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Abstract. In this paper we propose a linear programming based method
to generate interpolants for two Boolean formulas in the framework of
probably approximately correct (PAC) learning. The computed inter-
polant is termed as a PAC interpolant with respect to a violation level
ε ∈ (0, 1) and confidence level β ∈ (0, 1): with at least 1 − β confidence,
the probability that the PAC interpolant is a true interpolant is larger
than 1 − ε. Unlike classical interpolants which are used to justify that
two formulas are inconsistent, the PAC interpolant is proposed for pro-
viding a formal characterization of how inconsistent two given formulas
are. This characterization is very important, especially for situations that
the two formulas cannot be proven to be inconsistent. The PAC inter-
polant is computed by solving a scenario optimization problem, which
can be regarded as a statistically sound formal method in the sense that
it provides formal correct guarantees expressed using violation probabil-
ities and confidences. The scenario optimization problem is reduced to
a linear program in our framework, which is constructed by a family of
independent and identically distributed samples of variables in the given
two Boolean formulas. In this way we can synthesize interpolants for
formulas that existing methods are not capable of dealing with. Three
examples demonstrate the merits of our approach.

1 Introduction

Given two Boolean formulas φ and ψ, a classical Craig interpolant is a Boolean
formula h in terms of only common symbols and variables of φ and ψ that
over-approximates φ and remains inconsistent with ψ [7], implying that the two
formulas φ and ψ are inconsistent. Interpolation-based techniques have been
drawing both practical and theoretic attention in recent years. From a practical
perspective, interpolant has been broadly applied to a variety of research areas,
especially for formal verification, e.g., theorem proving [21,26], model-checking

This work has been supported through grants by NSFC under grant No. 61836005,
61625206, the CAS Pioneer Hundred Talents Program under grant No. Y8YC235015,
and the MoE, Singapore, Tier-2 grant #MOE2019-T2-2-040.

c© Springer Nature Switzerland AG 2020
J. Pang and L. Zhang (Eds.): SETTA 2020, LNCS 12153, pp. 143–159, 2020.
https://doi.org/10.1007/978-3-030-62822-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62822-2_9&domain=pdf
https://doi.org/10.1007/978-3-030-62822-2_9


144 B. Xue and N. Zhan

[23] and predicate abstraction [16,18,24]. Because of their inherently modular
and local reasoning interpolant-based techniques can substantially increase the
scalability of formal techniques.

In existing literature there are various efficient algorithms for automatically
synthesizing interpolants for various theories, e.g., decidable fragments of first-
order logic, linear arithmetic, array logic, equality logic with uninterpreted func-
tions (EUF), etc., and their combinations [6,18–20,24,25,27,28,35]. In contrast,
interpolant generation for non-linear theory and its combination with the afore-
mentioned theories is still in infancy, although nonlinear inequalities are ubiq-
uitous in software involving sophisticated number theoretic functions as well as
hybrid systems [36,37]. Many existing methods to synthesizing interpolants for
non-linear theory are applicable to polynomial formulas, e.g., [8,11,12]. These
methods encode the interpolant generation problem for two Boolean formulas
as a semi-definite programming problem, which falls within the convex opti-
mization framework and can be solved efficiently via interior-point methods in
polynomial time. Although they are “polynomially” solvable, semidefinite pro-
grams with dimension above 10,000 have been extremely hard to solve in practice
[1]. Recently, a method built on top of the SMT solver iSAT [10] was proposed
to generate interpolants in the presence of non-linear constraints in [22]. [28]
regarded interpolants as classifiers in supervised machine learning and used sup-
port vector machines (SVMs) in classification techniques and counterexample-
guided techniques for linear interpolations generation. [5] extended the idea in
[28] by using kernel trick to non-linear interpolant generation and by exploiting
symbolic computation to guarantee the convergence, soundness and complete-
ness of the approach. This method is promising since it can deal with superficially
non-linear formulas and SVMs are routinely used in large scale data processing.
However, the search for counterexamples is nontrivial generally, particularly,
it cannot guarantee the convergence in case the two considered formulas are
unbounded. [13,14] presented an approach to extract interpolants for non-linear
formulas, which possibly contain transcendental functions and differential equa-
tions, from proofs of unsatisfiability generated by δ-decision procedure based on
interval constraint propagation (ICP) [2]. Unfortunately, all of these approaches
for nonlinear formulas suffer from so-called “curse of dimensionality” and thus
cannot be applied to formulas with high-dimensional variables. Besides, if an
interpolant is not found, these methods cannot give a characterization of how
inconsistent the two formulas of interest are.

In this paper we attempt to motivate the integration of formal methods
with machine learning [30], and propose a linear programming based method
to generate reliable interpolants in the sense of featuring a rigorously quanti-
fied confidence for two Boolean formulas. Our method falls within the frame-
work of PAC learning [17,33] and the generated interpolant provides a formal
characterization of how inconsistent the two Boolean formulas of interest are.
Given a violation level ε ∈ (0, 1) and a confidence level β ∈ (0, 1), the objec-
tive is to compute PAC interpolants with respect to ε and β: With at least
1 − β confidence, the probability that a PAC interpolant is a true interpolant is
larger than 1− ε. Such interpolant in our method is computed based on scenario
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optimization [3], which encodes as a linear programming problem. In this sce-
nario optimization framework, we first extract a set of independent and identi-
cally distributed samples of variables in the two Boolean formulas. A sufficient
lower bound on the number of extracted samples can be computed from the
specified violation level ε and confidence level β. After generating samples, we
then construct a linear program for computing a PAC interpolant with respect
to ε and β. Several examples demonstrate the performance of our approach.

In this paper we make use of capabilities of machine learning to assess large
data sets to enable interpolant synthesis for large-scale formulas. The advantages
of our method are summarized below.

1. The PAC interpolant is able to provide a characterization of how inconsistent
two formulas are. This characterization is very important, especially when
classical interpolants cannot be obtained to decide whether the two formulas
are inconsistent.

2. The scale of the constructed linear program does not directly depend on the
dimension of the variables in the considered formulas. It only depends on ε,
β and the number of unknown parameters in a pre-specified interpolant tem-
plate. Moreover, linear programming problems with hundreds of thousands
or even millions of variables are routinely solved [15] in polynomial time via
interior-point methods. Thus, it can deal with formulas with variables of arbi-
trarily high-dimension.

This remainder of this paper is structured as follows. In Sect. 2 we formal-
ize the concept of PAC interpolants. Section 3 elucidates our PAC interpolant
generation method that is based on scenario optimization. After evaluating our
method on several examples in Sect. 4, we conclude this paper in Sect. 5.

2 Preliminaries

In this section, we first give a brief introduction on some notions used throughout
this paper and then describe the PAC interpolant generation problem of interest.

2.1 Interpolants

Craig showed that given two formulas φ and ψ in a first-order theory T such
that φ |= ψ, there always exists an interpolant I over the common symbols and
variables of φ and ψ such that φ |= I, I |= ψ. In the verification literature,
this terminology has been abused following [24], where a reverse interpolant I
over the common variables of φ and ψ is defined by

Definition 1 (Interpolant). Given two formulas φ and ψ in a theory T , a for-
mula I is an interpolant of φ and ψ if (1) φ |= I, (2) I ∧ ψ |= ⊥ and (3) I only
contains those symbols and non-logical variables that are common to both φ and ψ.

From Definition 1, we conclude that if there exists an interpolant I for formulas
φ and ψ, the two formulas φ and ψ are inconsistent, i.e., φ ∧ ψ |= ⊥. This is
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especially useful in the safety verification scenario [31]. For instance, if {(x, y) ∈
R

2 | φ(x, y)} denotes the set of unsafe states and {(x, y) ∈ R
2 | ψ(x, y)} denotes

the set of reachable states of a system of interest, we can conclude that the
system is safe if we can find an interpolant I for the two formulas φ and ψ.

The interpolant synthesis problem is described in Definition 2.

Definition 2. Let φ(x) and ψ(x) be two formulas defined as follows,

φ(x) : ∨l
i=1φi(x) with

φ1(x) : f1,1(x) � 0 ∧ · · · ∧ f1,m1(x) � 0,

· · ·
φl(x) : fl,1(x) � 0 ∧ · · · ∧ fl,ml

(x) � 0

and

ψ(x) : ∨k
i=1ψi(x) with

ψ1(x) : g1,1(x) � 0 ∧ · · · ∧ g1,n1(x) � 0,

· · ·
ψk(x) : gk,1(x) � 0 ∧ · · · ∧ gk,nk

(x) � 0,

where x ∈ R
r are variable vectors, r ∈ N, � ∈ {<,≤, >,≥}, fi,js are nonlinear

functions from R
r to R, i = 1, . . . , l, j = 1, . . . , mi, and gi,js are nonlinear

functions from R
r to R, i = 1, . . . , k, j = 1, . . . , ni. Suppose both {x | φ(x)} and

{x | ψ(x)} are bounded subsets in R
r. Find a real-valued function h(x) : Rr → R

such that h(x) > 0 is an interpolant for φ and ψ, i.e.

h(x) > 0,∀x ∈ F1

h(x) ≤ 0,∀x ∈ F2,
(1)

where F1 = {x | φ(x)} and F2 = {x | ψ(x)}.

Direct computations of interpolants for nonlinear formulas φ and ψ are non-
trivial. In this paper we attempt to use finite randomization to learn interpolants.
The learned interpolants are called PAC interpolants, whose concept is presented
in Subsect. 2.2.

2.2 PAC Interpolants

This subsection introduces PAC interpolants.
Suppose that Ai and Bj are respectively endowed with a σ-algebra DAi

and
DBj

, and that probabilities PrAi
and PrBj

are respectively assigned over DAi

and DBj
, where

Ai = {x | φi(x)}
and

Bj = {x | ψj(x)},
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i = 1, . . . , l, j = 1, . . . , k. Throughout this paper, we assume uniform distribu-
tions over both spaces Ai and Bj .

Suppose now that

Δ = A1 × . . . × Al × B1 × . . . × Bk (2)

is endowed with a σ−algebra D. Obviously, ∪l
i=1Ai = F1 and ∪k

j=1Bj = F2.
According to the product measure theorem, there exists a probability measure
Pr over D such that

Pr = PrA1 × · · · × PrAl
× PrB1 × · · · PrBk

. (3)

Clearly, a uniform distribution is assigned on the space Δ.

Definition 3. A real-valued function h(x) : Rr → R is a PAC interpolant with
respect to ε ∈ (0, 1) and β ∈ (0, 1) for formulas φ and ψ, where φ and ψ are
formulas in Definition 2, if with probability no smaller than 1 − β,

Pr({w ∈ Δ |h(xAi
) > 0, h(xBj

) ≤ 0, i = 1, . . . , l, j = 1, . . . , k}) ≥ 1 − ε, (4)

where
w = (xA1 , . . . ,xAl

,xB1 , . . . ,xBk
) ∈ Δ,

xAi
∈ Ai and xBj

∈ Bj, i = 1, . . . , l, j = 1, . . . , k. We then say that the function
h(x) is CI(ε, β).

The probability β in Definition 3, which is related to Pr, refers to the confi-
dence associated to the randomized solution algorithm. According to Definition
3, with at least 1 − β confidence, the probability Pr that CI(ε, β) satisfies the
conditions (1) is 1 − ε. That is, with at least 1 − β confidence, the probability
Pr that CI(ε, β) indeed is a true interpolant for formulas φ and ψ is 1 − ε.

Remark 1. It is worth pointing out here that CI(ε, β) may not satisfy the con-
ditions (1) even if ε = 0 and β = 0. Therefore, CI(0, 0) may not be the a true
interpolant.

We further give an explanation of PAC interpolants below.
In some situations it is not sufficient to know whether the formulas ψ and φ

are inconsistent or not. It is also important to know how inconsistent the two
formulas are, by quantifying the amount of states such that the formulas are
inconsistent. This characterization is not only useful when existing traditional
methods cannot decide whether F1 intersects F2 or the two formulas φ and ψ are
inconsistent, but also useful when the two formulas φ and ψ are not inconsistent.
The PAC interpolants can help achieve such characterization.

Corollary 1. If h(x) is CI(ε, β) for formulas ψ and φ, where ψ and φ are
formulas in Definition 2, then with confidence no smaller than 1 − β,

PrAi
({x ∈ Ai | h(x) > 0}) ≥ 1 − ε and

PrBj
({x ∈ Bj | h(x) ≤ 0}) ≥ 1 − ε

(5)

for i ∈ {1, . . . , l} and j ∈ {1, . . . , k}.
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Proof. Let Δi = {w ∈ Δ | h(xAi
) > 0} and Δ̃ = {w ∈ Δ | h(xAi

) > 0, h(xBj
) ≤

0, i = 1, . . . , l, j = 1, . . . , k}, where w is as in Definition 3. Obviously, Δ̃ ⊆ Δi.
According to (3),

Pr(Δi) = PrAi
({x ∈ Ai | h(x) > 0})

holds. Also, since Δ̃ ⊆ Δi for i = 1, . . . , l and (4), we have that with confidence
no smaller than 1 − β,

PrAi
({x ∈ Ai | h(x) > 0}) ≥ 1 − ε.

Similarly, we have that with confidence no smaller than 1 − β,

PrBj
({x ∈ Bj | h(x) ≤ 0}) ≥ 1 − ε.

�

Corollary 1 tells that if a PAC interpolant CI(ε, β) is obtained for formulas φ
and ψ, then with confidence at least 1 − β, the probability measure of states in
Ci,j = Ai ∩ Bj satisfies

PrAi
(Ci,j) ≤ min{1, ε +

ελ(Bj)
λ(Ai)

}, (6)

where λ(Ai) and λ(Bj) respectively represent the Lebesgue measure of the sets
Ai and Bj , i = 1, . . . , l, j = 1, . . . , k. The states in Ci,j are the ones such that
the two formulas φi and ψj are consistent.

(6) is obtained as follows: Since Ci,j = {x ∈ Ci,j | h(x) > 0} ∪ {x ∈ Ci,j |
h(x) ≤ 0}. According to (5), we have that

PrAi
({x ∈ Ci,j | h(x) ≤ 0})

≤ PrAi
({x ∈ Ai | h(x) ≤ 0}) ≤ ε

(7)

and
PrAi

({x ∈ Ci,j | h(x) > 0})
= PrBj

({x ∈ Ci,j | h(x) > 0}) · P

≤ ελ(Bj)
λ(Ai)

,

(8)

where P = PrAi
({x∈Ci,j |h(x)>0})

PrBj
({x∈Ci,j |h(x)>0}) . Combining (7) and (8), we have (6).

Consequently, the probability measure of the states x in {x | φi(x)} such
that φi(x) ∧ ψj(x) |= ⊥ is larger than or equal to

1 − min{1, ε +
ελ(Bj)
λ(Ai)

},

with confidence at least 1 − β, i = 1, . . . , l, j = 1, . . . , k. Consequently, the
probability measure of the states x in {x | φi(x)} such that φi(x) ∧ ψ(x) |= ⊥
is larger than or equal to
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max{0, 1 −
k∑

j=1

(ε +
ελ(Bj)
λ(Ai)

)},

with confidence at least 1 − β, i = 1, . . . , l.
We also have the similar conclusion for ψj , j = 1, . . . , k. That is, the prob-

ability measure of states in {x | ψj(x)} such that ψj(x) ∧ φ(x) |= ⊥ is larger
than or equal to

max{0, 1 −
l∑

i=1

(ε +
ελ(Ai)
λ(Bj)

)},

with confidence at least 1 − β.
Let’s take (6) as an instance to give a further explanation of PAC interpolants

in the safety verification scenario [32]. Let Ai be a set of possibly reachable states
of a system of interest and F2 be a set of unsafe states. Thus, the probability of
reaching the unsafe region F2 is less than or equal to

min{1,
k∑

j=1

(ε +
ελ(Bj)
λ(Ai)

)},

with at least 1−β confidence. If β is extremely small (smaller than 10−10), then
we have a priori practical certainty that the unsafe probability does not exceed

min{1,
k∑

j=1

(ε +
ελ(Bj)
λ(Ai)

)}.

Further, if ε is below a threshold as well, it is reasonable to believe that the
system is practically safe in real applications.

Especially, if a computed CI(ε, β) is verified to satisfy (1) based on existing
methods such as SMT solving and semi-definite programming, the computed
CI(ε, β) is a true interpolant and thus the formulas φ and ψ are inconsistent.

3 PAC Interpolants Generation

In this section we present our method for generating PAC interpolants. The
method is based on the scenario optimization yielding a linear program to be
solved.

3.1 Scenario Optimization

The scenario optimization is an intuitive and effective way to deal with robust
optimization problems based on finite randomization of the constraints [3]. Con-
cretely, consider the following robust optimization problem:

min
γ∈Γ⊆Rm

cT γ

such that fδ (γ) ≤ 0,∀δ ∈ Δ̃,
(9)
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where Γ is a convex and closed set, and fδ (γ) are convex functions over the
decision variable γ for every δ in a closed set Δ̃ ⊆ R

r.

Definition 4 (Scenario Optimization). Extract N independent and identi-
cally distributed samples (δ(i))N

i=1 from Δ̃ according to probability P and solve
the convex program (10):

min
γ∈Γ⊆Rm

cT γ

s. t. ∧N
i=1 fδ(i)(γ) ≤ 0.

(10)

(10) is a relaxation of (9) and the process of solving (10) to obtain an approxi-
mate solution to (9) is called scenario optimization of (9). Correspondingly, its
optimal solution γ∗ is called scenario solution to (10).

Theorem 1 shows that the solution γ∗
N to (10) satisfies all constraints in (9)

except a fraction.

Theorem 1. [4] Choose a violation level ε ∈ (0, 1) and a confidence level β ∈
(0, 1). If (10) is feasible and attains a unique optimal solution, and

N ≥ 2
ε
(ln

1
β

+ m), (11)

where m is the number of optimization variables λ, then with confidence at least
1 − β, γ∗

N satisfies all constraints in Δ̃ but at most a fraction of probability
measure ε, i.e., P({δ | fδ (γ∗

N ) > 0}) ≤ ε.

In Theorem 1, 1 − β is the N−fold probability PN in Δ̃N = Δ̃ × · · · × Δ̃, which
is the set to which the extracted sample (δ(1), . . . , δ(N)) belongs. A unique opti-
mal solution can be selected from the Tie-break rule if multiple optimal solutions
occur for (10), Theorem 1 still holds if the uniqueness of optimal solutions to (10)
in Theorem 1 is removed [3]. The minimum number of samples depends logarith-
mically on β−1, we can choose a high confidence without increasing the required
samples too much. Moreover, we observe from Theorem 1 that the number N of
required samples does not depend on the dimension of the universally quantified
variables δ. This facilitates application of the scenario optimization approach
to systems with high-dimensional variables δ. Recently, scenario optimization
was used to compute probably approximately safe inputs for a given black-box
system such that the system’s final outputs fall within a safe range in [33], per-
form safety verification of hybrid systems in [32] and black-box continuous time
dynamical systems in [34].

3.2 PAC Interpolant Generation

In this subsection we elucidate our linear programming based approach for com-
puting the PAC interpolants.
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We first select an interpolant template h(c1, . . . , cl′ ,x) such that
h(c1, . . . , cl′ ,x) is for every x ∈ R

n a linear function in c1, . . . , cl′ , where
(ci)i=1,...,l′ are unknown parameters. For instance, for a two-dimensional state
variable x = (x1, x2)�, w(c1, c2,x) = c1x1 + c2x

2
2 is a linear function in c1 and

c2, and w(c1, c2,x) = c1e
x1x2 + c2 ln (x2) is also a linear function over c1 and c2.

How to select a best interpolant template is not the focus of this paper. Gener-
ally, we would use an interpolant template of the polynomial form over x. If a
given template fails to generate a PAC interpolant, a polynomial template with
higher degree would be recommended.

In the following we show how to use scenario optimization from Definition
4 to solve (1) and obtain an approximate solution (cj)j=1,...,l′ such that with
confidence at least 1 − β, the probability that h(c1, . . . , cl′ ,x) satisfies (1) is
larger than or equal to 1 − ε. That is, h(c1, . . . , cl′ ,x) is CI(ε, β).

According to Definition 4, we extract N independent and identically dis-
tributed samples

{(xA1,i, . . . ,xAl,i,xB1,i, . . . ,xBk,i) ∈ Δ}N
i=1

from the product space Δ in (2) according to the probability distribution Pr,
where xAj ,i ∈ Aj = {x | φj(x)} for j = 1, . . . , l and xBj ,i ∈ Bj = {x | ψj(x)}
for j = 1, . . . , k, we obtain a linear program (12) over (ci)i=1,...,l′ and γ,

min
ci,i=1,...,l′,γ

−γ

such that for each i = 1, . . . , N :
− h(c1, . . . , cl′ ,xA1,i) + γ + ε ≤ 0,

· · ·
− h(c1, . . . , cl′ ,xAl,i) + γ + ε ≤ 0
h(c1, . . . , cl′ ,xB1,i) + γ ≤ 0,

· · ·
h(c1, . . . , cl′ ,xBk,i) + γ ≤ 0,

− Uc ≤ cj ≤ Uc, j = 1, . . . , l′,
0 ≤ γ ≤ Uγ ,

(12)

where ε is a given positive value, positive values Uc and Uγ are respectively pre-
specified upper bounds for |cj |, j = 1, . . . , l′, and γ. (12) can determine the thick-
est slab separating the two family of samples (xAj ,i)

i=1,...,N
j=1,...,l and (xBj ,i)

i=1,...,N
j=1,...,k ,

where 2γ represents the thickness of the slab. ε is to ensure the positivity of
h(c1, . . . , cl′ ,x) over xAj ,i, j = 1, . . . , l, i = 1, . . . , N .

If N ≥ 2
ε (ln 1

β + l′ + 1) and (12) has feasible solutions, we conclude that the
function h(c∗

1, . . . , c
∗
l′ ,x) is CI(ε, β), where (c∗

i )i=1,...,l′ is an optimal solution to
(12).

Theorem 2. Suppose that (12) is feasible with N ≥ 2
ε (ln 1

β + l′ + 1) and
(c∗

i )i=1,...,l′ is an optimal solution to (12), then the function h(c∗
1, . . . , c

∗
l′ ,x) is

CI(ε, β).
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Proof. We reformulate (12) equivalently as the following linear program over
c1, . . . , cl′ and γ,

min
ci,i=1,...,l′,γ

γ

such that for each i = 1, . . . , N :
− h′

A1,i(c1, . . . , cl′ ,wi) + γ + ε ≤ 0,

· · ·
− h′

Al,i
(c1, . . . , cl′ ,wi) + γ + ε ≤ 0,

h′
B1,i(c1, . . . , cl′ ,wi) + γ ≤ 0,

· · ·
h′

Bk,i(c1, . . . , cl′ ,wi) + γ ≤ 0,

− Uc ≤ cj ≤ Uc, j = 1, . . . , l′,
0 ≤ γ ≤ Uγ ,

(13)

where h′
Aj ,i(c1, . . . , cl′ ,wi) = h(c1, . . . , cl′ ,xAj ,i) for j = 1, . . . , l, h′

Bj ,i(c1,
. . . , cl′ ,wi) = h(c1, . . . , cl′ ,xBj ,i) for j = 1, . . . , k, and

wi = (xA1,i, . . . ,xAl,i,xB1,i, . . . ,xBk,i).

The number of decision variables in (13) is l′+1, i.e., c1, . . . , cl′ and γ.
Optimal solutions to (12) are optimal ones to (13), and vice versa. If the

optimal solution (c∗
1, . . . , c

∗
l′ , γ

∗) to (13) is unique, the function h(c∗
1, . . . , c

∗
l′ ,x)

is CI(ε,β) according to Theorem 1 and Definition 3. If the linear optimization
(13) has multiple optimal solutions then we can take one of optimal solution
and set ci := c∗

i in (13) to obtain a new linear program optimizing over the only
variable γ. Obviously, γ∗ is still the optimal solution to the resulting new linear
optimization problem and its solution is unique. Therefore, by Theorem 1, the
function h(c∗

1, . . . , c
∗
l′ ,x) is CI(ε, β). �

Our approach for synthesizing PAC interpolants is formally summarized in
Algorithm 1.

4 Experiments

In this section we evaluate Algorithm 1 on three examples. Parameters that
determine the performance of Algorithm1 are presented in Fig. 1. All computa-
tions were performed on an i7-7500U 2.70 GHz CPU with 32 GB RAM running
Windows 10.

Example 1. To enhance the understanding of Algorithm1, we consider a simple
example as follows:

φ(x, y) : (f1(x, y) ≥ 0 ∧ f2(x, y) ≥ 0),

ψ(x, y) : (g1(x, y) ≥ 0 ∧ g2(x, y) ≥ 0),
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Algorithm 1. PAC Interpolant Generation
Input: formulas φ and ψ; ε in (12); upper bounds Uc and Uγ in (12); violation level

ε ∈ (0, 1) and confidence value β ∈ (0, 1).
Output: If a CI(ε, β) is computed, return “YES” and a CI(ε, β); Otherwise, return

“UNKNOWN”.

1. Select an interpolant template h(c1, . . . , cl′ , x);
2. Compute the number N of samples with respect to ε and β according to (11);
3. Extract independent and uniformly distributed N samples from the product

space Δ in (2) based on a rejection sampling algorithm [29];
4. if an optimal solution (c∗

j )j=1,...,l′ is computed via solving (12) then
Return “YES” and CI(ε, β) = h(c∗

1, . . . , c
∗
l′ , x);

5. else
Return “UNKNOWN”;

6. end if

Fig. 1. Parameters and performance of our method on the listed examples. dφ and dψ:
dimensions of variables in formulas φ and ψ respectively; ε: violation level; β: confidence
level; N : the number of extracted samples; m: the number of unknown variables in (12);
ε: ε in (12); U : the upper bound for both Uc and Uγ in (12); T : the computation time
for computing CI(ε, β).

where f1(x, y) = 4 − x2 − y2, f2(x, y) = y − x2, g1(x, y) = 4 − x2 − y2 and
g2(x, y) = x2 − y − 0.5.

The interpolant template is assumed as c1 + c2x + c3y + c4x
2 + c5xy + c6y

2,
where c1, . . . , c6 are the unknown parameters. Thus, the number of optimization
variables in (12) is 7. Let ε = 0.01 and β = 0.01. According to Theorem 1, we
obtain that the number N of samples is at least 2322.

We take 2322 independent and identically distributed samples

{(xA1,k, yA1,k, xB1,k, yB1,k)}2322k=1

from the product space A1 × B1 according to the uniform distribution, where

(xA1,k, yA1,k) ∈ A1 = {(x, y) | f1(x, y) ≥ 0, f2(x, y) ≥ 0}

and
(xB1,k, yB1,k) ∈ B1 = {(x, y) | g1(x, y) ≥ 0, g2(x, y) ≥ 0}
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with k = 1, . . . , N . This results in the following linear program over c1, . . . , c6, γ:

min
c1,...,c6,γ

γ

such that for each k = 1, . . . , 2322 :
− h(xA1,k, yA1,k) + γ + ε ≤ 0,

h(xB1,k, yB1,k) + γ ≤ 0,

− 10 ≤ ci ≤ 10, i = 1, . . . , 6,

0 ≤ γ ≤ 10,

(14)

where ε = 0.1. These extracted samples are shown in Fig. 2.
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Fig. 2. An illustration of extracted samples. Red curves in the left and right figures
are respectively the boundary of {(x, y) | φ(x, y)} and {(x, y) | ψ(x, y)}. Gray points in
the left and right figures are respectively the extracted samples from {(x, y) | φ(x, y)}
and {(x, y) | ψ(x, y)}.

Via solving (14), we obtain a CI(0.01, 0.01):

h(x, y) =2.51547516736 + 0.0165156178714x + 9.99999999665y

− 9.95141962642x2 + 0.0513084342584y2 − 0.00560477791004xy.
(15)

That is, with at least 99% confidence, the probability that h(x, y) > 0 is an
interpolant for φ(x, y) and ψ(x, y) is larger than or equal to 0.99. The plots of
{(x, y) | ψ(x, y)}, {(x, y) | φ(x, y)} and {(x, y) | h(x, y) > 0} are presented in
Fig. 3.

Actually, a check using the REDUCE Computer Algebra System [9] proves
that h(x, y) in (15) is a true (not just probably approximately correct) inter-
polant satisfying

h(x.y) > 0,∀(x, y) ∈ {(x, y) | φ(x, y)},

h(x, y) ≤ 0,∀(x, y) ∈ {(x, y) | ψ(x, y)}.
(16)
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Fig. 3. An illustration of CI(0.01, 0.01) for Example 1. Red, green and gray regions are
respectively the set {(x, y) | φ(x, y)}, {(x, y) | ψ(x, y)} and {(x, y) | h(x, y) > 0} (Color
figure online).

Example 2. In order to demonstrate the applicability of our method to formulas
beyond polynomial ones, we consider nonlinear formulas:

φ(x, y) : f1(x, y) ≤ 0 ∧ f2(x, y) ≤ 0
ψ(x, y) : (g1,1(x, y) ≤ 0 ∧ g1,2(x, y) ≥ 0) ∨ (g2,1(x, y) ≤ 0 ∧ g2,2(x, y) ≤ 0)

where f1(x, y) = y2 +x2 −4, f2(x, y) = y8 −2y4x2 +6y4 +y2 +sin(x)4 −5x2 +5,
g1,1(x, y) = y2 + x2 − 4, g1,2(x, y) = y2 − x2 − 1, g2,1(x, y) = y2 + x2 − 4 and
g2,2(x, y) = 2y2 − 2yx2 − 2y + x4 + 3x2 − 3.

Via solving (14), we obtain a CI(0.001, 0.001):

h(x, y) = −9.99999999941 + 0.0280147362282x

− 0.312255569319y + 10x2 − 0.0107265793759xy − 6.16535622183y2.
(17)

That is, with at least 99.9% confidence, the probability that h(x, y) > 0 is an
interpolant for φ and ψ is larger than or equal to 0.999.

Since the formula φ is non-polynomial, we use the satisfiability checker iSAT3
[10] to check that h(x, y) in (17) is a true (not just probably approximately
correct) interpolant.

The plots of {(x, y) | ψ(x, y)}, {(x, y) | φ(x, y)} and {(x, y) | h(x, y) > 0} are
presented in Fig. 4.

Example 3. To demonstrate the applicability of our approach to formulas with
high-dimensional variables, we consider a scalable example with variables of high
dimension of 100.
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Fig. 4. An illustration of CI(0.001, 0.001) for Example 2. Red, green and gray regions
are respectively the set {(x, y) | ψ(x, y)}, {(x, y) | φ(x, y)} and {(x, y) | h(x, y) > 0}.
(Color figure online)

φ(x) :

∧100
i=1 [xi ≤ 0 ∧ xi + 0.5 ≥ 0].

ψ(x) :

∧100
i=1 [−xi − 0.9 ≤ 0 ∧ xi + 0.4 ≤ 0]

∧
100∑

i=1

xi − ex10 + cos(x50) sin(x50) + 0.9 ≤ 0.

The interpolant template is c0 +
∑100

i=1 cixi. Algorithm 1 returns a
CI(0.01, 10−12). The satisfiability checker iSAT3 [10] fails to check whether
the computed CI(0.01, 10−12) is a true interpolant. However, according to (6),
we have that the probability of states in {x | φ(x)} such that such that
φ(x) ∧ ψ(x) |= ⊥ is larger than max{0, 1 − (0.01 + 0.010.5100

0.5100 )} ≥ 0.98, with
confidence at least 1 − 10−12.

The dimensionality of this example demonstrates that our approach opens up
a promising prospect for interpolant synthesis of formulas with high-dimensional
variables by selecting appropriate ε, β and interpolant templates.

5 Conclusion

In this paper we investigated the generation of interpolants for two Boolean for-
mulas in the framework of PAC learning, attempting to fight against the “curse
of dimensionality” suffered by traditional formal methods. A new concept, called
PAC Craig interpolants, was introduced to characterize the relationship between
two formulas using violation levels and confidence levels. Based on scenario
approaches, we could construct a linear programming formulation of the instan-
tiation problem for an interpolant template and compute a PAC interpolant.
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Using the computed PAC interpolant, we could characterize how inconsistent
the two given formulas are. Besides, one important consequence of our approach
is that in contrast to traditional methods for computing interpolants, our method
scales well to the high-dimensional formulas. Three examples demonstrated the
performance of our approach.

In our future work we would extend our method to safety verification of
hybrid systems, as well as the generation of PAC interpolants for Boolean for-
mulas with uncommon variables.
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20. Kovács, L., Voronkov, A.: Interpolation and symbol elimination. In: Schmidt, R.A.
(ed.) CADE 2009. LNCS (LNAI), vol. 5663, pp. 199–213. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-02959-2 17
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