
Combining Formal and Informal Methods in the Design
of Spacecrafts⋆

Mengfei Yang1 and Naijun Zhan2

1 Chinese Academy of Space Technology, Beijing, China
2 State Key Lab. of Computer Science, Institute of Software, CAS, Beijing, China

znj@ios.ac.cn

Abstract. In this chapter, we summarize our experience on combing formal and
informal methods together in the design of spacecrafts. With our approach, the de-
signer can either build an executable model of a spacecraft using the industrial s-
tandard environment Simulink/Stateflow, which facilitates analysis by simulation,
or construct a formal model using Hybrid CSP (HCSP), which is an extension of
CSP for formally modeling hybrid systems. HCSP processes can be specified and
reasoned about by Hybrid Hoare Logic (HHL), which is an extension of Hoare
logic to hybrid systems. The connection between informal and formal methods is
realized via an automatic translator from Simulink/Stateflow diagrams to HCSP
and an inverse translator from HCSP to Simulink. The advantages of combining
formal and informal methods in the design of spacecrafts include

– It enables formal verification as a complementation of simulation. As the in-
herent incompleteness of simulation, it has become an agreement in industry
and academia to complement simulation with formal verification, but this
issue still remains challenging although lots of attempts have been done (see
the related work section);

– It provides an option to start the design of a hybrid system with an HCSP for-
mal model, and simulate and/or test it using Matlab platform economically,
without expensive formal verification if not necessary;

– The semantic preservation in shifting between formal and informal models
is justified by co-simulation. Therefore, it provides the designer the flexibil-
ity using formal and informal methods according to the trade-off between
efficiency and cost, and correctness and reliability.

We will demonstrate the above approach by analysis and verification of the de-
scent guidance control program of a lunar lander, which is a real-world industry
example.

Keywords: Spacecraft, Lunar lander, Simulink/Stateflow, formal methods, hybrid sys-
tems

1 Introduction

Spacecraft control systems like most digital controllers are, by definition, hybrid sys-
tems as they interact with and/or try to control some aspects of the physical world,
⋆ This work is supported partly by “973 Program" under grant No. 2014CB340701, by NS-

FC under grants 91118007 and 91418204, and by the CAS/SAFEA International Partnership
Program for Creative Research Teams.

also typical safety-critical as any fault could result in the failure of the whole mission.
Detailed behavior modeling with rigorous specification, extensive analysis and formal
verification, required for reliability prediction, is a great challenge for hybrid system
designers. Spacecraft control systems further intensify this challenge with extensive
interaction between computing units and their physical environment and their mutual
dependence on each other. On the other hand, designing a spacecraft control system is a
complex engineering process, and therefore it is unlikely to demand engineers to apply
formal methods in the whole process of design because of efficiency and cost. So, it
is extremely necessary to have a way to combine formal and informal methods in the
design so that the engineers can flexibly shift between formal and informal methods.

In order to efficiently develop reliable safety-critical systems, model-based design
(MBD) has become a major approach in the design of computer controlled systems.
Using this approach at the very beginning, an abstract model of the system to be de-
veloped is defined. Extensive analysis and verification on the abstract model are then
conducted so that errors can be identified and corrected at the very early stage. Then the
higher-level abstract model is refined to a lower-level abstract model step by step, until
it can be composed with existing components. There have been huge number of MBD
approaches proposed and used in industry and academia, e.g., Simulink/Stateflow [1,2],
Modelica [41], SysML [3], MARTE [40], Metropolis [9], Ptolemy [20], hybrid automa-
ta [25], CHARON [6], HCSP [24, 51], Differential Dynamic Logic [36], Hybrid Hoare
Logic [29], etc. These approaches can be classified into two paradigms according to
whether with a solid theoretical foundation, i.e., formal as [6, 9, 20, 24, 25, 29, 36, 51]
and informal as [1–3, 40, 41].

It is commonly known that engineering informal methods for designing hybrid sys-
tems are very efficient and cheap, but cannot guarantee the correctness and reliability;
in contrast, formal methods can guarantee the correctness and reliability of the system
to be developed, but pay in low efficiency and high cost. Therefore it is desirable to
provide the designer with the ability to choose between formal or informal analysis de-
pending on the degree of confidence in the correctness of the design required by the
application.

In this chapter, we report our experience on combing informal and formal methods
together in the design of spacecrafts. The framework of our approach is as follows:

– We first build executable models of hybrid systems using the industrial standard envi-
ronment Simulink/Stateflow, which facilitates analysis by simulation.

– Then, to complement simulation, formal verification of Simulink/Stateflow models is
conducted via the following steps:

1. first, we translate Simulink/Stateflow diagrams to Hybrid CSP (HCSP) process-
es by an automatic translator Sim2HCSP;

2. second, to justify the translation, another automatic translator H2S that trans-
lates from HCSP to Simulink is provided, so that the consistency between the
original Simulink/Stateflow model and the translated HCSP formal model can
be checked by co-simulation;

3. then, the obtained HCSP processes in the first step are verified by an interactive
Hybrid Hoare Logic (HHL) prover;

4. during the verification, synthesizing invariants for differential equations and
loops is needed.

– Of course, as an alternative, we can construct an HCSP formal model at the beginning
of the design first, and then simulate and/or test the formal model economically if
formal verification is not necessary.

Simulink [1] is an environment for the model-based analysis and design of embed-
ded control systems, which offers an intuitive graphical modeling language reminiscent
of circuit diagrams and thus appealing to the practising engineer. Stateflow [2] is a
toolbox adding facilities for modeling and simulating reactive systems by means of hi-
erarchical statecharts, extending Simulink’s scope to event-driven and hybrid forms of
embedded control. Modeling, analysis, and design using Simulink/Stateflow (S/S) have
become a de-facto standard in the embedded systems industry.

S/S relies on extensive simulation based on unverified numerical computation to
validate system requirements, which is prone to incomplete coverage of open system-
s and possible unsoundness of analysis results due to numerical errors. As a result,
existing errors in the model might not be discovered through simulation. If such in-
correctly developed systems are deployed then any undetected errors can potentially
cause a catastrophic failure. In safety-critical applications the risk of such failures is
regarded as unacceptable. Reducing these risks by formal verification would be desir-
able, complementing simulation. Motivated by this, in our previous work [48, 53, 54],
we presented a formal method for “closed-loop” verification of safety properties of S/S
models. This is achieved by automatically translating S/S diagrams into HCSP [24,51],
a formal modelling language for hybrid discrete-continuous systems. As formal analy-
sis of HCSP models is supported by an interactive Hybrid Hoare Logic (HHL) prover
based on Isabelle/HOL [29, 47, 52], this provides a gateway to mechanized verification
of S/S models. To justify the translation from S/S to HCSP, in [14], we investigated
how to translate HCSP formal models into Simulink graphical models, so that the con-
sistency between the original Simulink/Stateflow model and the translated HCSP formal
model can be checked by co-simulation.

In addition, in practice, people may start to build a formal model as a starting point
of designing a system, based on which formal analysis and verification are conducted.
However, a formal model is not easy to be understood by a domain expert or engineer,
and therefore is not easy to be validated. In particular, the cost for formal verification
of a formal model is quite expensive. In fact, many errors can be detected by testing
and/or simulation in an economical way. Thus, it deserves to translate a formal model
into a Simulink model, so that validation can be achieved by simulation; furthermore,
detecting errors can be done with simulation in an economical way.

So, HCSP formal models can be simulated and/or tested using Matlab platform eco-
nomically, without expensive formal verification when it is not necessary. Together with
the work on translating S/S diagrams into HCSP, it provides the designer of embedded
systems the flexibility using formal and informal methods according to the trade-off
between efficiency and cost, and correctness and reliability.

We have implemented a toolchain called MARS [13] to support the above approach.
MARS integrates a set of tools, including an automatic translator from S/S into HCSP,
and an automatic translator from HCSP into Simulink, an HHL theorem prover, an in-
variant generator for hybrid systems which provides the options to synthesize an invari-

ant with symbolic computation or numeric computation, and an abstractor to abstract
an elementary hybrid system by a polynomial hybrid system.

The above approach and tool have been successfully applied in the design of space-
crafts, and we will demonstrate it by applying the approach to the design of a descent
guidance control program of a lunar lander. A preliminary version of these results has
been reported elsewhere [48].

1.1 Synopsis

This chapter first summarizes our experience on the design of spacecrafts before, most
of which are joint work with other people. Then, we argue that combining formal and
informal methods can provide the flexibility in the design of spacecrafts, but we do
not provide any further technical contribution. The main results we used are listed as
follows:

– HHL is a joint work with Chaochen Zhou, Shuling Wang, Dimitar Guelev, Jiang
Liu, Jidong Lv, Zhao Quan, Hengjun Zhao and Liang Zou in [29, 44, 46], which
extends classical Hoare logic to hybrid systems;

– Invariant generation of hybrid systems is a joint work with Jiang Liu and Hengjun
Zhao in [30–32];

– The translation from S/S is based on the joint work with Martin Fränzle, Shengchao
Qin, Shuling Wang and Liang Zou published in [53, 54];

– The translation from HCSP to Simulink is based on the joint work in [14] with
Anders P. Ravn, Mingshuai Chen, and Liang Zou;

– The tool implementation is based on the joint work [13, 45, 52] with Mingshuai
Chen, Shuling Wang, Liang Zou, Tao Tang, Xiao Han and Hengjun Zhao;

– The case study part is based on the joint work in [48] with Hengjun Zhao, Bin Gu
and Yao Chen.

Paper Organization. The rest of this paper is organized as follows. Section 2 briefly re-
views Simulink/Stateflow, HCSP and HHL. Section 3 establishes a connection between
S/S informal models and HCSP formal models. Section 4 focuses on the explanation of
the toolchain MARS. In Section 5, we demonstrate our approach by analysis and veri-
fication of the GNC control program of a lunar lander. Section 6 introduces the related
work. Section 7 draws a conclusion and discusses the future work.

2 Simulink/Stateflow, HCSP and HHL

In this section, we briefly introduce the industrial de-facto graphical modeling language
Simulink/Stateflow, the formal modeling language Hybrid CSP (HCSP), the specifica-
tion language Hybrid Hoare Logic and its prover. The reader is referred to [1, 2, 47] for
more details.

2.1 Simulink

A Simulink model contains a set of blocks, subsystems, and wires, where blocks and
subsystems cooperate by message transmission through the wires connecting them. An
elementary block receives input signals and computes the output signals, and mean-
while, it contains some user-defined parameters to alter its functionality. One typical
parameter is sample time, which defines how frequently the computation is performed.
According to sample time, blocks are classified into two types: continuous blocks with
sample time 0, and discrete blocks with sample time greater than 0. Blocks and sub-
systems in a Simulink model receive inputs and compute outputs in parallel, and wires
specify the data flow between them.

Fig. 1 gives a Simulink model of train movement, comprising four blocks, including
continuous blocks v and p, that are integrator blocks of the Simulink library, and discrete
blocks c and acc. The block v outputs the velocity of the train, which is the time integral
of the input acceleration from acc; similarly, p outputs the distance of the train, which is
the time integral of the input velocity from v, and acc outputs the acceleration computed
according to the constant provided by c and the input distance from p.

v

1

s

p

1

s

c

1000

acc

Fig. 1. A simple control system

A

C
du: s=s+1

/h=0;m=0
[s>=59]{m=m+1}

2

[m>=60]/h=h+1;m=0

1

/s=0

Fig. 2. A timer

2.2 Stateflow

As a toolbox integrated into Simulink, Stateflow offers the modeling capabilities of s-
tatecharts for reactive systems. It can be used to construct Simulink blocks, which can
be fed with Simulink inputs to produce Simulink outputs. A Stateflow diagram has a
hierarchical structure, which can be an AND diagram, for which states are arranged in
parallel and all of them become active whenever the diagram is activated; or an OR
diagram, for which states are connected with transitions and only one of them becomes
active when the diagram is activated. A Stateflow diagram consists of an alphabet of
events and variables, a finite set of states, and transition networks. In the following, we
will explain the main ingredients of Stateflow and their intuitive meaning respectively.

Alphabet: The alphabet of a Stateflow diagram consists of a finite set of events and
variables. An event can be an input or output of a diagram,which may be local to
the diagram. A variable may also be set as input, output, or local, and moreover, it
can be associated with an initial value if necessary.

States: A state describes an operating mode, possibly active or inactive. A state could
be hierarchical, containing another Stateflow diagram inside. Because of hierar-
chy, transitions originating from a state are classified into two types depending on

whether or not their target states are inside the same state: ingoing and outgoing
transitions. All transitions are ordered by a strict priority so that there is no non-
determinism in transition selection. A state may be associated with three types of
actions (all are optional): entry action, that is executed when the state is activated;
during action, that is executed when no valid transition is enabled; and exit action,
that is executed when a valid transition leaves from the state, and as a consequence
the state becomes inactive. The actions of Stateflow may be either assignments, or
emissions of events, etc.
States in an AND diagram must be specified with different priorities, that determine
the order of their executions. The parallel states are actually executed in sequential
order according to their priority.

Transitions: A complete transition is a path from source state to target state. In State-
flow, a complete transition may consists of several transition segments by joining
connective junctions, which form a transition network from source state to target
state. A connective junction is a graphical object to connect different transition seg-
ments, but itself can not be seen as a source state nor a target state of a complete
transition. Each transition segment is of the form E[C]{cAct}/tAct, where E is an
event, C is the guard condition, cAct the condition action, and tAct the transition
action. All these components are optional. cAct will be executed immediately when
event E is triggered and condition C holds, while tAct will be put in a queue first
and be executed after the corresponding transition is taken.
Default transitions with no source states or source junctions are allowed for OR
diagrams, and they are used to choose an active state when an OR diagram is acti-
vated.

Next we explain intuitively how a Stateflow diagram is executed.

Initialization: Initially, the whole system is activated: for an AND diagram, all the
parallel states are activated according to the priority order; and for an OR diagram,
one of the states is activated by performing the default transition.

Broadcasting and Executing Transition: Each Stateflow diagram is activated either
by sampling time periodically or by triggering events, depending on the user-settings.
For the second case, as soon as one of the triggering event arrives, called current
event, the event will be broadcasted through the whole diagram. For an AND di-
agram, the event will be broadcasted sequentially to the parallel states inside the
diagram according to the priority order over states; while for an OR diagram, it
will find out the active state of the diagram (i.e. the one with the default transition)
and broadcast the event to it. It will then check the outgoing transitions of the cur-
rent active state according to the priority order, and if there is one valid transition
that is able to reach a state, the transition will be taken; otherwise, check the ingo-
ing transitions in the same way. If there is neither an outgoing nor an ingoing valid
transition enabled, the during action of the state will be executed, and then the event
is broadcasted recursively to the sub-diagram inside the state.
The transition might connect states at different levels in the hierarchical diagram.
When a transition connecting two states is taken, it will first find the common an-
cestor of the source and target states, i.e. the nearest state that contains both of
them inside, then perform the following steps: exit from the source state (including

its sub-diagram) step by step and at each step execute the exit action of the cor-
responding state and set it to be inactive, and then enter step by step to the target
state (including its sub-diagram), and at each step, set the corresponding state to be
active and execute the corresponding entry action.

Example 1. Fig. 2 gives an example of Stateflow. The states A and C are activated ini-
tially, so variables h, m, and s are set to 0. A has a transition network to itself, which
becomes enabled when s equals to 59. Once the transition network is enabled, the out-
going transition is executed, and thus m is increased by 1; then it will execute transition
1 as it is with a higher priority by increasing h by 1 and resetting m to 0 if m equals to
60, otherwise, execute transition 2.

Note that s is reset to 0 whenever the transition network becomes enabled, as the
sub-diagram of A is initialized again.

Combination of Simulink and Stateflow How Simulink and Stateflow work together
is exemplified by using the two examples in Fig. 1 and Fig. 2. In order to implement
the block acc in Fig. 1, we revise the Stateflow diagram in Fig. 2 as follows: We add
a condition action [True]{acc = 1000/p + m/100} to transition 2 of the Stateflow
diagram, meaning that the acceleration of the train is updated every minute and the new
acceleration is calculated as 1000/p + m/100. We then replace blocks acc and c by
the modified stateflow diagram, which inputs p from the simulink diagram and then
calculates and outputs the acceleration acc back to the simulink diagram.

2.3 Hybrid CSP (HCSP)

HCSP is an extension of Hoare’s Communicating Sequential Processes for model-
ing hybrid systems [24, 51]. In HCSP, differential equations are introduced to mod-
el continuous evolution of the physical environment along with interrupts. The set
of variables is denoted by V = {x, y, z,...} and the set of channels is denoted by
C = {ch1, ch2, ch3, ...}. The processes of HCSP are constructed as follows:

P ::= skip | x := e || wait d | ch?x | ch!e | P ;Q | B → P | P ⊔Q | X |
µX.P | ⟨F(ṡ, s) = 0&B⟩ | ⟨F(ṡ, s) = 0&B⟩D 8i∈I(ioi → Qi) |
⟨F(ṡ, s) = 0&B⟩ | ⟨F(ṡ, s) = 0&B⟩Dd Q

S ::= P | S∥S

Here, P,Q, and Qi represent sequential processes, whereas S stands for a (sub)system;
ch, chi ∈ C are communication channels; while chi∗ is a communication event which
can be either an input event ch?x or an output event ch!e; B and e are the Boolean, and
arithmetic expressions, respectively; and d is a non-negative real constant.

Process skip terminates immediately without updating variables, and process x := e
assigns the value of expression e to variable x and then terminates. Process wait d keeps
idle for d time units without changing the variables. Interaction between processes is
based on two types of communication events: ch!e sends the value of e along channel
ch, and ch?x assigns the value received along channel ch to variable x. Communication
takes place when both the source and the destination processes are ready.

A sequentially composed process P;Q behaves as P first, and if it terminates, as Q
afterward. The alternative process B→ P behaves as P only if B is true and terminates
otherwise. Internal choice between processes P and Q denoted as P ⊔ Q is resolved by
the process itself. Communication controlled external choice 8i∈I(chi∗ → Qi) specifies
that as soon as one of the communications chi∗ takes place, the process starts behaving
as process Qi. The repetition P∗ executes P for an arbitrary finite number of times, and
the choice of the number of times is non-deterministic.

Continuous evolution is specified as ⟨F(ṡ, s) = 0&B⟩. The real variable s evolves
continuously according to differential equations F as long as the Boolean expression
B is true. B defines the domain of s. Interruption of the continuous evolution due to B
(as soon as it becomes false) is known as Boundary Interrupt. The continuous evolution
can also be preempted due to the following interrupts:

– Timeout Interrupt: ⟨F(ṡ, s) = 0&B⟩ Dd Q behaves like ⟨F(ṡ, s) = 0&B⟩, if the
continuous evolution terminates before d time units. Otherwise, after d time units
of evolution according to F , it behaves as Q.

– Communication Interrupt: ⟨F(ṡ, s) = 0&B⟩ D 8i∈I(chi∗ → Qi) behaves like
⟨F(ṡ, s) = 0&B⟩, except that the continuous evolution is preempted whenever one
of the communications chi∗ takes place, which is followed by respective Qi.

Finally, S defines an HCSP system on the top level. A parallel composition S1∥S2
behaves as if S1 and S2 run independently, except that they need to synchronize a-
long the common communication channels. The concurrent processes can only interact
through communication, and no shared variables are allowed. A detailed explanation
can be found in [47].

2.4 Hybrid Hoare Logic

In [29], classical Hoare Logic was extended to hybrid systems, called Hybrid Hoare
Logic (HHL). In HHL, a hybrid system is modeled by HCSP process. To capture both
discrete and continuous behavior of HCSP, the assertion languages of HHL include two
parts: one is first-order logic (FOL), used for specifying properties of discrete process-
es, and the other is a subset of Duration Calculus (DC) [49,50], called history formulas,
for specifying the execution history for continuous processes. In HHL, a specification
for a sequential process P is of the form {Pre}P {Post;HF}, where Pre,Post repre-
sent precondition and postcondition, respectively, and are expressed by FOL to specify
properties of variables held at starting and termination of the execution of P. HF is a
history formula to record the execution history of P, including its real-time and con-
tinuous properties. The specification for a parallel process is then defined by assigning
to each sequential component the respective precondition, postcondition, and history
formula, that is

{Pre1,Pre2}P1∥P2 {Post1,Post2;HF1,HF2}.

A proof system for HHL was provided in [29]. In particular, the notion of differen-
tial invariant [30, 37] is used to characterize the behavior of differential equations.

HHL Prover For tool support, we have implemented an interactive theorem prover for
HHL based on Isabelle/HOL, please refer to [45, 47, 52] for more details.

3 Connection between Informal and Formal models

In this section, we show how to link informal and formal models via a translation from
Simulink/Stateflow to HCSP and an inverse translation from HCSP to Simulink.

3.1 From Simulink/Stateflow to HCSP

3.1.1 Translating Simulink

The behavior of any block can be divided into a set of sub-behaviors, each of which
is guarded by a condition. Moreover, these guards are mutually exclusive and complete,
i.e., the conjunction of any two of them is unsatisfiable and the disjunction of them is
valid. Hence, blocks can be interpreted by a transformation predicate over inputs and
outputs as follows:

SemanB(init, ps) =̂ out(0) = init ∧
m∧

k=1

(Bk(ps, in)⇒ Pk(ps, in, out)), (1)

where init stands for the initial output value set by user, ps are the user-set parameters
that may change the function of the block, in and out are resp. the timed traces corre-
sponding to input and output signals, out(0) is the value of out at time 0. In the defini-
tion we assume that the block’s behavior is split into m cases by Bk and in each case the
behavior is specified by the corresponding predicate Pk. Additionaly,

∨m
k=1 Bk(ps, in)

is valid, and Bi(ps, in) ∧Bj(ps, in) is unsatisfiable for any i ̸= j.
So, the semantics of a Simulink diagram is defined by

SemanD =̂
n∧

j=1

SemanB(initj , psj) , (2)

where n is the number of blocks in the diagram, initj and psj are the initial output value
and parameters of the j-th block.

Notice that different types of blocks, i.e. continuous and discrete blocks, have dif-
ferent definitions for Bk and Pk because the input signals for discrete blocks only refer
to the value of the closest sample time point, i.e. the value of input signals at time t
should refer to the time (t − (t mod st)) where st represents the sample time of the
block.

Blocks
For a continuous block, its initialization is simply encoded as an assignment. A

continuous block uses its Bks as a partition of the whole state space, and continuously
evolves following some differential equation Fk subject to the corresponding formu-
la Bk. During the continuous evolution, the block is always ready for receiving new

signals from in-ports, and sending the respective signals to out-ports (represented by
ioi). Based on the continuous sample time, the blocks which receive signals from the
continuous block via out-ports can always get the latest values. So, a continuous block
can be encoded into the following process pattern:

PC(init, ps) =̂ out := init;P ∗

P =̂ ⟨F1(˙out, out, in, ps) = 0&B1(in, ps)⟩D 8i∈I(ioi → skip);
. . . ;
⟨Fm(˙out, out, in, ps) = 0&Bm(in, ps)⟩D 8i∈I(ioi → skip)

For a discrete block, its initialization is also encoded as an assignment. However,
a discrete block with sample time st only computes output signals at the time points
whose values minus the initial time are divided by st, i.e. once every st time units. At
the beginning of each period, it updates the input signal by receiving a new one from
in-port, and after the computation, sends the new produced output signal to the out-port.
Thus, the blocks which receive signals from the discrete block can always get the values
of the last nearest period. Finally, a discrete block can be encoded as follows:

PD(init, ps, n) =̂ out := init;P ∗

P =̂ cin?in;Pcomp; cout!out;wait st
Pcomp =̂ B1(in, ps)→ Pcomp1(in, out, ps); ...;

Bm(in, ps)→ Pcompm(in, out, ps)

Diagrams
A diagram is translated into an HCSP process via the following steps:

Step 1: computing inherited sample times. A Simulink diagram may contain blocks with
unspecified sample time, which is called inherited and is indicated with value −1.
An inherited sample time of a block is determined when the sample times of all
the input signals of the block are known, and then it is computed as the greatest
common divisor (GCD) of the sample times of these input signals.

Step 2: translating wires. In general, wires in Simulink diagrams can be considered as a
special form of signals, and thus can be represented as variables. In addition, when
a diagram is partitioned into a set of sub-diagrams, we will model a wire between
any two sub-diagrams as a pair of input and output channels for transmitting values.

Step 3: separating a diagram to a set of connected sub-diagrams. We first classify wires to
three categories: from continuous to continuous, from continuous to discrete (from
discrete to continuous), and from discrete to discrete; and then partition a diagram
to a set of largest connected blocks with the same type (that is either continuous or
discrete) according to the following strategy:
(1) Wires between continuous blocks are modelled as shared variables, and hence,

the two continuous blocks are put into one partition;
(2) Wires between a continuous block and a discrete block are modelled as chan-

nels, and thus, these two blocks are put into two disjoint partitions, and will
transmit values via the channels;

(3) Wires between discrete blocks are hard to model because the control represent-
ed by the blocks may be centralized or distributed. In our approach, a control is
assumed as centralized by default, and in this case, the wires between the dis-
crete blocks are modelled as shared variables; and therefore, the two blocks are
put in one partition. Please note that the general case in which the user options
for control are allowed will be discussed later.

Step 4: translating each resulting continuous sub-diagram. First, we collect all initializa-
tion parts of these continuous blocks in the continuous sub-diagram and put them
in sequence as the initialization part; second, collect all communications happen-
ing in these continuous blocks and union them together as the communication part;
third, cartesian the differential equations in these continuous blocks as the contin-
uous evolution part, then construct a communication interruption by setting that
the continuous evolution is interrupted by the communication part; finally, put the
initialization part and the communication interruption in sequence.

Step 5: translating each resulting discrete sub-diagram. As in the continuous case, we treat
the sub-diagram as a discrete block. So, we first collect all initialization parts, inputs
and outputs from the HCSP processes corresponding to these discrete blocks in
the discrete sub-diagrams, and respectively put them in sequence according to the
order of these blocks as the corresponding initialization, input and output in the final
HCSP process for the sub-diagram; then we compute the greatest common divisor t
of the sample times of these blocks as the sample time of the block; third, we update
each computation part of these discrete block by letting it be computed every t time
units, and then put all the updated computation parts in sequence together with the
input and output to form the computation part of the block; finally, we introduce a
timer to guarantee the computation part is executed periodically with period t.

Subsystems
A subsystem consists of a set of blocks, diagrams, and other subsystems. So, a sys-

tem can be modeled hierarchically in Simulink with subsystems. In Simulink, there are
three types of subsystems, i.e., normal subsystems, triggered subsystems and enabled
subsystems. In the following, we show how to translate them into HCSP.

– A normal subsystem contains neither triggered nor enabled blocks inside. For this
case, we flatten the subsystem directly by connecting the in-ports and out-ports
attached to it to the corresponding in-ports and out-ports attached to the blocks
inside it. The subsystem plus the outside blocks connected to it will then be reduced
to a diagram, which can be translated as above.

– A triggered subsystem contains a triggered block inside it, and meanwhile, there
is a corresponding input triggering signal targeting at the subsystem. The sample
times of all the other input signals of the subsystem are equal to the one of the trig-
gering signal. All the blocks except for the triggered block (called as normal blocks
hereafter) inside the subsystem have unspecified sample time -1. They constitute
a diagram, and will be activated by the trigger events. According to the change of
the triggering signal, there are three types of trigger events: the rising, falling and
changing of the sign of the triggering signal. Whenever a trigger event occurs, all
the normal blocks inside the subsystem will be performed once. We flatten the rest

of the triggered subsystem except for the triggering signal and the triggered block,
and then apply the above procedure to translate the resulting diagram. Taking the
triggering signal into account, the computation part procR is revised by

procR← tri?; cin; procR; cout,

where tri represents the input triggering signal, indicating that the computation of
the subsystem will be activated by signal tri? from outside.
Meanwhile, we revise the translation of the outside block that outputs the triggering
signal depending on its type as follows:
•Discrete. In this case, the computation part Pcomp is replaced by the following

process
osig := outtri;Pcomp;Btri(osig, outtri)→ tri!

In which, we introduce a variable osig to record the output signal of last period
at the beginning (here outtri is used to represent the triggering signal); then after
the computation part Pcomp is performed, we compare the old signal osig and
the new output signal outtri. If they satisfy the condition Btri for triggering an
event, then a triggering event tri! occurs. The definition of Btri depends on the
triggering type, for instance, if the triggering signal is rising,

Btri(osig, outtri) =̂ osig < 0 ∧ outtri ≥ 0 ∨ osig ≤ 0 ∧ outtri > 0

•Continuous. In this case, the differential equation part in Pcomp is replaced by
the following process

⟨F1(˙out, out) = 0&B1 ∧ ¬Btri⟩D · · · ;
· · ·
⟨Fm(˙out, out) = 0&Bm ∧ ¬Btri⟩D · · · ;
Btri → tri!;

⟨F1(˙out, out) = 0&B1 ∧Btri⟩D · · · ;
· · ·
⟨Fm(˙out, out) = 0&Bm ∧Btri⟩D · · ·

where Btri defines the condition for occurring a triggered event, in particular for
the rising case, it can be defined as outtri = 0 ∧ ˙outtri > 0, i.e. the value of the
output signal is 0 and its first derivative is greater than 0. As soon as Btri holds,
the event tri! occurs, and then the process continuously evolves according to
the differential equations of the block, till next time the trigger event occurs,
when Btri turns from false to true again.

– An Enabled subsystem Pcomp contains an enabled block inside it, and meanwhile,
there is a corresponding input enabling signal targeting at the subsystem. The block-
s except for the enabled block (i.e. normal blocks) inside the enabled subsystem can
be continuous or discrete, and whenever the input signal is greater than 0, they will
be activated.
For both continuous and discrete cases, we model the wire connecting the block
that outputs the enabling signal and the enabled subsystem as a shared variable en.

When both the enabling signal and the enabled subsystem are continuous, first of
all, for each normal block inside the subsystem, we add en > 0 as a conjunction
with the domains of all its differential equations, and meanwhile, add an extra dif-
ferential equation ⟨ ˙out = 0&en ≤ 0⟩ (meaning that the output is not changed when
the signal is not enabled) to the block, thus the new domains for the block will be
complete; then flatten the enabled subsystem, the resulting diagram plus the outside
output block will constitute a new continuous diagram, which can be translated as
above.
When both the enabling signal and the enabled subsystem are discrete and have the
sample time, first of all, for each normal block inside the subsystem, we add the
enabling condition en > 0 as a conjunction with the guards of the computation of
the block; then flatten the enabled subsystem, the resulting diagram plus the outside
output block will constitute a new discrete diagram, which can be translated as
above.

The detail of the translation from Simulink to HCSP can be found in [54].

3.1.2 Translating Stateflow

A Stateflow diagram is translated as a process template D, which is a parallel com-
position of the monitor processM and the parallel states S1, · · · ,Sn of the diagram,
with the following form

D =̂ M∥S1∥ · · · ∥Sn.

The monitor processM is an HCSP process, which monitors the broadcasting of the
event among the states Si. Each Si is also an HCSP process, which is the encoding of
the corresponding state in the Stateflow diagram. When the diagram is an OR diagram,
n will be 1, and the only state S1 corresponds to the virtual state that contains the
diagram, which has neither (entry/during/exit) action nor transition associated to it.
Si is an HCSP process corresponding to the i-th state. Si first initializes the local

variables of the state and activates the state by executing the entry action, defined by
Pinit and Pentry respectively; then it is triggered whenever an event E is emitted by the
monitor M possibly with the shared data, and performs the following actions: first,
initializes done to False indicating that no valid transition has been executed yet, and
searches for a valid transition starting from Si by calling a depth-first algorithm TTN; if
done is still false, then executes the during action dur and all of its sub-diagrams. Note
that for an OR diagram, the execution of the virtual state is essentially to execute the
sub-diagram directly; finally, notifies the monitor the completion of the broadcasting
and outputs the shared data.

Likewise, each sub-diagram (represented by Pdiag) may be AND or OR sub-diagram.
Different from the AND diagram at the outermost, for simplicity, we define the AND
sub-diagram as a sequential composition of its parallel states. This is reasonable because
there is no true concurrency in Stateflow and the parallel states are actually executed in
sequence according to their priorities. The OR diagram is encoded as a sequential com-
position of the connecting states, guarded by a condition aSi == 1 indicating that the

i-th state is active. In a word, Si can be represented by the following HCSP process:

Si =̂ Pinit;Pentry; (BCi?E;VOuti?svi;Sdu;BOi!;VIni!svi)∗,

Sdu =̂ done = False;TTN(Si, E, done);¬done→ (dur;Pdiag),

Pdiag =̂ Pand | Por,

Pand =̂ S1du ; · · · ;Smdu
,

Por =̂ (aS1 == 1→ S1du); · · · ; (aSk
== 1→ Skdu

).

Note that in the above, TTN returns an HCSP process corresponding to both out-
going and ingoing transitions from/to Si. In TTN, local events may be emitted, e.g.
during executing actions of transitions or states. For such case, the current execution
of the diagram needs to be interrupted by broadcasting the local event, and after the
broadcasting is completed, the interrupted execution will be resumed.

The monitor processM in terms of HCSP coordinates the execution of broadcasted
events. When an event is broadcasted, an OR diagram will broadcast the event to its
active state, while an AND diagram will broadcast the event to each of its sub-diagrams
according to the priority order. During the broadcasting, a new local event may be emit-
ted inside some sub-diagram, and thus current execution will be interrupted by the local
event. After the completion of the local event, the interrupted execution will be resumed.
M can be defined by the following HCSP process:

M =̂ num := 0; (Mm)
∗

Mm =̂ (num == 0) → (Ptri;CHin?iVar; num := 1;EL := [];NL := [];
push(EL, E); push(NL, 1));

(num == 1) → (BC1!E;VOut1!sv[](BR1?E; push(EL, E); push(NL, 1); num := 1)
[](BO1?;VIn1?sv; num := num + 1; pop(NL); push(NL, num));

· · ·
(num == n) → (BCn!E;VOutn!sv[](BRn?E; push(EL, E); push(NL, 1); num := 1)

[](BOn?;VInn?sv; num := num + 1; pop(NL); push(NL, num));
num == n+ 1 → (pop(EL); pop(NL); isEmpty(EL) → (num := 0;CHout!oVar);
¬isEmpty(EL) → (E := top(EL); num := top(NL)))),

where Ptri stands for the process corresponding to the triggered event, CHin?iVar for
receiving the input of the triggered event, CHout!oVar for sending out the update during
broadcasting the event, n for the number of parallel states of current diagram, E for
current event, num for the sub-diagram to which current event is broadcasted. EL and
NL are two stacks respectively to store the broadcasted events and the corresponding
sub-diagrams to which these events are broadcasted.

Advanced features of Stateflow can also be handled well by HCSP, please see [53]
for the detail.

3.1.3 Translating Combination of Simulink and Stateflow

Given a Simulink/Stateflow model, its Simulink and Stateflow parts are translated by
using procedures in Section 3.1.1 and Section 3.1.2 respectively, and then put the result-
ing HCSP processes in parallel to form the whole model of the system. The Simulink
and Stateflow diagrams in parallel transmit data or events via communications. The
communications between them are categorized into the following cases:

– The input (and output) variables from (and to) Simulink will be transmitted through
the monitor process to (and from) Stateflow;

– The input events from Simulink will be passed via the monitor to Stateflow;
– The output events (i.e. the ones occurring in S1, · · · ,Sn in the Stateflow diagram)

will be sent directly to Simulink;
– The input/output variables and events inside Simulink part are handled as in Section

3.1.1.

Please see [53] for the detail.

3.2 From HCSP to Simulink

In [14], we present a translation from HCSP to Simulink as an inverse procedure of the
translation from Simulink/Stateflow to HCSP. The basic idea is to define an operational
semantics for HCSP using Simulink. This means that everything in an HSCP model
must be represented in Simulink. The latter is constituted from subsystems and there-
fore even arithmetic or Boolean expressions which are incorporated in HSCP must be
translated to a Simulink subsystem in a consistent manner. For example, it is a natural
way to define the meaning of any arithmetic (Bolean) expression as a normal subsystem,
for instance, Fig. 3 is a Simulink subsystem corresponding to x− 1 + y ∗ ((−2)/3.4).

1

Out_1

Divide1
3.4

Constant3

2

Constant2

1

Constant1

Add2

Add1

1

In_x

2

In_y

Fig. 3. x− 1 + y ∗ ((−2)/3.4)

For modeling sequential composition, inspired by UTP [26], we therefore introduce
a pair of Boolean signals ok and ok′ into each subsystem, which is translated from an
HCSP process, to indicate the relevant initiation and termination. If ok′ is false, the
process has not terminated and the final values of the process variables are unobserv-
able. Similarly, if ok is false, the process has never started and even the initial values
are unobservable. Additionally, ok and ok′ are local to each subsystem corresponding
to an HCSP process, which never occur in the process text. Furthermore, ok and ok′ in
a Simulink subsystem are constructed as an in-port signal named In_ok and an out-port
signal named Out_ok respectively. For example, the semantics of skip is defined by a
subsystem given in Fig. 4.

1

Out_ok

1

In_ok

Fig. 4. skip Statement

The translation of a continuous evolution of HCSP is very involved, which is shown
in Fig. 5, where the group of differential equations F and the Boolean condition B are
encapsulated into a single subsystem respectively. The enabled subsystem F contains
a set of integrator blocks corresponding to the vector s of continuous variables, and
executes continuously whenever the value of the input signal, abbreviated as en, on
enable-port is positive. Intuitively, subsystem B guards the evolution of subsystem F by
taking the output signals of F as its inputs, i.e. sB = s′F , and partially controlling the
enable signal of F via its output Boolean signal, denoted by B. As a consequence, an
algebraic loop occurs between subsystem B and F which is not allowed in Simulink,
and a plain solution is to insert an unit delay block with an initial value 1 insert after
subsystem B.

B

2

Out_s

1

Out_ok

z

1

Unit
Delay

 > 0

In_s Out_1

Subsystem B

NOT
AND

AND

In_s Out_s

Enabled Subsystem F

1

In_ok

2

In_s

Fig. 5. Continuous Evolution

The full description and justification of the translation can be found in [14].

4 Tool Implementation

We have implemented all the above theories and integrated them as a toolchain named
MARS for Modelling, Analyzing and veRifing spacecraft control systems [13]. As shown
in Fig. 6, the architecture of MARS is composed of three parts: a linking between infor-
mal and formal models, consisting of a translator Sim2HCSP from Simulink/Stateflow
to HCSP and a translator from HCSP to Simulink, an HHL prover, and an invariant
generator.

The translator Sim2HCSP is designed to translate Simulink/Stateflow models to HC-
SP. By applying Sim2HCSP, the translation from Simulink/Stateflow to HCSP is fully
automatic, and to justify its correctness, another automatic inverse translator H2S is im-
plemented. We use H2S to translate the HCSP model resulting from Sim2HCSP back to
Simulink, and check the consistency between the output Simulink/Stateflow model and
the original Simulink/Stateflow model by co-simulation.

The HHL prover is then applied to verify the above HCSP models obtained from
Sim2HCSP. HHL prover is a theorem prover for Hybrid Hoare Logic (HHL) [29]. As
the input of HHL prover, the HCSP models are written in the form of HHL specifica-
tions. Each HHL specification consists of an HCSP process, a pre-/post-condition to
specify the initial and terminating states of the process, and a history formula to record
the whole execution history of the process, respectively. HHL defines a set of axioms
and inference rules to deduce such specifications. Finally, by applying HHL prover, the

specification to be proved will be transformed into an equivalent set of logical formulas,
which will be proved by applying axioms of corresponding logics in an interactive or
automatic way.

To verify differential equations, we use the concept differential invariants to charac-
terize their properties without solving them [30]. For computing differential invariants,
we have implemented an independent invariant generator, which will be called during
the verification in HHL prover. The invariant generator integrates both the quantifier e-
limination and SOS based methods for computing differential invariants of polynomial
equations, and can also deal with non-polynomial systems by transformation techniques
we proposed [32], which is implemented as EHS2PHS in Fig. 6.

Simulink/Stateflow

model

H2S

Sim2HCSP

HHL specifications
Interactive prover

HCSP model

Invariant generatorAutomated prover

 HHL prover

EHS2PHS

Fig. 6. Verification architecture

5 A Case Study: Analysis and Verification of a Descent Guidance
Control Program of a Lunar Lander

5.1 Description of the Verification Problem

At the end of 2013, China launched a lunar lander to achieve its first soft-landing and
roving exploration on the moon. After launching, the lander first entered an Earth-Moon
transfer orbit, then a 100 kilometers (km)-high circular lunar orbit, and then a 15km ×
100km elliptic lunar orbit. At perilune of the elliptic orbit, the lander’s variable thruster
was fired to begin the powered descent process, which can be divided into 6 phases.
As shown in Fig. 7, the terminal phase of powered descent is the slow descent phase,
which should normally end several meters above the landing site, followed by a free
fall to the lunar surface. One of the reasons to shut down the thruster before touchdown
is to reduce the amount of stirred up dust that can damage onboard instruments.

Fig. 7. The powered descent process of the lunar lander.

Powered descent is the most challenging task of the lunar lander mission because it
is fully autonomous. Due to communication delay, it is impossible for stations on earth
to track the rapidly moving lander, and remote control commands from earth cannot take
effect immediately. The lander must rely on its own guidance, navigation and control
(GNC) system to, in real time, acquire its current state, calculate control commands,
and use the commands to adjust its attitude and engine thrust. Therefore the reliable
functionality of the GNC system is the key to the success of soft-landing.

Clearly, the powered descent process of the lander gives a specific hybrid system (H-
S), i.e. a sampled-data control system composed of the physical plant and the embedded
control program, which forms a closed-loop with the following prominent features: 1)
the physical dynamics is modelled by ordinary differential equations (ODEs) with gen-
eral elementary functions (rational, trigonometric, exponential functions etc.); 2) the
program has complex branching conditions and numerical computations; 3) the physi-
cal process is frequently interrupted by control inputs from the program; 4) the system
suffers from various uncertainties. Due to the high complexity, analysis and verification
of such a system is very hard and beyond the capacity of many existing verification
tools.

As a case study, we show how to apply the above approach to analysis and verifi-
cation by focusing on one of the 6 phases, i.e. the slow descent phase, of the powered
descent process. Through such verification, trustworthiness of the lunar lander’s con-
trol program is enhanced. According to the framework of our approach, analysis and
verification procedure can be outlined as follows:

1) we first build a Simulink/Stateflow model of the closed-loop system and analyze its
behaviour by simulation;

2) then, with the tool Sim2HCSP [53, 54], the Simulink/Stateflow graphical model is
automatically translated to a formal model given by HCSP;

3) subsequently, to justify the above translation, using the translator H2S [14], the
resulted HCSP process is translated to a Simulink diagram inversely, so that the
consistency between the original Simulink/Stateflow model and the translated HC-
SP model can be checked by co-simulation;

4) finally, a formal verification of the system is conducted using HHL Prover [52].
During the verification, we need to call the tool EHS2PHS [32] first to abstract
the considered elementary hybrid system to a polynomial hybrid system, and then

exploit the tool invariant generator [30] to synthesize an invariant of the obtained
polynomial HS.

All the above procedure is fully supported by the toolchain MARS [13].

5.1.1 Overview of the Slow Descent Phase

The slow descent phase begins at an altitude (relative to lunar surface) of approx-
imately 30m and terminates when the engine shutdown signal is received. The task of
this phase is to ensure that the lander descends slowly and smoothly to the lunar surface,
by nulling the horizontal velocity, maintaining a prescribed uniform vertical velocity,
and keeping the lander at an upright position. The descent trajectory is nearly vertical
w.r.t. the lunar surface (see Fig. 8).

Fig. 8. The slow descent phase. Fig. 9. A simplified configuration of GNC.

The operational principle of the GNC system for the slow descent phase (and any
other phases) can be illustrated by Fig. 9. The closed loop system is composed of the
lander’s dynamics and the guidance program for the present phase. The guidance pro-
gram is executed periodically with a fixed sampling period. At each sampling point, the
current state of the lander is measured by IMU (inertial measurement unit) or various
sensors. Processed measurements are then input into the guidance program, which out-
puts control commands, e.g. the magnitude and direction of thrust, to be imposed on
the lander’s dynamics in the following sampling cycle.

We next give a mathematical description of the lander’s dynamics as well as the
guidance program of the slow descent phase. For the purpose of showing the technical
feasibility and effectiveness of formal methods in the verification of aerospace guidance
programs, we neglect the attitude control as well as the orbit control in the horizontal
plane, resulting in a one-dimensional (the vertical direction) orbit dynamics.

Dynamics. Let the upward direction be the positive direction of the one-dimensional
axis. Then the lander’s dynamics is given by

ṙ = v
v̇ = Fc

m − gM
ṁ = − Fc

Isp1

Ḟc = 0
Fc ∈ [1500, 3000]

and


ṙ = v
v̇ = Fc

m − gM
ṁ = − Fc

Isp2

Ḟc = 0
Fc ∈ (3000, 5000]

, where (3)

– r, v and m denote the altitude (relative to lunar surface), vertical velocity and mass
of the lunar lander, respectively;

–Fc is the thrust imposed on the lander, which is a constant in each sampling period;
– gM is the magnitude of the gravitational acceleration on the moon, which varies

with height r but is taken to be the constant 1.622m/s2 in this paper, since the
change of height (0≤r≤30m) can be neglected compared to the radius of the moon;

– Isp1 = 2500N·s/kg and Isp2 = 2800N·s/kg are the two possible values that the
specific impulse1 of the lander’s thrust engine can take, depending on whether the
current Fc lies in [1500, 3000] or (3000, 5000], and thus the lander’s dynamics com-
prises two different forms as shown in (3);

– note that the terms Fc

m in (3) make the dynamics non-polynomial.

Guidance Program. The guidance program for the slow descent phase is executed once
for every 0.128s. The control flow of the program, containing 4 main blocks, is demon-
strated by the left part of Fig. 10.

Fig. 10. The guidance program for the slow descent phase.

The program first reads data given by navigation computation (block 1), and then
decides whether to stay in the slow descent phase or switch to other phases by testing
the following conditions (block 2):

(SW1) shutdown signal 1, which should normally be sent out by sensors at the height of
6m, is received, and the lander has stayed in slow descent phase for more than 10s;

(SW2) shutdown signal 2, which should normally be sent out by sensors at the height of
3m, is received, and the lander has stayed in slow descent phase for more than 10s;

(SW3) no shutdown signal is received and the lander has stayed in the slow descent phase
for more than 20s.

If any of the above conditions is satisfied, then the GNC system switches from slow
descent phase to no-control phase and a shutdown command is sent out to the thrust

1 Specific impulse is a physical quantity describing the efficiency of rocket engines. It equals
the thrust produced per unit mass of propellant burned per second.

engine; otherwise the program will stay in the slow descent phase and do the guidance
computation (block 3) as shown in the right part of Fig. 10, where

– v and gM are the vertical velocity and gravitational acceleration from navigation
measurements or computation; note that we have assumed gM to be a constant;

–Fc and m are the computed thrust and mass estimation at last sampling point; they
can be read from memory;

–DeltaT = 0.128s is the sampling period;
– Isp is the specific impulse which can take two different values, i.e. 2500 or 2800,

depending on the current value of Fc;
–mMin = 1100kg and mMax =3000kg are two constants used as the lower and

upper bounds of mass estimation;
– c1 = 0.01 and c2 = 0.6 are two control coefficients in the guidance law;
– vslw = −2m/s is the target descent velocity of the slow descent phase;
– the output Fc (block 4) will be used to adjust engine thrust for the following sam-

pling cycle; it can be deduced from the program that the commanded thrust Fc

always lies in the range [1500, 5000].

5.1.2 Verification Objectives

Together with the engineers participating in the lunar lander project, we propose the
following properties to be verified regarding the closed-loop system of the slow descent
phase and the subsequent free fall phase.

Firstly, suppose the lunar lander enters the slow descent phase at r = 30m with
v = −2m/s, m = 1250kg and Fc = 2027.5N. Then

(P1) Safety 1: |v − vslw | ≤ ε during the slow descent phase and before touchdown2,
where ε = 0.05m/s is the tolerance of fluctuation of v around the target vslw =
−2m/s;

(P2) Safety 2: |v| < vMax at the time of touchdown, where vMax = 5m/s is the upper
bound of |v| to avoid the lander’s crash when contacting the lunar surface;

(P3) Reachability: one of the switching conditions (SW1)-(SW3) will finally be satis-
fied so that the system will exit the slow descent phase.

Furthermore, by taking into account such factors as uncertainty of initial state, dis-
turbance of dynamics, sensor errors, floating-point calculation errors etc., we give

(P4) Stability and Robustness: (P2) and (P3) still holds, and an analogous of (P1) is
that v will be steered towards vslw = −2m/s after some time.

5.2 Analysis by Simulation

We first build a Simulink/Stateflow model of the closed-loop system for the slow de-
scent phase. Then based on the model we analyze the system’s behaviour by simulation.

The physical dynamics specified by (3) is modelled by the Simulink diagram shown
in Fig. 11.

In Fig. 11, several blocks contain parameters that are not displayed:
2 Note that if no shutdown signal is received, there exists possibility that the lander stays in the

slow descent phase after landing.

v

2

m

1

v1

1
s

r

1
s

m1

1
s

gain

−1

gM

1.622

Scope

Isp2

2800

Isp1

2500
Isp

 >

Divide2Divide1 Add

Fc

1

Fig. 11. The Simulink diagram of the dynamics for the slow descent phase.

– the threshold of Isp is 3000, which means Isp outputs 2800 when Fc is greater than
3000, and 2500 otherwise;

– the initial values of m, v and r (m = 1250kg, r = 30m, v = −2m/s) are specified
as initial values of blocks m1, v1 and r respectively.

Fc

1

vslw

−2

sub

mul4

mul3

mul2

mul1

max

max

mSat

gM

1.622

c2

0.6

c1

0.01

c0

1500

add2

add1

FcSat

Fc2
z

1

Fc1

v

2

m

1

Fig. 12. The Simulink diagram of the guidance program for the slow descent phase.

As specified in Fig. 10, The guidance program includes three parts: updating mass
m, calculating acceleration aIC, and calculating thrust Fc. The Simulink diagram for
the guidance program is shown in Fig. 12, in which the sample time of all blocks are
fixed as 0.128s, i.e. the period of the guidance program. In Fig. 12, blocks m and mSat
are used to update mass m, blocks Fc1 and FcSat are used to calculate thrust Fc, and
the rest are used to calculate acceleration aIC. Blocks mSat and FcSat are saturation
blocks from Simulink library which limit input signals to the upper and lower bounds
of m and Fc respectively.

The simulation result is shown in Fig. 13. The left part shows that the velocity of
the lander is between -2 and -1.9999, which corresponds to (P1); the right part shows
that if shutdown signal 1 is sent out at 6m and is successfully received by the lander,
then (SW1) will be satisfied at time 12.032s, which corresponds to (P3).

6.2 1-- - -

6.1 1-- - -

r
6 1-- - -

5.9 1-- , , • - -

12.029 12.03 12.031 12.032 12.033 12.034 12.035

T

Fig. 13. The simulation result.

5.3 From Simulink/Stateflow Model to HCSP Model

Given a Simulink/Stateflow model, Sim2HCSP translates its Simulink and Stateflow
parts separately. With the approach in [54], the Simulink part is translated into HCSP
processes, while using the approach in [53], the Stateflow part is translated into another
HCSP processes. Then, these HCSP processes are put together in parallel to form the
whole model of the system. The Simulink and Stateflow diagrams in parallel transmit
data or events via communications. Please refer to [53,54] for details. Sim2HCSP takes
Simulink/Stateflow models (in xml format, which is generated by a Matlab script) as
input, and outputs several files as the definitions for the corresponding HCSP process-
es, which contain three files for defining variables, processes, and assertions for the
Simulink part, and the same three files for each Stateflow diagram within the Stateflow
part.

Then the manually constructed Simulink model is translated into annotated HCSP
using the tool Sim2HCSP, which is basically as

definition P :: proc where
"P == PC_Init; PD_Init; t:=0; (PC_Diff; t:=0; PD_Rep)*"

In process P, PC_Init and PD_Init are initialization procedures for the continuous
dynamics and the guidance program respectively; PC_Diff models the continuous dy-
namics given by (3) within a period of 0.128s; PD_Rep calculates thrust Fc according
to

F ′
c := −0.01 · (Fc −m · gM)− 0.6 · (v − vslw) ·m+m · gM (4)

for the next sampling cycle; variable t denotes the elapsed time in each sampling cycle.
Hence, process P is initialized at the beginning by PC_Init and PD_Init, and behaves as
a repetition of dynamics PC_Diff and computation PD_Rep afterwards.

5.4 Consistency Checking by Co-simulation

To validate the above translated HCSP model, we translate it into a Simulink model
using the tool H2S inversely, which consists of 63 nested subsystems. The top-level
overview of the translated Simulink model is shown in Fig. 14, where a parallel pattern
interprets the physical plant PC and the control program PD.

To validate the formal model, the translated Simulink model is simulated with a
fixed simulation step of 0.0001s, and the evolution of the lander is shown as the solid
curve in Fig. 15. For velocity, we also illustrate the corresponding results of the original
Simulink model in the dash curve, showing that the translation loop well keeps the
system behaviours consistently. Moreover, the left part shows that the velocity of the
lander is between−2 and−1.9999m/s, which corresponds to (R1); the right part shows
that if shut-down signal is sent out at 6m and is successfully received by the lander,
then (R3) is satisfied at time 12.0569s; and then with a subsequent free fall, (R2) is
guaranteed.

By combining formal and informal approaches in validation and verification of the
lunar lander, the reliability was indeed improved, and the domain experts and engineers
were also convinced.

Out_temp

10

Out_ok

9

Out_t

8

Out_f1

7

Out_v1

6

Out_m1

5

Out_f

4

Out_v

3

Out_m

2

Out_r

1

SubSystem_PD

In_ok

In_f1

In_temp

In_t

In_ready_chv

In_v1

In_chv

In_ready_chm

In_m1

In_chm

In_ready_chf

Out_ok

Out_ready_chv_40

Out_ready_chm_38

Out_m1

Out_v1

Out_ready_chf_34

Out_f1

Out_chf_34

Out_t

Out_temp

SubSystem_PC

In_ok

In_f

In_v

In_m

In_r

In_ready_chm

In_ready_chv

In_ready_chf

In_chf

Out_ok

Out_r

Out_ready_chm_13

Out_m

Out_chm_13

Out_ready_chv_16

Out_v

Out_chv_16

Out_ready_chf_19

Out_f

AND

In_ok

10

In_m1

9

In_v1

8

In_t

7

In_temp

6

In_f1

5

In_r

4

In_m

3

In_v

2

In_f

1

Fig. 14. The top-level overview of the translated Simulink model

0 5 10 15
−2

−2

−2

−2

−2

−1.9999

−1.9999

−1.9999

−1.9999

−1.9999

−1.9999

t

v

original
H2S

t

v

12.0566 12.0567 12.0567 12.0568 12.0568 12.0569 12.057 12.057 12.0571 12.0571
−5

−4

12.0566 12.0567 12.0567 12.0568 12.0568 12.0569 12.057 12.057 12.0571 12.0571
5.9995

5.9996

5.9997

5.9998

5.9999

6

6.0001

6.0002

6.0003

6.0004

6.0005

Time offset: 0

r

t

Fig. 15. The evolution in physical plant PC
5.5 Verification

In this section, we formally verify the property (P1), and the proof for the other proper-
ties (P2)-(P4) can be found in [48].

In order to verify property (P1), we give the following proof goal in HHL Prover:

lemma goal : "{True} P {safeProp; (l=0 | (high safeProp))}"

where safeProp stands for |v − vslw | ≤ ε. The parts True and safeProp specify the
pre- and post-conditions of P respectively. The part (l=0 | (high safeProp)) specifies a
duration property, where l=0 means the duration is 0, and high means that the following
state expression should hold everywhere on a considered interval.

After applying proof rules in HHL Prover with the above proof goal, the following
three lemmas remain unresolved:

lemma constraint1: "(t<=0.128) & Inv |- safeProp"
lemma constraint2: "(v=-2) & (m=1250) & (Fc=2027.5)

& (t=0) |- Inv"
lemma constraint3: "(t= 0.128) & Inv

|- substF([(t,0)], substF([(Fc,
-0.01*(Fc-1.622*m) - 0.6*(v+2)*m + 1.622*m)],Inv))"

In a more readable way, the three lemmas impose the following constraints:

(C1) 0 ≤ t ≤ 0.218 ∧ Inv −→ |v − vslw | ≤ ε;

(C2) v = −2 ∧m = 1250 ∧ Fc = 2027.5 ∧ t = 0 −→ Inv ;
(C3) t = 0.128 ∧ Inv −→ Inv(0← t;F ′

c ← Fc) , with F ′
c defined in (4);

(C4) Inv is the invariant of both constrained dynamical systems

⟨ODE 1; 0 ≤ t ≤ 0.128∧Fc ≤ 3000⟩ and ⟨ODE 2; 0 ≤ t ≤ 0.128∧Fc > 3000⟩ ,

where ODE 1 and ODE 2 are the two dynamics defined in (3).

Invariant Generation. Invariant generation for polynomial continuous/hybrid systems
has been studied a lot [30]. To deal with systems with non-polynomial dynamics, we
propose a method based on variable transformation. For this case study, we replace the
non-polynomial terms Fc

m in ODE 1 and ODE 2 by a new variable a. Then by simple
computation of derivatives we get two transformed polynomial dynamics:

ODE ′
1 =̂


ṙ = v
v̇ = a− 1.622

ȧ = a2

2500

and ODE ′
2 =̂


ṙ = v
v̇ = a− 1.622

ȧ = a2

2800

. (5)

Furthermore, it is not difficult to see that the update of Fc as in (4) can be accordingly
transformed to the update of a given by

a′ =̂ − c1 · (a− gM)− c2 · (v − vslw) + gM . (6)

As a result, if we assume Inv to be a formula over variables v, a, t, then (C2)-(C4) can
be transformed to:

(C2’) v = −2 ∧ a = 1.622 ∧ t = 0 −→ Inv ;
(C3’) t = 0.128 ∧ Inv −→ Inv(0← t; a′ ← a), with a′ defined in (6);
(C4’) Inv is the invariant of both constrained dynamical systems ⟨ODE ′

1; 0 ≤ t ≤ 0.128⟩
and ⟨ODE ′

2; 0 ≤ t ≤ 0.128⟩3 with ODE ′
1 and ODE ′

2 defined in (5).

Note that the constraints (C1) and (C2’)-(C4’) are all polynomial. Then the invari-
ant Inv can be synthesized using the SOS (sum-of-squares) relaxation approach in the
study of polynomial hybrid systems [28]. With the Matlab-based tool YALMIP and
SDPT-3, an invariant p(v, a, t) ≤ 0 as depicted by Fig. 16 is generated. Furthermore,
to avoid the errors of numerical computation in Matlab, we perform post-verification
using the computer algebra tool RAGlib4 to show that the synthesized p(v, a, t) ≤ 0
is indeed an invariant. Thus we have successfully completed the proof of property (P1)
by theorem proving. On the platform with Intel Q9400 2.66GHz CPU and 4GB RAM
running Windows XP, the synthesis costs 2s and 5MB memory, while post-verification
costs 10 minutes and 70MB memory.

3 We have abstracted away the domain constraints on Fc.
4 http://www-polsys.lip6.fr/~safey/RAGLib/

Fig. 16. The invariant for HHL Prover.

6 Related work

6.1 Related formalization of Sumulink/Stateflow

There has been a range of work on translating Simulink into modelling formalisms sup-
ported by analysis and verification tools. Tripakis et al. [43] presented an algorithm
for translating discrete-time Simulink models to Lustre, a synchronous language featur-
ing a formal semantics and a number of tools for validation and analysis. Cavalcanti
et al. [11] put forth a semantics for discrete-time Simulink diagrams using Circus, a
combination of Z and CSP. Meenakshi et al. [34] proposed an algorithm that translates
a subset of Simulink into the input language of the finite-state model checker NuSMV.
Chen et al. [12] presented an algorithm that translates Simulink models to the real-time
specification language Timed Interval Calculus (TIC), which can accommodate contin-
uous Simulink diagrams directly, and they validated TIC models using an interactive
theorem prover. Their translation is confined to continuous blocks whose outputs can
be represented explicitly by a closed-form mathematical relation on their inputs.

Beyond the pure Simulink models considered in the above approaches, models com-
prising reactive components triggered by and affecting the Simulink dataflow model
have also been studied recently. Hamon et al. [23] proposed an operational seman-
tics of Stateflow, which serves as a foundation for developing tools for formal analy-
sis of Stateflow designs. Scaife et al. [39] translated a subset of Stateflow into Lustre
for formal analysis. Tiwari [42] defines a formal semantics of Simulink/Stateflow us-
ing guarded pushdown automata, in which continuous dynamical systems modeled by
Simulink are discretized, and he discussed how to verify a guarded sequence via type
checking, model checking and theorem proving. Agrawal et al. [5] proposed a method
to translate Simulink/Stateflow models into hybrid automata using graph flattening, and
the target models represented by hybrid automata can then be formally analyzed and
verified by model checkers for hybrid systems. Their approach induces certain limita-
tions, both for the discrete-continuous interfaces in Simulink/Stateflow models, where

the output signals of Stateflow blocks are required to be Boolean and to immediately
connect to the selector input of an analog switch block, and for the forms of continuous
dynamics, as most of current model checkers for hybrid systems support only very re-
stricted differential equations. Miller et al. [35] proposed a method to translate discrete
Simulink/Stateflow models into Lustre for formal analysis.

In contrast, the formal semantics for Simulink/Stateflow given here is based on the
work of [53, 54], in which the meanings of most of syntactic entities and features of
Simulink/Stateflow are well handled by using HCSP. E.g., the meaning of all continu-
ous blocks can be well defined by using the notions of differential equations and invari-
ants in the HCSP encodings, advanced features like early return logic, history junction,
nontermination of Stateflow can be easily handled by using the notion of recursion of
HCSP, which are not addressed in most of the existing work. The payment is that we
have to resort to interactive theorem proving instead of automatic model checking for
discharging the proof obligations.

6.2 Related verification of embedded systems

Verification of full feedback system combining the physical plant with the control pro-
gram has been advocated by Cousot [16] and Goubault et al. [22]. There are some
recent work in this trend which resembles our approach in this paper. In [10], Bouis-
sou et al. presented a static analyzer named HybridFluctuat to analyze hybrid systems
encompassing embedded software and continuous environment; subdivision is needed
for HybridFluctuat to deal with large initial sets. In [33], Majumdar et al. also present-
ed a static analyzer CLSE for closed-loop control systems, using symbolic execution
and SMT solving techniques; CLSE only handles linear continuous dynamics. In [7],
Saha et al. verified stability of control software implementations; their approach re-
quires expertise on analysis of mathematical models in control theory using such tools
as Lyapunov functions.

6.3 Related verification tools

Some tools are available for formal verification of Simulink/Stateflow based on numer-
ical simulation or approximation. STRONG [17] performs bounded time reachability
and safety verification for linear hybrid systems based on robust test generation and
coverage. Breach [18] uses sensitivity analysis to compute approximate reachable sets
and analyzes properties in the form of MITL based on numerical simulation. C2E2 [19]
analyzes the discrete-continuous Stateflow models annotated with discrepancy func-
tions by transforming them to hybrid automata, and then checks bounded time invariant
properties of the models based on simulation.

There are many tools developed for formal modelling and verification of hybrid sys-
tems. The tool d/dt [8] provides reachability analysis and safety verification of hybrid
systems with linear continuous dynamics and uncertain bounded input. iSAT-ODE [4]
is a numerical SMT solver based on interval arithmetic that can conduct bounded model
checking for hybrid systems. Flow* [15] computes over-approximations of the reach-
able sets of continuous dynamical and hybrid systems in a bounded time. However,
due to the undecidable reachability problem of hybrid systems, the above tools based

on model checking are incomplete. Based on the alternative deductive approach, the
theorem prover KeYmaera [38] is proposed to verify hybrid systems specified using
differential dynamic logic. Compared to our work, it supports a simple set of hybrid
constructs that do not cover communications and parallel composition.

6.4 Related industrial case studies

There are some recent work on application of formal methods in the aerospace industry.
For example, in [27] Johnson et al. proved satellite rendezvous and conjunction avoid-
ance by computing the reachable sets of nonlinear hybrid systems; in [21] Katoen et
al. reported on their usage of formal modelling and analysis techniques in the software
development for a European satellite.

7 Conclusions

In this paper, we summarize our experience on combining formal and informal methods
in the design of spacecrafts. The ingredients of our approach include

– A translation from S/S to HCSP, implemented as Sim2HCSP;
– A translation from HCSP to Simulink, implemented as H2S;
– A deductive way to verify a translated S/S model via HHL prover;
– An abstraction of elementary hybrid systems by polynomial hybrid systems, imple-

mented as EHS2PHS;
– Invariant generation of polynomial hybrid systems, implemented as invariant gen-

erator.

The advantages of our approach include

– It enables formal verification as a complementation of simulation. As the inherent
incompleteness of simulation, it has become an agreement in industry and academia
to complement simulation with formal verification, but this issue still remains chal-
lenging although lots of attempts have been done (see the related work section);

– It provides an option to start the design of a hybrid system with an HCSP formal
model, and simulate and/or test it using Matlab platform economically, without
expensive formal verification if not necessary.

– The semantic preservation in shifting between formal and informal models is justi-
fied by co-simulation. Therefore, it provides the designer the flexibility using for-
mal and informal methods according to the trade-off between efficiency and cost,
and correctness and reliability.

The effectiveness of our approach has been demonstrated in the successful analysis
and verification of the descent guidance control program of a lunar lander.

Acknowledgements. We thank all of our collaborators with whom the joint work are
reported in this chapter, including Prof. Chaochen Zhou, Prof. Martin Fränzle, Prof.
Shengchao Qin, Prof. Anders P. Ravn, Prof. Tao Tang, Prof. Bin Gu, Dr. Jiang Liu, Dr.
Jidong Lv, Dr. Shuling Wang, Dr. Hengjun Zhao, Dr. Liang Zou, Dr. Yao Chen, Mr.
Mingshuai Chen and Mr. Zhao Quan.

References

1. Simulink User’s Guide, 2013. http://www.mathworks.com/help/pdf_doc/
simulink/sl_using.pdf.

2. Stateflow User’s Guide, 2013. http://www.mathworks.com/help/pdf_doc/
stateflow/sf_using.pdf.

3. SysML V 1.4 Beta Specification, 2013. http://www.omg.org/spec/SysML.
4. Eggers A, M. Fränzle, and C. Herde. SAT modulo ODE: A direct SAT approach to hybrid

systems. In ATVA’08, volume 5311 of LNCS, pages 171–185, 2008.
5. A. Agrawal, G. Simon, and G.Karsai. Semantic translation of Simulink/Stateflow models to

hybrid automata using graph transformations. In International Workshop on Graph Transfor-
mation and Visual Modeling Techniques, volume 109, pages 43–56, 2004.

6. R. Alur and T. Henzinger. Modularity for timed and hybrid systems. In CONCUR’97, volume
1243 of LNCS, pages 74–88. 1997.

7. A. Anta, R. Majumdar, I. Saha, and P. Tabuada. Automatic verification of control system
implementations. In EMSOFT’10, pages 9–18, 2010.

8. E. Asarin, T. Dang, and O. Maler. The d/dt tool for verification of hybrid systems. In CAV’02,
LNCS 2404, pages 365–370, 2002.

9. F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, and A. L. Sangiovanni-
Vincentelli. Metropolis: An integrated electronic system design environment. IEEE Com-
puter, 36(4):45–52, 2003.

10. O. Bouissou, E. Goubault, S. Putot, K. Tekkal, and F. Vedrine. HybridFluctuat: A static
analyzer of numerical programs within a continuous environment. In CAV’09, volume 5643
of LNCS, pages 620–626, 2009.

11. A. Cavalcanti, P. Clayton, and C. O’Halloran. Control law diagrams in circus. In FM’05,
volume 3582 of LNCS, pages 253–268, 2005.

12. C. Chen, J. S. Dong, and J. Sun. A formal framework for modeling and validating Simulink
diagrams. Formal Asp. Comput., 21(5):451–483, 2009.

13. M. Chen, X. Han, T. Tang, S. Wang, M. Yang, N. Zhan, H. Zhao, and L. Zou. MARS: A
toolchain for modeling, analysis and verification of spacecraft control systems. Technical
Report ISCAS-SKLCS-15-04, State Key Lab. of Computer Science, Institute of Software,
CAS, 2015.

14. M. Chen, A. Ravn, M. Yang, N. Zhan, and L. Zou. A two-way path between formal and
informal design of embedded systems. Technical Report ISCAS-SKLCS-15-06, State Key
Lab. of Computer Science, Institute of Software, Chinese Academy of Sciences, 2015.

15. X. Chen, E. Ábrahám, and S. Sankaranarayanan. Flow∗: An analyzer for non-linear hybrid
systems. In CAV’13, volume 8044 of LNCS, pages 258–263, 2013.

16. P. Cousot. Integrating physical systems in the static analysis of embedded control software.
In APLAS’05, volume 3780 of LNCS, pages 135–138. 2005.

17. Y. Deng, A. Rajhans, and A. A. Julius. STRONG: A trajectory-based verification toolbox for
hybrid systems. In QEST’13, volume 8054 of LNCS, pages 165–168, 2013.

18. A. Donzé. Breach, a toolbox for verification and parameter synthesis of hybrid systems. In
CAV’10, volume 6174 of LNCS, pages 167–170, 2010.

19. P. S. Duggirala, S. Mitra, M. Viswanathan, and M. Potok. C2E2: A verification tool for
annotated stateflow models. In TACAS’15, volume 9035 of LNCS, pages 68–82, 2015.

20. J. Eker, J. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer, S. Sachs, and Y. X-
iong. Taming heterogeneity - the ptolemy approach. Proceedings of the IEEE, 91(1):127–144,
2003.

21. M.-A. Esteve, J.-P. Katoen, V. Nguyen, B. Postma, and Y. Yushtein. Formal correctness,
safety, dependability, and performance analysis of a satellite. In ICSE’12, pages 1022–1031,
2012.

22. E. Goubault, M. Martel, and S. Putot. Some future challenges in the validation of control
systems. In ERTS’06, 2006.

23. G. Hamon and J. Rushby. An operational semantics for Stateflow. Int. J. Softw. Tools Technol.
Transf., 9(5):447–456, 2007.

24. J. He. From CSP to hybrid systems. In A Classical Mind, Essays in Honour of C.A.R. Hoare,
pages 171–189. Prentice Hall International (UK) Ltd., 1994.

25. T.A. Henzinger. The theory of hybrid automata. In LICS’96, pages 278–292, July 1996.
26. C.A.R. Hoare and J. He. Unifying theories of programming, volume 14. Prentice Hall Engle-

wood Cliffs, 1998.
27. T. Johnson, J. Green, S. Mitra, R. Dudley, and R. Erwin. Satellite rendezvous and conjunction

avoidance: Case studies in verification of nonlinear hybrid systems. In FM’12, volume 7436
of LNCS, pages 252–266, 2012.

28. H. Kong, F. He, X. Song, W. Hung, and M. Gu. Exponential-condition-based barrier certifi-
cate generation for safety verification of hybrid systems. In CAV’13, volume 8044 of LNCS,
pages 242–257. Springer, 2013.

29. J. Liu, J. Lv, Z. Quan, N. Zhan, H. Zhao, C. Zhou, and L. Zou. A calculus for hybrid CSP. In
APLAS’10, volume 6461 of LNCS, pages 1–15. 2010.

30. J. Liu, N. Zhan, and H. Zhao. Computing semi-algebraic invariants for polynomial dynamical
systems. In EMSOFT’11, pages 97–106, 2011.

31. J. Liu, N. Zhan, and H. Zhao. Automatically discovering relaxed lyapunov functions for
polynomial dynamical systems. Mathematics in Computer Science, 6(4):395–408, 2012.

32. J. Liu, N. Zhan, H. Zhao, and L. Zou. Abstraction of elementary hybrid systems by variable
transformation. In FM’15, volume 9109, pages 360–377. 2015.

33. R. Majumdar, I. Saha, K. Shashidhar, and Z. Wang. CLSE: Closed-loop symbolic execution.
In NFM’12, volume 7226 of LNCS, pages 356–370. 2012.

34. B. Meenakshi, A. Bhatnagar, and S. Roy. Tool for translating Simulink models into input
language of a model checker. In ICFEM’06, volume 4260 of LNCS, pages 606–620, 2006.

35. S. P. Miller, M. W. Whalen, and D. D. Cofer. Software model checking takes off. Commun.
ACM, 53(2):58–64, 2010.

36. A. Platzer. Differential dynamic logic for hybrid systems. J. Autom. Reasoning, 41(2):143–
189, 2008.

37. A. Platzer and E. Clarke. Computing differential invariants of hybrid systems as fixedpoints.
In CAV’08, volume 5123 of LNCS, pages 176–189. 2008.

38. A. Platzer and J.-D. Quesel. KeYmaera: A hybrid theorem prover for hybrid systems. In
IJCAR’08, volume 5195 of LNCS, pages 171–178, 2008.

39. N. Scaife, C. Sofronis, P. Caspi, S. Tripakis, and F. Maraninchi. Defining and translating a
"safe" subset of Simulink/Stateflow into lustre. In EMSOFT’04, pages 259–268. ACM, 2004.

40. B. Selic and S. Gerard. Modeling and Analysis or Real-Time and Embedded Systems with
UML and MARTE: Developing Cyber-Physical Systems. The MK/OMG Press, 2013.

41. M. Tiller. Introduction to Physical Modeling with Modelica. The Springer International Series
in Engineering and Computer Science. Springer-Verlag, 2001.

42. A. Tiwari. Formal semantics and analysis methods for Simulink Stateflow models. Technical
report, SRI International, 2002.

43. S. Tripakis, C. Sofronis, P. Caspi, and A. Curic. Translating discrete-time Simulink to Lustre.
ACM Trans. Embedded Comput. Syst., 4(4):779–818, 2005.

44. S. Wang, N. Zhan, and D. Guelev. An assume/guarantee based compositional calculus for
hybrid CSP. In TAMC’12, volume 7287 of LNCS, pages 72–83. 2012.

45. S. Wang, N. Zhan, and L. Zou. An improved HHL prover: An interactive theorem prover for
hybrid systems. In ICFEM’15, volume 9407 of LNCS, pages 382–399, 2015.

46. N. Zhan, S. Wang, and D. Guelev. Extending Hoare logic to hybrid systems. Technical Report
ISCAS-SKLCS-13-02, State Key Lab. of Computer Science, Institute of Software, Chinese
Academy of Sciences, 2013.

47. N. Zhan, S. Wang, and H. Zhao. Formal modelling, analysis and verification of hybrid sys-
tems. In Unifying Theories of Programming and Formal Engineering Methods, volume 8050
of LNCS, pages 207–281. 2013.

48. H. Zhao, M. Yang, N. Zhan, B. Gu, L. Zou, and Y. Chen. Formal verification of a descent
guidance control program of a lunar lander. In FM’14, volume 8442 of LNCS, pages 733–748.
2014.

49. C. Zhou and M.R. Hansen. Duration Calculus — A Formal Approach to Real-Time Systems.
Monographs in Theoretical Computer Science. An EATCS Series. Springer-Verlag Berlin
Heidelberg, 2004.

50. C. Zhou, C.A.R. Hoare, and A. Ravn. A calculus of durations. Information Processing Letters,
40(5):269–276, 1991.

51. C. Zhou, J. Wang, and A. P. Ravn. A formal description of hybrid systems. In Hybrid systems,
LNCS 1066, pages 511–530, 1996.

52. L. Zou, J. Lv, S. Wang, N. Zhan, T. Tang, L. Yuan, and Y. Liu. Verifying Chinese train control
system under a combined scenario by theorem proving. In VSTTE’13, volume 8164 of LNCS,
pages 262–280. 2014.

53. L. Zou, N. Zhan, S. Wang, and M. Fränzle. Formal verification of Simulink/Stateflow dia-
grams. In ATVA’15, volume 9346 of LNCS, pages 464–481. 2015.

54. L. Zou, N. Zhan, S. Wang, M. Fränzle, and S. Qin. Verifying Simulink diagrams via a hybrid
hoare logic prover. In EMSOFT’13, pages 1–10. 2013.

