HHLPar: Automated Theorem Prover for Parallel
Hybrid Communicating Sequential Processes

Xiangyu Jin'2, Bohua Zhan3, Shuling Wang*:2, and Naijun Zhan®

1 Key Laboratory of System Software and State Key Lab. of Computer Science, ISCAS
2 University of Chinese Academy of Sciences
3 Huawei Technologies Co., Ltd.
4 National Key Laboratory of Space Integrated Information System, ISCAS
5 School of Computer Science, Peking University

Abstract. We introduce HHLPar, a tool for verifying hybrid systems modeled in
Hybrid Communicating Sequential Processes (HCSP). HHLPar is based on a Hy-
brid Hoare Logic for HCSP, which enables reasoning about both the continuous-
time properties of differential equations and the communication and parallel com-
position of HCSP processes. This is achieved through the use of specialized
trace assertions and their synchronization. The logic has been formalized and
proven sound in Isabelle/HOL, providing a reliable foundation for the verifica-
tion. HHLPar implements the logic in Python and supports automated verifica-
tion: On one hand, it provides functions for symbolically decomposing HCSP
processes, generating assertions for individual sequential processes, and then
composing them via synchronization to obtain the final specification for the entire
parallel HCSP process; On the other hand, it is integrated with external solvers for
handling differential equations and real arithmetic properties. The resulting asser-
tions are sufficiently expressive to deduce both the state properties at termination
and the continuous-time invariants maintained throughout the execution of pro-
cesses, which are critical for ensuring system safety. Finally, we present the main
issues related to the implementation of HHLPar and demonstrate its applicability
through a case study involving a simplified cruise control system.

Keywords: Hybrid System, Hybrid Hoare Logic, Interactive and Automated The-
orem Proving.

1 Introduction

Hybrid systems involve complex interactions between continuous-time evolving phys-
ical processes and discrete control systems. In networked applications such as cyber-
physical systems, communication and parallel composition play a critical role in en-
abling interactions among distributed components, to facilitate the coordination of con-
current behaviors and the exchange of data across subsystems. However, ensuring the
safety of such systems is highly challenging due to their inherent complexity, which
stems from the interplay of continuous dynamics, discrete transitions, and the need for
synchronization between parallel components. Formal verification has been widely rec-
ognized in both academic community and industry as an important approach to ensure
correctness of hybrid systems. Especially, a verification tool that is sound and capable

2 Xiangyu Jin, Bohua Zhan, Shuling Wang, and Naijun Zhan

of producing trustworthy results and meanwhile supporting automation in verification
process is essential for the practical design of safety-critical systems.

There are two mainstream verification techniques of hybrid systems: model check-
ing and deductive verification. Model checking verifies a system model, typically rep-
resented as hybrid automata [1], by exhaustively computing and checking all reachable
system states. However, this approach faces intrinsic challenges due to the infinite state
domains and the increasing complexity of hybrid systems. On the other hand, deduc-
tive verification conducts proof via logical reasoning by induction on system models
and reasons about continuous evolution represented as ordinary differential equations
(ODEs) with the help of differential invariants [16, 10, 11]. A prerequisite for deductive
verification of hybrid systems is to have a compositional modelling language for hybrid
systems and meanwhile a specification logic for reasoning about the formal models
such that the verification of a complex system can be reduced to the verification of de-
composed components of the system. Differential dynamic logic (d£) [12, 13,2, 15] is
a first-order dynamic logic proposed for specifying and verifying hybrid systems mod-
elled as hybrid programs. Its soundness has been proved in Isabelle/HOL and Coq in
[3]. Its prover KeYmaera [17] supports automatic proof search of rules of d£ and inte-
grates with computer algebra tools for solving differential equations and real arithmetic
formulas. Its successor KeYmaera X [7] enhances automation and provides stronger
soundness guarantees through a small, trusted prover kernel. However, d£ lacks direct
support for communication and parallel composition, which are ubiquitous in prac-
tical cyber-physical systems. The verification of hybrid systems with communication
and parallel composition poses additional challenges due to the need to account for
concurrent interactions, synchronization and the resulting complex, non-deterministic
behaviors arising from distributed components.

Hybrid CSP (HCSP) [8, 27] extends Hoare’s CSP [9] by including ODEs to model
continuous dynamics. It leverages the communication and parallel composition fea-
tures of CSP to enable the flexible interactions between continuous physical processes
and discrete control systems. The specification logic and verification of HCSP have
been studied by extending the classical Hoare logic to handle both continuous evo-
lution and communication based parallel composition. One line of the work [10,21]
utilizes Duration Calculus (DC), which is an interval-based temporal logic with bi-
nary modality chop and was extended to specify continuous-time properties, but the
DC-based reasoning system is quite complicated and in consequence the tool support
for verifying HCSP under this approach is limited to interactive theorem proving in Is-
abelle/HOL [22], which imposes a significant proof burden on users. To overcome these
limitations, an alternative Hybrid Hoare Logic (HHL) was developed by introducing
trace-based assertions into first-order logic [26]. This logic proposes traces composed
of both communication and continuous-time events, and handles parallel composition
of processes through trace synchronization. Building on this logic, the HHL prover was
implemented, as illustrated in Fig. 1, providing a more automated and user-friendly
verification tool for HCSP.

As shown by Fig. 1, the HHL prover comprises four parts: an Invariant Generator
for synthesizing differential invariants of ODEs and supplying them to other modules;
HHLPy [20], an automatic verifier for verifying sequential HCSP, particularly ODEs,

HHLPar 3

b y - - ----" Interactive Prover Isabelle/HHL
.
Proof Goal

{Pre} HCSP Program {Post} Automatic Prover
- e

Sequential HCSP

| Unresolved

Automatic Prover | Parallel HCSP

HHLPar

Sequential

HCSP Parallel HCSP Property Wolfram

Synchronization Verification Engine

Generation

Fig. 1. Architecture of HHLProver.

based on differential invariants; HHLPar, an automatic verifier for HCSP with commu-
nication and concurrency; and Isabelle/HHL, an interactive theorem prover for HHL.
Both HHLPy and HHL Par are designed to automate verification, while unproven con-
ditions are passed to the interactive mode of HHL prover, i.e. Isabelle/HHL.

In this paper, we present HHLPar, the automated theorem prover for HCSP in con-
current setting, including its assertions, inference rules and implementation. HHLPar
builds upon the HHL in [26] but differs in several key aspects. The HHL in [26] defines
a generalized trace-based logic and a weakest precondition-style proof system, which
is proved to be relative complete and very expressive, but faces difficulty in automating
the verification of parallel composition. Instead, HHLPar proposes an explicit assertion
language for specifying traces, and provides a set of inference rules for constructing
assertions of sequential processes and a set of synchronization rules for constructing
assertions of parallel processes constituting their specification. This constructive style
logic enables the automation of HCSP reasoning. HHLPar achieves soundness, as its
underlying logic has been formally proven sound in Isabelle/HOL. Meanwhile, it sup-
ports automated theorem proving by symbolically decomposing and reasoning about
HCSP based on the logic’s inference rules. It also inherits HHLPy’s integration with
the Wolfram Engine for solving ODEs and reasoning about logical formulas.

The assertions in specification generated by HHLPar are sufficiently expressive to
describe the behavior of processes. Also, it is strong enough to enable the derivation of
logical formula properties over process variables. In this paper we have developed a set
of inference rules specifically for deriving two different forms of properties from the
generated assertions automatically. The first class is properties of final states at termi-
nation which is also a concern of classical Hoare logic and HHLPy [20]. The second
class is continuous-time invariants held throughout the execution which ensure that the
system meets the requirements over all continuous time intervals. These properties are
crucial for assessing system safety. To demonstrate the usability of HHLPar, we applied
it to verify a simplified cruise control system, successfully automating the verification
of its safety requirement.

4 Xiangyu Jin, Bohua Zhan, Shuling Wang, and Naijun Zhan

After reviewing the related work, the remainder of the paper is structured as fol-
lows. Sect. 2 provides a brief overview of HCSP. Sect. 3 introduce the assertions we
proposed and its corresponding specification modified from HHL. Sect. 4 and Sect. 5
introduce inference rules of how to construct assertions in specification for both se-
quential and parallel HCSP, respectively. Sect. 6 gives the rules for proving properties
of specific forms from assertions. Sect. 7 discusses the key implementation aspects in
both Isabelle/HOL and HHLPar, and demonstrates the application of HHLPar through
a case study. The accompanying code, including the formalization and soundness proof
of the logic in Isabelle/HOL, the Python implementation and the case study, is available
at https://github.com/AgHHL/gHHIL.2024.git.

1.1 Related Work

Model checking tools of hybrid systems endeavor to compute reachable states of con-
tinuous dynamics efficiently in an algorithmic approach, by achieving high scalability
while maintaining high accuracy, e.g. the representative PHAVer [5] for linear hybrid
automata, HSolver [19] and SpaceEx [6] for both linear and non-linear dynamics. De-
duction verification tools are developed upon program logics and conduct proofs via
theorem proving. KeYmaera [17] and its successor KeYmaera X [7] are automated
and interactive theorem provers built upon differential dynamic logic (d£) [12, 13, 15],
which proposes a complete set of rules[14, 18] for reasoning about continuous dynamics
such as differential invariants, differential weakening, differential cut, and differential
ghosts. Both the tools combine deductive reasoning of dL, real algebraic and com-
puter algebraic provers for automated verification. Foster et al. [4] proposed a semantic
verification framework for hybrid systems using the Isabelle/HOL proof assistant and
then extended it to IsaVODEs [25]. The related work on specification and verifica-
tion of HCSP have been discussed in the introduction. In contrast, HHLPar extends
HHLPy [20] to support the parallel fragment of HCSP, encompassing communication,
parallel composition and continuous evolution. HHLPar inherits HHLPy’s integration
with external solvers for real arithmetic and ODEs, and further enables automated de-
ductive verification of communication and parallel composition through specialized as-
sertions and synchronization. Both HHLPy and HHLPar are integrated to HHL prover
in order to improve its automation, as indicated in Fig. 1.

2 An Overview of HCSP

As an extension of Communicating Sequential Processes (CSP [9]), Hybrid CSP (HCSP)
is a formal modeling language for hybrid systems. It introduces Ordinary Differential
Equations (ODEs) to model continuous evolution and interrupts. In HCSP, communica-
tion is the sole mechanism for data exchange between processes, and shared variables
among parallel processes are explicitly prohibited. This section is extracted from [26],
which plays the foundation of the logic in this paper. For self-containedness, we provide
a brief overview.

HHLPar 5

Syntax. Below, we present the syntax for HCSP. Here ¢ and ¢; denote sequential pro-
cesses, while pc and pc; denote parallel processes. & represents the first-order derivative
of z w.r.t. time, 7 (resp. @) denotes a vector of variables (expressions). ch refers to a
channel name, and ch;* denotes either an input event ch;?x or output event ch;le. L is
a non-empty set of indices, cs is a set of channel names. B and e represent Boolean and
arithmetic expressions, respectively.

¢ uz=skip|z:=e|ch?x|chle|ciUca|ci;ea | c” |if Bthenc else ¢z |
(¢ =€&B) |waite | (& = €&B x ¢) > [licL(chix — ¢;)
pe = c | petlespea

The input ch?x receives a value through channel ch and assigns it to variable x, while
the output chle sends the value of e through ch. Both statements may block, waiting

for the corresponding dual party to be ready. The continuous evolution <E> = ¢&B)
evolves continuously according to the given ODE E) = ¢ as long as the open domain
B holds, and terminates whenever B becomes false. The wait statement wait e keeps
variables unchanged except that a period of time determined by e progresses. Commu-
nication interruption (& = €&B o ¢) > [Jicr(chi* — ¢;) evolves according to the

ODE ? — ¢ until it is preempted by one of the communication events ch;*, followed
by the corresponding c;; or until it violated the domain condition B, followed by the
execution of ¢. The parallel composition pc; ||.spca executes pey and pes independently,
except that all communication events over the common channels in cs are synchronized
between pc; and pcy. No same channel direction (e.g. ch!) occurs in both pe; and pes.
The meaning of other statements such as assignment, internal choice, sequential com-
position, and so on, follow their standard definitions.

The following example models a moving vehicle operating in parallel with its dis-
crete controller. The vehicle’s motion is governed by an ODE, where s represents the
trajectory, v the velocity and a the acceleration. Every d time units, the continuous evo-
lution is interrupted by the controller. During each interruption, the controller senses
the trajectory and the velocity of the vehicle through input p2¢?x, computes the new
acceleration and sends it to the vehicle via ¢2p!contl(x). The vehicle then follows this
updated acceleration in the next time period.

(8 =v,0 =al>[(p2c(s,v) — 2p?a))*||(wait d; p2c?x; 2plcontl(z))*

Semantics Fig. 2 presents part of the big-step semantics of HCSP, defined as a set of
transition rules. Each transition takes the form (¢, s) = (s, #r), indicating that c carries
initial state s to final state s, producing a trace tr. Here states s, s’ € Vars — Values are
mappings from variables to values. A trace ¢r is an ordered sequence of events generated
during the execution of an HCSP process. It can be an empty trace ¢, a single event,
or the concatenation tr] tre of two traces try and tro, defined recursively. An event
describes an observable step in the behavior of a process. There are two types of events:
A communication event (ch>,v), where > is ? or |, indicating input and output, and v is
a value transmitted during the communication; a continuous event {d, ?, rdy), where d
is a positive value specifying the duration of this event, 7 a continuous function from
[0, d] to states, describing the evolution of states over time, and rdy is the set of channels
that are waiting for communication during this duration.

Rules (Out-1) and (Out-2) define two cases for communication: one where the com-
munication occurs immediately, and another where it occurs after a delay of d time

6 Xiangyu Jin, Bohua Zhan, Shuling Wang, and Naijun Zhan

Out-1 ~ Out-2
(chle,s) = (s, (ch!,s(e))) (ch'e s) = (s, (d, Is, {ch!})"(ch!, s(e)))
vt € [0,d). s[Z — T ()](B) -s[Z — T (d)](B)
(% = 2&B),s) > s[? = @), T,)
vt € [0,d).s[Z — P(t)(B) i€ L chix=chle (ci,s[@ — P(d) s,tr)Itl
n -

(<;> = C&B x c) > lier(chix — ¢;),s) =
Ad, 7, rdy (Uierchix))~ (ch!, s[@ — T (d)](e)) " tr
Vi € [0,d). ? — TOIB) —s[T = TD](B) (¢s[Z — F(d)]) = (s, tr) —_
((? = P&B o ¢) > icr(chix — ¢;),8) =
s’ {d, 7, rdy(Uier.chi%)) " tr)

(c1,81) = (s1,tr1) (ca,s2) = (sh,tr2) tri|lestre | tr Par

(c1|escz, s1 W s2) = (57 W so, tr)

Fig. 2. Part of big-step semantics of HCSP

units. During the waiting period, I represents an identity function that maps time to
the initial state. Rule (Cont) defines the behavior of the continuous evolution, which
terminates after time d due to the violation of domain B. This results in a continuous
event with duration d and function ?, where ? is a solution of the ODE & = ¢
satisfying the initial condition 7 (0) = s(7’). Rule (int-1) defines that the ODE is in-
terrupted after d > 0 time duration, by the occurrence of a communication over channel
ch, and then the subsequent process c; is executed; Rule (int-2) defines that the ODE
terminates due to the violation of B, without any communication among {ch;} being
able to occur, and then the subsequent process c is executed. Other similar cases, e.g.
interruption by an input event, are not listed here. Rule (Par) defines the semantics of
the parallel composition, which results in the disjoint union of the states (denoted by
s1 W s2) and the synchronization of the traces (denoted by tr1||.str2 | tr), of the two
respective processes.

Especially, the trace synchronization relation trq || st { #7 can be derived accord-
ing to the structures of traces ¢r; and try. Part of the derivation rules is given below.
An output event synchronizes with the corresponding input event (SynclO). When an
external communication event occurs on one side, it does not need to synchronize with
the other side (NoSynclO); When both sides are continuous events, then the continuous
events of the same length will synchronize if they have compatible ready sets (SWait),
denoted by compat, meaning that no input and output along a same channel occur si-
multaneously in the two ready sets (otherwise the corresponding communication must
occur immediately).

ch € cs tryl|estr tr ch & cs trillestr tr
1l 2 ¥ SynclO ¢ ! 2 ¥ NoSynclO
(ch!, v) " tri]|es{ch?,v) " tra | tr (ch>, v) " tr1||estra 4 {ch>,v) " tr

tri|lestre {4 tr compat(rdy,, rdy,) d>0
(d, P 1, rdy,) " tri|les(d, Pay rdy,) " tra I (d, Prw B, (rdy, U rdy,) — cs)ir

SWait

HHLPar 7

3 Assertions and Specifications

We will introduce an assertion language for explicitly specifying traces, which serves
as the foundation for the inference rules of constructing specifications of HCSP in the
following sections. The assertion language, with its explicit syntactic forms, enables
automated processing of inference rules for verifying HCSP processes. Building on
these assertions, we further propose a novel specification form tailored for HCSP.

3.1 Syntax and Semantics

The syntax of the assertion language is defined below: P, () represent assertions, cm is
a list of tuples recording the assertion information for channels, I is a path condition.
P,Q ::= true | false | PAQ | PVQ [t b | P[7 := €] | init
| wait_in(I, ch, {d,v = P}) | wait_outv(I, ch,e,{d = P}) | wait({,e,{d = P})
| interrupt(1, e, {d = P}, cm) | interrupte (I, cm) | Rec R. PVF(R)
em n=¢€| (ch?,{d,v=P})-em | (chl,h,{d = P})-cm
I u=id| 7 — f(Z,0) | inv] I[Z =7 | L W],
where b and inv are boolean expressions, e is a real expression, {d,v = P} repre-
sents a function mapping from real valued variables d and v to assertions({d = P}
is similar), for example, {d,v = init[z := z + d][y := v]}. Here, d and v are two
special bounded variables introduced to synchronize communication between parallel
processes. They denote the transmitted value and its time of occurrence respectively,
which will be resolved when the dual events in parallel processes synchronize. cm is
a list of tuples or triples recording the communication branches used in interrupt. Rec
defines a recursive assertion where P acts as the guard ensuring the recursion termi-
nates. Here F' is a generator function defined inductively according to the syntax of the
assertion language which can be atomic or non-atomic assertion containing a hole indi-
cating the position where a recursion happens. For example, F'(R) can be R[x := 0] or
wait(l, e, {d = Rz :=z + 1]}).

We first define the semantics of path conditions. A path condition I is a predicate
interpreted over a starting state, time and state, denoted by (s, t,s) = I. It describes
the relationship between the starting state sg and the state s at time ¢ during the evolu-
tion. As defined by the semantics, id states that s keeps the same as the initial state sq;
z - f (?, t) substitutes Z to the value defined by f attime ¢; inv means that state s at
t satisfies the invariant inv; the substitution / [7 = ?] updates the value of 7' at initial
state to be the one of ¢. Intuitively, we use id to describe the constant duration and use
f and inv to handle the ODE with explicit solutions or with differential invariants.

(s0,t,8) Eid 2 s =50
(s0,t,8) =2 — f(T,t) 2 s =s0[T — f(s0(T),1)]
(so,t,s) =inv % inv(s)

(s0,t,8) EI[@ := €] 2 (so][Z — s0(€)),t,8) =1
(So,t,s))I I W15 £ 3501 S02 S1 S2. S0 = So1 W Sg2 A § = §1 W SoA
(So1,t, 81) ': I A (Sog,t, 82) IZ I
Next, we introduce the semantics of the assertions. An assertion P is interpreted
over an initial state, current state and a trace, denoted by (s, s, tr) = P. The assertions
true, false, PAQ, PV(Q are defined as usual. 1 b lifts a boolean expression on starting
state as a boolean assertion, i.e. b holds at the starting state. P [7 = ?] means that P

8 Xiangyu Jin, Bohua Zhan, Shuling Wang, and Naijun Zhan

holds under the starting state updated by assigning 7 to €. init means that the state
equals starting state and the trace is empty.

(50, 8,tr) = 1T b = b(s0)
(s0,s,tr) E PAQ = (s0,5,tr) = P A (s0,5,tr) EQ
(s0,5,tr) = PVYQ = (s0,s,tr) = PV (s0,5,tr) = Q
(s0,8,tr) = P[2 = €] £ (so[@ — 50(€)],s,tr) = P
(s0,s,tr) Einit 2 so = sAtr=c¢
We then introduce the semantics of assertions specifying the behavior of input, out-
put, continuous evolution and interrupt respectively:
- (so, s,tr) = wait_in(I, ch, {d,v = P}) iff one of the following is satisfied:
1. (s0,8,tr") = Plazov=v A tr = {ch?,v)"tr’
2. (50, 8, t7") = Pla—ay—s Ad > 0A P (0) = 5o AVt € [0,d]. (s0,t, P(t)) =T
At = (d, P, {ch?})" (ch?,v) " tr'
- (so, s,tr) = wait_outv(I, ch, e, {d = P}) iff one of the following is satisfied:
1. (s0,8,tr") = Pla=o A tr = {(ch!, so(e)) " tr’
2.(s0,8,tr") |= Pla=a Ad > 0 A T (0) = so AVE € [0,d]. (so,t, T(t)) =1
At = (d, P, {ch!})"(ch!, so(e)) " tr’
- (so0,s,tr) = wait(I, e, {d = P}) iff one of the following is satisfied:
1. (so,s7tr) = Pla—o A so(e) <0
2. (so, s, tr) |: Pla=so(e) A so(e) > 0AT(0) =s0 AVE € [0,s0(e)]. (s0,t, P ()
Atr = (so(e), 7, {}) "t
(so,s,tr)): |nterrupt(1, e, {d = P}, cm) iff one of the following is satisfied:
1. (so0, s,tr) = Pla=o A so(e) <0
2. (80, 8,tr") = Pla=sg(e) A so(€) > 0 A ?(=so AVt € [0,s0(e)]. (so,t, ?
At = (so(e), T, rdy(cm)) " tr'
3. (0, 8,tr") & Pila=0y=v A cmli]
4. (s0,8,tr") E Pila=dv=v /\cm[z}

= (chi?,{d,v = P;}) Atr = (ch;?,v) " tr'
= (chi?,{d,v=Pi}) N0 < d < so(e)
AT (0) = s0 AVt € [0,d]. (so,t, P (1)) = I Atr=(d,p,rdy(em))” (ch;?,v) " tr'
5. (s0,8,tr") = Pila=o0 A cm[)] = (chil, h, {d = P;}) Atr = (chi!, h(0))"
6. (s0,s,tr") E Pila=a A cm[z] = (chil,h,{d = P;}) N0 < d < so(e)
AT (0) = so AVE € [0,d]. (so,t, P () = IAtr=(d, T, rdy(cm))”(chi!, h(d)) " tr’

- (s0,8,tr) = interruptos (I, cm) iff one of the following is satisfied:
1. (s0, 8,tr") E Pila=oy=0 A cm[i] = (ch;?,{d,v = P;}) A tr = (ch;?,v)"tr’
2. (50, 5,tr") = Pild=dv= vAcm[z} = (chi?,{d,v=P}) A0 <d
AT (0) = so AVE € [0,d]. (so,t, P () = IAtr=(d,p, rdy(cm)f(chﬂ,v)“tr'
3. (s0,8,tr") = Pila=o A cm[)] = (chil, h,{d = P;}) Atr = (chi!, h(0))"t
4. (so0,s,tr") | Pila= d/\cm[z] (hz',h{déP})/\0<d
AT (0) = so AVE € [0,d]. (so,t, P (t)) = IAtr=(d, T, rdy(cm))”(chi!, h(d)) " tr’

As defined by wait_in, the first case corresponds to communicating immediately, so
the delay d is 0, the input value v can be any real number v which can’t be determined by
itself. We use the notation P|q4—¢v=, to represent the assertion obtained by replacing
the appearance of d and v in P with value 0 and v. The second case corresponds to
communicating after waiting for time d > 0. The path taken by the state during waiting
is given by ?, which satisfies the path condition I. wait_out is defined similarly, but
unlike the input case, the output value is determined by e and the map {d = P} is only

HHLPar 9

over the delay d. For the wait assertion, e is a real expression specifying the wait time
and the map in this assertion only has one argument over delay d.

For the interrupt assertion, it specifies multiple cases including the ODE evolves
for zero or positive time units and then terminates by violating the domain, or being
interrupted by an input or output event. Here we list the two cases corresponding to
(Int-1) and (Int-2) as defined previously in the semantics of HCSP. In the definition of
interrupt assertion, e specifies the maximum waiting time of the interrupt, P specifies
the remaining behavior if the waiting stops upon reaching the time bound e, cm speci-
fies the list of communications that can happen at any time not exceeding sg(e). ¢cm is
given by a list of elements like (ch;?, {d,v = P;}) or (ch;!, g,{d = P;}), which spec-
ifies what happens after the corresponding interrupt is triggered, where g is a function
mapping from delay to the output value and rdy(cm) denotes the ready set of com-
munications in ¢cm. There is an important special case: often we know the maximum
waiting time may be infinite, for example when the domain of the ODE is true, the sys-
tem can only execute the next command when a communication occurs. We denote this
case by assertion interrupte (I, cm).

At the end, we give the definition of recursion assertion:

(s0, s,tr) = Rec R. PVF(R) iff (so, s, tr) |= P or (s, s,tr) = F(Rec R. PVF(R))

We can deduce that (sg, s,tr) = Rec R. PVF(R) iff 3n. (so, s, tr) = F™(P) where
F™ £ P(F"~'(P)) and n is a natural number.

3.2 Specification

In previous HHL [26], the specification of a HCSP process pc takes the form of Hoare
triple { Pre} pc { Post}, where Pre and Post are predicates on state and trace. We use
(s,tr) = Pre to denote that the state s and the trace ¢r satisfy the predicate Pre (Post
is similar). Note that, an assertion () is a predicate over three elements: initial state sq,
current state s and a trace tr, thus Q(sg) can be seen as a predicate on state and trace,
e.g. (s,tr) E Q(s0) = (so,s,tr) E Q. The validity of a Hoare triple is defined in
terms of big-step semantics as follows:
{Pre} pc{Post} &
Vs1 so trtr’. (s1,tr) |E Pre — (pc, s1) = (s2,tr') — (s2,tr"tr") = Post

In this paper, we utilize a new method of specification definition named spec_of based
on Hoare triples:

spec_of(pc, Q) = Vso.{s=s0 Atr=c}pc{(s,tr) = Q(s0)}
where the assertion () describes the relationship between the initial state s, the final
state s and the produced trace ¢r. This specification means that if this process starts
with a state sg, then when the process terminates, the end state and the trace produced
should meet the predicate Q(so).

Next, we give some useful characteristics and lemmas on predicates and assertions.
Given two predicates G and G5 , we define the entailment between G and G as:

G1=.G2 = Vstr.(s,tr) EG1 — (s,tr) E G2

Obviously, this entailment relationship satisfies the transitivity and reflexivity. There
are some common entailment rules, for example introduction and elimination rules for

10 Xiangyu Jin, Bohua Zhan, Shuling Wang, and Naijun Zhan

conjunction or disjunction. Some special notes of entailment related to monotonicity
and substitution of assertions are stated in the following.

The assertions wait_in, wait_outv, wait, etc. all satisfy monotonicity rules on the
initial state sq, that reduce entailment relations among assertions to entailments on its
components. For example, monotonicity of wait_in take the following form:

Vd v. Py |a=d,v=0(80) =>a P2|d=d,v=v(50)
wait_in(I, ch, {d,v = P1})(s0) = wait_in(1, ch, {d,v = P»})(s0)

This rule permits deducing entailment between two wait_in assertions that differ only
in the ensuing parameters. There are similar rules for wait_outv, wait, interrupt and
interrupt,. By these rules, we can assert that all the functions from assertions to asser-
tions constructed by the forms introduced satisfies monotonicity.

The commutativity with existential quantifier for assertions is like the following:

wait_in(I, ch, {d,v = Jz. P})(s0) =>4 Jz.wait_in(I, ch, {d,v = P})(s0)

Other forms of assertions in our logic have similar results. So far, both the monotonic-
ity and commutativity conditions are proved to hold for the assertions defined at the
beginning of this section. We proved in Isabelle that the Rec assertion is the least fixed
point under the assumption that I is monotonic with respect to logical implication and
commutative with existential quantifier.

Besides, performing substitution [z := e] on assertions such as wait_in can be
reduced to performing the same operations on its components. For example, the entail-
ment rule for wait_in is:

wait_in(1, ch, {d,v = P})[z := €](so) =>q wait_in(I[x := €], ch,{d,v = Pz := €e]})(s0)

4 Inference Rules for Sequential HCSP

In this section, we introduce the inference rules for generating assertions of sequential
HCSP processes. For each sequential HCSP construct, we define the rule for it where
it is followed by a subsequent process c. This is because different processes can have
varying effects on the traces of the sequentially composed c. Notably, the rules for the
constructs alone can be derived by substituting ¢ with skip and applying the skip rule.
For skip, assignment, input, output, wait and if commands, we have following rules:

spec_of(c, Q) spec_of (¢, Q)
spec_of (skip, init) spec_of(skip;c, Q) spec_of (z :=e;¢, Qz :=¢])

spec_of(c1;¢, P) spec_of(c2;¢, Q)
spec_of (if B then ¢; else co; ¢, (1 (B)AP)V(T (-B)AQ))
spec_of(c, Q)
spec_of (ch?x; ¢, wait_in(id, ch, {d,v = Q[z := v]}))
spec_of (¢, Q)
spec_of (chle; ¢, wait_outv(id, ch, e, {d = Q}))
spec_of (¢, Q)
spec_of (wait e; ¢, wait(id, e, {d = Q}))

For the nondeterministic repetition command, we have the following rule:
spec_of(c', P) V¥ cc Q. spec_of(cc, Q) — spec_of(c; cc, F(Q))
spec_of(c"; ¢/, Rec R. PVF(R))

HHLPar 11

In this rule, P represents the assertion of proceeding directly to subsequent processes
without executing the loop and F represents the change in assertion resulting from exe-
cuting once loop. This recursion assertion can be seen as the loop invariant of repetition.

We now state the rules for continuous evolution. If the (unique) solution to the ODE
is known, the predicate paramODEsoI(_a'ﬁ> = ?}, B, f,e) is introduced: & = ¢ is an
equation between variables and their derivative expressions; B is a predicate on the
state, specifying the open boundary condition; f (?, t) is the solution of & = € at
time ¢; e maps the starting state to the length of time for the unique solution of the ODE
reaching the boundary. We can then state the inference rule for the continuous evolution
as follows:

paramODEsoI(_:b> =7,B,f, e) Iipschitz(? = ?) spec_of (¢, Q)

specfof((?ic> = F&B);c,wait(Z — f(T,t),e,{d = Q[T := f(s0(Z),d)]}))

The meaning of this rule is as follows. Suppose ? = ¢ with boundary condition B

has solution f with time given by e (both functions of sg) and the lipschitz predicate
ensures that there is a unique solution to this ODE, then the specification of (& =
@ &B); ¢ first evolves along the path 7' (t) = s0[@ — f(so(Z),t)] for time so(e),
then followed by the behavior of ¢ as specified by () starting from the updated state
sol@ = f(s0(),d).

Next, we show how to use differential_i)nvariants to reason about continuous evolu-
tion. We define predicate paramODEInv(& = ?, inv, pp), meaning that if_&he starting
state of ODE satisfies the condition pp, then all the states along the ODE & = ¢ sat-
isfy the invariant ¢nv. Before applying this rule, we should have inv and corresponding
differential methods provided. The predicate is verified using the technology introduced
in [15,20].

paramODEInv(& = ¢, B,inv,pp) lipschitz(z =€) spec_of(c, Q)
spec_of (& = @&B);c, (T (~B)AQ)Y 1 (-pp A B)Y
3T ni. (T (pp A B)Await(inv, T, {d = (1 (inv A bound(B))AQ)[Z := n#]})))

This rule includes three cases via disjunction: (1) If the boundary is violated at the
beginning, then the ODE terminates at once and satisfies the specification of c. (2) The
second case is when the condition pp does not hold. Although we do not desire this
situation to arise, it must be included to ensure the correctness of the specification. We
expect —pp to conflict with other conditions in the subsequent verification and counter-
act this case, indicating that this case will not happen. (3) The last case states that it will
stop at some state satisfying both the invariant and the boundary of B. (During imple-
mentation, we will introduce new variables 7" and 72 to avoid Existential quantifier.)

The inference rules for interrupt command can be seen as the combination of rules
for ODE, input, and output. We put them in Appendix B for page limitation. Below
we give an example to illustrate how to generate the specifications of sequential HCSP
processes by applying these rules.

Example 1. This example illustrates handling of delay and communication events.

¢ £ cho?x; wait 1; chilz

12 Xiangyu Jin, Bohua Zhan, Shuling Wang, and Naijun Zhan

The specification of c is generated by the following steps:

1 : spec_of (chi !z, wait_outv(id, ch, z, {d1 = init}))
: spec_of (wait(1); chi !z, wait(id, 1, {d2 = wait_outv(id, ch1, z, {d1 = init})}))
3 : spec_of (cha?x; wait(1); chilz, wait_in(id, cha, {d3,v3 =
wait(id, 1, {d2 = wait_outv(id, ch1, z, {d1 = init})})[z := v3]}))
4 : spec_of (cha?x; wait(1); chi !z, wait_in(id, cha, {d3,v3 =
wait(id[z := v3], 1, {d2 = wait_outv(id[x := v3], ch1,v3, {d1 = init})})}))

[\
—_~—

At Step 4, we obtain the final specification of ¢, which can be understood as follows:
Starting from state sy, first waits for input along channel ch, after receiving input value
v3 at time d3, then waits for time 1 with state so[z := v3], then waits for output along
channel ch; with state so[z := v3], that occurs at time d1. The output value is v3, and
the final state after output is so[z := v3].

5 Inference Rules for Parallel HCSP

In this section, we introduce the inference rules for constructing assertions of parallel
processes by synchronization. In order to handle parallel processes, we define operator
sync(chs, Py, P») denoting the synchronization if given two assertions P, and P, for
two processes and the set of common channels chs through which communications
occur between them:
(so, s,tr) = sync(chs, Pi, P2) iff 3501 So2 $1 52 t71 tr2.80 = So1 W So2 A 8 = 51 W S2A
(8017 S1, t?"1) ': P A (8027 S2, t?”z) ': P> A t’m”chst’l“g U tr

By the above definition of sync, we can easily obtain the following conclusion:
spec_of(c1, P1) spec_of(c2, P2)

SpeC_Of(Cl Hchsc27 SynC(Ch57 P17 PZ))

However, we can’t intuitively derive valid information from the definition of this opera-

tor. Our objective is to find an assertion () within our assertion language that can replace
sync(chs, Py, P»), ensuring that @) is logically implied by sync(chs, Pi, P;) and thus
satisfies the above specification. We conclude this motivation to reach the following
inference rule for parallel composition:

spec_of(c1, P1) spec_of(cz2, P2) V so.sync(chs, P1, P2)(s0) =>a Q(50)

spec_of (c1|chsc2, Q)

We hope that () reserves the whole behaviour of parallel process to facilitate verifica-

tion of the system in subsequent steps. For example, the trivial true is always satisfac-
tory, but we can’t get any valid information from it. Thus, our proof system contains a
set of inference rules for reasoning about the parallel synchronization of assertions in
the form of sync(chs, P, Q)(s0) =>4 Q(S0)-

By repeatedly using synchronization rules (as well as monotonicity rules and other
entailments among assertions), we can gradually reduce an assertion headed by sync
into one without sync operators. For page limit, we select a representative case to illus-
trate the synchronization rules. The following rule states that, when the channels of two
sides match, the communication occurs immediately, determining the time variable d
with 0 and the value variable v with e(sg), and then the procedure of synchronization
continues to the tail assertions P; and Ps.

HHLPar 13

chi1 € chs chs € chs chi = chs

InOutl
sync(chs, wait_in(I1, chi,{d,v = Pi}), wait_outv(lz, chz,e, {d = P2}))(s0) =>a

sync(chs, Pilao.—so(e)s P2la—0) (s0)
We present other rules in Appendix C and explain their intuitive meanings. The sound-
ness of these rules have been formally proven by combining the definition of operator
sync and the trace synchronization relation as introduced in Sect. 2.

Example 2. This example demonstrates the handling of communication synchroniza-
tion and loop. It repeatedly sends the same value z from the left to the right, with z
received on the right, and then sends z 4 1 back from the right to the left.

c1 £ (chilz;cha?y)” c2 2 (chi?z;cha!(z 4+ 1))
By applying the rules for input, output, sequential composition and repetition, we can
derive spec_of(c1, P1) and spec_of (ca, Py) with
P, £ Rec R;. initVwait_outv(id, chi, z, {d1 =
wait_in(id, cha, {d2,v2 = Ri[z := v2|})})
P> £ Rec Rs. init\7wait_in(id, Chl7 {dl,vl =
wait_outv(id[z := vi], cha,v1 + 1, {d2 = Ra[z :=w1]})}
According to the rule for synchronization of two recursion assertions, we can derive
sync({ch1,cha}, P1, P2)(s0) =>4 Rec R. initVR[z := so(2)][y := so(x) + 1](s0)

As indicated by the final specification, the internal communications over the common
channel set {chy, cho} are hidden and unobservable. The effect of the parallel compo-
sition of ¢; and c3 is to repeatedly assign z the value of x and assign y the value of z+1
to their joint state sg, iterated any number of times.

6 Property Verification

Till now, we have introduced the inference rules of generating the assertion () satis-
fying spec_of (pc, @), for either sequential or parallel processes pc. As defined by the
semantics of assertions in Sect. 3, () captures the trace execution history of pc over
time up to the termination of pc. However, it is not straightforward to discern from
assertions () what properties of variables the process pc have during the execution.
In this section, we present how to verify properties of a process in a fixed form of
(s,tr) |= Post = q(s) Atrl(tr,q2) where s and ¢r represent the final state and trace
at termination, ¢; and g are boolean expressions on state, and

trl(tr, q) = Vi. tr[i] = (d,?,rdy} — (Vt € [O,d].q(?(t)))

Intuitively speaking, Post holds for final state s and trace tr, iff ¢; holds for the final
state s, and g2 holds for each continuous state in ¢r, i.e. it holds almost everywhere
during the whole execution of pc (except for some discrete events). In the following,
we will call ¢; and g5 postcondition and trace invariant respectively. Together with the
definition of specification, we conclude the following inference rule:

Vsostr.p(so) — (s0,8,tr) = Q — (s,tr) = Post spec_of(pc, Q)
{Pre} pc{Post}

where (s,tr) = Pre £ p(s) A tr = e which represents that the process pc starts
from an initial state satisfying precondition p and an empty trace. Next, we present

14 Xiangyu Jin, Bohua Zhan, Shuling Wang, and Naijun Zhan

how to derive the first antecedent of the above rule for different forms of assertions.
We only consider closed processes pc for which all communications are internal, thus
no communications are contained in ¢) any more as all internal communications are
reduced during synchronization, as shown in rule InOutl1.
For init assertion, we have :
Vs.p(s) — q1(s)
p(s0) — (so0, s, tr) = init — q1(s) A trl(tr, g2)

since init(so, s, tr) implies s = so and tr = e.
For wait assertion, we have
p(so) Aso(e) >0At>0At < so(e) — (so,t,s) =T — q2(s)
p(s0) A so(e) >0 — (s0,5,tr) = Pla=sge) — q1(s) Atrl(tr, g2)
p(s0) A so(e) <0 — (so,8,tr) E Pla=o — q1(s) A trl(tr, g2)
p(s0) — (so, s, tr) E wait(l, e, {d = P}) — q1(s) Atrl(tr, g2)
where the wait time is evaluated (either positive or not) to determine the remaining part
and check the trace invariant from the path condition.
We introduce other rules in Appendix D and demonstrate the usage of these rules
by the following example involving delay and loop.

Example 3.
c® (wait 1;z := 2+ 1)*

For process c, it’s easy to find that if the initial state sg satisfies x = 1, then x > 0
will hold for the final state at termination and also for each continuous state during the
execution. This property can be described in Hoare triples as:

{p(s) Ntr =€} c{q1(s) A trl(tr,q2)}

where we define p £ z = 1,¢q; £ 2 > 0and ¢ £ = > 0. To prove this triple, we

apply the main inference rule resulting in two premises.
spec_of(c, Rec R. initVwait(id, 1, {d = R[z := = + 1]}))

which can be derived by the sequential inference rules in Sect. 4, and

p(s0) — (so0, s,tr) E (Rec R.initVwait(id, 1, {d = R[z := z+1]})) — q1(s)Atrl(tr, ¢2)

which can be derived by rules in this section according to the structures of assertions by
providing the loop invariant loop £ 2 > 0. The detailed proof is shown in Appendix D.

7 Implementation and Case Study

In this section, we present the implementation of HHLPar and demonstrate its applica-
tion through a case study. We formalize the underlying logic and establish its soundness
using Isabelle/HOL, thereby ensuring the correctness of the proof system. In addition to
providing a correctness guarantee for the HHL logic, the Isabelle implementation also
enables the interactive verification of HCSP by applying the appropriate inference rules.
HHLPar is built on this logic and aims to enhance the automation of proof procedures.

7.1 HHLPar in Python

We introduce HHLPar from two aspects: the overall structure, and the main implemen-
tation issues in Python.

HHLPar 15

HHLPar in a Nutshell The architecture of the HHLPar tool is illustrated in Fig. 1. The
tool takes as input Pre containing a precondition, a HCSP process pc to be verified and
Post containing a postcondition and a trace invariant, as well as additional invariants
for ODEs and loops, if they are present. The verification process is carried out through
three main steps: Sequential Generation, Parallel Synchronization, and Property Veri-
fication. The first step processes the sequential components of pc and generates their
assertions, and then the second step generates the assertion of pc through synchroniza-
tion of sequential ones. After these two steps, an assertion () satisfying spec_of (pc, Q)
will be obtained. The last step verifies whether postcondition and trace invariant hold
for given precondition, with a result returned.

Implementation in Python HHL Par implement the following three functionalities cor-
respond to the three steps in the structure.

Sequential Generation We implemented the function for generating assertions of se-
quential HCSP satisfying the specification. When dealing with ODEs, this function
invokes Wolfram Engine to compute solutions in symbolic form and compute the maxi-
mum waiting time based on constraint. For the sake of expressiveness and convenience,
we choose to create a fresh time variable representing the length of this duration and
record the constraints of this time variable in a boolean expression. For example, (& =
1&x < 5) corresponds to 1 (t1 = 5 —z)Await(x — x+1t,t1, {d = initfz := x+d]}).

Parallel Synchronization We implemented the synchronization function which accept-
ing two assertions and the communication channel set and producing the parallel as-
sertion. Note that variables in different processes are independent and cannot be shared
in HCSP. Consequently, when same variable names occur in parallel processes and
subsequently in their specifications, we consider them different. Therefore, before syn-
chronization of assertions, we assign process names to different parallel processes and
their corresponding assertions in the implementation.

Property Verification We implemented the verifying function which takes three boolean
expressions representing the precondition on initial state sg, the postcondition on final
state s and trace invariant on trace tr separately, and an assertion (the result of the
previous step) as inputs. When applying the rules, the expression on initial state sg will
be constantly updated. When the assertion is a recursion, we need to prove that the loop
invariant maintains is maintained over each loop iteration. This function will invoke
Wolfram Engine to check all the logical formulas in premises. If all of them are valid,
the algorithm will stop successfully, indicating that this property is indeed satisfied with
respect to the assertion and precondition, and in consequence it holds for the process
being verified with the given Hoare triples.

7.2 Case Study

We experimented with a series of examples to test HHLPar across various situations.
In this section, we illustrate its ability to handle simple branches in bulk through one
case study, demonstrating how HHLPar can effectively verify processes with ODEs,
interrupts, communications, repetition and parallel composition involved.

16 Xiangyu Jin, Bohua Zhan, Shuling Wang, and Naijun Zhan

The simplified case study on a cruise control system (CCS) is taken from [23], for
which the verification was performed via interactive theorem proving. Compared to
[24], we have implemented the algorithm from assertions to prove final properties of
the process, and the whole procedure of verification is automated. The model of the
CCS comprises two parts: a controller (Control) and a physical plant (Plant). The Plant
process models the vehicle’s movement, continuously evolving along a given ODE. The
evolution is periodically interrupted by the transmission of velocity v and position p to
the Control, followed by the reception of updated acceleration a.

Plant £ chilv; ch2'p; (ch3?a; (p = v, = a&etrue o skip) > [|[chllv — ch2!p])*

The Control process computes and sends the appropriate vehicle acceleration, deter-
mined by the received velocity and position, with respect to a period 7.
Control & chl?v;ch2?p; (pp :=p+v-T + % ~da-T?*vv:=v+da-T;
(if 2 - am - (op — pp) > vm? then vim := vm? else
if op — pp > 0 then vlm := 2 - am - (op — pp) else vim := 0);
(if vv < 0|lvv® < vim then a := daelse (pp :=p+v - T}
(if 2 - am - (op — pp) > vm? then vim := vm? else
if op — pp > 0 then vim := 2 - am - (op — pp) else vim := 0);
if v < 0Jjv? < vim then @ := O else a := —am));
ch3la; wait T'; ch1?v; ch2?p)*
where constants 7', op, ad, am represent the time period, the position of obstacle, the
fixed acceleration during speeding up and deceleration separately, and the variable vim
is the upper limit of velocity based on the concept of Maximum Protection Curve.
In this case, the parallel process Plant||cp1,ch2,ch3Control is provided to the tool
HHLPar. The tool automatically gives Plant (and Control) and all the variables appear-
ing in them a prefix name A (and B) and the loop invariant inv are provided below:

BT >0ABam >0A Bda>0A Bvm >0A Ap < Bop A Av = BuA Ap = Bp
A ((2- Bam - (Bop — Ap) > Bum? A Av < Bum) V
(2- Bam - (Bop — Ap) < Bum? A (Av < 0V Av? <2 Bam - (Bop — Ap))))
under the following provided precondition, denoted by /Init:
BT >0ABam >0A Bda > 0A Bvm > 0A Ap < Bop
A ((2- Bam - (Bop — Ap) > Bum? A Av < Bum) V
(2- Bam - (Bop — Ap) < Bum? A (Av < 0V Av? < 2- Bam - (Bop — Ap))))
indicating the requirements on constants and that the initial position does not exceed
the obstacle and the initial velocity is within the MPC, and Ap < Bop provided as both
the postcondition and trace invariant, denoted by Safe, HHLPar finally returns "pass".
This indicates that the following specification is proved:

{Init(s) A tr = €} Plant||ch1,ch2,cn3Control {Safe(s) A trl(tr, Safe) }

8 Conclusion

We presented HHLPar, an automated theorem prover for verifying parallel HCSP pro-
cesses, which cover basic ingredients of hybrid and cyber-physical systems including
discrete control, continuous dynamics, communication, interrupts and parallel composi-
tion. HHLPar implements a Hybrid Hoare Logic, that is composed of a set of inference
rules for reasoning about sequential HCSP processes and a set of inference rules for rea-
soning about parallel HCSP processes, with the help of specialized assertions and their

HHLPar 17

synchronization. HHLPar provides both guarantee to soundness from the formalization
of the logic in Isabelle/HOL and automation via symbolically decomposing and execut-
ing HCSP processes according to the logic and the integration with external solvers to
handle differential equations and real arithmetic properties. In the future, we will con-
sider to develop more efficient rules for reasoning about ODEs and loops in HHLPar
and also apply HHLPar to a wider range of practical case studies.

References

1.

11.

12.

13.
14.

15.
16.

R. Alur, C. Courcoubetis, T. A. Henzinger, and P.-H. Ho. Hybrid automata: An algorithmic
approach to the specification and verification of hybrid systems. In Hybrid Systems’92, LNCS
736, pages 209-229. Springer, 1993.

. R. Bohrer, V. Rahli, I. Vukotic, M. Vélp, and A. Platzer. Formally verified differential dy-

namic logic. In Proceedings of the 6th ACM SIGPLAN Conference on Certified Programs
and Proofs, pages 208-221, 2017.

. Rose Bohrer, Vincent Rahli, Ivana Vukotic, Marcus Volp, and André Platzer. Formally ver-

ified differential dynamic logic. In Proceedings of the 6th ACM SIGPLAN Conference on
Certified Programs and Proofs, CPP 2017, Paris, France, January 16-17, 2017, pages 208—
221. ACM, 2017.

. Simon Foster, Jonathan Julidn Huerta y Munive, Mario Gleirscher, and Georg Struth. Hybrid

systems verification with isabelle/hol: Simpler syntax, better models, faster proofs. In Formal
Methods - 24th International Symposium, FM 2021, Virtual Event, November 20-26, 2021,
Proceedings, volume 13047 of Lecture Notes in Computer Science, pages 367-386. Springer,
2021.

. G. Frehse. Phaver: algorithmic verification of hybrid systems past hytech. Int. J. Softw. Tools

Technol. Transf., 10(3):263-279, 2008.

. G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado, A. Girard,

T. Dang, and O. Maler. Spaceex: Scalable verification of hybrid systems. In Computer
Aided Verification: 23rd International Conference, CAV 2011, Snowbird, UT, USA, July 14-
20, 2011. Proceedings 23, pages 379-395. Springer, 2011.

. N. Fulton, S. Mitsch, J.-D. Quesel, M. Volp, and A. Platzer. Keymaera X: an axiomatic

tactical theorem prover for hybrid systems. In CADE-25, volume 9195 of LNCS, pages 527—
538. Springer, 2015.

. J. He. From CSP to hybrid systems. In A classical mind, pages 171-189. Prentice Hall

International (UK) Ltd., 1994.

. C. A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
. J. Liu, J. Lv, Z. Quan, N. Zhan, H. Zhao, C. Zhou, and L. Zou. A calculus for hybrid CSP.

In APLAS 2010, LNCS 6461, pages 1-15. Springer, 2010.

J. Liu, N. Zhan, and H. Zhao. Computing semi-algebraic invariants for polynomial dynamical
systems. In EMSOFT’11, pages 97-106. ACM, 2011.

A. Platzer. Differential dynamic logic for hybrid systems. J. Autom. Reason., 41(2):143-189,
2008.

A. Platzer. Logical Analysis of Hybrid Systems. Springer, 2010.

A Platzer. A complete uniform substitution calculus for differential dynamic logic. Journal
of Automated Reasoning, 59(2):219-265, 2017.

A. Platzer. Logical Foundations of Cyber-Physical Systems. Springer, 2018.

A. Platzer and E. M. Clarke. Computing differential invariants of hybrid systems as fixed-
points. In CAV’08, LNCS 5123, pages 176-189, 2008.

18

17

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

Xiangyu Jin, Bohua Zhan, Shuling Wang, and Naijun Zhan

A. Platzer and J.-D. Quesel. Keymaera: A hybrid theorem prover for hybrid systems (system
description). In IJCAR 2008, volume 5195 of LNCS, pages 171-178. Springer, 2008.

A. Platzer and Y. K. Tan. Differential equation invariance axiomatization. J. ACM, 67(1):6:1—
6:66, 2020.

S. Ratschan and Z. She. Safety verification of hybrid systems by constraint propagation-
based abstraction refinement. ACM Trans. Embed. Comput. Syst., 6(1):8, 2007.

H. Sheng, A. Bentkamp, and B. Zhan. HHLPy: Practical verification of hybrid systems
using hoare logic. In FM 2023, volume 14000 of Lecture Notes in Computer Science, pages
160-178. Springer, 2023.

S. Wang, N. Zhan, and D. Guelev. An assume/guarantee based compositional calculus for
hybrid CSP. In TAMC’12, LNCS 7287, pages 72—83. Springer, 2012.

S. Wang, N. Zhan, and L. Zou. An improved HHL prover: An interactive theorem prover for
hybrid systems. In ICFEM’15, LNCS 9407, pages 382-399, 2015.

X. Xu, S. Wang, B. Zhan, X. Jin, J.-P. Talpin, and N. Zhan. Unified graphical co-
modeling, analysis and verification of cyber-physical systems by combining AADL and
simulink/stateflow. Theor. Comput. Sci., 903:1-25, 2022.

Xiong Xu, Shuling Wang, Zekun Ji, Qiang Gao, Xiangyu Jin, Bohua Zhan, and Naijun
Zhan. Case Study: Modeling, Simulation, Verification, and Code Generation of an Auto-
matic Cruise Control System, pages 226-246. Springer Nature Switzerland, Cham, 2024.
Jonathan Julidn Huerta y Munive, Simon Foster, Mario Gleirscher, Georg Struth, Chris-
tian Pardillo Laursen, and Thomas Hickman. Isavodes: Interactive verification of cyber-
physical systems at scale. J. Autom. Reason., 68(4):21, 2024.

N. Zhan, X. Jin, B. Zhan, S. Wang, and D. P. Guelev. A generalized hybrid hoare logic.
CoRR, abs/2303.15020, 2023.

C. Zhou, J. Wang, and A. P. Ravn. A formal description of hybrid systems. In Hybrid
systems, LNCS 1066, pages 511-530. Springer, 1996.

HHLPar 19

A Trace-based HHL

A.1 Trace Synchronization

The full definition of trace synchronization function is defined as following:

ch € cs tri|estra | tr
(ch!, v) " tr1||es{ch?,v) " tra U (ch,v) " tr
ch & cs tri|estra | tr ch € cs

NoSynclO SyncEmpty1
(chi>, v) " tri||estra 4 (ch>,v) " tr (ch>,v) " tri||lese 4 6

SynclO

tri|lese U tr
~ SyncEmpty2 ————— SyncEmpty3
(d, P, rdy,) trflese U6 ellese U e

tri)|cstre 4 tr compat(rdy,, rdy,) d >0

(d,?l, rdy,) " tr1]|es (d, ?2, rdy,) " tra |
(d, 71 W P2, (rdy, Urdy,) — cs)"tr

dy > d> >0 compat(rdy,, rdy,)
(dy — da, B 1(- + do), rdy,)" tr1 stz U r

<d17 ?1, Tdy1>,\t7‘1 HCS <d27 ?27 Tdy2>/\t7”2 I
(d2, P1 W T2, (rdy, Urdy,) —cs)"tr

SyncWaitl

SyncWait2

A.2 Big-step Semantics

The full big-step semantics of HCSP process is defined by the following rules:

(skip, s) = (s, ¢€) SkipB (z:=¢e,s) = (s[z > e],€) AssignB
OutB1 OutB2
(chle, s) = (s, (chl,s(e))) (chle,s) = (s, (d, Is,{ch!})"(ch!, s(e)))
InB1 InB2
(ch?z, s) = (s[z — v], (ch?,v)) (ch?z, s) = (s[z — v],{d, Is,{ch?})" (ch?,v))

(c,8) = (s1,tr1) (c*,s1) = (s2,1r2)
RepB1 " ~ RepB2
(c*,s) = (s2,tr1"tra)

(c*,8) = (s,€)

(c,81) = (s2,tr1) (c2,82) = (s3,tr2)
- WaitB — SeqB
(waite, s) = (s, (s(e), I, {}) (c1;c2,51) = (s3,tr1"trs2)

20 Xiangyu Jin, Bohua Zhan, Shuling Wang, and Naijun Zhan

B , = (82,) = (82,1
0B (ens) = (am) o gpy _(evs) = (o) o Ly
(if B then c; else c2, $1) = (s2,1r) (c1 Uea, s1) = (s2,1r)

—s1(B) (c2,81) = (s2,1r) (c2,81) = (s2,1tr)
- CondB2
(if B then ¢ else c2, 1) = (s2,1r) (c1 Uca, s1) = (s2,1r)

~B(s)
= E&B),s) = (s,¢)

IChoiceB2

ContB1
(7
? is a solution of the ODE ? =7
P0)=s(T) Vte(0,d).s[7 — PB)(B) -s[T — T(d))(B)
(# = 2&B),s) = (s[7 = F(@), (4. 7. 1})

1 €L chix=chle (ci,s1) = (s2,1r)

= @&B x ¢) > [icr(chix — ¢i),51) = (s2, (ch!, s1(e))"1r)

ContB2

IntB1
(@
7 is a solution of the ODE =7 T(0) = s1(7)
vt € [0,d). s51[2 — P (1))(B)
i€ L chix=chle (ci,s1[Z — P(d)]) = (s2,1r)
((E> = C&B x ¢) > [icr(chix — ¢i),s1) =
(s2,(d, T, rdy(Uicr.chix)) " (ch!, s1[@ +— T (d)](e))"tr)

1 €L chix=ch?y (ci,s1ly— v]) = (s2,1r)

= P&B x ¢) & [ier(chix = ¢;), s1) = (s2,(ch?,v)"tr)

IntB2

(<_.> IntB3
7 is a solution of the ODE T=7 T(0) = s1(7)
vt € [0,d). s1[2 — T (t)](B)

i€ L chix=ch?y (ci,1|7 — T(d),y— v]) = (s2,1r)

— IntB4
(% = P&B o) & [icr(chix — c;),51) =
(52, (d, 7, rdy(Usc.chix)) ™ (ch?,v)"tr)

-s(B) (c,s1) = (s2,tr)
(F = P&B o &) & [ics(chix — ¢i), s1) = (2, ¢r)

IntB5

7 is a solution of the ODE T=2 T(0) =s5.(7)

Vi€ [0,d).51[7 o BOIB) [T — FA)(B)
(¢, s1[@ = P(d)]) = (s2,tr)

= ?&B X C> > ”ieL(Chi* — Ci), 81) =
(827 <d7 77 rdy(UiGLChi*»Atr)

(c1,81) = (s1,tr1) (c2,82) = (8h,tra) tri|lestra | tr

(c1llesc2, 81 W s2) = (87 W 85, 1r)

= IntB6
T

(«

ParB

HHLPar 21

B Complement Sequential Rules

B.1

In this section, we first explain the rules for interrupt command with explicit solution in
detail. N

Given an interrupt command (& = €&B o« ¢) & [lier(chi* — ¢;), where we
use es to denote the list of communications in the form (ch?z — ¢;) or (chle —
¢i), and f is a solution to £ = €, the branches of assertions corresponding to the
communication list is computed by rel_cm(es, ¢, f), if for each es[i] = (ch?y — ¢;),
we have spec_of (¢;; ¢, @;) then

rel_cm(es, ¢, f)[i] = (ch?,{d,v = Qily :=V][Z := f(s0(T),d)]})
and for each es[i] = (chle — ¢;), we have spec_of (¢;; ¢, ;) then

rel_cm(es, ¢, f)[i] = (ch!, {d = e(p(s0,d))}, {d = Qi[T := f(s0(T),d)]})
Then the inference rule for interrupt is:

— -
paramODEsol(& = ¢, B, f,¢) lipschitz(&

spec_of(c’; c, P) Vi € L, spec_of(ci; ¢, Q;)

spec_of((_i:> = @&B x) & [lier (chix — ¢;); ¢, interrupt(Z — f(T,t),
e,{d = P[Z := f(s0(T),d)]},rel_cm(es,c, f))

?)

The meaning of this rule is as follows: the specification of the interrupt first evolves
along the path p(t) = so[2 — f(so(Z),t)], and one of the following three situations
occurs:

— If the evolution is interrupted by an input communication (ch?xz — ¢;) at time d
and with value v, then update the state to so[Z — f(so(Z),d)][z — v], followed
by the behavior of ¢;; ¢ as specified by @Q);.

— If the evolution is interrupted by an output communication (chle — ¢;) at time
d and with value v = e(so[Z ~— f(so(7),d)]), and then update the state to
so[@ — f(so(),d)], followed by the behavior of ¢;; ¢ as specified by Q.

— 1If no interrupt occurs before time d = sq(e), then update the state to so[Z
f(so(T),d)], followed by the behavior of ¢’; ¢ as specified by P.

The above assumes that the ODE with boundary condition has a solution of finite
length for any starting state. Another important case is when the ODE has a solution of
infinite length, in particular when the boundary condition is true. In this case, the appro-

priate assertion is interrupt... We first define predicate paramODEsolInf(& = ?,),

meaning that f is the (infinite length) solution to & = @, then the corresponding rule
is:

-
x

paramODEsoIInf(_:ic> =¢,7) lipschitz(i =€) Vie L, spec_of(ci;c, Qi)

%
spec_of ((# = € &true o ¢) > [lier (chix — ¢i); ¢,

interruptoo(? — f(?,t)7 rel_cm(es, ¢, f))

Next, we introduce the rules for interrupt with differential invariants.

22 Xiangyu Jin, Bohua Zhan, Shuling Wang, and Naijun Zhan

Similarly, we define the branches of assertions corresponding to the communica-
tion list, denoted by relinv_cm(es, ¢, inv), if for each es[i] = (ch?y — ¢;), we have
spec_of(¢;; ¢, Q;) then

relinv_cm(es, ¢, inv)[i] = (ch?,{d,v = (T inv A Qily := Vv])[2 = nx}]})

and for each es[i] = (chle — ¢;), we have spec_of (¢;; ¢, ;) then

relinv_cm(es, ¢, inv)[i] = (ch!, {d = e(so[@ = nx}])}, {d = (T inv A Q:)[Z := nz}]})

And then, we have the following rule:

paramODEInv(# = ¢, B,inv,pp) lipschitz(& = €)

spec_of (c’;c, P) Vi€ L, spec_of(ci;c, Qi)

spec_of(<—jc> = C&B x) > [icr(chix = ¢;);¢, (1 (FB)AP)V 1 (—pp A B)V
3T nd nTier. (T (pp A B)Ainterrupt(inv, T,
{d = (1 (inv A bound(B))AP)[Z := nit]}, relinv_cm(es, ¢, inv))))

If the ODE in interrupt command has infinite length, we have:

— —
paramODEInv(z = e, B,inv,pp) lipschitz(& = ?) Vi € L, spec_of(ci; ¢, Qi)
_>

spec_of (& = € &true o ¢) > Jicr (chix — ¢); ¢, (—pp)V
Inzer. (1 ppAinterruptos (inv, relinv_cm(es, ¢, inv))))

B.2

In this section we give the all the sequential rules without subsequent process.

HHLPar 23

spec_of (z := e, init[x := ¢])
spec_of(c1, P) spec_of(cz, Q)
spec_of (if B then c; else c2, (T (B)AP)V(1 (-B)AQ))

spec_of (ch?z, wait_in(id_inv, ch, {d, v = init[z := v]}))

spec_of (chle, wait_outv(id_inv, ch, e, {d = init}))

spec_of (wait e, wait(id, e, {d = init}))
_>
&

paramODEsol(% = @, B, f,¢) lipschitz(= @)

spec_ of((z = C&B),wait(Z — f(T,t),e,{d = init]Z := f(s0(Z),d)]}))
vV d Q. spec_of(d, Q) — spec_of(c; d, F(Q))
spec_of (c”,Rec R. initVF(R))
Ed

—2,B,f,e) lipschitz(#
Vi € L.spec_of (¢, Q:)

)
spec_of((? = @&B x) > licr(chix — ¢;), interrupt(@ — f(, 1),
e,{d = P[7 = f(so 7) d)]}, rel_cm(es, skip, f))
(&

paramODEsol(
spec_of (¢,

?)

_>

paramODEsolInf) Iipschitz(_g'g:?)

spec_of(<_:t> = @&true < ') > [licr (chix — ¢;), interruptoo (7 — f(T, 1),
rel_cm(es, skip, f))
paramODEInv(_i) =€, B, inv,pp) I|psch|tz(=7)

spec_ of((i = @&B);c, (T (~B)Ainit)V 1 (—pp A B)V
3T n#. (1 (pp A B)Await(inv, T, {d = (T (inv A bound(B))Ainit) [? 7@]})))
ﬁ

%
paramODEInv(# = €, B, inv,pp) lipschitz(<)

spec_of(c, P) Vi € L, spec_of(ci, Q:)

= @&B x) > [lier(chix = ¢), (T (-B)AP)V 1 (-=pp A B)V
3T nd nae L. (1T (pp A B)Ainterrupt(inv, T,
{d = (1 (inv A bound(B))AP)[Z := ni]}, relinv_cm(es, skip, inv))))

spec_ of((?

paramODEInv(_dv) =¢,B,inv ,PP) Iipschitz(_:ic) = ?) Vi € L, spec_of(ci, Qi)

spec_of((g> = @&true x ') > [icr(chix — ¢i), T (—pp)V
377, 1. (T ppAinterrupto, (inv, relinv_cm(es, ¢, inv))))

C Complement Synchronization Rules

In this section we show the other synchronization rules.
First, we introduce the rules involving the common operators of assertions.

False
sync(chs, false, P)(s0) =>4 false(so)

24 Xiangyu Jin, Bohua Zhan, Shuling Wang, and Naijun Zhan

if one side is a false assertion, we obtain a result of false.

sync(chs, P1,Q)(s0) =>a Ri1(s0) sync(chs, P2, Q)(s0) =>a R2(s0)
sync(chs, P1V P2, Q)(s0) =>4 (R1VR2)(s0)

Disj

if one side is a disjunction, we can eliminate this to its components.

b(s1) — sync(chs, P, Q)(s0) =>a R(s0)
sync(chs, T bAP, Q)(s0) =>a (1 bAR)(s0)

ool

if one side is a conjunction with a boolean expression b, we perform synchronization
on the rest part under b and pull out b lifted on a parallel state as a new condition.

sync(chs, Pz := €], Q)(s0) =>4 sync(chs, P, Q)[z := €](so) Subst

if one side is a substitution assertion, the substitution can be pulled out after lifting.

In principle, wait_out, wait_in and wait are all special cases of interrupt (including
interrupteo, by viewing interrupto.(I,cm) as interrupt(7, oo, {d = false}, em)). Thus,
the synchronization rule for interrupt assertion is complex and contains all the potential
situations. We will first give some simple cases, and then introduce the rule for interrupt
as a complete form.

While synchronizing two init assertions, we can easily infer that the state of each
part remains the same and the traces on both sides are empty lists. Naturally, we have

— — InitInit
sync(chs, init, init) (so) =4 init(so)

While synchronizing an init assertion and an wait assertion, if the wait time is
greater than 0, we directly obtain a false assertion. Otherwise, if the wait time is Less
than or equal to O, the wait assertion turns to its tail by the definition.

WaitInit

sync(chs, wait(I, e, {d = P}),init)(so) =>a1 (e < 0)Async(chs, Pl4—o, init)(so)

While synchronizing an init assertion and an input assertion, if the communication
channel belongs to the common channel set, we directly obtain a false assertion, Other-
wise, this external communication must occur at once, since the init assertion does not
support any waiting time. Thus, we have:

ch € chs
sync(chs, wait_in(1, ch, {d = P}),init)(so) =, false(so)

InInitl

ch ¢ chs

sync(chs, wait_in(1, ch, {d,v = P}),init)(so) =, interrupt(I Wid, 0,
{d = false}, [(ch?,d,v = sync(chs, P, init))])(so)

The rules for synchronizing an init assertion and an output assertion are similar.
While synchronizing an output assertion and an input assertion, we need to consider
the different cases of whether their channels belong to the common channel set. If they
are both in the set and have the same name, then the handshake occurs at once. while if
they have different names which means both sides are waiting for a handshake, but they

InInit2

HHLPar 25

don’t match and this lead to a deadlock represented by a false assertion. So we have the
following rules:

chy € chs chs € chs chy = chs

InOutl
sync(chs, wait_in(I1, chi,{d1,v1 = Pi}),wait_outv(lz, cha,e, {d2 = P2}))(s0)
—a synC(chs, P1|d1:0,v1:50(e)7 P2|d2:0)(30)
h1 € ch ha € ch h h
ch1 € chs cha € chs chi # cha InOu2

sync(chs, wait_in(I1, chi, {d1,vi = Pi}),wait_outv(lz, chs, e, {d2 = P2}))(s0)
=, false(so)

If at least one of them is an external communication, then it must happen before the
internal communication, because the condition for the internal handshake to occur are
not met. Thus, we have:

chy € chs cha ¢ chs

InOut3
sync(chs, wait_in(I1, chi, {d1,vi = Pi}),wait_outv(lz, chs, e, {d2 = P2}))(s0)
=, wait_outv(l1 W I5, cha, e, {d2 =
sync(chs, wait_in(I1]e=t+d, ch1, {d1,vi = Pild,=di+4, 1), P2))})(s0)
h h hs € ch
ch & chs_cha € chs InOut4
sync(chs,wait_in(I1, chi, {d1,vi = P1}), wait_outv(l2, cha,e{d> = P>}))(s0)
=, wait_in(h W Iz, cha, {dl7 Vi =
sync(chs, Py, wait_outv(lz|i=t+d,, che, e, {d2 = Pa|dy=dy+d; })) })(S0)
h h h h
ch ¢ chs_cha ¢ chs nOuts

sync(chs, wait_in(1I1, chy, {d1,vi = Pi}),wait_outv(lz, chz, e, {d2 = P2}))(s0)
=, interruptoo (I1 W Iz, [(ch1?,{d1, v1 = sync(chs,
P, Wait_OUtV(Izl;:t+dl ,cha, e, {dz = P ‘d1:d1+d2}))}>7
(ch2!,{d> = e}, {d2 = sync(chs,
wait_in(/1|i=t+d,, cha, {d1,vi = Pila,=d, 44, }), P2) })]) (s0)

Next, we consider synchronizing two interrupt assertions interrupt(/y, e, {d; =
Py}, cmy) and interrupt(Iz, €2, {d2 = P2}, cms). First, we need to determine whether
there is a communication between two sides. The method of judgement is to check if
there exists a channel name in the set chs, where its input is in the rdy set on one side
and its output is in the rdy set on the other side. Define predicate compat to be the
negation of this condition:

compat(rdy(em1), rdy(cms)) = = (3ch € chs.(ch! € rdy(cm1) A ch? € rdy(cms2))
V(ch? € rdy(cmi) A ch! € rdy(cmz)))

In the case where this predicate holds true, both sides are waiting to be interrupted by
external communication, thus its synchronization result should still be in the form of in-
terrupt assertion, and its maximum waiting time is the smaller of e; and e,. While reach-
ing the maximum waiting time, the shorter one will behave as the tail part and the longer
one stays in an incomplete interrupt assertion denoted as delay(h, interrupt(Z, e, {d =
P}, cm)):

delay(h, interrupt(I, e, {d = P},cm)) = interrupt(I|i—¢+n, € — h,
{d = Pla=d+n},delay_cm(cm, h))

26 Xiangyu Jin, Bohua Zhan, Shuling Wang, and Naijun Zhan

where for input em[i] = (ch?,{d,v = Q1}) or output cm[i] = (ch!,g,{d = Q2}),
we have

delay_cm(em, h)[i] = (ch?,{d,v = Q1|a=d+r})

delay_cm(cm, h)[i] = (ch!, {d = g(d + h)}, {d = Qalacasn})

we can easily find that delay(0, interrupt(I, e, {d = P}, cm)) = interrupt(I, e, {d =
P}, cm). By performing synchronization on them, we get the new tail assertion. A
potential external interruption from cmy or cms that does not belong to the shared
set chs may occur during the waiting. Then, one side will behave as the correspond-
ing assertion recorded in cmj or cme, the other side will remain its incomplete in-
terrupt assertion. For this case, the synchronization produces the new communication
list composed of two parts: rell(cmq|cpse, interrupt(la, e, {d2, = Py}, cms)) and
rel2(ema|chse, interrupt(ly,e1,{d1 = Pi},cmy)) where ¢mq|chse and ema|cpse are
lists of communications not in chs extracted from cm; and ¢ms. The list functions rell
and rel2 are set as: if cm[i] = (ch?,{d,v = Q1 }),

rell(cm, R)[i] = (ch?,{d,v = sync(chs, @1, delay(d, R))}
rel2(cm, R)[i] = (ch?,{d,v = sync(chs, delay(d, R), Q1) }

if em[i] = (ch!, g,{d = Q2}),

rell(em, R)[i] = (ch!,{d = g(d)}, {d = sync(chs, Q2, delay(d, R))}
rel2(cm, R)[i] = (ch!,{d = g(d)}, {d = sync(chs, delay(d, R), Q2)}

So far we can obtain the following rules:

el(s1) < e2(s2) Aez(s2) >0 compat(rdy(emi), rdy(cmsz))

IntInt1
sync(chs, interrupt(1, e1,{d1 = Pi},cmq), interrupt(lz, e2, {d2 = P>}, cm2))

(s1 W s2) =>4 interrupt(l; W Iz, e1,{d; =
sync(chs, P1,delay(di, interrupt(I2, e2, {d2 = P2 },cm2)))},
rell(cm1|chsc, interrupt(Iz, €2, {d2 = PQ}, C’ITLQ))@
rel2(ema|cnse, interrupt(ly, e, {di = P1},cmy)))(s1 W s2)

el(s1) = e2(s2) V (e1(s1) <0 Aea(s2) <0) compat(rdy(cma), rdy(cmz))

sync(chs, interrupt(I1, e1,{d1 = Pi},cm1), interrupt(lz, e2, {do = P>}, cm2))
(s1 W s2) =>4 interrupt(lL W Iz, e1, {d =
sync(chs, Pi|d,—d,delay(d, interrupt(I2, e2, {d2 = P}, cma2)))
V sync(chs, delay(d, interrupt(I1, e1, {d1 = Pi},cm1)), Pala,=d)},
rell(cmai|chse, interrupt(lz, ez, {d2 = P2}, cm2))@
rel2(cma|chse, interrupt(l, e, {di1 = Pi},cmq)))(s1 W s2)

IntInt2

Note that in the definition of interrupt assertion, if the expression of waiting time cal-
culated as a negative value then it has equivalent meaning with 0. That is why we need
to compare the expression with 0.

In the case when the compat function is false, there are three possible scenar-
ios. The first is nondeterministicly executing one of the possible handshakes among
all that could occur which we represent as comm(cmy, cms). It is a disjunction of
sync(chs, Q1 |d1:O,v1:g(0)a Q2|d,=0) and sync(chs, Q1]4,=0, Q2 |d2:o,V2:g(0))) forall the
pairs satisfying one of the following conditions:

ch € chs A emq[i] = (ch?,{d1,vi = Q1}) A emz[j] = (ch!, g,{d2 = Q2})
ch € chs A emq[i] = (ch!, g, {d1 = Q1}) A cma[j] = (ch?,{d2,v2 = Q2})

HHLPar 27

The second is that if the maximum waiting time ey or es is less than 0, then the corre-
sponding side may immediately transit to the tail assertion. The last one is there is an
external interrupt occurring at time 0. We obtain the following rule:

—compat(rdy(cm1), rdy(cms))

IntInt3
sync(chs, interrupt(1,e1,{d1 = Pi},cm1), interrupt(lz, e2, {d2 = P>}, cm2))

(s1 W s2) =>4 interrupt(l; W 13,0, {d = comm(cmy, cm2)V
(1 (e1 < 0)Async(chs, Pi|a,—o, interrupt(lz, ez, {d2 = P2}, cmz)))V
(1 (e2 < 0)Async(chs, interrupt(I1, e1, {d1 = Pi},cmi), Pala,—0))},
rell(emy|cnse, interrupt(lz, ez, {d2 = P2}, cm2))@
rel2(cma|chse, interrupt(I1, e1, {d1 = P1},cm1)))(s1 W s2)

While synchronizing an interrupt assertion and an init assertion (representing the
termination of one side), we have to consider whether there is an external interrupt
occurring at time 0 and whether the interrupt assertion turns into the tail assertion at
once. Thus, we have the rule:

IntInit

sync(chs, interrupt(I, e, {d = P}, cm), init)(s1 & s2) =>4

interrupt(I Wid_inv, 0, {d =1 (e < 0)Async(chs, P, init)}
rel_initl(cm|cnse, init))(s1 W s2)

The list function rel_init1 is obtained from rell by replacing delay(d, R) by init

Synchronization involving recursive assertions is typically very complex, often re-
quiring inductive analysis tailored to specific cases. As such, here we only provide the
rule for a specific scenario to facilitate automated implementation.

V so Q. sync(chs, P1, F>(Q))(so) =>4 false(so)
V so0 Q. sync(chs, F1(Q), P2)(so) =>4 false(so)
Y s0. sync(chs, P, PQ)(SO) —a P(So)
V 50 Q1 Q2. sync(chs, F1(Q1), F2(Q2))(s0) =>a F(sync(chs, Q1,Q2))(s0)

sync(chs,Rec R1. PiVFi(R1),Rec Ra. PoVF>(R2))(s0)
=4 Rec R. PVF(R)(s0)

Rec

The first two conditions state that if one side loops while the other doesn’t, synchro-
nization results in false. The third condition specifies that when both sides don’t loop,
synchronization is achieved. The last condition states that if both sides loop, synchro-
nization depends on their outermost loops finishing together. Meeting all four condi-
tions results in a new recursive assertion. This requires consistent recursion counts and
simultaneous start and end of each iteration for both sides.

D Complement Property Verification Rules

D.1

In this section we give property verification rules for other assertions.
For pure assertion, we have:

p(s0) A b(so) — (so, s,tr) = Q — (s,tr) = Post
p(s0) — (so0,s,tr) E (1 bBAQ) — (s,1tr) = Post

28 Xiangyu Jin, Bohua Zhan, Shuling Wang, and Naijun Zhan

For substitution, we have:
Vso str. (Ju.plv/z] Az = e[v/x])(s0) — (so0,8,tr) E Q — (s,tr) = Post
p(s0) — (so, s,tr) E Q[x :=¢] — (s,tr) |E Post

As shown in this rule, we change the initial state from sg to sg[x — e], thus the
precondition p needs to be rewritten on the new state while maintaining the equivalence.
For disjunction, we have:

p(s0) — (s0,8,tr) = Q1 — (s, tr) = Post
p(s0) — (so0, s,tr) E Q2 — (s,tr) = Post
p(s0) — (so0, s,tr) E Q1VQ2 — (s,tr) = Post

For recursion assertion, we have:

Vs.p(s) — loop(s)
Vso str.loop(so) — (so, s,tr) = P — (s,tr) = Post
VQ so str. (Vso str.loop(so) — (so, s,tr) E Q — (s, tr) = Post)
— loop(so) — (80, 8,tr) E F(Q) — (s,tr) = Post

p(so) — (so0, s,tr) E (Rec R. PVF(R)) — (s, tr) = Post

where we need to provide a loop invariant [oop and prove three conditions for [oop

to be an invariant. The first two conditions states the precondition implies the loop
invariant and the base assertion P implies postcondition under the invariant. The in-
tuitive meaning of the last one is that, for any assertion @, F(Q) satisfying property
Post under loop invariant [oop can be deduced from that) satisfying property Post
under [oop. From this condition, we can extend the property to the general recursion
Rec R. PVF(R). Since once loop means once F' applied to the assertion P, if we can
prove F'(Q) satisfying the property Post from any () have already meets it, then we
can extend to F™(P) for any nature number n of the loop times.

D.2

In this section we give the details of the proof procedure of the example in Sect. 6
According to the rule for recursion assertion, there are three premises to be checked:

Vs.p(s) — loop(s) (D

Vso str.loop(so) — (S0, s, tr) = init — q1(s) A trl(tr, g2) (2)
VQ so str. (Vso str.loop(so) — (so,s,tr) E Q — q1(s) Atrl(tr, q2)) —
loop(so) — (so, s,tr) E wait(id, 1, {d = Qz .=z + 1]}) — ¢ (s) Atrl(tr,q2) (3)
(1) is obvious and (2) is proved by the rule for init and the trivial fact Vs. loop(s) —
q1(s). To prove (3), we view (3a) as the assumption and we need to deduce (3b)
Vso str.loop(so) — (S0, s,tr) |E Q — q1(s) Atrl(tr, g2) (3a)

loop(so) — (so0, s, tr) = wait(id, 1, {d = Qz := = + 1]}) — qi(s) Atrl(tr,q2) (3b)
By applying the rule for wait to (3b), we obtain the following two conditions. The first

one:
loop(so) N1 >0ANE>0AE <1 — s =80 — g2(s)

HHLPar 29

is also obvious. The second one is:
loop(so) N1 >0 — (s0, s,tr) E Qlz :=z + 1] — q1(s) A trl(tr, g2)
By the rule for substitution, we have to prove for all sq, s, tr:
(Fv.loop[v/z] A1 >0Ax=v+1)(s0) — (s0,8,tr) E Q — q1(s) Atrl(tr, q2)
To make use of the assumption (3a), we need to prove:
Vs. (Fv.loop[v/z] A1 >0Az =v+1)(s) — loop(s)

which is similar to that the loop invariant is still satisfied after executing one-round
loop. Also this logic formula is obviously sound. So far, we have proved the property
of this process.

