1 hk+1,i(d) ≤ 0} is a compact set in R
m and

hk+1,i : Rm �→ R, is continuous over d. Ω ⊆ R
n stands for the initial condition on

inputs; X0 = {x ∈ R
n | ∧n0

i=1[h0,i(x) ≤ 0]} stands for the loop condition, which
is a compact set in R

n; Xj = {x ∈ R
n | ∧nj

i=1[hj,i(x) � 0]}, j = 1, . . . , k, stands
for the j-th branch conditions, where � ∈ {≤, <}. hj,i : Rn �→ R, j = 0, . . . , k,
i = 1, . . . , nj , fl : Rn × D �→ R

n, l = 1, . . . , k, are continuous functions over x
and over (x,d) respectively. Moreover, {X1, . . . , Xk} forms a complete partition
of Rn, i.e. Xi ∩ Xj = ∅ for ∀i �= j, where i, j ∈ {1, . . . , k}, and ∪k

j=1Xj = R
n.

Program 1. Computer Programs of Interest
1 x := x0;/* x0 ∈ Ω */

2 while x ∈ X0 do
/* d ∈ D */

3 if x ∈ X1 then
4 x := f1(x, d);
5 end
6 else if x ∈ X2 then
7 x := f2(x, d);
8 end
9 . . .

10 else if x ∈ Xk then
11 x := fk(x, d);
12 end

13 end
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As described in Program 1, an update of the variable x is executed by the
i-th branch fi : Rn × D �→ R

n if and only if the current value of x satisfies the
i-th branch condition Xi.

2.2 Piecewise Discrete-Time Systems

In this subsection we interpret Program 1 as a constrained piecewise discrete-
time dynamical system with uncertain inputs. Formally,

Definition 1. A constrained piecewise discrete-time dynamical system (PS) is
a quintuple (x0,X0,X ,D,L) with

– x0 ∈ Ω is the condition on initial states;
– X0 ⊆ R

n is the domain constraint, which is a compact set. A path can evolve
complying with the discrete dynamics only if its current state is in X0;

– X := {Xi, i = 1, . . . , k} with Xi as interpreted in Program 1;
– D ⊆ R

m is the set of uncertain inputs;
– L := {fi(x,d), i = 1, . . . , k} is the family of the continuous functions

fi(x,d) : Xi × D �→ R
n.

In order to enhance the understanding of PS, we use the following figure, i.e.
Fig. 1, to illustrate it further. From now on, we associate a PS representation
to each program of the form Program 1. Since a program may admit several
PS representations, we choose one of them, but the choice does not change the
results provided in this paper.

s0

s1

s2

...
x := x0

x /∈ X0,

x := x
x ∈ X0,x := x

x ∈ X1,x := f1(x,d)

x ∈ X2,x := f2(x,d)

x ∈ Xk, x := fk(x,d)

Fig. 1. An illustrating graph of PS

Definition 2. An input policy π is an ordered sequence {π(i), i ∈ N}, where
π(·) : N �→ D, and Π is defined as the set of input policies, i.e. Π = {π | π(·) :
N �→ D}.
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If an input policy π makes Program 1 non-terminated from an initial state x0,
then the trajectory xπ

x0
: N �→ R

n from x0 following the discrete dynamics is
defined by

xπ
x0

(l + 1) = f(xπ
x0

(l),π(l)), (1)

where xπ
x0

(0) = x0, ∀l ∈ N.xπ
x0

(l) ∈ X0, and

f(x,d) = 1X1 · f1(x,d) + · · · + 1Xk
· fk(x,d)

with 1Xi
: Xi �→ {0, 1}, i = 1, . . . , k, representing the indicator function of the

set Xi, i.e.

1Xi
:=

{
1, if x ∈ Xi,

0, if x /∈ Xi.

Consequently, Program 1 is said to be robust nontermination starting from an
initial state x0 ∈ Ω if for any input policy π ∈ Π, ∀l ∈ N. xπ

x0
(l) ∈ X0 holds.

Formally,

Definition 3. A program of Program 1 is said to be robust non-terminating
w.r.t. an initial state x0 ∈ X0, if

∀π ∈ Π. ∀l ∈ N. xπ
x0

(l) ∈ X0. (2)

Now, we define our problem of deciding a set of initial states rendering Pro-
gram 1 robust non-termination.

Definition 4 (Robust Nontermination Set). A set Ω of initial states in
R

n is a robust nontermination set for a program P of the form Program 1 if P
is robustly non-terminating w.r.t. x0 for any x0 ∈ Ω. We call {x0 ∈ R

n | P
is robustly non-terminating w.r.t. x0} the maximal robust non-termination set,
denoted by R0.

From Definition 4, we observe that R0 is a subset of X0 such that all
runs of Program1 starting from it can not breach it forever, i.e. if x0 ∈ R0,
f(x0,d) ∈ R0 for ∀d ∈ D. Therefore, the set R0 is equivalent to the maximal
robust positively invariant for PS (1) in control theory. For the formal concept
of maximal robust positively invariant, please refer to, e.g., [2,45,47].

3 Robust Non-termination Set Generation

In this section we elucidate our approach of addressing the problem of robust con-
ditional nontermination for Program1, i.e. synthesizing robust non-termination
sets as presented in Definition 4. For this sake, we firstly in Subsect. 3.1 character-
ize the maximal robust non-termination set R0 by means of the value function,
which is a solution to a mathematical equation. Any solution to this optimal
control problem generates a robust non-termination set. Then, in the case that
fi, i = 1, . . . , k, is polynomial over x and d, and the constraint sets over x and
d, i.e. Xj , j = 0, . . . , k, and D, are of the basic semi-algebraic form, the semi-
definite program arising from sum-of-squares decompositions facilitates the gain
of inner-approximations Ω of R0 via solving the relaxation of the derived optimal
control problem in Subsect. 3.2.
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3.1 Characterization of R0

In this subsection, we firstly introduce the value function to characterize the
maximal robust nontermination set R0 and then formulate it as a solution to a
constrained optimal control problem.

For x0 ∈ R
n, the value function V : Rn �→ R is defined by:

V (x0) := sup
π∈Π

sup
l∈N

max
j∈{1,...,n0}

{
h0,j(xπ

x0
(l))

}
. (3)

Note that V (x0) may be neither continuous nor semi-continuous. (A function
V ′ : X ′ �→ R is lower semicontinuous iff for any y ∈ R, {x ∈ X ′ | V ′(x) ≥ y} is
open, e.g., [4].)

The following theorem shows the relation between the value function V and
the maximal robust nontermination set R0, that is, the zero sublevel set of V (x0)
is equal to the maximal robust nontermination set R0.

Theorem 1. R0 = {x0 ∈ R
n | V (x0) ≤ 0}, where R0 is the maximal robust

nontermination set as in Definition 4.

Proof. Let y0 ∈ R0. According to Definition 4, we have that

∀i ∈ N. ∀π ∈ Π. ∀j ∈ {1, . . . , n0}. h0,j(xπ
y0

(i)) ≤ 0 (4)

holds. Therefore, V (y0) ≤ 0 and thus y0 ∈ {x0 | V (x0) ≤ 0}.
On the other side, if y0 ∈ {x0 ∈ R

n | V (x0) ≤ 0}, then V (y0) ≤ 0, implying
that (4) holds. Therefore, y0 ∈ R0.

This concludes that R0 = {x0 ∈ R
n | V (x0) ≤ 0}.

From Theorem 1, the maximal robust nontermination set R0 could be con-
structed by computing V (x0), which satisfies the dynamic programming princi-
ple as presented in Lemma 1.

Lemma 1. For ∀x0 ∈ R
n and ∀l ∈ N, we have:

V (x0) = sup
π∈Π

max
{
V (xπ

x0
(l)), sup

i∈[0,l)∩N

max
j∈{1,...,n0}

h0,j(xπ
x0

(i))
}
. (5)

Proof. Let

W (l,x0) := sup
π∈Π

max
{
V (xπ

x0
(l)), sup

i∈[0,l)∩N

max
j∈{1,...,n0}

h0,j(xπ
x0

(i))
}
. (6)

We will prove that for ε > 0, |W (l,x0) − V (x0)| < ε.
According to the definition of V (x0), i.e. (3), for any ε1, there exists an input

policy π′ such that

V (x0) ≤ sup
i∈N

max
j∈{1,...,n0}

{h0,j(xπ′
x0

(i))} + ε1.
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We then introduce two infinite uncertain input policies π1 and π2 such that
π1 = {π1(i), i ∈ N} with π1(j) = π′(j) for j = 0, . . . , l − 1 and π2 = {π2(i), i ∈
N} with π(j) = π′(j + l) ∀j ∈ N. Now, let y ∈ xπ1

x0
(l), then we obtain that

W (l, x0) ≥ max
{
V (y), sup

i∈[0,l)∩N

max
j∈{1,...,n0}

h0,j(x
π1
y (i))

}

≥ max
{

sup
i∈[l,+∞)∩N

max
j∈{1,...,n0}

{h0,j(x
π2
x0(i − l))}, sup

i∈[0,l)∩N

max
j∈{1,...,n0}

{h0,j(x
π1
x0(i))}

}

= max
{

sup
i∈[l,+∞)∩N

max
j∈{1,...,n0}

{h0,j(x
π′
x0(i))}, sup

i∈[0,l)∩N

max
j∈{1,...,n0}

{h0,j(x
π′
x0(i))}

}

= sup
i∈N

max
j∈{1,...,n0}

{h0,j(x
π′
x0(i))}

≥ V (x0) − ε1.

Therefore,
V (x0) ≤ W (l,x0) + ε1. (7)

On the other hand, for any ε1 > 0, there exists a π1 ∈ Π such that W (l,x0) ≤
max

{
V (xπ1

x0
(l)), supi∈[0,l)∩N maxj∈{1,...,n0}{h0,j(xπ1

x0
(i))}}+ε1, by the definition

of W (l,x0). Also, by the definition of V (x0), i.e. (3), for any ε1 > 0, there exists
a π2 such that

V (y) ≤ sup
i∈N

max
j∈{1,...,n0}

{h0,j(xπ2
y (i))} + ε1,

where y = xπ1
x0

(l). We define π ∈ Π such that π(i) = π1(i) for i = 0, . . . , l − 1
and π(i + l) = π2(i) for ∀i ∈ N. Then, it follows

W (l,x0) ≤ 2ε1 + max{ sup
i∈N∩[l,∞)

max
j∈{1,...,n0}

{h0,j(xπ2
y (i − l))},

sup
i∈[0,l)∩N

max
j∈{1,...,n0}

{h0,j(xπ1
x0

(i))}}

≤ sup
i∈[0,+∞)∩N

max
j∈{1,...,n0}

{h0,j(xπ
x0

(i))} + 2ε1

≤ V (x0) + 2ε1.

(8)

Combining (7) and (8), we finally have |V (x0)−W (l,x0)| ≤ ε = 2ε1, implying
that V (x0) = W (l,x0) since ε1 is arbitrary. This completes the proof.

Based on Lemma 1 stating that the value function V (x0) complies with the
dynamic programming principle (5), we derive a central equation of this paper,
which is formulated formally in Theorem2.

Theorem 2. The value function V (x0) : Rn �→ R in (3) is a solution to the
equation

min
{

inf
d∈D

(V (x0) − V (f(x0,d))), V (x0) − max
j∈{1,...,n0}

h0,j(x0)
}

= 0. (9)

Proof. It is evident that (9) is derived from (5) when l = 1.



Robust Non-termination Analysis of Numerical Software 77

According to Theorem 2, we conclude that if there does not exist a solution
to (9), the robust nontermination set R0 is empty. Moreover, according to The-
orem 2, V (x0) as defined in (3) is a solution to (9). Note that the solution to (9)
may be not unique, and we do not go deeper into this matter in this paper. How-
ever, any solution to (9) forms an inner-approximation of the maximal robust
nontermination set, as stated in Corollary 1.

Corollary 1. For any function u(x0) : R
n �→ R satisfying (9), {x0 ∈ R

n |
u(x0) ≤ 0} is an inner-approximation of the maximal robust nontermination set
R0, i.e. {x0 ∈ R

n | u(x0) ≤ 0} ⊂ R0.

Proof. Let u(x0) : Rn �→ R be a solution to (9). It is evident that u(x0) satisfies
the constraints:{

u(x0) − u(f(x0,d)) ≥ 0, ∀x0 ∈ R
n,∀d ∈ D,

u(x0) − h0,j(x0) ≥ 0, ∀x0 ∈ R
n,∀j ∈ {1, . . . , n0} (10)

Assume x′
0 ∈ {x0 | u(x0) ≤ 0}. According to (10), we have that for ∀π ∈ Π,

∀l ∈ N and ∀j ∈ {1, . . . , n0},
{

u(xπ
x′

0
(l + 1)) ≤ u(xπ

x′
0
(l)) ≤ u(x′

0)

h0,j(xπ
x′

0
(l)) ≤ u(xπ

x′
0
(l)) ≤ u(x′

0)
. (11)

Therefore, supl∈N maxj∈{1,...,n0}{h0,j(xπ
x′

0
(l))} ≤ u(x′

0) ≤ 0, implying that x′
0 ∈

R0. Thus, {x0 ∈ R
n | u(x0) ≤ 0} ⊂ R0.

From Corollary 1, it is clear that an approximation of R0 from inside, i.e.
a robust nontermination set, is able to be constructed by addressing (9). The
solution to (9) could be addressed by grid-based numerical methods such as
level set methods [12,32], which are a popular method for interface capturing.
Such grid-based methods are prohibitive for systems of dimension greater than
four without relying upon specific system structure. Besides, we observe that
a robust nontermination set could be searched by solving (10) rather than (9).
In the subsection that follows we relax (10) as a sum-of-squares decomposition
problem in a semidefinite programming formulation when in Program1, fis are
polynomials over x and d, state and uncertain input constraints, i.e. Xjs and
Ds, are restricted to basic semi-algebraic sets.

3.2 Semi-definite Programming Implementation

In practice, it is non-trivial to obtain a solution V (x0) to (2), and thus non-trivial
to gain R0. In this subsection, thanks to (10) and Corollary 1, we present a semi-
definite programming based method to solve (9) approximately and construct a
robust invariant Ω as presented in Definition 4 when Assumption 1 holds.

Assumption 1. fi, i = 1, . . . , k, is polynomial over x and d, Xj and D, j =
0, . . . , k, are restricted to basic semi-algebraic sets in Program 1.
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Firstly, (10) has indicator functions on the expression u(x0) − u(f(x0,d)),
which is beyond the capability of the solvers we use. We would like to obtain a
constraint by removing indicators according to Lemma 2.

Lemma 2 ([8]). Suppose f ′(x) = 1F1 · f ′
1(x) + · · · + 1Fk′ · f ′

k′(x) and g′(x) =
1G1 · g′

1(x) + · · · + 1Gl′ · g′
l′(x), where x ∈ R

n, k′, l′ ∈ N, and Fi, Gj ⊆ R
n,

i = 1, . . . , k′, j = 1, . . . , l′. Also, F1, . . . , Fk′ and G1, . . . , Gl′ are respectively
disjoint. Then, f ′ ≤ g′ if and only if (pointwise)

k′∧
i=1

l′∧
j=1

[
Fi ∧ Gj ⇒ f ′

i ≤ g′
j

]∧
k′∧

i=1

[
Fi ∧ ( l′∧

j=1

¬Gj

) ⇒ f ′
i ≤ 0

]∧
l′∧

j=1

[( k′∧
i=1

¬Fi

) ∧ Gj ⇒ 0 ≤ g′
j

]
.

(12)

Consequently, according to Lemma 2, the equivalent constraint without indi-
cator functions of (10) is equivalently formulated below:

k∧
i=1

[∀d ∈ D. ∀x0 ∈ Xi. u(x0) − u(fi(x0,d)) ≥ 0
]∧

n0∧
j=1

[∀x0 ∈ R
n. u(x0) − h0,j(x0) ≥ 0

]
.

(13)

Before encoding (13) in sum-of-squares programming formulation, we denote
the set of sum of squares polynomials over variables y by SOS(y), i.e.

SOS(y) := {p ∈ R[y] | p =
r∑

i=1

q2i , qi ∈ R[y], i = 1, . . . , r}.

Besides, we define the set Ω(X0) of states being reachable from the set X0 within
one step computation, i.e.,

Ω(X0) := {x | x = f(x0,d),x0 ∈ X0,d ∈ D} ∪ X0, (14)

which can be obtained by semi-definite programming or linear programming
methods as in [24,31]. Herein, we assume that it was already given. Consequently,
when Assumption 1 holds and u(x) in (13) is constrained to polynomial type
and is restricted in a ball B = {x | h(x) ≥ 0}, where h(x) = R − ∑n

i=1 x2
i

and Ω(X0) ⊆ B, (13) is relaxed as the following sum-of-squares programming
problem:
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min
u,s

Xi
i,l1

,sD
i,l2

,si,l,s
′
1,j

c′ · w

u(x) − u(fi(x, d)) +

ni∑

l1=1

sXi
i,l1

hi,l1(x) +

nk+1∑

l2=1

sD
i,l2hk+1,l(d) − si,1h(x) ∈ SOS(x, d),

u(x) − h0,j(x) − s′
1,jh(x) ∈ SOS(x),

i = 1, . . . , k; j = 1, . . . , n0,

(15)
where c′·w =

∫
B

udμ(x), w is the vector of the moments of the Lebesgue measure
over B indexded in the same basis in which the polynomial u(x) ∈ Rd[x] with
coefficients c is expressed, sXi

i,l1
, sD

i,l2
, si,1 ∈ SOS(x,d), i = 1, . . . , k, l1 = 1, . . . , ni,

l2 = 1, . . . , nk+1, s′
1,j ∈ SOS(x), j = 1, . . . , n0, are sum-of-squares polynomials of

appropriate degree. The constraints that polynomials are sum-of-squares can be
written explicitly as linear matrix inequalities, and the objective is linear in the
coefficients of the polynomial u(x); therefore problem (15) is reformulated as an
semi-definite program, which falls within the convex programming framework
and can be solved via interior-points method in polynomial time (e.g., [52]).
Note that the objective of (15) facilitate the gain of the less conservative robust
nontermination set.

The implementation based on the sum-of-squares program (15) is sound but
incomplete. Its soundness is presented in Theorem 3.

Theorem 3 (Soundness). Let u(x) ∈ Rd[x] be solution to (15), then {x ∈ B |
u(x) ≤ 0} is an inner-approximation of R0, i.e., every possible run of Program 1
starting from a state in {x ∈ B | u(x) ≤ 0} does not terminate.

Proof. Since u(x) satisfies the constraint in (15), we obtain that u(x) satisfies
according to S− procedure in [5]:

k∧
i=1

[∀d ∈ D. ∀x ∈ Xi ∩ B. u(x) − u(fi(x,d)) ≥ 0
]∧ (16)

n0∧
j=1

[∀x ∈ B. u(x) − h0,j(x) ≥ 0
]
. (17)

Due to (16) and the fact that ∪k
i=1Xi = R

n, we obtain that for ∀x0 ∈ {x ∈
B | u(x) ≤ 0}, ∃i ∈ {1, . . . , k}. ∀d ∈ D. u(x0) − u(fi(x0,d)) ≥ 0, implying that

u(x0) − u(f(x0,d)) ≥ 0,∀d ∈ D. (18)

Assume that there exist an initial state y0 ∈ {x ∈ B | u(x) ≤ 0} and an
input policy π′ such that xπ′

y0
(l) ∈ X0 does not hold for ∀l ∈ N. Due to the

fact that (17) holds, we have the conclusion that {x ∈ B | u(x) ≤ 0} ⊂ X0

and thus y0 ∈ X0. Let l0 ∈ N be the first time making xπ′
y0

(l) violate the
constraint X0, i.e., xπ′

y0
(l0) /∈ X0 and xπ′

y0
(l) ∈ X0 for l = 0, . . . , l0 − 1. Also,

since Ω(X0) ⊂ B, (18) and (17), where Ω(X0) is defined in (14), we derive that
xπ′

y0
(l0 − 1) ∈ {x ∈ B | u(x) ≤ 0} and u(xπ′

y0
(l0)) > 0, which contradicts (18).
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Thus, every possible run of Program1 initialized in {x ∈ B | u(x) ≤ 0} will live
in {x ∈ B | u(x) ≤ 0} forever while respecting X0.

Therefore, the conclusion in Theorem 3 is justified.

4 Experiments

In this section we evaluate the performance of our method built upon the semi-
definite program (15). Examples 2 and 3 are constructed to illustrate the sound-
ness of our method. Example 4 is used to evaluate the scalability of our method
in dealing with Program1. The parameters that control the performance of our
approach in applying (15) to these three examples are presented in Table 1. All
computations were performed on an i7-7500U 2.70GHz CPU with 32GB RAM
running Windows 10. For numerical implementation, we formulate the sum of
squares problem (15) using the MATLAB package YALMIP1 [29] and use Mosek2

[33] as a semi-definite programming solver.

Table 1. Parameters and performance of our implementations on the examples
presented in this section. du, d

s
Xi
i,l1

, dsD
i,l2

, dsi,l , ds′
1,j

: the degree of the polynomials

u, sXi
i,l1

, sD
i,l2 , si,l, s

′
1,j in (15), respectively, i = 1, . . . , k, l1 = 1, . . . , ni, l2 = 1, . . . , nk+1,

j = 1, . . . , n0; Time: computation times (seconds).

Ex. dh d
s
Xi
i,l1

dsD
i,l2

dsi,l ds′
1,j

Time

1 14 14 14 14 14 11.30

1 16 16 16 16 16 28.59

2 6 12 12 12 6 9.06

2 8 16 16 16 8 65.22

2 10 20 20 20 10 123.95

2 12 24 24 24 12 623.95

4 4 4 4 4 4 58.56

4 5 4 4 4 4 60.02

Example 2. This simple example is mainly constructed to illustrate the differ-
ence between Program 1 taking uncertain inputs into account and free of distur-
bances. In both cases, Program 1 is composed of a single loop without switch-case
type in loop body, i.e. k = 1 and X1 = R

2.
In case that f1(x, y) = (0.4x+0.6y; dx+0.9y), X0 = {(x, y) | x2+y2−1 ≤ 0}

and D = {d | d2 − 0.01 ≤ 0} in Program 1, the inner-approximations of the

1 It can be downloaded from https://yalmip.github.io/.
2 For academic use, the software Mosek can be obtained free from https://www.mosek.

com/.

https://yalmip.github.io/
https://www.mosek.com/
https://www.mosek.com/
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maximal robust nontermination set R0 are illustrated in Fig. 2(Left) when du =
10 and du = 12. By visualizing the results in Fig. 2, the inner-approximation
obtained when du = 12 does not improve the one when du = 10 a lot. Although
there is a gap between the inner-approximations obtained via our method and
the set R0, it is not big.

In the ideal implementation of Program1, that is, d in the loop body is a
fixed nominal value, there will exists some initial conditions such that Program1
in the real implementation may violate the constraint set X0, i.e. Program1
may terminate. We use d = 0 as an instance to illustrate such situation. The
difference between termination sets is visualized in Fig. 2(Right). The robust
nontermination set in case of d ∈ [−0.1, 0.1] is smaller than the nontermination
set when d = 0. Note that from Fig. 3, we observe that the inner-approximation
obtained by our method when du = 10 can approximate R0 very well.

Fig. 2. Computed robust nontermination sets for Example 2. Left: (Blue and Red
curves – the boundaries of the computed robust nontermination set R0 when du = 10
and du = 12, respectively; Gray points – the approximated robust nontermination set
via numerical simulation techniques; Black curve – the boundary of X0.) Right: (Green
and red points – the approximated (robust) nontermination sets via numerical simula-
tion techniques for Program 1 without and with disturbance inputs, respectively; Black
curve – the boundary of X0.) (Color figure online)

Example 3. In this example we consider Program 1 with switch-case type in the
loop body, where f1(x, y) = (x; (0.5 + d)x − 0.1y), f2(x, y) = (y; 0.2x − (0.1 +
d)y +y2), X0 = {(x, y) | x2 +y2 −0.8 ≤ 0}, X1 = {(x, y) | 1− (x−1)2 −y2 ≥ 0},
X2 = {(x, y) | −1 + (x − 1)2 + y2 < 0} and D = {d | d2 − 0.01 ≤ 0}. The inner-
approximations computed by solving (15) when du = 8, 10 and 12 respectively
are illustrated in Fig. 4. By comparing these results, we observe that polynomials
of higher degree facilitate the gain of less conservative estimation of the set R0.

Example 4. In this example, we consider Program1 with seven variables x =
(x1, x2, x3, x4, x5, x6, x7) and illustrate the scalability of our approach. In Pro-
gram 1, f1(x) = ((0.5 + d)x1; 0.8x2; 0.6x3 + 0.1x6;x4; 0.8x5; 0.1x2 + x6; 0.2x2 +
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Fig. 3. Nontermination set estimation
for Example 2. (Black and Red curves:
the boundaries of X0 and the computed
robust nontermination set R0 when
du = 16, respectively; Gray points –
the approximated robust nontermina-
tion set via numerical simulation tech-
niques.) (Color figure online)

Fig. 4. Robust nontermination sets
for Example 3. Black, Purple, Blue,
Green and Red curves: the bound-
aries of X0 and the computed robust
nontermination sets R0 when du =
6, 8, 10, 12, respectively; Gray points –
the approximated robust nontermina-
tion set via numerical simulation tech-
niques. (Color figure online)

0.6x7);, f2(x) = (0.5x1+0.1x6; (0.5+d)x2;x3; 0.1x1+0.4x4; 0.2x1+x5;x6; 0.1x1+
x7), X0 = {x | ∑7

i=1 x2
i −1 ≥ 0}, X1 = {x | x1+x2+x3−x4−x5−x6−x7 ≥ 0},

X2 = {(x, y) | x1 +x2 +x3 −x4 −x5 −x6 −x7 < 0} and D = {d | d2 −0.01 ≤ 0}.
From the computation times listed Table 1, we conclude that although the com-
putation time increases with the number of variables increasing, our method may
deal with problems with many variables, especially for the cases that the robust
nontermination set formed by a polynomial of low degree fulfills certain needs
in real applications. Note that numerical simulation techniques suffers from the
curse of dimensionality and thus can not apply to this example since this exam-
ple has seven variables, we just illustrate the results computed by our method
based on (15) in Fig. 5.

5 Related Work

Methods for proving nontermination of programs have recently been studied
actively. [16] uses a characterization of nontermination by recurrence sets of
states that is visited infinitely often along the path. A recurrence set exists iff
a program is non-terminating. To find recurrence sets they provide a method
based on constraint solving. Their method is only applicable to programs with
linear integer arithmetic and does not support non-determinism and is imple-
mented in the tool Tnt. [7] proposes a method combining closed recurrence
sets with counterexample-guided underapproximation for disproving termina-
tion. This method, implemented in the tool T2, relies heavily on suitable safety
provers for the class of programs of interest, thus rendering an application of
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Fig. 5. Computed robust nontermination sets for Example 4. (Black, Red and Green
curves – the boundaries of X0 and the cross-sections (from left to right: x3 = x4 =
x5 = x6 = x7 = 0, x1 = x2 = x5 = x6 = x7 = 0 and x1 = x2 = x3 = x4 = x7 = 0) of
the computed robust nontermination sets R0 when du = 5 and du = 4, respectively.)
(Color figure online)

their method to nonlinear programs difficult. Further, [9] introduces live abstrac-
tions combing with closed recurrence sets to disprove termination. However, this
method, implemented in the tool Anant, is only suitable for disproving non-
termination in the form of lasso for programs of finite control-flow graphs.

There are also some approaches exploiting theorem-proving techniques
to prove nontermination, e.g., [53] presents a method for disproving non-
termination of Java programs based on theorem proving and generation of invari-
ants. This method is implemented in Invel, which is restricted to deterministic
programs with unbounded integers and single loops. Aprove [14] uses SMT solv-
ing to prove nontermination of Java programs [6]. The application of this method
requires either singleton recurrence sets or loop conditions being recurrence sets
in the programs of interest. [23] disproves termination based on MaxSMT-based
invariant generation, which is implemented in the tool Cppinv. This method is
limited to linear arithmetic as well.

Besides, TRex [17] integrates existing non-termination proving approaches
to develop compositional analysis algorithms for detecting non-termination in
multithreaded programs. Different from the method in TRex targeting sequen-
tial code, [1] presents a nontermination proving technique for multi-threaded
programs via a reduction to nontermination reasoning for sequential programs.
[27] investigates the termination problems of multi-path polynomial programs
with equational loop guards and discovering nonterminating inputs for such pro-
grams. It shows that the set of all strong non-terminating inputs and weak
non-terminating inputs both correspond to the real varieties of certain poly-
nomial ideals. Recently, [22] proposes a method combining higher-order model
checking with predicate abstraction and CEGAR for disproving nontermina-
tion of higher-order functional programs. This method reduces the problem of
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disproving non-termination to the problem of checking a certain branching prop-
erty of an abstract program, which can be solved by higher-order model checking.

Please refer to [10,55] for detailed surveys on termination and nontermination
analysis of programs.

As opposed to above works without considering robust nontermination, by
taking disturbances such as round-off errors in performing numerical implemen-
tation of computer programs into account, this paper propose a systematic app-
roach for proving robust nontermination of a class of computer programs, which
are composed of a single loop with a possibly complicated switch-case type loop
body and encountered often in current embedded systems. The problem of robust
conditional nontermination is reduced to a problem of solving a single equation
derived via dynamic programming principle, and semi-definite programs could
be employed to solve such optimal control problem efficiently in some situations.

The underlying idea in this work is in sprit analogous to that in [40], which is
pioneer in proposing a systematic framework to conduct verification of numerical
software based on Lyapunov invariance in control theroy. Our method for con-
ducting (robust) verification of numerical software falls within the framework
proposed in [40]. The primary contribution of our work is that we systemati-
cally investigate a class of computer programs and reduce the nontermination
problem for such computer programs to a mathematical equation, thus resulting
in an efficient nontermination verification method, as indicated in Introduction
Sect. 1.

6 Conclusion and Future Work

In this paper we presented a system-theoretic framework to numerical software
analysis and considered the problem of conditional robust non-termination anal-
ysis for a class of computer programs composed of a single loop with a possibly
complicated switch-case type loop body, which is encountered often in real-time
embedded systems. The maximal robust nontermination set of initial configura-
tions in our method was characterized by a solution to a mathematical equation.
Although it is non-trivial to solve gained equation, in the case of polynomial
assignments in the loop body and basic semi-algebraic sets in Program 1, the
equation could be relaxed as a semi-definite program, which falls within the
convex programming framework and can be solved efficiently via interior point
methods. Finally, we have reported experiments with encouraging results to
demonstrate the merits of our method.

However, there are a lot of works remaining to be done. For instance, the semi-
definite programming solver is implemented with floating point computations, we
have no absolute guarantee on the results it provides. In future work, we need a
sound and efficient verification procedure such as that presented in [26,35,41,46]
that is able to check the result from the solver and help us decide whether the
result is qualitatively correct. Besides, the presented work can be extended in
several directions, these include robust nontermination analysis for computer
programs with nested loops and robust invariant generations with or without
constraints [20,28,42].
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Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 658–674. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21690-4 44

9. Cook, B., Fuhs, C., Nimkar, K., O’Hearn, P.: Disproving termination with over-
approximation. In: Proceedings of the 14th Conference on Formal Methods in
Computer-Aided Design, pp. 67–74. FMCAD Inc. (2014)

10. Cook, B., Podelski, A., Rybalchenko, A.: Proving program termination. Commun.
ACM 54(5), 88–98 (2011)

11. Cousot, P., Cousot, R.: A gentle introduction to formal verification of computer
systems by abstract interpretation (2010)

12. Fedkiw, S.O.R., Osher, S.: Level set methods and dynamic implicit surfaces. Sur-
faces 44, 77 (2002)

13. Floyd, R.W.: Assigning meanings to programs. Math. Aspects Comput. Sci. 19(19–
32), 1 (1967)

14. Giesl, J., et al.: Proving termination of programs automatically with AProVE. In:
Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS (LNAI), vol. 8562,
pp. 184–191. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08587-
6 13

15. Giesl, P., Hafstein, S.: Review on computational methods for Lyapunov functions.
Discrete Contin. Dyn. Syst.-Ser. B 20(8), 2291–2331 (2015)

16. Gupta, A., Henzinger, T.A., Majumdar, R., Rybalchenko, A., Xu, R.-G.: Proving
non-termination. ACM Sigplan Not. 43(1), 147–158 (2008)

17. Harris, W.R., Lal, A., Nori, A.V., Rajamani, S.K.: Alternation for termination. In:
Cousot, R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 304–319. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15769-1 19

https://doi.org/10.1007/978-3-642-31424-7_19
https://doi.org/10.1007/978-3-642-31424-7_19
https://doi.org/10.1007/978-0-8176-4606-6
https://doi.org/10.1007/978-3-662-54577-5_6
https://doi.org/10.1007/978-3-642-31762-0_9
https://doi.org/10.1007/978-3-642-54862-8_11
https://doi.org/10.1007/978-3-642-54862-8_11
https://doi.org/10.1007/978-3-319-21690-4_44
https://doi.org/10.1007/978-3-319-08587-6_13
https://doi.org/10.1007/978-3-319-08587-6_13
https://doi.org/10.1007/978-3-642-15769-1_19


86 B. Xue et al.

18. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969)

19. Jarvis-Wloszek, Z.W.: Lyapunov based analysis and controller synthesis for poly-
nomial systems using sum-of-squares optimization. Ph.D. thesis, University of Cal-
ifornia, Berkeley (2003)

20. Kapur, D.: Automatically generating loop invariants using quantifier elimination.
In: Dagstuhl Seminar Proceedings. Schloss Dagstuhl-Leibniz-Zentrum für Infor-
matik (2006)

21. Kouramas, K.I., Rakovic, S.V., Kerrigan, E.C., Allwright, J., Mayne, D.Q.: On
the minimal robust positively invariant set for linear difference inclusions. In: 44th
IEEE Conference on Decision and Control, 2005 and 2005 European Control Con-
ference, CDC-ECC 2005, pp. 2296–2301. IEEE (2005)

22. Kuwahara, T., Sato, R., Unno, H., Kobayashi, N.: Predicate abstraction and
CEGAR for disproving termination of higher-order functional programs. In: Kroen-
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