
An Assume/Guarantee Based Compositional
Calculus for Hybrid CSP

Shuling Wang1, Naijun Zhan1, and Dimitar Guelev2

1 State Key Lab. of Comput. Sci., Institute of Software, Chinese Academy of Sciences
2 Institute of Mathematics and Informatics, Bulgarian Academy of Sciences

Abstract. HCSP (Hybrid CSP) extends CSP to describe interacting
continuous and discrete dynamics. The concurrency with synchronous
communications, timing constructs, interrupts, differential equations, and
so on, make the behavior of HCSP difficult to specify and verify. In this
paper, we propose a Hoare-style calculus for reasoning about HCSP. The
calculus includes Duration Calculus formulas to record process execution
history and reason about real-time properties and continuous evolution,
and dedicated predicate symbols to specify communication traces and
readiness of process actions in a way which enables synchronisation to
be handled compositionally by using assume/guarantee reasoning.

keywords: Hybrid Systems, Duration Calculus, Hoare Logic, HCSP, Com-
positionality, Assume/Guarantee

1 Introduction

Hybrid systems exhibit combinations of discrete jumps and continuous evolution.
The applications of hybrid systems are dispersed everywhere in our modern life,
e.g. industry automation and transport infrastructure incorporate many hybrid
systems whose correct functioning is safety-critical. A number of abstract mod-
els and requirement specification languages have been proposed for the speci-
fication and verification of hybrid systems. The most popular model is hybrid
automata [1, 10, 5], with real-time temporal logics [10, 11] interpreted on their
behaviours as a specification language. However, hybrid automata are analogous
to state machines, with little support for structured description, and for solving
this problem, a number of formalisms have been proposed to facilitate modular
descriptions of complex systems, e.g. Hybrid CSP [4, 20].

Hybrid CSP (HCSP) [4, 20] is a process algebra which extends CSP by real-
time and continuous constructs, for instance differential equations to model con-
tinuous evolution. Being a process algebra, HCSP has standard means for con-
structing complex systems out of simpler ones, which facilitates composition-
ality. Our experience in formalising the Chinese Train Control System Level 3
(CTCS-3), has confirmed the applicability and scalability of HCSP. In this paper
we propose a Hoare style calculus for reasoning about hybrid systems which are
modelled in HCSP. The features of HCSP which are handled by the logic include

communication, timing constructs, interrupts and continuous evolution governed
by differential equations. The proposed calculus includes Duration Calculus [19]
formulas to record execution history. A calculus for HCSP with similar features
was proposed in a previous work [8]3, but compositionality, which is the main
contribution of this work, was not achieved.

Compositionality in reasoning about properties of HCSP is a challenge be-
cause of continuous evolution and communication dependencies between process-
es, much like in other models of real time concurrency. Our approach to obtain
the compositionality is inspired by the work on CSP without timing [6, 15, 17,
13]. To facilitate the reasoning about individual parallel components, we extend
state expressions in DC history formulas by introducing predicates to specify
communication readiness. Furthermore, to achieve the compositional reasoning
of a compound construct such as sequential composition and parallel compo-
sition, we adopt assume/guarantee mechanism. Firstly, define the specification
of each constituent independently, including a precondition, an assumption to
specify conditions of the environment in which the constituent is executed, a
postcondition and a guarantee, then the specification of the construct can be
deduced from specifications of its constituents directly, for instances, sequential
composition by chop, and parallel composition by conjunction, etc.

Related Work Hybrid automata [1, 5] and the related logics [10, 5, 11] were al-
ready mentioned in the introduction. Another approach is Differential Dynamic
Logic proposed in [14] for the deductive verification of hybrid programs. How-
ever, the hybrid programs considered there have limited functionality. Commu-
nication, parallelism and interrupts are not handled.

By extending Hoare Logic, a compositional proof system for real-time con-
current systems with communications along asynchronous channels is presented
in [7]. However, it assumes that each communication has a fixed non-zero du-
ration. Instead, we adopt super-dense computation [10] to assume computer
computation consuming zero time compared to continuous evolution, which is a
very comfortable abstract computation model for hybrid systems and has been
successfully applied to the formal design of hybrid systems in practice. Thus, at
one time, there may be multiple communications being taken. We find that the
compositionality of reasoning becomes more difficult in the super-dense compu-
tation model. For logic compositionality, assume/guarantee reasoning has been
studied for communication-based concurrency in CSP without timing in [12, 13,
21].

Structure of the paper Section 2 gives a brief introduction to HCSP, and then we
introduce DC formulas and define trace and readiness predicates for HCSP in
Section 3. The assume/guarantee compositional calculus for HCSP is presented
in Section 4. We draw a conclusion and discuss future work in Section 5.
3 It admits interrupting discrete operations. Therefore its history formulas have to keep
the records of possible change of any discrete variable. Hence, the Monotonicity Rule
of [8] is not correct for history formulas, and must be weakened to a conservative
one.

2 Hybrid CSP

Hybrid CSP [4, 20] is a formal language for describing hybrid systems. It is an
extension of CSP by adding timing constructs, interruptions, and differential
equations for representing continuous evolution. Interactions among processes
are described solely by communications. Process variables are local to their re-
spective sequential components. We write Var and Chan for the sets of the
variables and the channel names occurring in the considered process, respective-
ly. The syntax of a subset of HCSP is given as follows:

P,Q ::= skip | x := e | wait d | ch?x | ch!e | P ;Q | B → P | P ⊔Q
| 8i∈I(ioi → Qi) | P∥Q | P ∗ | ⟨F(ṡ, s) = 0&B⟩
| ⟨F(ṡ, s) = 0&B⟩�d Q | ⟨F(ṡ, s) = 0&B⟩� 8i∈I(ioi → Qi)

ioi ::= ch?x | ch!e

Here P,Q, x, s and ch stand for HCSP processes, (vectors of) real variables, and
channel names, respectively. B and e are Boolean and arithmetic expressions
and d is a non-negative real constant. The intended meaning of the individual
constructs is as follows:

– skip terminates immediately having no effect on variables.
– x := e assigns the value of expression e to x and then terminates.
– wait d will keep idle for d time units keeping variables unchanged.
– ch?x receives a value along channel ch and assigns it to x.
– ch!e sends the value of e along channel ch. A communication takes place

when both the sending and the receiving parties are ready, and may cause
one side to wait.

– The sequential composition P ;Q behaves as P first, and if it terminates, as
Q afterwards.

– The alternative B → P behaves as P if B is true, otherwise it terminates
immediately.

– P ⊔Q denotes internal choice. It behaves as either P or Q, and the choice is
made by the process.

– 8i∈I(ioi → Qi) denotes communication controlled external choice. I is sup-
posed to be finite. As soon as one of the communications ioi takes place, the
process continues as the respective guarded Qi.

– P∥Q behaves as if P and Q run independently except that all communica-
tions along the common channels connecting P andQ are to be synchronized.
The processes P and Q in parallel can neither share variables, nor input or
output channels.

– The repetition P ∗ executes P for some finite number of times.
– ⟨F(ṡ, s) = 0&B⟩ is the continuous evolution statement (hereafter shortly

continuous). It forces the vector s of real variables to obey the differential
equations F as long as the boolean expression B, which defines the domain
of s, holds, and terminates when B turns false.

– ⟨F(ṡ, s) = 0&B⟩ �d Q behaves like ⟨F(ṡ, s) = 0&B⟩, if that continuous
terminates before d time units. Otherwise, after d time units of evolution
according to F , it moves on to execute Q.

– ⟨F(ṡ, s) = 0&B⟩�8i∈I(ioi → Qi) behaves like ⟨F(ṡ, s) = 0&B⟩, except that
the continuous evolution is preempted as soon as one of the communications
ioi is taken place. That is followed by the respective Qi. Notice that, if a
non-B state is reached before a communication from among {ioi}I occurs,
then the process terminates without communicating.

For reasoning about communication behaviour of HCSP, several auxiliary
variables that never occur in any process need to be introduced: The system
variable now records the current time of process execution, and the variable tr
records the timed trace of a process accumulated during its execution. A timed
trace (abbreviated as trace below) h can be either empty sequence, or ⟨ch.e, t⟩
denoting one occurrence of a communication ⟨ch, e⟩ at time t, or composed from
existing traces by concatenation ·, non-deterministic choice +, and Kleene star
∗. We use r to denote the corresponding channel sequence of h, and define a
function C(tr) to return the channel sequence of the trace recorded by tr. The
formal definitions are presented as follows.

h ::= ϵ | ⟨ch.e, t⟩ | h1 · h2 | h1 + h2 | h∗

r ::= ϵ | ch | r1 · r2 | r1 + r2 | r∗

There are some properties held for the non-deterministic choice, including the
distributivity of it over concatenation, e.g., (h1 + h2) · h = h1 · h+ h2 · h, and r
as well; and the equivalent conversion from it to disjunction in assertions, e.g.,
tr = h1 + h2 iff tr = h1 ∨ tr = h2.

Formal semantics of HCSP has been considered in different paradigms. For
example, an algebraic semantics was given in [4], while a DC-based denotation-
al semantics was given in [20]. In the full version of this paper [16], a formal
operational semantics was given in the Plotkin’s style, i.e., each construct of
HCSP is interpreted as a transition relation over configurations composed of a
process and a pair of states (for process and environment respectively), and the
semantics is defined by a set of transition rules. For space limitation, we omit
this part here.

3 History Formulas

Duration calculus (DC) [19] is an interval-based logic for specifying and reasoning
about real-time systems. We will use DC formulas to describe the execution
history of HCSP processes. However, in order to specify communications, we
need to augment the state expressions of DC to include assertions related to
communication readiness.

The syntax of the subset of DC we need is described in terms of state ex-
pressions S, which are assertions about variables, and history formulas HF as
follows:

θ ::= c | x | fn(θ1, ..., θn)
S ::= ⊥ | Rm(θ1, ..., θm) | r.ch? | r.ch! | T (P) | ¬S | S ∨ S
HF ::= ⊥ | ℓ rel c | ⌈S⌉− | ⌈S⌉0 | HF ∗ | HFaHF | HF ∧HF | HF ∨HF

Here θ stands for a term. c denotes a constant, x a process variable, and f is an
n-ary arithmetic function (n as well as the following m are non-negative integers
for representing arities of functions).

In the syntax of state expressions S, ⊥ stands for false (⊤ for true in con-
trary), and R is an m-ary truth-valued function on terms. In order to model the
readiness of channel ch for performing communication, we introduce two Boolean
variables r.ch?, r.ch!, with a channel sequence r (as defined in last section) as
prefix, to describe that ch? or ch! becomes ready, and before that, the communi-
cation history along r has occurred. T (P) is a terminal predicate, representing
that P terminates.

In the syntax of formulas HF , ℓ is a temporal variable standing for the length
of the considered interval. rel is a relation in the set {<,>,=}. In the following,
we always use Rg(ℓ) to denote an interval formula of ℓ, i.e., a history formula
containing ℓ and constants. ⌈S⌉− means that S holds everywhere in the right-
open interval4, and ⌈S⌉0 means that S holds at an isolated point. In the rest

of the paper, we define the abbreviation ⌈S⌉ def
= ⌈S⌉−a⌈S⌉0, meaning that S

holds everywhere over an interval. HF ∗ denotes iteration of history formulas.
See, e.g., [2, 3] on iteration and some other relevant DC operators. In HF1

aHF2,
a chops an interval into two consecutive sub-intervals, over which HF1 and HF2

hold respectively.
The semantics of terms, state expressions and history formulas are interpreted

over process states. For the full semantics, readers are referred to [16].

Axioms All the axioms of DC are applied here. Besides, we need to intro-
duce an axiom for readiness, for translating non-deterministic choice of terms
equivalently into disjunction of state expressions,

(r1 + r2).ch? = r1.ch? ∨ r2.ch?

4 Specification and Inference Rules

Unlike assertions defined in our previous work [8], each specification of Hybrid
Hoare Logic (HHL) here consists of five parts, i.e. pre- and post-conditions,
process, assumption and guarantee, with the form

{S; A}P{R; G}

P is an HCSP process to be verified. S and R are pre- and post-conditions
which are state-trace assertions (that do not refer to the readiness r.ch?, r.ch!)
about variables at the start and termination of the execution of P , respectively.
A and G are both history formulas. Assumption A specifies the readiness of
communications that the environment offers to P , while guarantee G specifies
the execution history of P , when P runs under an environment satisfying A.

4 The original DC defines the almost everywhere formula, written by VSW. Here we
use different variants of it.

Intuitively, a specification {S; A}P{R; G} is valid, iff for any execution of
P starting from a state satisfying S, if it terminates, and the environment under
which P runs satisfies A throughout its execution, then the final state satisfies
R, and G holds throughout the execution of P .

In the following, we will briefly introduce axioms and inference rules of HHL,
detailed explanation can be referred to [16]. First we give general rules that are
applicable to all HCSP statements, and then the rules for each HCSP construct.

Consequence Rule The consequence rule is defined as usual,

{S; A}P{R; G} S′ ⇒ S R ⇒ R′ A′ ⇒ A G ⇒ G′

{S′; A′}P{R′; G′}

Non-readiness Rule This rule is closely related to the fact that each channel
end is owned solely by one sequential context in HCSP. The communication
actions that are sequential to P but not belonging to P are not ready when P is
executing. For every process P , we assume that the processes that are composed
with P in sequence have channel ends from CS . Let CP be the set of channel
ends of P , and CN be CS \ CP . We then have the following rule describing the
non-readiness of communication actions in CN during the execution of P (the
terminating point exclusive). The hypothesis S ⇒ C(tr) = r indicates that the
processes previous to P have accumulated trace along channel sequence r.

{S; A}P{R; G} S ⇒ C(tr) = r

{S; A}P{R; G ∧ ⌈
∧

a∈CN
(¬r.a)⌉−}

There are other general rules standard for classical predicate logic, similar to
the ones presented in [14]. We will not list them here.

The rules for skip and assignment are straightforward. Both are internal
actions, having no dependence from the environment, and take no time.

Skip
{S; ⊤} skip {S; ℓ = 0}

Assignment
{S[e/x]; ⊤} x := e {S; ℓ = 0}

Input and output The input rule is:

S ⇒ C(tr) = r S[o/now] ∧Rg(t) ∧ now = o+ t ⇒ ∀a.R[a/x, tr′/tr]

{S; (Rg(ℓ) ∧ ⌈¬(r.ch!)⌉−)a⌈r.ch!⌉0} ch?x {R; Rg(ℓ) ∧ ⌈r.ch?⌉}

where Rg(ℓ) is an interval formula of l, and t is a fresh logical variable, tr′ =
tr · ⟨ch.a, now⟩. The assumption indicates that the partner side ch! is not ready
until Rg(ℓ) time units, and under this assumption, ch? will keep waiting for
the same duration. Whenever both parties get ready, the communication occurs
immediately. The system clock now then goes ahead t with range Rg(t), which

is the waiting time, and a value is transmitted along ch and assigned to x, and tr
is increased by one communication pair ⟨ch.a, now⟩, as indicated by the second
hypothesis.

The rule for output can be defined similarly.

S ⇒ C(tr) = r S[o/now] ∧Rg(t) ∧ now = o+ t ⇒ R[tr′/tr]

{S; (Rg(ℓ) ∧ ⌈¬(r.ch?)⌉−)a⌈r.ch?⌉0} ch!e {R; Rg(ℓ) ∧ ⌈r.ch!⌉}

where tr′ = tr · ⟨ch.e, now⟩.

Continuous For reasoning about the continuous, the notion of differential in-
variants is necessary, which is quite similar to reasoning about properties of
loops using invariant in the classical Hoare logic. A differential invariant of a
differential equation ⟨F(ṡ, s) = 0&B⟩ for given initial values of s is a first order
formula of s, which is satisfied by the initial values and kept satisfied during the
continuous evolution following F within the domain defined by B. More details
about differential invariants can be found in [9]. Moreover, as discussed in [8],
the execution time of ⟨F(ṡ, s) = 0&B⟩, can be counted by introducing a fresh
local clock with initial value 0, that is, the value of t at the terminating point of
⟨F(ṡ, s) = 0; ṫ = 1&B⟩.

Given a differential invariant Inv and the execution time Rg(t) of ⟨F(ṡ, s) =
0&B⟩ with initial values satisfying Init, we have the following rule:

S[o/now] ∧Rg(t) ∧ now = o+ t ⇒ R

{Init ∧ S;⊤} ⟨F(ṡ, s) = 0&B⟩ {R ∧ close(Inv) ∧ close(¬B);
(l = 0 ∨ ⌈S ∧ Inv ∧B⌉−) ∧Rg(ℓ)}

where S,R do not contain s. The notation close(Inv) stands for the closure of
Inv, e.g, s <= 5 is closure of s < 5, to deal with the case when Inv does not
hold at the escaping boundary. close(¬B) similarly. Obviously, both closures
of Inv and ¬B hold when the continuous terminates, as shown in the post-
condition. The continuous evolves for Rg(t) time units and then terminates, and
as a consequence, now is added by t with range Rg(t) also. l = 0 in the history
is to record the behavior that the initial value of s fails to satisfy B, then the
continuous terminates immediately.

Conditional The statement B → P behaves like P when B is true, otherwise
terminates immediately.

S ⇒ B {S; A}P{R; G}
{S; A}B → P{R; G} and S ⇒ ¬B

{S; ⊤}B → P{S; ℓ = 0}

Sequential composition

{S1;A1} P1 {R1;G1} {S2;A2} P2 {R2;G2} R1 ⇒ S2

{S1;A
a
1 ⌈T (P1)⌉0aA2} P1;P2 {R2;G

a
1 G2}

For P1;P2, the first component P1 ends in a state satisfying post-condition R1,
from which the second P2 starts to execute. Moreover, under the assumptions

A1 and A2, the executions of P1 and P2 guarantee G1 and G2 respectively. The
assumption and guarantee of overall sequential composition can then be defined
by chopping the ones of its components together. However, the assumption of P1

should not assume anything about the environment of P2, and vice versa. This
is why we add the terminal predicate T (P1) in between A1 and A2, indicating
that the environment of P1 terminates simultaneously as P1. More discussions
on the predicate will be given in the discussion section.

Parallel composition In order to define the rule, we need to introduce some
notations first. Given a timed trace h and a channel set C, we denote by h|C the
projection of h onto C, which removes all timed communications not along C
from h. Similarly, we define the projection of a readiness variable r.ch? (resp. r.ch!
) onto C, denoted by r.ch?|C (resp. r.ch!|C) as when ch /∈ C then ⊤, otherwise
r|C .ch? (resp. r|C .ch!), where r|C stands for the resulting channel sequence after
filtering all occurrences of channels not in C from r. Accordingly, we define the
projection of HF onto C, denoted by HF |C by replacing each occurrence of
all readiness variables rv by rv|C . Given two timed traces h1 and h2 and a set
of channels C, we say h1 and h2 are compatible w.r.t. C, iff h1|C = h2|C , i.e.,
they have the same projection onto C. Given two timed traces h1 and h2 that
are compatible w.r.t. C, we define the alphabetized parallel of h1 and h2 over C,
denoted by h1 ∥

C

h2, defined by structural induction in Fig. 1. In the definition,

we use Undef to represent that the resulting trace is undefined. Obviously, the
alphabetized parallel ∥

C

of two compatible traces w.r.t. C will always be well

defined.

h1 ∥
C

ϵ
def
=

{
h1 if h1|C = ϵ
Undef otherwise

⟨ch1.a, t1⟩ · h′
1 ∥

C

⟨ch2.b, t2⟩ · h′
2
def
=

⟨ch1.a, t1⟩ · (h′
1 ∥

C

h′
2)

if ch1 = ch2 ∈ C, a = b and t1 = t2
⟨ch1.a, t1⟩ · (h′

1 ∥
C

(⟨ch2.b, t2⟩ · h′
2))

+⟨ch2.b, t2⟩ · ((⟨ch1.a, t1⟩ · h′
1) ∥

C

h′
2)

otherwise if ch1, ch2 /∈ C and t1 = t2
⟨ch1.a, t1⟩ · (h′

1 ∥
C

(⟨ch2.b, t2⟩ · h′
2))

otherwise if ch1 /∈ C, and t1 ≤ t2
⟨ch2.b, t2⟩ · ((⟨ch1.a, t1⟩ · h′

1) ∥
C

h′
2)

otherwise if ch2 /∈ C, and t2 ≤ t1
Undef otherwise

(h′
1 + h′

2) ∥
C

(h′′
1 + h′′

2)
def
= Σi,j=1,2(h

′
i ∥
C

h′′
j)

Fig. 1. Alphabetized parallel of timed traces

Now we define the rule for the case when P1 and P2 terminate simultaneously.
It can be generalised easily for other cases. Let Ci = Chan(Pi) for i = 1, 2, and
C = C1 ∩ C2. The parallel rule is given as follows:

{S1;A1} P1 {R1;G1} {S2;A2} P2 {R2;G2}
G1|C ⇒ A2|C A|C2\C ⇒ A2|C2\C G2|C ⇒ A1|C A|C1\C ⇒ A1|C1\C

{S1 ∧ S2;A} P1∥P2 {comp(R1, R2);G1 ∧G2}

where comp(R1, R2) is defined as follows:

comp(R1, R2)
def
= R1[tr1/tr] ∧R2[tr2/tr] ∧ tr1|C = tr2|C ∧ tr = tr1 ∥

C

tr2

It indicates that, because of synchronous communication, P1 and P2 will produce
compatible traces along the common channel set C; moreover, the final trace tr
is the alphabetized parallel of the traces of P1 and P2 over C. The parallel rule
says that, we need to check the compatibility, i.e., the assumption of each process
in the parallel composition must be fulfilled by its environment, including the
other process in parallel with it and the external environment separately.

External and internal choice The external choice depends on external en-
vironment totally, i.e., whose partner comes earlier, who is chosen to execute.
We just present the rule for the case of ch?x → P 8 dh!e → Q, which can easily
generalized to the general case. The first rule describes the case when the partner
of ch? gets ready before the one of dh!, described by A.

S ⇒ C(tr) = r A ⇒ ⌈¬(r.ch! ∧ r.dh?)⌉−a⌈r.ch! ∧ ¬(r.dh?)⌉0a⊤
{S; A} ch?x;P {R; G}

{S; A} ch?x → P 8 dh!e → Q {R; G}

The symmetric case when the partner of dh! gets ready before the one of ch?
can be defined similarly. However, whenever the partners of ch? and dh! get
ready simultaneously, the external choice becomes non-deterministic choice, and
therefore, one of the alternatives is chosen by the process randomly, as defined
by the following rule:

S ⇒ C(tr) = r A ⇒ ⌈¬(r.ch! ∧ r.dh?)⌉−a⌈r.ch! ∧ r.dh?⌉0a⊤
{S; A} ch?x → P {R1; G1} {S; A} dh!e → Q {R2; G2}

{S; A} ch?x → P 8 dh!e → Q {R1 ∨R2; G1 ∨G2}

In contrast to external choice, the internal choice P1 ⊔ P2 depends on the
process totally, and the choice is made randomly by the process itself. To pre-
vent deadlock, the environment must provide the assumptions required by both
alternatives, and the internal choice guarantees the behavior of one of them.

{S; A} Pi {Ri; Gi} for i = 1, 2

{S; A} P1 ⊔ P2 {R1 ∨R2; G1 ∨G2}

Interrupt by communication For process ⟨F(ṡ, s) = 0&B⟩�(ch?x → Q), the
continuous will be executed first, and interrupted once the communication along
ch happens, and Q will be executed afterwards. However, if the communication
does not happen before the domain restriction B becomes false, the process will
not wait for the communication and terminate immediately.

The first rule for the case when the communication occurs before the contin-
uous terminates, as indicated by Rg′(ℓ) ⇒ Rg(ℓ)a⊤.

S ⇒ C(tr) = r {S ∧ Init;⊤}⟨F(ṡ, s) = 0&B⟩{R; G ∧Rg′(ℓ)}
A ⇒ Rg(ℓ) ∧ ⌈¬(r.ch!)⌉−a⌈r.ch!⌉0a⊤ Rg′(ℓ) ⇒ Rg(l)a⊤

G ⇒ ⌈Inv⌉∗ {S ∧ Inv; A} ch?x;Q {R′; G′}
{S ∧ Init; A} ⟨F(ṡ, s) = 0&B⟩� (ch?x → Q) {R′; ((Rg(ℓ) ∧ ⌈Inv⌉−)a⊤) ∧G′}

where S does not contain s.
The second rule for the other case when the communication does not happen

until the continuous terminates, as indicated by Rg(l) ⇒ Rg′(ℓ)a(l > 0).

S ⇒ C(tr) = r {S ∧ Init; ⊤} ⟨F(ṡ, s) = 0&B⟩ {R; G ∧Rg′(ℓ)}
A ⇒ Rg(ℓ) ∧ ⌈¬(r.ch!)⌉a⊤ Rg(ℓ) ⇒ Rg′(ℓ)a(ℓ > 0)

{S ∧ Init; A} ⟨F(ṡ, s) = 0&B⟩� (ch?x → Q) {R; G}

Repetition Similar to the classical Hoare logic, we first need to find an in-
variant S′ that holds before and after the execution of the process P . Second,
the assumption and guarantee of P ∗ can be defined as the iteration of the ones
of P . Similar to sequential composition, for each iteration of P , the environ-
ment terminates simultaneously as P does, as guaranteed by ⌈T (P)⌉0 in the
assumption.

S ⇒ S′ {S′; A}P{S′; G}
{S; (Aa⌈T (P)⌉0)∗} P ∗ {S′; G∗}

We do not define the rules for wait and timeout constructs here, as both
of them are not primitive, and can be defined by the continuous and other
constructs.

5 Discussions, Conclusion and Future Work

Total Correctness vs Partial Correctness

In this paper, we assume that each HCSP process terminates in a finite time,
as we adopt the classical DC to specify assumptions and guarantees, with which
infinite behaviour of a system cannot be defined. So, we just discuss partial
correctness here. In [18], Duration Calculus is extended with infinite intervals,
which can be used to distinguish termination and non-termination simply.

On the other hand, the predicate T has been introduced for representing the
termination of a process in the calculus. It is used for specifying that a process
and its environment terminate at the same time. We believe the predicate can

be used to distinguish termination and non-termination as well, but this will
complicate the inference rules. In addition, the proof system presented here is
incomplete as we at least omit several rules for reasoning about the predicate T .
We will leave this issue as one future work.

Conclusion and Future Work

In this paper, we present a compositional calculus for specifying and verifying
hybrid systems. The language for modeling hybrid systems is a subset of HCSP,
by using which we have modelled the train movement scenarios of CTCS-3, thus
show the modelling expressiveness of HCSP. By introducing DC formulas into
Hoare Logic to record the execution history of HCSP, the calculus can specify
real-time and continuous properties of Hybrid systems. By introducing predicates
for describing communication traces and readiness, based on assume/guarantee
method, the calculus can specify time and communication synchronisation be-
tween parallel processes compositionally. However, the calculus is a little com-
plicated, and we will try to simplify it as one future work.

To establish deadlock freedom of a process, it is necessary to record infor-
mation of readiness of different actions during the execution of the process. The
predicates introduced for specifying readiness of communication actions can pro-
vide a basis. Moreover, we will try to apply this calculus to prove practical hybrid
systems, e.g., the movement scenarios of CTCS-3.

Acknowledgment The authors would like to thank Prof. Chaochen Zhou for
his insightful suggestions and comments on this paper. This work has been sup-
ported by NSFC projects 91118007, 60970031 and 61100061.

References

1. R. Alur, C. Courcoubetis, T. A. Henzinger, and P. Ho. Hybrid automata: An
algorithmic approach to the specification and verification of hybrid systems. In
Hybrid Systems. LNCS, Volume 736/1993, pages 209–229. Springer-Verlag, 1992.

2. D. P. Guelev and V. H. Dang. Prefix and projection onto state in duration calcu-
lus. Proceedings of the ETAPS workshop Theory and Practice of Timed Systems
(TPTS’02), ENTCS, 65(6):101–119, 2002.

3. D. P. Guelev and V. H. Dang. On the completeness and decidability of duration
calculus with iteration. Theoretical Computer Science, 337:278–304, 2005.

4. J. He. From CSP to hybrid systems, pages 171–189. Prentice Hall International
(UK) Ltd., 1994.

5. T. A. Henzinger. The theory of hybrid automata. In Proc. 11th Annu. IEEE Symp.
Logic Comput. Sci. (LICS’96), pages 278–292, 1996.

6. C. A. R. Hoare. A calculus of total correctness for communicating processes. Sci.
Comput. Program.

7. J. Hooman. Extending Hoare logic to real-time. Formal Aspects of Computing,
6:801–825, 1994.

8. J. Liu, J. Lv, Z. Quan, N. Zhan, H. Zhao, C. Zhou, and L. Zou. A calculus for
hybrid CSP. In Programming Languages and Systems, LNCS, volume 6461/2010.
Springer, 2010.

9. J. Liu, N. Zhan, and H. Zhao. Computing semi-algebraic invariants for polynomial
dynamical systems. In EMSOFT ’11, pages 97–106. ACM, 2011.

10. Z. Manna and A. Pnueli. Verifying hybrid systems. In Grossman et al, pages 4–35.
Springer-Verlag, 1993.

11. Z. Manna and H. Sipma. Deductive verification of hybrid systems using STeP. In
HSCC, volume 1386 of LNCS, pages 305–318, 1998.

12. J. Misra and M. Chandy. Proofs of networks of processes. In IEEE SE, volume 7,
pages 417–426, 1981.

13. P.K. Pandya and M. Joseph. P-A logic - a compositional proof system for dis-
tributed programs. In Distributed Computing, volume 5, pages 37–54, 1991.

14. A. Platzer. Differential dynamic logic for hybrid systems. J. Autom. Reasoning,
41(2):143–189, 2008.

15. N. Soundararajan. Axiomatic semantics of communicating sequential processes.
ACM Transactions on Programming Languages and Systems, 6:647–662, 1984.

16. S. Wang, N. Zhan, and D. Guelev. An assume/guarantee based compositional
calculus for Hybrid CSP and its soundness. Technical report, State Key Lab. of
Computer Science, ISCAS, 2011.

17. C. Zhou. Specifying communicating systems with temporal logic. In Temporal
Logic in Specification, volume 398 of LNCS, pages 304–323. Springer, 1987.

18. C. Zhou, V. Dang, and X. Li. A duration calculus with infinite intervals. In Fund.
of Comput. Theory, volume 965 of LNCS, pages 16–41. Springer, 1995.

19. C. Zhou and M. R. Hansen. Duration Calculus: A Formal Approach to Real-Time
Systems. Series: Monographs in Theoretical Computer Science. An EATCS Series.
Springer, 2004.

20. C. Zhou, J. Wang, and A. P. Ravn. A formal description of hybrid systems. In
Proceedings of the DIMACS/SYCON workshop on Hybrid systems III : verification
and control, pages 511–530. Springer-Verlag, 1996.

21. J. Zwiers, A. de Bruin, and W.-P. de Roever. A proof system for partial correctness
of dynamic networks of processes. In Proc. of the Conference on Logics of Programs,
LNCS 164, 1984.

