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Abstract. The identification of deterministic finite automata (DFAs)
from labeled examples is a cornerstone of automata learning, yet tra-
ditional methods focus on learning monolithic DFAs, which often yield
a large DFA lacking simplicity and interoperability. Recent work ad-
dresses these limitations by exploring DFA decomposition identification
problems (DFA-DIPs), which model system behavior as intersections of
multiple DFAs, offering modularity for complex tasks. However, exist-
ing DFA-DIP approaches depend on SAT encodings derived from Aug-
mented Prefix Tree Acceptors (APTAs), incurring scalability limitations
due to their inherent redundancy.

In this work, we advance DFA-DIP research through studying two vari-
ants: the traditional Pareto-optimal DIP and the novel states-optimal
DIP, which prioritizes a minimal number of states. We propose a novel
framework that bridges DFA decomposition with recent advancements
in automata representation. One of our key innovations replaces APTA
with 3-valued DFA (3DFA) derived directly from labeled examples. This
compact representation eliminates redundancies of APTA, thus drasti-
cally reducing variables in the improved SAT encoding. Experimental
results demonstrate that our 3DFA-based approach achieves significant
efficiency gains for the Pareto-optimal DIP while enabling a scalable so-
lution for the states-optimal DIP.

Keywords: DFA decomposition - DFA identification - Model learning -

Passive learning - SAT solving - Grammatical inference.

1 Introduction

The identification of Deterministic Finite Automata (DFAs) from labeled exam-
ples is a fundamental problem in computer science, with applications in infer-
ence of network invariants [7], grammatical inference [10], model checking [14],
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reinforcement learning [13], etc. Known as passive model learning [18], classical
methods focus on inferring a single DFA from examples. The generated DFA may
have a large size and thus suffers from a lack of simplicity and interpretability,
as a single DFA representing complex system behaviors can have a very intricate
structure.

To address this issue, recent research [13] has moved toward the DFA decom-
position identification problem (DFA-DIP), i.e., inferring a group of DFAs from
examples, where their conjunction language includes all positive examples and
excludes all negative examples. This approach allows for capturing sub-tasks per-
formed by the system, with system behavior being described as the intersection
of the languages from several DFAs, thereby improving interpretability.

Existing DFA identifying approaches [9,19,20] typically first employ a data
structure called the Augmented Prefix Tree Acceptor (APTA) [3] to represent
the labeled examples and then encode the identification of the minimal DFA
from the APTA as a satisfiability (SAT) problem for Boolean formulas. The
number of Boolean variables required in the SAT problem grows polynomially
with the size of the constructed APTA. However, the size of the APTA increases
dramatically with both the number and the length of the examples, since every
prefix of the examples corresponds to a unique state in the APTA. This results in
a corresponding increase in the number of Boolean variables and, consequently,
the size of the SAT problem, posing a significant challenge to SAT solvers.

To alleviate this challenge, a recent work [5] extends the technique presented
in [4] to construct the minimal 3-valued DFA (3DFA) consistent with the given
examples, i.e., the 3DFA accepts all positive examples and rejects all negative
examples. According to its definition, APTA can be viewed as a specific kind of
3DFA. The constructed minimal 3DFA is dramatically smaller than the origi-
nal APTA. Hence, the proposed method via minimal 3DFAs in [5] significantly
improves the DFA identification.

Since the state-of-the-art algorithm for identifying DFA decompositions [13]
still relies on the basic APTA construction, a natural improvement would be to
apply this minimal 3DFA construction to further reduce the number of Boolean
variables required. However, our findings suggest that the minimal 3DFA con-
struction from [5] cannot be directly applied to the current DFA decomposition
learning framework [13]. This is because with a minimal 3DFA, its structural
characteristics are different from those of the prefix tree, which makes the orig-
inal encoding no longer applicable (cf. Section 4).

Contributions. To advance the DFA decomposition identification research, we
make several contributions in this paper, as summarized below:

— We review the Pareto-optimal DIP studied in [13] and introduce a novel
DFA-DIP, named the states-optimal DIP, that prioritizes decompositions
with smaller state spaces. (Section 3)

— We propose a new method for constructing a succinct 3DFA consistent with
the given examples and an improved SAT encoding via 3DFA, both tailored
for DFA-DIPs. (Section 4)

— We propose a method for solving the novel states-optimal DIP. (Section 5)
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— We have implemented the improved method for solving the Pareto-optimal
DIP by replacing the original encoding via APTA in [13] with our improved
encoding via 3DFA, and have also implemented our method for solving the
states-optimal DIP. The experimental results show that our new 3DFA con-
struction significantly reduces the number of states compared to using APTA
and dramatically improves the efficiency in solving the Pareto-optimal DIP.
Additionally, we present preliminary experiments on the novel states-optimal
DIP, highlighting the scalability of our method. (Section 6)

Related work. We review the most related work on DFA identification from
examples. The most common approach is the evidence driven state-merging
(EDSM) algorithm [12]. It first constructs an APTA consistent with the given
examples, and then iteratively applies a state-merging procedure until no valid
merges are left. However, the issue of this algorithm is that it terminates at a
local optimum. Current SAT-based methods typically construct an APTA first,
and then reduce the problem to a SAT solving problem [9], with its help. These
approaches return a minimal DFA. Several works [16,17,19,20] have improved
the second step by proposing symmetry-breaking techniques and compact SAT
encoding. More recently, the first step, which is an APTA construction, has
been improved in [5] by extending the technique in [4] to construct a minimal
3DFA consistent with the given examples, instead of an APTA. The minimal
3DFA requires fewer states than APTA. However, all these works only consider
learning a single DFA from the examples. In contrast to them, [13] introduces
DFA-DIP and extends the SAT encoding via APTA to infer DFA decompositions
under their so-called Pareto-optimal partial order. As the minimal 3DFA cannot
directly be used for DFA-DIP, our work proposes a method to construct a non-
minimal 3DFA with fewer states than APTA and an improved SAT encoding for
DFA-DIP. All the works above, including ours, focus on learning unknown DFA
decompositions from examples. When the finite-state automata to decompose
are known, specific approaches [1,6,11] can be used.

Outline. After reviewing the basic definitions in Section 2, we give the for-
mal definitions of the two DFA-DIPs in Section 3. We then introduce our im-
proved SAT encoding via 3DFA in Section 4 and our method for solving the
states-optimal DIP and the Pareto-optimal DIP in Section 5. We present our
experimental evaluation in Section 6 and some concluding remarks in Section 7.

In what follows, due to the limited space available, the omitted proofs of
lemmas and theorems are given in Appendix A.

2 Preliminaries

In this paper, given n € N, we denote by [n] the set {1,2,...,n}. We fix a finite
alphabet X of letters. A word w is a finite sequence of letters in 2. We denote by
e the empty word and with X* the set of all finite words, and let ¥ = X*\ {e}.
Given a word u, we denote by |u| the length of u (|g] = 0) and by wli] the i-th
letter of u for 0 <4 < |u|. Given two words u and v, we denote by u-v (for short
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uv) their concatenation. We say that a word u is a prefiz of a word w if w = u-v
for some word v € X*. We denote by prefixes(u) the set of all prefixes of u and we
extend it to a set of words .S in the usual way, i.e., prefixes(S) = |, g prefixes(u).

Transition system. A deterministic transition system (TS) is a tuple T =
(Q,,0), where @ is a finite set of states, ¢ € @ is the initial state, and §: Qx X —
@ is a transition function. We also extend § from letters to words in the usual
way, by letting §(¢,e) = ¢ and 6(q,a - u) = 6(6(¢g,a),u), where u € X* and
a € X. The run of a TS T on a finite word u of length n is the sequence of states
P =qoq1 - qn € QT such that, for every 0 < i < n, gir1 = §(q;, u[i]).

Definition 1 (Deterministic finite automata). A deterministic finite au-
tomaton (DFA) is a tuple A = (T, A), where T is a deterministic TS and A C Q
is a set of accepting states.

It is easy to extend DFAs to process languages with “don’t-care” words.

Definition 2 (3-valued DFAs [5]). A 3-valued DFA (8DFA) is a triple A =
(T, A, R), where T is a deterministic TS and A, R, and D = Q\ (AUR) partition
the set of states Q, where A C Q is the set of accepting states, R C Q is the set
of rejecting states, and the remaining states D are called don’t-care states.

A run is accepting (respectively, rejecting) if it ends in an accepting (resp. re-
jecting) state. A finite word u € X* is accepted (resp. rejected) by A if it has an
accepting (resp. rejecting) run on u. 3DFAs map all words in X* to three val-
ues: accepting (+), rejecting (—), and don’t-care (?), where they are accepting if
they have an accepting run, rejecting if they have a rejecting run, and don’t-care
otherwise. Note that DFAs are a special type of 3DFAs with only accepting and
rejecting states. We denote the language of A by L(A), i.e., the set of words
accepted by A.

3 Problem Formalization

In this work we consider two specific DFA decomposition identification problems
(DIPs). One is the Pareto-optimal DIP established in [13], and the other is the
states-optimal DIP we introduce in this paper. Before formally presenting the
two DIPs, we recall the definition of DFA decompositions.

Definition 3 (DFA decomposition [13]). Let H be the set of all DFAs over
Y. A (my,...,my,)-DFA decomposition is a tuple of n DFAs (Ay,...,An) € H™
such that each DFA A; has m; states and my1 < mo < --- < m,,.

A decomposition (Ay,...,.A,) accepts a word w if and only if all DFAs accept
u, ie, u € L(A;) for all 1 < i < n; a word that is not accepted is rejected.
Therefore its language £(A4,...,.A,) is the intersection of the languages of the
individual DFAs, i.e., L(A1,...,An) = (1<icpn L(A;). We say (mq,...,my) is
the states allocation of the DFA decomposition (A1, ..., A,).
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DFA decomposition identification problem (DFA-DIP). Given a set of
labeled examples S = (S*,57) where ST contains positive examples and S~
contains negative examples, respectively, a general DFA-DIP asks to identify a
DFA decomposition consistent with the example set S; formally, it asks to find
a DFA decomposition (Ay,...,A,) for a given integer n € N that satisfies:

C1 Consistency: St C L(Ay,...,A,) and S— C X%\ L(Ay,...,A,).

Obviously, the identification problem of monolithic DFAs is a special case of
DFA-DIP with n = 1, i.e., learning a single DFA from examples. We say a DFA
decomposition (Ay,---,Ay,) is consistent with S if it satisfies C1.

To compare decompositions, a Pareto-optimal partial order < has been intro-
duced in [13]. Formally, given a (my,...,m,)-DFA decomposition (A4,...,4,)
and a (mf,...,m))-DFA decomposition (A},...,A.), we say (Ai,...,A,) <
(Af, ... AL) if m; <m)j for all 1 <4 <n and there exists 1 < j < n such that
mj < m’. If so, we say that (Ay,...,A,) dominates (A, ..., A).

As incomparable decompositions exist, they can form a Pareto frontier of

solutions to the Pareto-optimal DIP defined as follows:

Pareto-Optimal DIP [13]. Given a set of labelled examples S = (S, S7), and an
integer n € N, find a (my, ..., my)-DFA decomposition (A,...,A,) such that (i) it
satisfies C1, and (ii) there does not exist a decomposition satisfying C1 dominating
it under the Pareto-optimal partial order <.

In this paper, we also introduce a novel DFA-DIP — states-optimal DIP
— which depends on the number of states and the entropy of a decomposition
defined as follows.

Definition 4 (Entropy of DFA decomposition). Given a (my,...,my,)-
DFA decomposition (A, ..., A,), its entropy is defined as

E(A1,..., Ay) == P(i)log, P(i)
i=1

where P(i) = mi/Z;L:I m; for1<i<n.

Based on Definition 4, we present a states-optimal preorder as follows. Given a
(ma,...,my)-DFA decomposition (Ay,...,A,) and a (mf, ..., m))-DFA decom-
position (A], ..., A}), wesay (Ar,..., A,)<(A}, ..., A)if> " m; < 22:1 m’,
or E(A1, ..., Ap) > E(AL, .. AN Y my = 22:1 m’;. The preorder reflects
that we prefer a DFA decomposition that has the minimal number of states or,
for the same number of states, it contains more individual DFAs with similar
(smaller) size.

A decomposition with a higher entropy value indicates a more evenly dis-
tributed state allocation among DFAs, leading to a more flexible and potentially
more generalizable representation of the input data. In contrast, lower entropy
values suggest that the state allocation is concentrated in fewer DFAs, which
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may reduce the system’s ability to capture diverse structural variations in the
data. Note that the states-optimal preorder does not require two DFA decom-
positions having the same number of DFAs, as does the Pareto-optimal partial
order. Therefore, the states-optimal preorder is a total preorder.

States-Optimal DIP. Given a set of labelled examples S = (S*,57), find
(ma,...,my)-DFA decomposition (A1, ...,A,) for some n € N such that it is a
minimal decomposition w.r.t. the states-optimal preorder < satisfying C1.

Note that the states-optimal DIP does not require a given input n to restrict
the number of DFAs in the resulted DFA decomposition. Of course, a specific
variant is to find a states-optimal decomposition with a given input n.

4 An Improved SAT Encoding of DFA-DIP via 3DFAs

In this section, we first briefly review the existing encoding via APTA proposed
in [13], then present our improved SAT encoding of DFA-DIP via 3DFA. We
describe a challenge in utilizing minimal 3DFAs [5] within our encoding at last.

4.1 Existing encoding via APTAs

In [13], Lauffer et al. proposed a SAT encoding method for DFA-DIP by extend-
ing the SAT encoding for identifying a single DFA from examples [9,16,17,19].
Their encoding reduces DFA-DIP into a graph coloring problem where the graph
is in fact an APTA, a tree-based 3DFA. In the graph coloring problem, the state
of each node of the tree structure, each edge of the tree, and for each state, each
transition of the DFA, can be represented by a different color variable [9].

In an APTA, each state corresponds to a unique prefix of a word in the set of
examples S = (ST, 57) that we also write as S = STUS™. First, one can define a
function f: prefixes(S) — Ng where Ng = {0, ..., |prefixes(S)|—1}. Intuitively, f
maps each prefix u € prefixes(S) to a state in the APTA represented by a unique
number in Ng. Formally, an APTA P of S is a 3DFA (T, A, R) where the TS T
consists of the set of states Ng, the initial state f(e), and the transition function
0 defined as §(i,a) = j if f(u) = i and f(ua) = j where u,ua € prefixes(S)
and a € X; we define A = {i € Ng | f(u) =1 for someu € St} and R =
{i € Ng | f(u) =1 for some u € S~ }. For example, Fig. 1(a) shows the APTA
generated from the set of examples S = (S*,57) where ST = {aab, aaa, ab},
S™ ={b,aba},and f = {e— 0,a— 1,aa — 2,aab — 3,aaa — 4,ab — 5, aba —
6,b — 7}. The set of accepting states is A = {3,4,5} and the set of rejecting
states is R = {6,7}.

Given a positive integer n € N, the state-of-the-art encoding method asso-
ciates the APTA states with the states of each DFA A; in the (mq,...,m,)-DFA
decomposition (Ayj,...,.A,). More precisely, given an APTA consistent with the
examples S and an allocation of states (mq,...,my), each unknown DFA A;
gets assigned m; states and the encoding associates each APTA state with one
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(a) The APTA consistent with the examples St =
{aab, aaa,ab} and S~ = {b, aba} (c) Decomposed DFA A,

Fig.1: (a) The generated APTA, where an accepting node is represented by a
double circle and a rejecting node is represented by a square. (b) and (c) show
the two DFAs in a corresponding (2, 2)-DFA decomposition (\A;,.42) consistent
with S = (S1,57).

of the A;’s m; states, subject to a set of constraints, such as each accepting (re-
jecting, resp.) APTA state should be associated with an accepting (a rejecting,
resp.) DFA state. APTA states with the same (DFA-indexed) state variable will
be identified as the same state in the corresponding DFA. For instance, for each
APTA state v € Ng, a state variable z ; represents it is associated with the i-th
state in the k-th DFA. Considering the APTA in Fig. 1(a), if we would like to
generate a (2,2)-DFA decomposition (Aj, Az), we need 32 state variables xﬁz
Besides these variables, the encoding method requires other variables to repre-
sent the transition relations and the accepting conditions. Based on the coloring,
several constraints imposed by C1 — such as a positive example must be accepted
by all DFAs and a negative example must be rejected by at least one DFA — will
be encoded into a SAT problem. The complete list of Lauffer’s encoding [13] can
be found in Appendix B. Fig. 1(b) and 1(c) present the identified (2,2)-DFA
decomposition (Aj,.As) consistent with the APTA in Fig. 1(a).

4.2 Qur improved encoding via 3DFAs

The existing approaches [9,13,16,17,19] face a critical challenge: the size of the
APTA grows dramatically with both the number and the length of examples S
as APTA associates each prefix in prefixes(S) with a unique node. As mentioned
earlier, the increase in the number of nodes in the APTA leads to more encoding
variables; which in turn increases the size of the resulting SAT problem [15,19].
Consequently, the smaller the APTA size is, the easier the SAT problem will be.

In light of this, to obtain smaller APTAs, [5] proposed to construct the min-
imal 3DFA for S by merging equivalent nodes. Moreover, inspired by [4], the
minimal 3DFA can even be constructed incrementally from the set S if the ex-
amples in S are sorted by the standard lexicographical order. Following [4,5], we
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also propose an incremental construction of 3DFAs by merging equivalent nodes.
Differently from [5], our construction, rather than looking for the minimal 3DFA,
requires that every rejecting word in S~ must reach a unique state in the con-
structed 3DFA. That is, we only merge equivalent accepting or “don’t-care”
states. In what follows, we first introduce our construction of 3DFAs starting
from APTAs and then the improved encoding via 3DFAs. Afterwards, we reveal
the reason why it is important to associate every rejecting word with a unique
state in the 3DFA.

3DFA Construction. For simplicity, we assume that the full APTA P of S is
given. Note that our 3DFA can also be constructed on-the-fly from .S using the
same techniques as [4, 5]. Since our goal is to associate each rejecting word with
a unique state and merge as many other states as possible, our reduction process
works in a backward manner as follows.

Initially, we collapse all accepting nodes without outgoing transitions into
one representative state and store it in a hash map called Register. Since all
rejecting nodes are inequivalent to other states, each rejecting node will be stored
as its own representative in the Register.

Our reduction process then iteratively traverses the APTA nodes in a back-
ward manner from leaves towards the root and process the 3DFA as follows. In
each iteration, we first collect the states whose all successors are representative
states in Register, and then identify equivalent states with the following two
conditions:

— both states must be either accepting or don’t-care states, and
— for every input letter a € X, either they both have no successors or both
have the same successor in Register.

We thus create a state representative for each equivalent class, i.e., a set of
equivalent states, and store the representative in Register. Further, all states
that have a representative in Register will be replaced by their representative
in the updated 3DFA.

Our construction repeats the reduction process until all states, including the
initial one, are processed, resulting in a 3DFA consistent with S.

Theorem 1. Given a set of examples S = (ST,57), the 3DFA construction
produces a SDFA consistent with S.

Note that our 3DFA can also be constructed on the fly from S in the same
manner as in [5] if the example words are taken out from S in the standard
lexicographical order.

Observe that every rejecting word in S~ leads the constructed 3DFA to a
unique rejecting state by construction. In fact, we can get the following stronger
result, that we will use later in our SAT encoding phase.

Lemma 1. Let A= (T, A, R) be the outcome of the 3DFA construction, where
T = (Q,t,8). For two different prefizes u,u’ € prefixes(S), we have 6(¢,u) #
0(e,u’) if either u € prefixes(S™) or u’ € prefixes(S™).
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Table 1: Size comparison between
3DFAs and APTAs. “Length” indi-
cates the length of each word.

Automata Size

|2]  Length

3DFA  APTA

5 5 1,255 3,214

5 6 4,449 13,634

Fig.2: The 3DFA A = (7,4, R) con- 5 7 13,787 53,277
- 43,064 209,721

structed from the APTA in Fig.1(a), ?) g 1336’00619 ng’£7)54
where A = {3,5} and R = {6, 7}. 5 10 443,763 3,369,694

For instance, as shown in Fig. 2, this construction process can merge the
states {3,4} of the APTA in Fig. 1(a) reached by positive examples into a repre-
sentative state 3. Although this simple example does not clearly show the advan-
tage of the construction, Table 1 presents the size comparison between APTAs
and our constructed 3DFAs in terms of the number of states on a number of
cases from parity game solving [5]. We can see that the resulting 3DFAs exhibit
significantly smaller sizes than the original APTAs. Therefore, using 3DFAs in-
stead of APTAs requires dramatically fewer variables and fewer constraints in
our improved encoding given below, yielding easier SAT problems and thus faster
solving speed in general than those via APTAs, as confirmed by the experiments
in Section 6.

SAT Encoding via 3DFAs. We now present the standard SAT encoding for
solving the DFA-DIP problem [13] adapted to our 3DFAs. Note that we also use
the symmetry breaking techniques proposed in [16,17] to further improve our
SAT encoding, just like in [13]. In what follows, we focus on our major encoding.
Given the 3DFA A = (T, A,R) with T = (Q,t,d) consistent with .S, we are
looking for a consistent DFA decomposition (Aj,...,.A,) of S where the state
allocation is (m1,...,m,) for a given n € N. To encode the DFA-DIP, we use
the following three types of variables:

1. State variables z ;, where k € [n], v € Q, and i € [my]. zF; = 1 iff the
state v of the 3DFA and the state ¢ in the DFA A, can both be reached on
some word u € X* from their initial states.

2. Transition relation variables eﬁi)j, where k € [n], 1 € X, and 4, j € [my].

k
Lyi,j

3. Acceptance variables ¥, where k € [n] and i € [my]. 2F = 1 iff the state
i of DFA Ay is an accepting state.

e, . = 1iff DFA A has a transition from state i to state j over the letter .

Recall that A (resp., R) is the set of accepting (resp., rejecting) states in the
3DFA A. We now give the list of constraints for the SAT encoding. First of all,
we require that each individual automaton A; should be a DFA. That is, A;
must be deterministic and also complete.
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D1 Determinism. For a state i and a letter [ in Ay, there is at most one

successor:
k k
AN N ey = el

leX ken] i,5,t€[my]
j<t

D2 Completeness. For a state i and a letter [ in Ay, there must be a successor:

/\ /\ /\ \/ €l

l€X ke[n] i€[my] j€[my]

Second, we require that the DFA decomposition (A1, --- ,.A,) should be con-
sistent with S, so to satisfy C1.

R1 Positive Consistency. Every positive example in ST must be accepted by
all individual DFAs, i.e., by each DFA Ay where k € [n]. It follows that, if
xfm = 1, then all positive examples leading the 3DFA A to an accepting

state v must also make Ay reach an accepting state, i.e., state ¢ must also

be an accepting state.
AN N == 2
vEA k€E[n] i€[my]

R2 Negative Consistency. Each negative example in S~ should be rejected
by at least one individual DFA Aj. That is, if mif’i = 1, then the example
leading the 3DFA A to a rejecting state v must also make Ay, reach a rejecting
state as well, i.e., state i of A4y should also be rejecting.

AV (A @ = -25)).
vER kE[n] i€[my]

To further enforce the DFA decomposition to be consistent with S, we also
need to perform the product of the 3DFA A and each individual DFA A4 in
order to build the transition system of each Ay, where k € [n]. That is, 2}, = 1
also means that in the product automaton of A and Ay, the pair of states (v, 1)
is seen as a product state and it is reached from the initial product state (r,0)
over some word u € X*. The constraints are listed below:

T1 Initialization. The initial state r of 3DFA A should always be associated
with the initial state 0 for each DFA A,:
[AT: mf’f’oz no variable has 0 as subscript; shall it be 1 instead? ]

k
/\ ‘rr,O
ken]
T2 State Correspondence. Each state v of 3DFA A must be associated with
one state in each DFA A, i.e., xsz = 1 for some state 7 in Ajy:

ANV e

vEQ k€ [n] i€[my]
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T3 Transition Relation. For each k € [n], in the product automaton of A
and Ay, if the product state (v, %) is reachable from the initial product state
(r,0), and there is a transition from state i to j over letter a in Ay, then the
product state (d(v,a),j) is also reachable.

AN NN @inei) = aloa,

veQ k€[n] i,5€[mi] a€l(v)
where [(v) is the set of letters on the outgoing transitions from state v.

In addition to the above constraints, Lauffer et al. [13] also proposed an
optimization as follows.

O1 Each state v in the 3DFA can only be associated with at most one state 4
in each individual DFA A,.

AN N v

VEQ ke[n] 4,j€[mal i<y

This constraint holds in the APTA because each state v corresponds to a unique
prefix u € prefixes(S). Since both A and Ay, are deterministic, the product state
(v,14) reached from the initial product state (r,0) over v must be unique. That
is, there will be a unique 7 in Ay to make x’“ be true.

However, this constraint might not be true when we use a 3DFA for our
encoding. For instance, consider the 3DFA A in Fig. 2: we can see that there are
two words that can make A reach state 3, namely aaa and aab. In our target
DFA Ay, these two words might lead to two different states, say ¢ and j. It then
follows that we have both 3:3 =1 and x3 = 1, which obviously violates the
constraint O1. This will prevent us from ﬁndlng a consistent DFA decomposition
(Ay,...,A,) with the state allocation (mq, ..., my).

Nonetheless, we observe that during the construction of the 3DFA, it is easy
to identify those states that correspond to multiple different prefix words in
prefixes(S). Indeed, we can just record the representative states which correspond
to multiple equivalent states, denoted by M. That is, for each state v € M, there
must be two different prefixes u, u’ € prefixes(S) such that v = d(r,u) = §(r,u’).
In fact, M must not contain the states corresponding to a prefix in prefixes(S™)
as guaranteed by Lemma 1. The set of states in A that is associated with a unique
prefix word in prefixes(S) is @ \ M. Therefore, we can replace the constraint O1
with the following constraint:

01’ Each state v in the 3DFA that does not correspond to multiple equivalent
states can only be associated with at most one state ¢ in each individual

DFA A;.
/\ /\ /\ (—\xﬁl V ﬂxﬁj).

VEQ\M k€[] i,j€[my],i<]
Clearly, by Lemma 1, all states having a path to a rejecting state in A belong
to @\ M
Let go(m ) be the conjunction of the constraints D1-2, R1-2, T1-3, and
O1’. Then, we get the following result.
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Theorem 2. Let A be the 3DFA consistent with the examples S and n € N.
gpé}’ﬁ ) is satisfiable if, and only if, there exists a (my, ..., my)-DFA decom-
position (A1, ..., Ayn) consistent with S.

Encoding size. The size of the formula gaé’ﬁ ) is determined by the con-
junction of each constraint above. Let m be the maximal number in (mq, ..., my,).

The contributions of each constraint to the formula size are as follows: (D1-2):
O(|Z]-n-m*) +O(|Z|-n-m?); (R1-2): O(IQ*|-n-m)+0(Q~|-n-m); (T1-3):
O(n)+0(|Q|-n-m)+0(|Q]-n-m?); and (01°): O(|Q\ M|-n-m?). The overall
size is thus O(| 2| - n-m?) + O(|Q| - n - m?). <

4.3 Why not use minimal 3DFAs

Our 3DFA construction is inspired by the one of DFAMiner [5], with the main
difference being that we do not generate the minimal 3DFA recognizing S. In the
minimal 3DFA generated by DFAMiner, all rejecting states that cannot reach a
rejecting state are merged together. For instance, in Fig. 2, both rejecting states
6 and 7 do not reach another rejecting state, so in the minimal 3DFA; these
two states will be merged. This also means that the two rejecting words b and
aba will correspond to the same state, say v, in the minimal 3DFA A. However,
this would make the meaning of constraint R2 imprecise: by constraint R2,
we want every word to be rejected by at least one individual DFA, but the
constraint actually says that we have at least one individual DFA that rejects a
word associated with the rejecting state v. This means that it is not guaranteed
that every word in S~ reaching v will be rejected. This means, for instance, that
for b and aba in Fig. 2, it may happen that only b is rejected by some individual
DFA but aba is totally ignored and thus not rejected by any DFA. This kind
of issues can lead to inconsistent DFA decompositions from the SAT solver and
we indeed observed them in the experiments when we directly used the minimal
3DFA in our encoding.

In light of this, it is clear why we require in our construction that every
rejecting word must be associated with a unique state in the constructed 3DFA
or, equivalently, that every rejecting state in the APTA must not be equivalent
to any other states. We are now ready to introduce in the next section the overall
algorithm for finding consistent DFA decompositions.

5 Identification Algorithms for DFA Decomposition

In this section, we present identification algorithms for two DFA decomposition
problems: the Pareto-optimal DIP and the states-optimal DIP.

For the Pareto-optimal DIP, our algorithm builds on top of the approach
of [13], where we replace their SAT encoding via APTA with our enhanced
3DFA-based encoding. The detailed algorithm can be found in Appendix B. As
the experimental results in Section 6 show, this modification yields significant



Efficient Decomposition Identification of DFAs from Examples 13

Algorithm 1: State-optimal DIP Solving

Input: The labeled examples S = {S*, 57}

Output: A DFA decomposition D for the states-optimal DIP
1 A < 3DFACONSTRUCTION(S); > Construct a 3DFA from the examples
2 N < 2; > Initial total number of states in possible decompositions
3 while true do

4 M  COMPUTESTATESALLOCATIONS(N, 2); > Get all possible states
allocations under N

5 foreach (mi,...,m,) € M do

6 SAT,D + SOLVE((m1,...,my), A);

7 if SAT then

8 ‘ return D;

9 end

10 end

11 N+ N+1;
12 end

improvement. Therefore, in what follows, we focus on our method for solving
the new states-optimal DIP, which is summarized as Algorithm 1.

Given a set of labeled examples S = (ST,57), Algorithm 1 first builds
a 3DFA consistent with S (Line 1) according to Section 4.2 and then looks
for the decomposition with the minimal total number of states, starting with
N = 2 (Line 2) and incrementing it until a suitable decomposition is found.
This is achieved by computing all possible states allocations M (Line 4) having
N total states by calling Algorithm 2, which ensures that every states allocation
(m1,...,my,) € M satisfies: (1) the total number of states is N (i.e., Y . m; =
N), (2) every corresponding DFA has at least 2 states® (i.e., m; > 2 for all
1 < i< mn),and (3) allocated states are in ascending order (i.e., m; < my; for
all 1 <4 < n). As a result, Algorithm 2 enumerates all possible combinations
where the number of DFAs n will range from 1 to [gJ . For instance, for N = 10,
Algorithm 2 returns the following states allocations:

{(2,2,2,2,2),(2,2,3,3),(2,2,2,4), (3,3,4), (2,4,4), (2,3,5),
(2,2,6),(5,5), (4,6),(3,7),(2,8), (10)}.

After calling Algorithm 2, for every possible states allocation (myq,...,m,) € M,
Algorithm 1 applies our encoding method and calls a SAT solver to determine
whether there is a (my,...,m,)-DFA decomposition D for the state-optimal
DIP (Line 6). If so, it returns it (Line 8). Otherwise, it means that there is no
solution under the current total number of states N, so we increase it (Line 11).

Note that, in Algorithm 1, we increase the total number of states N by 1
in each round. For every fixed IV, Algorithm 2 sorts the states allocations in

! As the constraint D2 in Section 4.2 requires that every state in the generated DFAs
should have a transition for every action in X the generated DFAs are complete
DFAs. Since a complete DFA with a single state will either accept or reject all
words, we skip such naive DFAs and thus every DFA should have at least 2 states.
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Algorithm 2: COMPUTESTATESALLOCATIONS
Input: N: the total number of states in unknown decompositions
k: the minimum number of states in each DFA
Output: M: all possible states allocations of unknown decompositions

1 M« {N}

2 for m < k to N do > Current DFA has m states
3 if m < N —m then > Still enough states left for the next DFA
4 M’ <~ COMPUTESTATESALLOCATIONS(N — m, m);

5 M MU ({m} x M’); 1> Add the new states allocations to M
6 end

7 end

8 Sort M in descending order by entropy (see Definition 4);

9 return M;

descending order based on their entropy values (Line 8). Therefore, they work
together to keep the states-optimal preorder defined in Section 3. Theorem 3
shows the termination and the correctness of Algorithm 1.

Theorem 3 (Termination and Correctness). Let S = (ST,57) be a given
set of labeled examples. Algorithm 1 terminates and returns a correct DFA de-
composition D = (Ay,...,Ay) for the states-optimal DIP.

Complexity analysis. It can be observed that there is always a correct decom-
position D = (Ay,..., A,) when N =245 o (Ju| + 2), where a 2-states DFA
A1 accepts all words and every other DFA rejects one negative example u € S™.
Therefore, the loop iterations in Algorithm 1 are bounded by 143", - (Ju| +2),
as N starts with 2 and it is increased by 1 every round. In every loop, the recur-
sive generation of all possible states allocations under a given N in Algorithm 2 is
dominated by the integer partition problem. According to the Hardy-Ramanujan

formula [8], the asymptotic estimation of the number of states allocations is

M| ~ %, which shows that the growth of |M] is subexponential in N. <
It is not hard to have a simple variant of Algorithm 1 with a given integer n
restricting the number of DFAs in the decomposition. It can be done by checking

if a combination has at most n DFAs before adding it to M in Algorithm 2.

6 Experimental Evaluation

We have implemented our approach? on top of the tool developed in [13] and
we used as benchmarks pairs of sets of examples representing partially-ordered
tasks (cf. [13, Section III.C]), where we vary the numbers of tasks, the maximum
length of each sequence of tasks, and the number of samples in each positive
and negative sets; for each combination, we randomly generate 10 instances,
provided they can be generated, by following the generation strategy® in [13]. Let

2 Our implementation is available at: let us make it available.
3 See https://github.com/mvcisback/dfa-identify
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Table 2: Overview of the outcomes of the encoding experiments

# DFAs (12| = 2) # DFA (|| = 4)
2 3 4 5 6 2 3 4 5 6

Success  [460 460 460 456 92|1058 129 85 72 72
PARETOAPTA [13] [Memoryout| 0 0 0 4 397| 21 467 981 989 978
Timeout 0O 0 0 O 1 11 3 24 29 40
Success 460 460 460 460 460|{1090 1090 1090 1090 1089
Timeout o0 0 0 0 0o 0 0 o0 1

Tool Result

PARETO3DFA (ours)

PARETOAPTA, PARETO3DFA, and STATESOPTIMALDIP denote the original
tool from [13], its version using our 3DFA encoding (cf. Section 4), and by our
method for solving states-optimal DIP (cf. Section 5), respectively. We ran the
tools on a desktop machine with an i7-4790 CPU and 16 GB of memory running
Ubuntu Server 24.04.2 and we used BENCHEXEC [2] to trace and constrain the
tools’ executions: we allowed each benchmark to use 15 GB of memory and
imposed a time limit of 10 minutes of wall-clock time.

6.1 Comparison between ParetoAPTA and Pareto3DFA on solving
Pareto-optimal DIP

In Table 2 we report on how PARETOAPTA and PARETO3DFA performed on
460 benchmarks with 2 tasks (|X] = 2) and 1090 benchmarks with 4 tasks
(|X| = 4) when changing the number of DFAs in the decomposition. As we
can see from the table, PARETOAPTA can scale to 5 DFAs for the |X| = 2
benchmarks, but it already struggles at 3 DFAs when |X| = 4. By just replacing
the original APTA encoding with our 3DFA-based one, PARETO3DFA has been
able to solve all benchmarks except for one case up to 6 DFAs. We have also run
PARETO3DFA up to 10 DFAs, obtaining success everywhere except for 2 and 3
timeouts on |X| =4 for 9 and 10 DFAs, respectively.

In Fig. 3 we show the runtime comparison between two methods PARE-
TOAPTA and PARETO3DFA on all 1550 experiments considered in Table 2.
The scatter plots in the figure have logarithmic axes and marks above the dot-
ted diagonal line mean that PARETOAPTA took more time than PARETO3DFA
to solve the same benchmark; the solid line at 600 seconds represents the timeout
we imposed to the experiments while marks on the dashed line at 1000 seconds
stand for to experiments where the corresponding tool went memoryout.

As we can see from the plots, except for the cases taking very limited time, our
PARETO3DFA always significantly outperforms PARETOAPTA in the running
time, while producing DFAs with the same number of states as PARETOAPTA
on the commonly solved cases. For benchmarks requiring at least 5 seconds to
be computed by both tools, PARETO3DFA is 1.4-80.3 times faster than PARE-
TOAPTA; for at least 10 seconds, the speedup lies in 2.8-40.5.

More detailed comparison on runtime can be found in Appendix C.
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Fig. 3: Running time comparison between PARETOAPTA and PARETO3DFA

6.2 The scalability for our method on solving states-optimal DIP
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Fig. 4: Box plots for the STATESOPTIMALDIP experiments

To evaluate how STATESOPTIMALDIP is able to scale with more challenging
benchmarks, we ran it on the same benchmarks used for Table 2 as well as
on 1150, 1190, and 1210 benchmarks with |X| = 6, |¥| = 8, and |X| = 10,
respectively. STATESOPTIMALDIP has completed successfully all experiments
for | X] € {2,4}; for | X| = 6 it solved 919 cases and went timeout on 231, while
for |X| = 8 it solved 689 cases and went timeout on 501, and for |X| = 10 it
solved 783 cases and went timeout on 427; no failure by memoryout happened.

The box plots in Fig. 4 show the distribution of the running time and of the
number of states relative to the successfully solved benchmarks. As we can see
from the plots, STATESOPTIMALDIP is really fast for the simpler benchmarks
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with | Y| € {2,4}, taking less than 1 second and needing between 4 and 6 states
to solve each of them. For the more demanding benchmarks (|X| € {6,8,10}),
more states are necessary (at most 10), so by Algorithm 1 more cycles in the loop,
more decompositions, and larger encoding formulas are generated and evaluated,
as reflected by the higher running times shown in the plot on the left of Fig. 4.
Appendix C presents more analysis on the behavior of STATESOPTIMALDIP.

7 Conclusion and Future Work

In this paper we considered two DFA decomposition identification problems: the
Pareto-optimal DIP, studied by Lauffer et al. in [13], and the states-optimal DIP
that we introduced in this paper. To solve the former problem, we proposed an
improved SAT encoding via 3DFA; compared to the encoding via APTA [13],
our method reduces the number of required encoding variables, thus significantly
improving the efficiency, as confirmed by the experimental results, showing that
our method is dramatically faster than the state-of-the-art method from [13].
We also proposed a solution method for the novel states-optimal DIP, and the
experimental results on a large set of benchmarks demonstrate its scalability.

For future work, we consider further improving the practical efficiency in
running time. One possibility is to find a novel encoding method where the
input is a fixed total number of states N of the decomposition, but not a states
allocation. In this way, if the answer is UNSAT, we can just increase the total
number of states N without computing all possible states allocations suitable
for the current N.
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marks that helped us improve the quality of the paper. Work supported in part
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innovation programme under the Marie Sktodowska-Curie grant no. 101008233.

References

1. Ashar, P., Devadas, S., Newton, A.R.: Finite State Machine Decomposition, pp.
117-168. Springer US, Boston, MA (1992)

2. Beyer, D., Lowe, S., Wendler, P.: Reliable benchmarking: requirements and solu-
tions. Int. J. Softw. Tools Technol. Transf. 21(1), 1-29 (2019)

3. Coste, F., Nicolas, J.: How considering incompatible state mergings may reduce
the DFA induction search tree. In: ICGI 1998. Lecture Notes in Computer Science,
vol. 1433, pp. 199-210. Springer (1998)

4. Daciuk, J., Mihov, S., Watson, B.W., Watson, R.E.: Incremental construction of
minimal acyclic finite state automata. Comput. Linguistics 26(1), 3—16 (2000)

5. Dell’Erba, D., Li, Y., Schewe, S.: DFAMiner: Mining minimal separating DFAs
from labelled samples. In: FM 2024 (2). Lecture Notes in Computer Science, vol.
14934, pp. 48-66. Springer (2024)



18

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

J. Meng et al.

Egri-Nagy, A.: Applications of automata theory and algebra via the mathematical
theory of complexity to biology, physics, psychology, philosophy, and games. Artif.
Life 17(2), 141-143 (2011)

Grinchtein, O., Leucker, M., Piterman, N.: Inferring network invariants automati-
cally. In: IJCAR 2006. Lecture Notes in Computer Science, vol. 4130, pp. 483-497.
Springer (2006)

Hardy, G.H., Ramanujan, S.: Asymptotic formulae in combinatory analysis. Pro-
ceedings of the London Mathematical Society s2-17(1), 75-115 (1918)

Heule, M., Verwer, S.: Exact DFA identification using SAT solvers. In: ICGI 2010.
Lecture Notes in Computer Science, vol. 6339, pp. 66-79. Springer (2010)

de la Higuera, C.: A bibliographical study of grammatical inference. Pattern Recog-
nit. 38(9), 1332-1348 (2005)

Kupferman, O., Mosheiff, J.: Prime languages. Inf. Comput. 240, 90-107 (2015)
Lang, K.J., Pearlmutter, B.A., Price, R.A.: Results of the abbadingo one DFA
learning competition and a new evidence-driven state merging algorithm. In: ICGI
1998. Lecture Notes in Computer Science, vol. 1433, pp. 1-12. Springer (1998)
Lauffer, N., Yalcinkaya, B., Vazquez-Chanlatte, M., Shah, A., Seshia, S.A.: Learn-
ing deterministic finite automata decompositions from examples and demonstra-
tions. In: FMCAD 2022. pp. 1-6. IEEE (2022)

Neider, D.: Computing minimal separating DFAs and regular invariants using SAT
and SMT solvers. In: ATVA 2012. Lecture Notes in Computer Science, vol. 7561,
pp. 354-369. Springer (2012)

Neider, D.: Applications of automata learning in verification and synthesis. Ph.D.
thesis, RWTH Aachen University (2014)

Ulyantsev, V., Zakirzyanov, 1., Shalyto, A.: BFS-based symmetry breaking predi-
cates for DFA identification. In: LATA 2015. Lecture Notes in Computer Science,
vol. 8977, pp. 611-622. Springer (2015)

Ulyantsev, V., Zakirzyanov, I., Shalyto, A.: Symmetry breaking predicates for SAT-
based DFA identification. CoRR abs/1602.05028 (2016)

Vaandrager, F.W.: Model learning. Commun. ACM 60(2), 86-95 (2017)
Zakirzyanov, 1., Morgado, A., Ignatiev, A., Ulyantsev, V., Marques-Silva, J.: Effi-
cient symmetry breaking for SAT-based minimum DFA inference. In: LATA 2019.
Lecture Notes in Computer Science, vol. 11417, pp. 159-173. Springer (2019)
Zakirzyanov, 1., Shalyto, A., Ulyantsev, V.: Finding all minimum-size DFA con-
sistent with given examples: SAT-based approach. In: SEFM 2017 Workshops.
Lecture Notes in Computer Science, vol. 10729, pp. 117-131. Springer (2017)



Efficient Decomposition Identification of DFAs from Examples 19

A Proofs of Theorems and Lemmas

Theorem 1. Given a set of examples S = (ST,S7), the 3DFA construction
produces a 3DFA consistent with S.

Proof. The proof is by induction on the 3DFA construction steps that the con-
struction preserves the following invariant: the language of each node mapped
by the Register to the same representative state is the same, that is, for all
nodes v,v’, if Register(v) = Register(v’), then L(v) = L(v').

For the base case, at the end of the initialization phase, Register contains
two types of representative states: one single “accepting” representative state
for all accepting nodes without outgoing transitions and one different “reject-
ing” representative state for each rejecting node. Obviously, the invariant is
satisfied after the initialization phase, since all accepting nodes mapped to the
only “accepting” representative state have {} as language, given that they have
no outgoing transitions; each rejecting node is mapped to a different “rejecting”
representative state, so Register(v) = Register(v’) holds only when v = v for
each rejecting node v.

For the induction case, assume that the invariant holds for the current
Register; we need to prove that it holds also after Register has been updated
to Register’ by one iteration of the reduction process. By the reduction step,
Register’ is Register extended with new mappings, namely, for each equiva-
lence class C' identified by the reduction step, all nodes in C are mapped to the
same newly created representative state. To show that the invariant is preserved
it suffices to consider pairs of equivalent nodes (i.e., nodes belonging to the same
equivalence class), since nodes in different classes are mapped to different newly
created representative states. Thus, consider an equivalence class and two nodes
v and v’ in it. By definition of the reduction step, we have that

— e € L(v) < e € L(V), since either both v and v" are accepting (thus

e € L(v)and e € L(v)), or both are don’t-care (thuse ¢ L(v) and e ¢ L(v'));

— for every letter a € X, we have two cases: either both v and v have no a-

successor, or both have an a-successor (denoted v, and v/, respectively). In

the former case, for each word u € X*, we have a-u ¢ L(v) and a-u ¢ L(v').

In the latter case, the reduction step enforces Register(v,) = Register(v),)

and the inductive hypothesis ensures L£(v,) = £(v}). This implies that for

each u € L(v,) = L(v},), we have a - u € L(v) and a - u € L(v') and for each
uw€ X%\ L(vg) = X*\ L(v),), we have a-u ¢ L(v) and a - u ¢ L(v').

Since the above cases cover all possible words in X*, it follows that £(v) = L£(v")

as required. a

Lemma 1. Let A= (T, A, R) be the outcome of the SDFA construction, where
T = (Q,t,9). For two different prefizes u,u’ € prefixes(S), we have §(t,u) #
0(v,u') if either u € prefixes(S™) or v’ € prefixes(S™).

Proof. Let u,u’ € prefixes(S) be two different prefixes and assume that u €
prefixes(S™); the case u’ € prefixes(S™) is analogous. We prove the statement of
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the lemma by contradiction: assume that §(¢,u) = 0(¢, u’). Since u € prefixes(S™)
by assumption, this implies that there exists a rejecting word uy € S~ with y €
X% that is, r = (¢, uy) is a rejecting state. It then follows that r is also reached
by u'v, §(¢,u'y) = §(6(¢,u'),y) = 6(6(¢,u),y) = r, since A is deterministic
and (¢, u) = 6(¢,w’). This then entails that u'y is also a rejecting word in S—;
however, since uy,u’'y € S~ and both reach r, we get a contradiction with
Theorem 1, which guarantees that two different rejecting words are associated
with different states by our construction. a

Theorem 2. Let A be the 3DFA consistent with the examples S and n € N.
gpf}yﬁ ) is satisfiable if, and only if, there exists a (my, ..., my)-DFA decom-
position (A, ..., Ay) consistent with S.

Proof. We assume that the SAT encoding via APTA in [13] is correct. Com-
pared to it, there are two main differences in our improved encoding: (1) replac-
ing APTA with 3DFA, and (2) replacing Constraint O1 with Constraint O1’.
For the first improvement, Theorem 1 guarantees that the constructed 3DFA is
consistent with the examples S as the original APTA does. For the second one,
Constraint O1’ allows a merged representative state to be associated with sev-
eral states of each individual DFA in the DFA decomposition and ensures every
rejecting state reached by a negative example in the 3DFA can be associated
with at most one state i of each individual DFA in the DFA decomposition.
The correctness of Constraint O1’ is guaranteed by Lemma 1. Therefore, the
correctness of Theorem 2 is proved. a

Theorem 3 (Termination and Correctness). Let S = (ST,57) be a given
set of labeled examples. Algorithm 1 terminates and returns a correct DFA de-
composition D = (As,...,Ay,) for the states-optimal DIP.

Proof. We first consider the termination of Algorithm 1. It is not hard to find
that a correct decomposition D = Ay, ..., A, can always be found when N =
2+ ,es- (Jul +2) where a 2-states DFA accepting all words and every other
DFA rejecting a different negative example u € S™. Therefore, the loop iterations
in Algorithm 1 are bounded by 1+ .o (Ju| +2), as N starts with 2 and it
is increased by 1 every round. Then we have the termination of Algorithm 1.
As Algorithm 2 enumerates all possible states allocations in the states-optimal
order, the correctness of Algorithm 1 is straightforward from Theorem 2 and the
correctness of the SAT solver. a

B SAT Encoding of DFA-DIP and Algorithm for Solving
Pareto-optimal DIP in [13]

Below, we list the complete SAT encoding via APTA utilized in [13]. The en-
coding extends the SAT encoding for monolithic DFA identification. We refer to
the constraints as follows:
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1. A positive example must be accepted by all DFAs:
veEV T k€[n] i€[my]
2. A negative example must be rejected by at least one DFA:
AN AN N b = -
veEV ~ k€[n] i€[my]
3. Each state of APTA has at least one color for each DFA:#
ANV e
veV ke€[n] i€[my]
4. A transition of a DFA is set when a state and its parent are both colored:
AN N @wanaty) =
(Tp(wi N o Vi) g
veV\{v,} k€ln] i,j€[my]
5. A transition of a DFA targets at most one state:

/\ /\ /\ Yiij = Wi

leX ken] i,j,t€[my]
j<t

6. Each state of APTA has at most one color for each DFA:
AN AN AR A e
veV k€[n] i,j€[my)
7. A transition of a DFA targets at least one state:
/\ /\ /\ Yii-
leX ken] i,j€[my]

8. For each DFA, a node color is set when the color of the parent node and the
transition between them are set:

AN AN N @M i) = o

veV\{v,} k€[n] i,j€[my]

9. Accepting-rejecting nodes of APTA cannot be merged:

A A AN (anadd) = =l

v- €V vteVT ke[n]i€[my]

4 In the CoRR version of [13], the formula is written with the conjunction Nicpmy)

instead of the disjunction Vie[mk]' However, to make the constraint satisfiable, this
would cause all variables a:ﬁl to be set to true, which is not what the constraint
should require. The tool implementation indeed uses \/ so here we provide the
corrected version of the constraint.

i€[my]?
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The next set of constraints encode the symmetry breaking clauses introduced
in [16,17] to avoid consideration of isomorphic DFAs. The main idea is to enforce
individual DFA states to be enumerated in a depth-first search (DFS) order. Let
Y={l,...,lp}.

1. Each state must have a smaller parent in the DFS order:

/\ /\ (PE V- Vi)

ke[n] i€[2,my]

2. Define p in terms of auxiliary variable t

/\ /\ (p;i A tk /\tz-i-lj /\t] 1])
keln] i,j€lmy]
1<J

3. Define tﬁj in terms of y; ; ;:

AN N @ = uha Vv

keln]i,j€[m]
1<j

4. The parent relationship follows the DFS order:

/\ /\ (p?)l — _'tlliq)

k€[n] i,5,p,q€ [mi]
1<p<g<q

koo k.
5. Define mj’; ; in terms of y;’; .:

/\ /\ /\ (mf iy == Ybag N AYLg) -

ke€[n]i,j€[mp] lreX
i<j

6. Enforce DFAs to be DFS-enumerated in the order of symbols on transitions:

k k k k
/\ /\ /\ (PFs ADga AL 55 = —mp k) -

k€[n]i,j,q€lmp] brls €
i<j<q r<s

Based on the above encoding, Lauffer et al. provided Algorithm 3 in [13].
Compared to it, our method for solving Pareto-optimal DIP replaces the SAT
encoding via APTA by our improved encoding via 3DFA in Line 5 of Algorithm 3.
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Algorithm 3: Pareto-optimal DIP Solving [13]

Input: The labeled examples S = {ST, S~ }; the number of DFAs n.
Output: Pareto frontier P*.

1 (P5Q) <« {(2,...,2)}; D> Initial Pareto frontier and queue
2 while Q # () do

3 m + Q.dequeue();

4 if #1n € P* such that m < m then

5 SAT, A <+ SOLVE(n,m, Sy, S_);

6 if SAT then

7 ‘ P* + P*U A, > Update Pareto frontier
8 end

9 else

10 for k< 1 ton do

11 (m/,m},) < (m,mj, +1);

12 if ordered(m’) then

13 | Q.enqueue(m/);

14 end

15 end

16 end
17 end
18 end

19 return P*;

C DMore Detailed Experimental Results

In this appendix, we provide more detailed plots and analyses for the experiments
we presented in Section 6.

C.1 Distribution of the benchmark files

Table 3 shows how benchmarks are distributed among the different choices of
number of examples, maximum length of each example, and alphabet size. Each
entry in the table says where there are 10 benchmarks of the corresponding com-
bination: for example, entry “-/4/6/8” at “#Examples” 10 and “Max length” 3
means that there are 10 benchmarks are available for all alphabet sizes except
for |X| = 2. This is because with 2 letters and words of length at most 3, we
can have at most 14+ 2 + 4 + 8 = 15 words, and these are not enough to have
10 positive examples and 10 negative examples in the benchmarks; with larger
alphabets, instead, we have enough words to choose randomly 10 accepted and
10 rejected words to populate the example sets. This is why we have a different
total number of benchmarks for the different alphabet sizes. Note that we also
consider alphabet size 10 but we don not report it in the table since all entries
would have it; alphabet of size 10 also enables to have 10 benchmarks of maxi-
mum length 2 and 5 examples in each of the positive and negative example sets.



24 J. Meng et al.

Table 3: Distribution of the benchmarks with respect to the number of examples,
the maximum length of each example, and the alphabet size; entries in the table
show for which alphabet size there are 10 benchmarks

4T | Max length

xampies| g 4 5 6 7 8 9 10
5 2/4/6/8 2/4/6/8 2/4/6/8 2/4/6/8 2/4/6/8 2/4/6/8 2/4]6/8 2/4/6/8
10 J4/6/8 2/4/6/8 2/4/6/8 2/4/6/8 2/4/6/8 2/4/6/8 2/4/6/8 2/4/6/8
15 -J4/6/8 -/4/6/8 2/4/6/8 2/4/6/8 2/4/6/8 2/4/6/8 2/4/6/8 2/4/6/8

20 -/4/6/8 -/4/6/8 -/4/6/8 2/4/6/8 2/4/6/8 2/4/6/8 2/4/6/8 2/4/6/8
25 -/-/6/8 -/4/6/8 -/4/6/8 2/4/6/8 2/4/6/8 2/4/6/8 2/4/6/8 2/4/6/8
30 -/-/6/8 -/4/6/8 -/4/6/8 -/4/6/8 2/4/6/8 2/4/6/8 2/4/6/8 2/4/6/8
35 -/-/6/8 -/4/6/8 -/4/6/8 -/4/6/8 -/4/6/8 2/4/6/8 2/4/6/8 2/4/6/8
40 -/-/6/8 -/4/6/8 -/4/6/8 -/4/6/8 -/4/6/8 2/4/6/8 2/4/6/8 2/4/6/8
45 -/-/6/8 -/4/6/8 -/4/6/8 -/4/6/8 -/4/6/8 -/4/6/8 2/4/6/8 2/4/6/8
50 -/-/6/8 -/4/6/8 -/4/6/8 -/4/6/8 -/4/6/8 -/4/6/8 2/4/6/8 2/4/6/8
60 -/-/-/8 -/4/6/8 -/4/6/8 -/4/6/8 -/4/6/8 -/4/6/8 -/4/6/8 2/4/6/8

70 -/-/-/8 -/4/6/8 -/4/6/8 -/4/6/8 -/4/6/8 -/4/6/8 -/4/6/8 -/4/6/8
80 -/-/-/8 -/4/6/8 -/4/6/8 -/4/6/8 -/4/6/8 -/4/6/8 -/4/6/8 -/4/6/8
90 -/-/-/8 -/4/6/8 -/4/6/8 -/4/6/8 -/4/6/8 -/4/6/8 -/4/6/8 -/4/6/8
100 -/-/-/- -/4/6/8 -/4/6/8 -/4/6/8 -/4/6/8 -/4/6/8 -/4/6/8 -/4/6/8

Since no other combination of alphabet size and number of examples allows us
to get benchmarks with maximum length 2, we omit the corresponding column
from the table.

C.2 Runtime comparison between ParetoAPTA and Pareto3DFA

Fig. 5 shows the experiments on running PARETOAPTA and PARETO3DFA on
the 460 benchmarks with | X| = 2 and 1050 benchmarks with | Y| = 4 when using
a decomposition with two DFAs. As we can see from the plots, for | X| = 2, PARE-
TOAPTA solved all cases by taking between 0.3 and 0.6 seconds; PARETO3DFA
instead took between 2.1 and 2.5 seconds. These larger running times can be ex-
plained by the additional computation needed in the reduction of the 3DFA
obtained by merging nodes that are equivalent (cf. Section 4.2); the time spent
in this reduction is not compensated by the time saved by the SAT solver to
decide the satisfiability of the smaller encoding formulas. The situation however
changes when we consider the benchmarks with | Y| = 4: here, the more demand-
ing a benchmark is, the more effective the 3DFA encoding becomes, as shown
by the cloud of points above the diagonal.

Fig. 6 is similar to Fig. 5, but in this case we set the number of DFAs in the
decomposition to be three. Here, the running time of PARETO3DFA for | Y] = 2
is essentially the same (between 2.1 and 2.7 seconds); PARETOAPTA instead
starts requiring more time (between 0.3 and 1.7 seconds). The increased demand
by PARETOAPTA is more evident from the plot relative to |X| = 4, where the
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Fig.5: Running time comparison between PARETOAPTA and PARETO3DFA
using two DFAs

cloud of points is narrower and several points occur on the timeout/memoryout
lines.

The sensibility of PARETOAPTA to the number of DFAs in the decomposi-
tion is more and more clear when we increase them to four, five, and six, as shown
by the plots in Fig. 7, 8, and 9, respectively. In these plots, more and more points
approach the timeout/memoryout lines for PARETOAPTA, also when |X| = 2;
PARETO3DFA instead is less affected by the number of DFAs.

C.3 Behavior of Pareto3DFA when varying the number of DFAs

In Fig. 10 and 11 we show the cactus plots for the solved cases vs. time by
PARETO3DFA on benchmarks with |X| = 2 and |X| = 4, respectively, where
we ran PARETO3DFA with the number of DFAS in the decomposition ranging
between two and ten. A point (x,y) in the plot means that there have been y
instances that have taken at most x seconds each to be analyzed successfully.
We also add a marker corresponding to the instance taking the longest time for
a given number of DFAs in the decomposition.

As one would expect, increasing the number of DFAs causes PARETO3DFA
to run for longer time before solving the problem. This is due to two main
factors: with more DFAs, there might be more decompositions that need to be
checked before finding the minimal one under the Pareto-optimal partial order;
with more DFAs, the formula obtained from encoding the 3DFA is larger and
with more variables, thus the SAT solver is likely to require more time before
deciding its satisfiability. This is evident in the plot in Fig. 10 about the 460
benchmarks with |X| = 2: the point corresponding to the instance that took the
highest amount of time to be solved moves steadily to the right of the plot when
we increase the number of DFAs from two to ten. This is slightly different for
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Alphabet size: 2 Alphabet size: 4
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Fig.6: Running time comparison between PARETOAPTA and PARETO3DFA
using three DFAs

the plot in Fig. 11 about the 460 benchmarks with |X| = 4: for instance, the
highlighted point for six DFAs is on the left of the points for three, four, and five
DFAs. This is caused by the fact that on six DFAs, PARETO3DFA went timeout
in one case, the one taking the longest for three, four, and five DFAs.

C.4 Behavior of StatesOptimalDIP on varying the size of the
alphabet

We now focus our attention on the behavior of STATESOPTIMALDIP when we
change the size of the alphabet. In Fig. 12 we show the cactus plots for the
solved cases vs. the running time while in Fig. 13 we consider the states; these
two plots present in a different format the same outcomes shown by the box
plots in Fig. 4.

As already reported in Section 6.2, STATESOPTIMALDIP solved successfully
all 460 benchmarks for |X| = 2 and 1090 benchmarks for |X| = 4; there have
been experiments that did not complete for the other alphabet sizes: out of
1150 benchmarks with |X| = 6, there have been 231 timeouts while out of
1190 benchmarks with |X| = 8, there have been 501 timeouts; lastly, for the
1210 benchmarks with |X| = 10, there have been 427 timeouts. No failure by
memoryout occurred in any of the benchmarks.

As we can see from the plots, the larger the alphabet is, the longer STATE-
SOPTIMALDIP takes to give a successful decomposition. This is related to the
fact that with more letters in the alphabet, it is more difficult to find equivalent
states in the 3DFA-based encoding, so the acceptor has more states in it. More-
over, with a larger alphabet, we need more variables to encode the transitions,
so the encoding formula is larger and the SAT solver is likely to require more
time to decide its satisfiability.
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Fig. 7: Running time comparison between PARETOAPTA and PARETO3DFA
using four DFAs

Alphabet size: 2

w 103 E_\-\_H!HL-U.\;Hl‘_\_\_HEHL_\_H_H;%%
Q F 1
& H ® ::
s 10%F % ) £
5 :
— [ o 1]
< i § 4
S i
< g 1
e 100F -
= | e i
df 071 CONRNR T SR RTTI SR RRRERI RNRTEN 1.
10t 10° 10* 10* 10

PARETO3DFA runtime (s)

PARETOAPTA runtime (s)

108

102

10!

100

10!

Alphabet size: 4

[N
=
IE
=
'n
1
-2l
Ll

Ty v

LA B AL N AR ] L

<
K
A ]
. .
1

CONRNRTIT I IRITTTI SR WETTH] MR 1.

10-1 10 10! 10%2 108

PARETO3DFA runtime (s)

Fig.8: Running time comparison between PARETOAPTA and PARETO3DFA
using five DFAs



28 J. Meng et al.

Alphabet size: 2 Alphabet size: 4
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Fig.9: Running time comparison between PARETOAPTA and PARETO3DFA
using six DFAs
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Fig.10: Cactus plot for the solved cases vs. time by PARETO3DFA on bench-
marks with | Y] = 2
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Fig. 11: Cactus plot for the solved cases vs. time by PARETO3DFA on bench-
marks with | Y| =4
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Fig. 12: Cactus plot for the solved cases vs. time by STATESOPTIMALDIP

All these things also reflect on the number of states, since we likely need
more states in the DFAs in the decomposition to capture the different languages
of the states in the 3DFA-based acceptor.

In Table 4 we report the number of benchmarks solved by STATESOPTIMALDIP
with the computed number of states, split by alphabet size. From the table we
can see that the larger the alphabet is, the more states are needed. This is
also caused by the fact that with more letters available, it is possible to have
more examples in the positive and negative example sets forming the benchmark
S = (8T,87) (cf. Table 3). Table 5 is similar to Table 4 except for the fact that
we report the number of states against the maximum length of the examples; in
Table 6 we instead consider the number of positive and negative examples.
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Table 4: Distribution of the minimal states computed by STATESOPTIMALDIP
vs. alphabet size

Number of states N .
|X| | #Benchmarks 4 5 6 2 8 9 10 Failures
2 460 | 5 455 0 0 0 0 O 0
4 1090| 66 81 943 0 0 0 O 0
6 1150 | 107 129 162 255 266 0 O 231
8 1190 | 160 159 195 113 35 25 2 501
10 1210|210 196 250 85 18 21 3 427
Total 5100 | 548 1020 1550 453 319 45 5| 1159

Table 5: Distribution of the minimal states computed by STATESOPTIMALDIP
vs. maximum length of the examples

Number of states NV .

Max length | #Benchmarks 4 5 6 7 8 9 10 Failures
2 10| 10 0 0 0 0 0 O 0

3 440 | 63 78 101 84 60 46 5 3

4 620 | 70 83 215 84 72 0 0 96

5 630 65 108 199 46 45 0 O 167

6 650 | 66 125 203 30 1 0 O 225

7 660 | 69 133 203 43 1 0 O 211

8 680 68 151 205 31 42 0 O 183

9 700 72 162 214 61 58 O O 133
10 710 65 180 210 75 40 O O 141
Total 5100 ‘ 548 1020 1550 453 319 45 5 1159
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Table 6: Distribution of the minimal states computed by STATESOPTIMALDIP
vs. number of examples

Number of states N

|ST| =|S"| | #Benchmarks 4 5 p - g g qp|Failures
5 410 | 318 92 0 0 0O 0 O 0
10 390 | 181 188 21 0 0 0 O 0
15 380 | 47 248 85 0 0 0 0 0
20 370 2 209 159 0 0 0 O 0
25 360 0 120 225 15 0 0 O 0
30 350 0 53 229 67 0 0 O 1
35 340 0 30 183 97 1 0 O 29
40 340 0 30 142 90 16 0 O 62
45 330 0 20 8% 8 26 0 O 113
50 330 0 20 71 71 45 0 O 123
60 310 0 10 70 19 50 1 O 160
70 300 0 0 70 7T 52 6 0 165
80 300 0 0 70 0 39 17 1 173
90 300 0 0 70 1 43 18 1 167
100 290 0 0 70 0 47 4 3 166
Total 5100 | 548 1020 1550 453 319 45 5 1159
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